Alexandra Yenny
email: yennypaas@unisabana.edu.co

Paredes-Astudillo
email: yenny.paredes-astudillo@insa-lyon.fr

Valérie Botta-Genoulaz

Jairo R Montoya-Torres

Valérie Botta
email: valerie.botta@insa-lyon.fr

Impact of learning effect modeling in flowshop scheduling with makespan minimization based on the Nawaz-Enscore-Ham algorithm

Keywords: scheduling, flowshop, learning effect, simulated annealing, metaheuristic

Impact of learning effect modeling in flowshop scheduling with makespan minimization based on the Nawaz-Enscore-Ham algorithm.

Inspired by real-life applications, mainly in hand-intensive manufacturing, the incorporation of learning effects into scheduling problems has garnered attention in recent years. This paper deals with the flowshop scheduling problem with a learning effect, when minimizing the makespan. Four approaches to model the learning effect, well-known in the literature, are considered. Mathematical models are providing for each case. A solver allows us to find the optimal solution in small problem instances, while a Simulated Annealing algorithm is proposed to deal with large problem instances. In the latter, the initial solution is obtained using the wellknown Nawaz-Enscore-Ham algorithm, and two local search operators are evaluated. Computational experiments are carried out using benchmark datasets from the literature. The Simulated Annealing algorithm shows a better result for learning approaches with fast learning effects as compared to slow learning effects. Finally, for industrial decision makers, some insights about how the learning effect model might affect the makespan minimization flowshop scheduling problem are presented.

Introduction

Human workers are still an essential resource in manufacturing systems and assembly lines, particularly in developing countries, where production systems are largely manual and factories are often perceived as a source of employment [START_REF] Baudin | Lean assembly. the nuts and bolts of making assembly operations flow[END_REF]. As industrial automation technologies have limited flexibility [START_REF] Kadir | Current research and future perspectives on human factors and ergonomics in Industry 4.0[END_REF], complex tasks do still require certain skills typical of human beings (e.g., precision, intelligence, analysis and logic) (Sánchez-Herrera, Montoya-Torres and Solano-Charris 2019). People are inherently more flexible than machines [START_REF] Daniels | Flow shop scheduling with partial resource flexibility[END_REF]Hashemi-Petrood et al. 2020) and have been involved in production systems implicitly or explicitly since the appearance of the latter [START_REF] Dessouky | Taxonomy of scheduling systems as a basis for the study of strategic behavior[END_REF].

Some examples of hand-intensive systems in industry are the luxury industry, artisan production, manual palletizing and un-palletizing [START_REF] Calzavara | A model for rest allowance estimation to improve tasks assignment to operators[END_REF], manual feeding of materials to assembly, and order picking [START_REF] Vijayakumar | Framework for incorporating human factors into production and logistics systems[END_REF][START_REF] Katiraee | Assembly line balancing and worker assignment considering workers' expertise and perceived physical effort[END_REF][START_REF] Calzavara | A model for rest allowance estimation to improve tasks assignment to operators[END_REF]. The last two are perhaps the ones that have received the most attention recently. Manual assembly lines have been designed to produce a variety of product variants [START_REF] Bortolini | Including material exposure and part attributes in the manual assembly line balancing problem[END_REF], and order preparation systems meet a complex, highly customized global demand that requires the processing of many orders in short time windows [START_REF] Vanheusden | Practical factors in order picking planning: state-of-the-art classification and review[END_REF]).

Yet theories such as scheduling, dating back to the 1950's, have incorporated assumptions and simplifications with regard to humans, such as the claim that workers are not a major resource, or that their performance is deterministic [START_REF] Lodree | Taxonomy for integrating scheduling theory and human factors: Review and research opportunities[END_REF]. As a result, there is a dichotomy between ergonomics and operations management. This is witnessed in the fact that publications on workers' well-being are seldom published in engineering, management, or business journals [START_REF] Neumann | Human factors: Spanning the gap between OM and HRM[END_REF]. In recent years, some authors have nevertheless recognized the importance of involving human workers in production systems. They have highlighted the opportunities for research in the production, operations management, and operational research fields to integrate human behavior and ergonomics [START_REF] Boudreau | On the Interface between Operations and Human Resources Management[END_REF]Hashemi-Petrood et al. 2020;[START_REF] Lodree | Taxonomy for integrating scheduling theory and human factors: Review and research opportunities[END_REF][START_REF] Sánchez-Herrera | Flow shop scheduling problem with position-dependent processing times[END_REF].

Of all the human characteristics that have an impact on the productivity of industrial environments, the learning effect is one of the most studied. This effect was induced scientifically by [START_REF] Wright | Factors affecting the cost of airplanes[END_REF], but it was not until 1998 that [START_REF] Dondeti | Impact of learning and fatigue factors on single machine scheduling with penalties for tardy jobs[END_REF] spoke about the role of learning and fatigue in single-machine problems, when the job processing time depends on the content of both the present and the previously processed jobs. [START_REF] Biskup | Single-machine scheduling with learning functions[END_REF] formalized the effect of learning on one machine. Since then, a significant number of papers have proposed different ways of modeling the learning effect on scheduling problems (Paredes-Astudillo, Montoya-Torres and Botta-Genoulaz 2022a; [START_REF] Pei | A concise guide to scheduling with learning and deteriorating effects[END_REF]. Over the last 20 years, some learning approaches have been applied in practical scenarios involving humans, summarized by [START_REF] Pei | A concise guide to scheduling with learning and deteriorating effects[END_REF] in their review paper. Examples include automotive assembly lines, processing of memory chips and automotive components, catalytic processes in the chemical industry, and order picking, among others.

The most commonly used approaches are the position-based learning effect [START_REF] Biskup | Single-machine scheduling with learning functions[END_REF][START_REF] Cheng | Single Machine Scheduling with Learning Effect Considerations[END_REF][START_REF] Dolgui | Single machine scheduling with precedence constraints and positionally dependent processing times[END_REF], and the sum-of-processing-time-based learning effects (Kuo and Yang 2006a, 2006b, 2006c;[START_REF] Koulamas | Single-machine and two-machine flowshop scheduling with general learning functions[END_REF], as well as its variations, including truncated parameters [START_REF] Wang | Several flow shop scheduling problems with truncated position-based learning effect[END_REF][START_REF] Wu | Some single-machine scheduling problems with a truncation learning effect[END_REF].

In recent years, researchers have focused on this problem mainly in the single machine environment, because it is possible to conceptualize the problem and extrapolate alternatives for other types of configurations. However, flowshop configurations and their variations are frequently encountered in complex manufacturing systems, due to the necessity to perform sequential operations, as in the case of textiles, footwear and in the automotive industry [START_REF] Chen | Complexity of late work minimization in flow shop systems and a particle swarm optimization algorithm for learning effect[END_REF][START_REF] Fernandez-Viagas | A speed-up procedure for the hybrid flow shop scheduling problem[END_REF][START_REF] Rudek | Computational complexity and solution algorithms for flowshop scheduling problems with the learning effect[END_REF]. While the existing articles do analyze the complexity of problems and propose solution methods, they do not compare the efficiency of solution methods based on the learning effect approach.

The main contributions of this paper, which deals with the flowshop scheduling problem (FSSP) with learning effect, are:

• To provide FFSP mathematical models that address the learning effect with the four approaches referred to in the literature. • To solve small-problem instances with a mathematical programming solver.

• To solve large-size instances, a simulated annealing (SA) algorithm testing is proposed, using the NEH algorithm to get the initial solution, and two local search operators. • To discuss the effectiveness of the SA algorithm and its performance regarding the way the learning effect is modeled through a sensitivity analysis. It is true that NEH and SA have previously been used to solve the FSS with learning effects. Those early studies chose a learning model and developed a solution algorithm. The current study differs from them, however, since both NEH and SA algorithms are adapted to analyze the impact of the different learning models and their parameters on the efficiency of such algorithms. Experimental results are expected to be useful for application in real-world situations, particularly in hand-intensive manufacturing systems where the learning process is a determining factor in productivity rates.

The remainder of this paper is organized as follows. Section 2 reviews the related literature. Section 3 presents the description of the problem and the mathematical models of the learning effect. The proposed solution approach for large instances is presented in Section 4, while Section 5 is devoted to the computational experiments and the analysis of results. Finally, conclusions and future research opportunities are outlined in Section 6.

2

Literature review [START_REF] Wright | Factors affecting the cost of airplanes[END_REF] introduced the concept of the learning effect in manufacturing systemsan effect stemming from practical experience [START_REF] Arditi | Effect of learning on line-of-balance scheduling[END_REF], particularly in monotonous activities. In recent years, the inclusion of the learning effect when dealing with operations management problems has become more widespread and has produced several learning models published in the literature. The baseline of scheduling with learning effects was established by [START_REF] Biskup | Single-machine scheduling with learning functions[END_REF], who modeled a position-based learning effect into a single-machine scheduling problem. This case defines the actual processing time 𝑝𝑝 𝑗𝑗𝑗𝑗 of the job 𝑗𝑗 located in position 𝑟𝑟 of the schedule to be computed as 𝑝𝑝 𝑗𝑗𝑗𝑗 = 𝑝𝑝̅ 𝑗𝑗 𝑟𝑟 𝛼𝛼 where 𝑝𝑝̅ 𝑗𝑗 is the baseline processing time of job j (e.g., without learning) and 𝛼𝛼 < 0 is a constant learning index. From this approach, several modifications have been introduced, to adapt them to other system configurations and integrate additional parameters. This is the case of truncated position-based learning effects, where learning is not considered to be infinite, and the actual processing time depends on the job position and a control parameter. [START_REF] Wu | Genetic algorithm for a two-agent scheduling problem with truncated learning consideration[END_REF] modeled this learning effect in a single machine scheduling problem as 𝑝𝑝 𝑗𝑗𝑗𝑗 = 𝑝𝑝 𝑗𝑗 * 𝑚𝑚𝑚𝑚𝑥𝑥{𝑟𝑟 𝛼𝛼 , 𝛽𝛽}, where 𝛽𝛽 is a control parameter (0 < 𝛽𝛽 < 1).

Other authors have also considered learning effect approaches based on the sumof-processing-time. Kuo and Yang (2006a) introduced a new model with the premise that the performance will improve if the workers practice for longer. The actual processing time 𝑃𝑃 𝑗𝑗𝑗𝑗 in a single machine system of a job j scheduled in position r is defined as

𝑝𝑝 𝑗𝑗𝑗𝑗 = (1 + ∑ 𝑝𝑝 𝑘𝑘 𝑗𝑗-1 𝑘𝑘=1
) 𝛼𝛼 𝑝𝑝 𝑗𝑗 , where ∑ 𝑝𝑝 𝑘𝑘

𝑗𝑗-1 𝑘𝑘=1

is the cumulative processing time of jobs from position 1 to position 𝑟𝑟 -1, and 𝑝𝑝 𝑗𝑗 is the baseline processing time of job j. Based on this premise and considering that learning is limited, Wu et al. (2012b) proposed, for a single-machine scheduling problem, a truncated sum-of-processing-time model, which is computed as

𝑝𝑝 𝑗𝑗𝑗𝑗 = 𝑚𝑚𝑚𝑚𝑥𝑥��1 + ∑ 𝑝𝑝 𝑗𝑗𝑘𝑘 𝑗𝑗-1 𝑘𝑘=1 � 𝛼𝛼
, 𝛽𝛽�𝑝𝑝 𝑗𝑗 . Some other models of learning effects are available in detail in the reviews of [START_REF] Azzouz | Scheduling problems under learning effects: classification and cartography[END_REF], [START_REF] Glock | Applications of learning curves in production and operations management: A systematic literature review[END_REF], Paredes-Astudillo, Montoya-Torres and Botta-Genoulaz (2022a) and [START_REF] Pei | A concise guide to scheduling with learning and deteriorating effects[END_REF].

The flowshop scheduling problem without learning and with makespan minimization is known to be NP-hard for the case of more than two machines [START_REF] Wang | Flow-shop scheduling with a learning effect[END_REF]. When dealing with learning in processing times, the problem becomes NPhard even for the case of two machines [START_REF] Pinedo | Scheduling: Theory, Algorithms, and Systems[END_REF]. This means that optimal solutions cannot be obtained for large-sized datasets in reasonable computational time. Because of this computational intractability, the literature has witnessed a variety of solution methods to solve flowshop scheduling problems with learning effects. To deal with a two-machine flowshop scheduling problem with truncated learning effects, both [START_REF] Cheng | Twomachine flowshop scheduling with a truncated learning function to minimize the makespan[END_REF] and Wu et al. (2012a) propose a genetic algorithm (GA) and a branch-and-bound algorithm, while minimizing the makespan and the total completion time by applying some dominance rules. [START_REF] Zou | Two-stage three-machine assembly scheduling problem with sum-of-processing-times-based learning effect[END_REF] addressed a two-stage three-machine flowshop scheduling problem with a sum-of-processing-times-based learning effect to minimize the makespan. They proposed a branch-and-bound algorithm incorporating dominance properties, three heuristics based on Johnson's rule, and a GA. [START_REF] Wu | Metaheuristics for two-stage flow-shop assembly problem with a truncation learning function[END_REF] studied a two-stage three-machine flowshop scheduling problem with a truncated sum-ofprocessing-time-based learning effect, where the makespan is intended to be minimized. They present some dominance rules, and develop a branch-and-bound algorithm and a GA to obtain near-optimal solutions. Wu et al. (2018a) deal with the re-entrant permutation flowshop scheduling with a sum-of-processing-times-based learning effect to minimize the makespan. They propose four heuristics and a SA to approximate solutions.

In addition to genetic algorithms, other metaheuristics such as simulated annealing (SA) have been widely used. [START_REF] Sun | Flow shop scheduling with general position weighted learning effects to minimise total weighted completion time[END_REF] consider the flowshop problem of minimizing the total weighted completion time, where the job processing time is computed according to a general position-weighted learning effect. SA and branch and bound algorithms are proposed. Liu (2020) also proposes a SA to solve the two-stage three-machine flowshop, while approaching the learning effect as a truncated function of sum-of-processing time in order to minimize makespan. [START_REF] Azizi | M-machine, no-wait flowshop scheduling with sequence dependent setup times and truncated learning function to minimize the makespan[END_REF] studied the m-machine flowshop scheduling problem, considering sequencedependent setup times and truncated learning function to minimize the makespan. To do so, they developed both GA and SA. [START_REF] Lai | Using heuristic algorithms to solve the scheduling problems with job-dependent and machine-dependent learning effects[END_REF] used GA, SA, ant colony optimization (ACO) and particle swarm optimization (PSO) to minimize the makespan. They incorporated three kinds of variations of learning effect models: job-dependent, machine-dependent, and job-and machine-dependent learning effects, depending on the position. [START_REF] Rudek | Makespan minimization flowshop with position dependent job processing times -Computational complexity and solution algorithms[END_REF] and Wu et al. (2018b) deal with two-and three-machine flowshop problems to minimize makespan and describe the job processing time by learning based on the position. They construct a Nawaz-Encore-Ham (NEH) algorithm, tabu search (TS) with neighborhood search, and SA algorithms that solve the problem.

Some authors have recently addressed this problem through hybridmetaheuristics. For example, Wu et al. (2018b) and [START_REF] Zou | Two-stage three-machine assembly scheduling problem with sum-of-processing-times-based learning effect[END_REF] alternatively include a cloud theory-based simulated annealing algorithm (CSA). [START_REF] Fu | Artificial-Molecule-Based Chemical Reaction Optimization for Flow Shop Scheduling Problem with Deteriorating and Learning Effects[END_REF] consider a flowshop scheduling problem with learning and deterioration effects and propose an artificial-molecule-based chemical reaction optimization algorithm (ACRO). Vahedi Nouri, Fattahi, P and Ramezanian (2013) study a flowshop scheduling problem with learning effects and maintenance activities. They develop a hybrid meta-heuristic algorithm based on an SA algorithm and a firefly algorithm (HFSA) to solve it. [START_REF] Muştu | Maximum completion time under a learning effect in the permutation flowshop scheduling problem[END_REF] address a flowshop scheduling problem under a position-based learning effect and minimize the makespan. They propose a kangaroo algorithm (KA) and a genetic-kangaroo hybrid algorithm (GAKA) to solve large instances of this problem. Arık (2021) deals with flowshop scheduling problems with position-dependent learning effects and linear deterioration. He proposes a population-based tabu search algorithm (TSPOP) with evolutionary strategies.

In terms of multi-objective problems, Hosseini and Tavakkoli-Moghaddam (2013) deal with a two-machine flowshop scheduling problem with learning effects that minimizes the total idle time and the mean deviation from a common due date. They solve the problems with a multi-objective genetic algorithm (MOGA) and a multi-objective simulated annealing (MOSA) algorithm. [START_REF] Eren | A bicriteria flowshop scheduling with a learning effect[END_REF] studied a two-machine flowshop scheduling problem with learning effects based on the position, the objective function of which is the minimization of a weighted sum of total completion time and makespan. This author presents heuristic algorithms and a TS algorithm to solve largesized problems. [START_REF] Chen | A bi-criteria two-machine flowshop scheduling problem with a learning effect[END_REF] addressed a bi-criteria two-machine flowshop scheduling problem with learning effects based on the position. They proposed a branchand-bound algorithm, a heuristic and a SA algorithm to approximate solutions for large instances of the problem. Table 1 summarizes the information previously described.

Table 1. Synthesis of current works [Table 1 near here] 3

The flowshop scheduling problem under study

We consider the permutation flowshop scheduling problem with a set I of workers, and a set J of independent jobs, which are processed in the same sequence to minimize the makespan (𝐶𝐶 𝑚𝑚𝑚𝑚𝑚𝑚). Each worker can process one job at a given time, and preemption of a job is not allowed (that is, the execution of a job cannot be interrupted once its processing has started). All workers are available at the beginning of the scheduling horizon and have a 100% production rate, and scheduling is performed through the permutation sequence.

The inclusion of intermediate buffers between workers is not considered in this approach.

The normal (baseline) processing time of the i th operation of the j th job is noted as 𝑝𝑝̅ 𝑖𝑖𝑗𝑗 . As an illustration, the production system under study might refer to a chocolate truffle production line or a sequential zone-picking line, where the work is entirely manual. The standard flowshop scheduling problem with makespan minimization can be modeled as a mixed-integer linear programming (MILP) model.

𝑀𝑀𝑖𝑖𝑀𝑀𝑖𝑖𝑚𝑚𝑖𝑖𝑀𝑀𝑀𝑀 𝑍𝑍 = 𝐶𝐶 𝑚𝑚𝑚𝑚𝑚𝑚 (1)
Subject to:

� 𝑥𝑥 𝑗𝑗𝑗𝑗 = 1 𝑗𝑗∈𝑅𝑅 𝑗𝑗 = 1, … , 𝐽𝐽 (2)
� 𝑥𝑥 𝑗𝑗𝑗𝑗 = 1 𝑗𝑗∈𝐽𝐽 𝑟𝑟 = 1, … , 𝑅𝑅 (3)
𝑐𝑐 1𝑗𝑗 ≥ 𝑝𝑝̅ 1𝑗𝑗 𝑗𝑗 = 1, … , 𝐽𝐽 (4)
𝑐𝑐 𝑖𝑖𝑗𝑗 -𝑝𝑝̅ 𝑖𝑖𝑗𝑗 ≥ 𝑐𝑐 (𝑖𝑖-1)𝑗𝑗 𝑖𝑖 = 2, … , 𝐼𝐼; 𝑗𝑗 = 1, … , 𝐽𝐽 (5)
𝑐𝑐 𝑖𝑖𝑗𝑗 -𝑝𝑝̅ 𝑖𝑖𝑗𝑗 + 𝑀𝑀�1 -𝑥𝑥 𝑗𝑗(𝑗𝑗+1) � ≥ 𝑐𝑐 𝑖𝑖ℎ -𝑀𝑀(1 -𝑥𝑥 ℎ𝑗𝑗) 𝑖𝑖 = 1, … , 𝐼𝐼; 𝑗𝑗 = 1, … , 𝐽𝐽; ℎ = 1, … , 𝐽𝐽; 𝑟𝑟 = 1, … , 𝑅𝑅 -1 (6) 𝐶𝐶 𝑚𝑚𝑚𝑚𝑚𝑚 ≥ 𝑐𝑐 𝑖𝑖𝑗𝑗 𝑖𝑖 = 1, … , 𝐼𝐼; 𝑗𝑗 = 1, … , 𝐽𝐽 (7) 𝑥𝑥 𝑗𝑗𝑗𝑗 ∈ {0,1} 𝑗𝑗 = 1, … , 𝐽𝐽; 𝑟𝑟 = 1, … , 𝑅𝑅 (8)
The objective function (1) corresponds to the minimization of the completion time of the last job of the sequence, i.e. the makespan. Constraints (2) and (3) guarantee that every job is assigned to one position in the sequence, and each position has only one job. Constraints (4) are related to the completion time of jobs for the first worker (i.e. first operation). This ensures the non-negativity constraint, which is usually formalized with constraints (9) and (10). Constraints (5) and (6) calculate the completion time of jobs for the remaining workers. Constraints (7) define the makespan. Constraints (10) define the values of binary decision variables.

𝐶𝐶 𝑚𝑚𝑚𝑚𝑚𝑚 ≥ 0 (9) 𝑐𝑐 𝑖𝑖𝑗𝑗 ≥ 0 𝑖𝑖 = 1, … , 𝐼𝐼; 𝑗𝑗 = 1, … , 𝐽𝐽 (10)
The previous mathematical model can be modified to take into account the different approaches for modeling the learning effect, as proposed by several authors such as [START_REF] Biskup | A state-of-the-art review on scheduling with learning effects[END_REF][START_REF] Azzouz | Scheduling problems under learning effects: classification and cartography[END_REF][START_REF] Azzouz | Scheduling problems under learning effects: classification and cartography[END_REF]. The models have been selected because they are the basis for other approaches (Paredes-Astudillo, Montoya-Torres and Botta-Genoulaz 2022b).

• Case 1: with position-based learning 𝑝𝑝 𝑖𝑖𝑗𝑗𝑗𝑗 = 𝑝𝑝̅ 𝑖𝑖𝑗𝑗 𝑟𝑟 𝛼𝛼 Where 𝛼𝛼 is the learning index (𝛼𝛼 < 0), 𝛽𝛽 is a control parameter with 0 < 𝛽𝛽 < 1 , and 𝜃𝜃 is a conversion factor (e.g., 1/60 to convert hours to minutes). In case 1, the job processing time is based on the position, so taking the baseline flowshop model, a new decision variable is added: 𝑝𝑝 𝑖𝑖𝑗𝑗 : actual processing time of job 𝑗𝑗 by worker 𝑖𝑖 To calculate the job processing time, constraints (11) and (12) are needed:

𝑝𝑝 𝑖𝑖𝑗𝑗 = � 𝑝𝑝̅ 𝑖𝑖𝑗𝑗 𝑥𝑥 𝑗𝑗𝑗𝑗 𝑗𝑗∈𝑅𝑅 𝑟𝑟 𝛼𝛼 𝑖𝑖 = 1, … , 𝐼𝐼; 𝑗𝑗 = 1, … , 𝐽𝐽 (11)
𝑝𝑝 𝑖𝑖𝑗𝑗 ≥ 0 𝑖𝑖 = 1, … , 𝐼𝐼; 𝑗𝑗 = 1, … , 𝐽𝐽 (12)
We replace Constraints (4), (5) and (6) by (13), (14) and (15) respectively.

𝑐𝑐 1𝑗𝑗 ≥ 𝑝𝑝 1𝑗𝑗 𝑗𝑗 = 1, … , 𝐽𝐽 (13) 𝑐𝑐 𝑖𝑖𝑗𝑗 -𝑝𝑝 𝑖𝑖𝑗𝑗 ≥ 𝑐𝑐 (𝑖𝑖-1)𝑗𝑗 𝑖𝑖 = 2, … , 𝐼𝐼; 𝑗𝑗 = 1, … , 𝐽𝐽 (14)
𝑐𝑐 𝑖𝑖𝑗𝑗 -𝑝𝑝 𝑖𝑖𝑗𝑗 + 𝑀𝑀�1 -𝑥𝑥 𝑗𝑗(𝑗𝑗+1) � ≥ 𝑐𝑐 𝑖𝑖ℎ -𝑀𝑀(1 -𝑥𝑥 ℎ𝑗𝑗) 𝑖𝑖 = 1, … , 𝐼𝐼; 𝑗𝑗 = 1, … , 𝐽𝐽; ℎ = 1, … , 𝐽𝐽; 𝑟𝑟 = 1, … , 𝑅𝑅 -1 (15)
From case 1 and changing constraints (11) for (16), we would get case 2:

𝑝𝑝 𝑖𝑖𝑗𝑗 = � 𝑝𝑝̅ 𝑖𝑖𝑗𝑗 𝑥𝑥 𝑗𝑗𝑗𝑗 𝑗𝑗∈𝑅𝑅 max {𝑟𝑟 𝛼𝛼 , 𝛽𝛽} 𝑖𝑖 = 1, … , 𝐼𝐼; 𝑗𝑗 = 1, … , 𝐽𝐽 (16)
In case 3, the decision variables 𝑐𝑐 𝑖𝑖𝑗𝑗 and 𝑝𝑝 𝑖𝑖𝑗𝑗 are replaced by 𝑐𝑐 𝑖𝑖𝑗𝑗 and 𝑝𝑝 𝑖𝑖𝑗𝑗 , where 𝑐𝑐 𝑖𝑖𝑗𝑗 is the competition time of the job scheduled in the position r ∈ 𝑅𝑅 for the worker 𝑖𝑖 ∈ 𝐼𝐼, and 𝑝𝑝 𝑖𝑖𝑗𝑗 is the actual processing time of the job scheduled in the position r ∈ 𝑅𝑅 for the worker 𝑖𝑖 ∈ 𝐼𝐼 Furthermore, equations (17) and (18) are included and replace equation (11) from case 1:

𝑝𝑝 𝑖𝑖𝑗𝑗 = �1 + 𝜃𝜃 � 𝑝𝑝 𝑖𝑖𝑖𝑖 𝑖𝑖<𝑗𝑗 𝑖𝑖∈𝑅𝑅 � 𝛼𝛼 �� 𝑝𝑝̅ 𝑖𝑖𝑗𝑗 𝑥𝑥 𝑗𝑗𝑗𝑗 𝑗𝑗∈𝐽𝐽 � 𝑖𝑖 = 1, … , 𝐼𝐼; 𝑟𝑟 = 1, … , 𝑅𝑅 -1 (17) 𝑝𝑝 𝑖𝑖1 = �� 𝑝𝑝̅ 𝑖𝑖𝑗𝑗 𝑥𝑥 𝑗𝑗1 𝑗𝑗∈𝐽𝐽 � 𝑖𝑖 = 1, … , 𝐼𝐼 (18)
Constraints (19), (20) and (21) control the completion times of the jobs at the machines, and ensure the non-negativity constraint, which is usually formalized with Constraints (22).

𝑐𝑐 1𝑗𝑗 ≥ 𝑝𝑝 1𝑗𝑗 𝑟𝑟 = 1, … , 𝑅𝑅 (19) 𝑐𝑐 𝑖𝑖𝑗𝑗 -𝑝𝑝 𝑖𝑖𝑗𝑗 ≥ 𝑐𝑐 (𝑖𝑖-1)𝑗𝑗 𝑖𝑖 = 2, … , 𝐼𝐼; 𝑟𝑟 = 1, … , 𝑅𝑅 (20) 𝑐𝑐 𝑖𝑖𝑗𝑗 -𝑝𝑝 𝑖𝑖𝑗𝑗 + 𝑀𝑀�1 -𝑥𝑥 𝑗𝑗(𝑗𝑗+1) � ≥ 𝑐𝑐 𝑖𝑖𝑗𝑗 -𝑀𝑀(1 -𝑥𝑥 ℎ𝑗𝑗) 𝑖𝑖 = 1, … , 𝐼𝐼; 𝑗𝑗 = 1, … , 𝐽𝐽; ℎ = 1, … , 𝐽𝐽; 𝑟𝑟 = 1, … , 𝑅𝑅 -1 (21) 𝑐𝑐 𝑖𝑖𝑗𝑗 ≥ 0 𝑖𝑖 = 1, … , 𝐼𝐼; 𝑟𝑟 = 1, … , 𝑅𝑅 (22)
For case 4, the set E, which states {1: Learning 2: Truncate} was taken into consideration, as were the two variables which are defined: 𝑢𝑢 𝑖𝑖𝑗𝑗𝑖𝑖 : actual processing time of the job scheduled in position 𝑟𝑟 ∈ 𝑅𝑅 for the worker 𝑖𝑖 ∈ 𝐼𝐼 in the state 𝑀𝑀 ∈ 𝐸𝐸 𝜉𝜉 𝑖𝑖𝑗𝑗 : maximun processing time of the job scheduled in position 𝑟𝑟 ∈ 𝑅𝑅 for the worker 𝑖𝑖 ∈ 𝐼𝐼 Equations (23), (24), (25), (26) and (27) are used to calculate the job processing time instead of equations (17) and (18). Constraint (28) and (29) are the non-negative constraint:

𝑝𝑝 𝑖𝑖1 = �� 𝑥𝑥 𝑗𝑗1 𝑗𝑗∈𝐽𝐽 � 𝑖𝑖 = 1, … , 𝐼𝐼 (23)
𝑢𝑢 𝑖𝑖𝑗𝑗1 = �1 + 𝜃𝜃 � 𝑝𝑝 𝑖𝑖𝑖𝑖 𝑖𝑖<𝑗𝑗 𝑖𝑖∈𝑅𝑅 � 𝛼𝛼 �� 𝑝𝑝̅ 𝑖𝑖𝑗𝑗 𝑥𝑥 𝑗𝑗𝑗𝑗 𝑗𝑗∈𝐽𝐽 � 𝑖𝑖 = 1, … , 𝐼𝐼; 𝑟𝑟 = 2, … , 𝑅𝑅 (24)
𝑢𝑢 𝑖𝑖𝑗𝑗2 = � 𝑝𝑝̅ 𝑖𝑖𝑗𝑗 𝑥𝑥 𝑗𝑗𝑗𝑗 𝑗𝑗∈𝐽𝐽 𝛽𝛽 𝑖𝑖 = 1, … , 𝐼𝐼; 𝑟𝑟 = 2, … , 𝑅𝑅 (25)
𝜉𝜉 𝑖𝑖𝑗𝑗 ≥ 𝑢𝑢 𝑖𝑖𝑗𝑗𝑖𝑖 𝑖𝑖 = 1, … , 𝐼𝐼; 𝑟𝑟 = 1, … , 𝑅𝑅; 𝑀𝑀 = 1, … , 𝐸𝐸 (26)
𝑝𝑝 𝑖𝑖𝑗𝑗 = 𝜉𝜉 𝑖𝑖𝑗𝑗 𝑖𝑖 = 1, … , 𝐼𝐼; 𝑟𝑟 = 2, … , 𝑅𝑅 (27)
𝑢𝑢 𝑖𝑖𝑗𝑗𝑖𝑖 ≥ 0 𝑖𝑖 = 1, … , 𝐼𝐼; 𝑟𝑟 = 1, … , 𝑅𝑅; 𝑀𝑀 = 1, … , 𝐸𝐸 (28)
𝜉𝜉 𝑖𝑖𝑗𝑗 ≥ 0 𝑖𝑖 = 1, … , 𝐼𝐼; 𝑟𝑟 = 1, … , 𝑅𝑅 (29)
We thus obtain two MILP models (case 1 and case 2) and two mixed-integer nonlinear programming (MINLP) models (case 3 and case 4).

Simulated annealing approach

As pointed out above, the flowshop scheduling problem is known in the literature to be NP-hard with learning effects and makespan minimization, even for the case of two resources (workers in this case) [START_REF] Wang | Flow-shop scheduling with a learning effect[END_REF]. This paper therefore proposes a SA algorithm to solve the problem. The NEH algorithm was proposed as a start point because of its efficiency in minimizing the makespan in the FSSP [START_REF] Turner | Comparison of heuristics for flow shop sequencing[END_REF][START_REF] Ruiz | A comprehensive review and evaluation of permutation flowshop heuristics[END_REF]. Likewise, it corresponds to one of the heuristics commonly referred to in the FSSP approach with a learning effect [START_REF] Mosheiov | On the minmax common-due-date problem: extensions to position-dependent processing times, job rejection, learning effect, uniform machines and flowshops[END_REF][START_REF] Rudek | Makespan minimization flowshop with position dependent job processing times -Computational complexity and solution algorithms[END_REF][START_REF] Wang | Flowshop scheduling with a general exponential learning effect[END_REF]Wu et al. 2018a;Wu et al. 2018b). Simulated annealing, first proposed by [START_REF] Kirkpatrick | Optimization by Simulated Annealing[END_REF], is a popular metaheuristic widely used to solve different variants of the flowshop scheduling problem (with or without learning effects), as discussed in Section 2. SA is a local search metaheuristic capable of escaping from a local optimum due to the hill-climbing moves [START_REF] Henderson | The theory and practice of simulated annealing[END_REF]. The analysis sensitivity of SA parameters such as initial temperature (𝑇𝑇 0), cooling velocity (𝜆𝜆), and final temperature (𝑇𝑇 𝑓𝑓) are presented in Section 5.4. The solution representation used in this paper is shown in Figure 1 (permutation of jobs). [Figure 1 near here]

Initial solution: the Nawaz-Enscore-Ham algorithm (NEH)

The initial solution is obtained by a greedy heuristic proposed by the Nawaz-Enscore-Ham algorithm (NEH) [START_REF] Nawaz | A heuristic algorithm for the m-machine, n-job flow-shop sequencing problem[END_REF], consisting of the following steps:

(1) Calculate the Total Processing Time (TPT) on all machines for each job j. This initial TPT per job is calculated with the normal (baseline) processing time and does not account for the learning effect. (2) Sort all the jobs in decreasing order of TPT in a list.

(3) Select the two jobs with the highest TPT and remove them from the list. Two possible sequences are obtained with these jobs. (4) Calculate the actual processing time of each job j according to the equation of the respective case (Case 1, 2, 3 or 4). (5) Compute the 𝐶𝐶 𝑚𝑚𝑚𝑚𝑚𝑚 for each sequence and select the sequence with the minimal 𝐶𝐶 𝑚𝑚𝑚𝑚𝑚𝑚 . (6) If the list is not empty, select the next job from the list and calculate all possible inserts within the sequence. Return to steps 4 and 5. Keep the sequence with the lowest makespan. This will be the initial solution (S).

Neighborhood generation phase

After obtaining the original solution S, the neighborhood generation phase is implemented, which is composed of a diversification strategy (DS) and a local search operator (LS).

The diversification strategy is based on a randomized insertion, and follows these steps:

(1) Randomly choose a job-j and position-r as part of the solution S.

(2) Insert the j-th job on the r-th position (Figure 2), to obtain a new solution 𝑆𝑆 0 .

Compute the 𝐶𝐶 𝑚𝑚𝑚𝑚𝑚𝑚 (𝑆𝑆 0) (3) Replace S by 𝑆𝑆 0 . [Figure 2 near here] Once solution 𝑆𝑆 is obtained, a first improvement local search (LS) operator is implemented to improve the quality of this solution. In this case, the Adjacent Pairwise Interchange (API) and Non-Adjacent Pairwise Interchange (NAPI) operators were selected as they are commonly used to solve flowshop scheduling problems, and have yielded good results (Della Croce, Narayan and Tadei 1996; Li 2018). The SA algorithm with the API and NAPI operators will be named SA API and SA NAPI respectively. 𝐾𝐾 1 and 𝐾𝐾 2 are the selected positions within the permutation sequence to be switched.

The API operator swaps jobs from adjacent positions as follows: (1) If 𝐾𝐾 1 = 1 and 𝐾𝐾 2 = 𝐾𝐾 1 + 1, then the jobs between position 𝐾𝐾 1 and 𝐾𝐾 2 are swapped (Figure 3). (2) The new solution is denoted 𝑆𝑆 0 .

(3) If 𝐶𝐶 𝑚𝑚𝑚𝑚𝑚𝑚 (𝑆𝑆 0) is less than 𝐶𝐶 𝑚𝑚𝑚𝑚𝑚𝑚 (𝑆𝑆), then 𝑆𝑆 is replaced by 𝑆𝑆 0 and the local search algorithm stops. (4) Otherwise, 𝐾𝐾 1 = 𝐾𝐾 1 + 1 and 𝐾𝐾 2 = 𝐾𝐾 2 + 1 and the process is repeated until the 𝐶𝐶 𝑚𝑚𝑚𝑚𝑚𝑚 (𝑆𝑆) can be improved or up to 𝐾𝐾 1 = 𝑅𝑅 -1, or until all the position's permutations have been evaluated. [Figure 3 near here]

The NAPI operator swaps jobs from non-adjacent positions as follows.

(1) If 𝐾𝐾 1 = 1 and 𝐾𝐾 2 = 𝐾𝐾 1 + 2, then the jobs between position 𝐾𝐾 1 and 𝐾𝐾 2 are swapped respectively (Figure 4). (2) The new solution is denoted 𝑆𝑆 0 .

(3) If 𝐶𝐶 𝑚𝑚𝑚𝑚𝑚𝑚 (𝑆𝑆 0) is less than 𝐶𝐶 𝑚𝑚𝑚𝑚𝑚𝑚 (𝑆𝑆), then 𝑆𝑆 is replaced by 𝑆𝑆 0 and the local search algorithm stops. (4) Otherwise, 𝐾𝐾 1 = 𝐾𝐾 1 + 1 and 𝐾𝐾 2 = 𝐾𝐾 2 + 2 and the process is repeated until the 𝐶𝐶 𝑚𝑚𝑚𝑚𝑚𝑚 (𝑆𝑆) can be improved or up to 𝐾𝐾 1 = 𝑅𝑅 -2, or until all the position's permutations have been evaluated. [Figure 4 near here]

4.3

Acceptance probability

A new given solution is accepted if its 𝐶𝐶 𝑚𝑚𝑚𝑚𝑚𝑚 value is lower than the 𝐶𝐶 𝑚𝑚𝑚𝑚𝑚𝑚 value of the stored solution (Δ𝑓𝑓 ≤ 0). However, when a worse solution is found (Δ𝑓𝑓 > 0), a uniform random number is generated. If this random number is less than the probability of acceptance (equation 30), then the solution is acceptable.

𝑃𝑃 (𝑚𝑚𝑎𝑎𝑎𝑎𝑖𝑖𝑎𝑎𝑎𝑎) = � 1 Δ𝑓𝑓 ≤ 0 𝑀𝑀 -Δ𝑓𝑓 𝑇𝑇 Δ𝑓𝑓 > 0 (30)
Where 𝑃𝑃 (𝑚𝑚𝑎𝑎𝑎𝑎𝑖𝑖𝑎𝑎𝑎𝑎) is the probability of acceptance, Δ𝑓𝑓 is the change in objective function and 𝑇𝑇 is the current temperature.

Stopping condition

In this algorithm, the current temperature (T) decreases. Once the final temperature (𝑇𝑇 𝑓𝑓) is reached (stopping condition), the SA stops.

The flowchart in Figure 5 details the components and operation of the SA algorithm. four main elements such as: initial solution, neighborhood generation, the probability of acceptance and stopping condition.

[Figure 5 near here]

Computational experiments and results analysis

Description of data sets

A set of problem instances containing 1440 independent data sets (480 small and 960 large-sized instances) was used to test the performance of the proposed algorithm. The characteristics of each instance are briefly outlined in Table 2. The rationale for the values of alpha (α) and beta (𝛽𝛽) is based on the most common values used in the literature (e.g., [START_REF] Amirian | Augmented ε-constraint method in multiobjective flowshop problem with past sequence set-up times and a modified learning effect[END_REF][START_REF] Rudek | Makespan minimization flowshop with position dependent job processing times -Computational complexity and solution algorithms[END_REF][START_REF] Muştu | Maximum completion time under a learning effect in the permutation flowshop scheduling problem[END_REF][START_REF] Wu | Metaheuristics for two-stage flow-shop assembly problem with a truncation learning function[END_REF]. For the small-size instances, integer values of processing times were generated using an integer uniform distribution between 1 and 100. For the case of large-size datasets, the instances proposed by [START_REF] Taillard | Benchmarks for basic scheduling problems[END_REF] were used. In practice, combinations are referred to in the characteristics of instances. Each combination was encoded as Case_i_j_α_β (for example, C2_10_100_-0.515_0.5, corresponds to Case 2 with 10 workers, 100 jobs, 𝛼𝛼 = -0.515 and 𝛽𝛽 = 0.5). A set of 10 instances for each combination was considered.

Experimental results small-size instances

The mathematical models were coded on Python and solved using Pyomo [START_REF] Hart | Pyomo: Modeling and solving mathematical programs in Python[END_REF]. Glpk and Bonmin solvers were used for solving the linear (case 1 and case 2) and non-linear cases (case 3 and case 4) respectively. The experiments were carried out for up to 7 jobs because for non-linear models (case 3 and case 4), instances with 2 workers and 8 jobs could not be solved within less than 8 hours. The error percentage of the solution obtained by the simulated annealing algorithm (SA API and SA NAPI) from the optimal solution is calculated as (Equation 31):

𝑂𝑂𝑃𝑃𝑇𝑇 -𝑆𝑆𝑆𝑆 𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑆𝑆 𝑂𝑂𝐴𝐴𝑇𝑇 -𝑆𝑆 𝑆𝑆𝐴𝐴 𝑆𝑆 𝑂𝑂𝐴𝐴𝑇𝑇 (31)
Where 𝑆𝑆 𝑂𝑂𝐴𝐴𝑇𝑇 is the optimal solution for each instance and 𝑆𝑆 𝑆𝑆𝐴𝐴 is the makespan value obtained from the metaheuristic (SA API in this case). Table 3 provides a comparison of the mean percentage and the standard deviation of error and CPU time (of all instances by combination). For small-size instances, both SA API and SA NAPI achieved mean error percentages are below 1%. As there is no significant difference between the error percentage of SA API and that of SA NAPI , it is not possible to conclude at this point with which one the SA triggers a better performance.

As can be expected, and is shown in Table 3, that for the exact method the CPU time increases significantly as the size of the problem increases. The CPU time for metaheuristics is significantly lower than the exact method. In particular, its advantages regarding the CPU time and error percentage are remarkable for nonlinear models (case 3 and case 4).

Table 3. Comparison for small instance problems

[Table 3 near here]

Experimental results -large-size instances

An experimental design was conducted to evaluate the performance of the SA algorithm. Three main parameters required for the SA (𝑇𝑇 0 , 𝑇𝑇 𝑓𝑓 and 𝜆𝜆) were included in the experiment. The algorithms were codified in Python 3.8 and run on a 64-Core server with CPU AMD EPYC 7702 and 512 G RAM. Table 4 summarizes the data used. Three replications per instance were run for a total of 155.520 executions. We performed a complete factor-blocking design where the local search operator is the factor with two levels and the instance of each combination corresponds to a block.

As we cannot compute the optimal solution, we use the makespan value obtained by the NEH algorithm as the reference. The percentage of improvement of the initial solution obtained by NEH with respect to the simulated annealing algorithm (SA API and SA NAPI) is calculated as follows (Equation 32):

Δ𝑆𝑆𝑆𝑆 𝐴𝐴𝐴𝐴𝐴𝐴 -𝑁𝑁𝐸𝐸𝑁𝑁 = 𝑆𝑆 𝑆𝑆𝐴𝐴 -𝑆𝑆 𝑁𝑁𝑁𝑁𝑁𝑁 𝑆𝑆 𝑁𝑁𝑁𝑁𝑁𝑁 (32)
where S NEH is the solution obtained with the heuristic NEH and S SA is the solution achieved with the simulated annealing algorithm (with SA API for this case) for each instance. With a p-value of 2x10 -16 and a confidence level of 95%, the percentage of improvement of SA API with the NEH (Δ SA API -NEH) is better than the improvement obtained with SA NAPI (Δ SA NAPI -NEH). Table 5 shows a comparison of the mean percentage and standard deviation of improvement and CPU time. Because the quality of the initial solution of NEH is good, the API operators work as intensive operators, without making any drastic modification to the solution obtained constructively from NEH. Meanwhile, by making a major change to the solution, NAPI operators seem to be moving away from a promising search zone, which explains the predominance of SA API over SA NAPI .

Table 5. Comparison for large instances problem.

[Table 5 near here] [Figure 6 near here]

In most of the cases, SA API outperforms SA NAPI . And the example in Figure 6 and Table 4 is evidence that the simulated annealing algorithms proposed (both SA API and SA NAPI) achieve a better solution than does the NEH solution. This applies to combinations with small 𝛼𝛼 values or strong learning rates (remembering that 𝛼𝛼 = 𝑙𝑙𝑙𝑙𝑙𝑙 2 𝐿𝐿𝑅𝑅, where LR is the learning rate, e.g., 𝐿𝐿𝑅𝑅 = 70% , 𝛼𝛼 = -0.515), for cases 1 and 3 without truncation parameters. In the same way, we note that for fast learning effects, the convergence of the algorithm is fast with respect to CPU time (Table 5), as described in the findings of [START_REF] Muştu | Maximum completion time under a learning effect in the permutation flowshop scheduling problem[END_REF]. For example, going back for combinations C3_10_100_-0.515_0.0 and C3_10_100_-0.152_0.0 solved with SA API , the mean CPU time is respectively 27.36 ± 9.88, 36.59 ± 18.97 seconds.

For learning models with truncation, the improvement by SA API or SA NAPI of the solution obtained from NEH turns out to be quite poor when 𝛽𝛽 is larger. This could be explained by the fact that a larger 𝛽𝛽 means that the learning effect stops quickly as it reaches the asymptote in a short planning horizon (units or accumulated time as the case may be). Therefore, the NEH solution might be a good approach because the processing time ceases to vary quickly. When β is smaller, the learning effect remains over a longer horizon, therefore metaheuristics are more likely to improve the initial solution.

Sensitivity analysis

For the evaluation of SA API parameters, an ANOVA test was applied. Experimental factors refer to 𝑇𝑇 𝑓𝑓 , 𝑇𝑇 0 and 𝜆𝜆 with three, three, and two levels, respectively. The statistical test results showed that the double interaction 𝑇𝑇 0 𝑇𝑇 𝑓𝑓 and 𝑇𝑇 𝑓𝑓 𝜆𝜆 have an effect on the algorithm performance with a p-value of 0.0013 and 3.47𝑥𝑥10 -6 , respectively. Figure 7 shows plots of double interaction effects for each case. A more favorable mean of the ∆𝑆𝑆𝑆𝑆 𝐴𝐴𝐴𝐴𝐴𝐴 -𝑁𝑁𝐸𝐸𝑁𝑁 is found in the four cases where for the double interaction 𝑇𝑇 𝑓𝑓 𝜆𝜆 , the levels are 𝑇𝑇 𝑓𝑓 = 0.00001 and 𝜆𝜆 = 0.9. In both linear and non-linear models, this combination of parameters improves the initial solution obtained through the NEH. It can be assumed that the small values of 𝑇𝑇 𝑓𝑓 reinforce the intensification, and that the large values 𝜆𝜆, together with the acceptance probability, contribute to diversify the solution.

The maximum mean improvement is close to 3%, which would show that if the NEH produces a good quality initial solution, this may be because this heuristic makes the best choice at every step, particularly regarding to the processing times of jobs that vary from step to step. [Figure 7 near here]

Conclusions

This article addresses makespan minimization of flowshop scheduling problems with learning effects, modeling this phenomenon from 4 linear and non-linear models reported in the literature. We present the mathematical models and use a mathematical programing solver to solve small-instances problem. A simulated annealing algorithm is also proposed, which obtains the initial solution by means of the NEH algorithm, and which has shown remarkable results in addressing these problems [START_REF] Rudek | Makespan minimization flowshop with position dependent job processing times -Computational complexity and solution algorithms[END_REF]. In addition, two local search operators were tested.

The computational results support the hypothesis that the flowshop scheduling problem with learning effects is NP-hard even in the case of two resources [START_REF] Wang | Flow-shop scheduling with a learning effect[END_REF]. Therefore, for problems with 2 workers and 8 jobs (cases 3 and 4, non-linear models), it was not possible to reach the optimum through the mathematical model within a time limit of 8 hours. Two variants of the simulated annealing algorithm were developed (SA API , SA NAPI), which get the initial solution from NEH and apply the different local search operators. SA API shows improved performance in relation to SA NAPI .

Similarly, it was found that both simulated annealing algorithms achieve significant improvements over the NEH for combinations implying a fast learning effect (small values of 𝛼𝛼). For combinations with slow learning effects (big values of 𝛼𝛼) the proposed metaheuristic does not improve NEH solutions significantly. This is because the problem quickly resembles a "classical" flowshop scheduling problem with makespan minimization, for which NEH has reported exceptional results.

In cases 2 and 4 (where a truncation parameter is included), the simulated annealing algorithms offered better improvements of the NEH solution for combinations with low β levels. For bigger β values, the algorithm does not significantly improve the initial solution. This may be explained by the fact that the problem quickly becomes a classic makespan minimization flowshop scheduling problem, for which the NEH finds a reasonably acceptable solution [START_REF] Turner | Comparison of heuristics for flow shop sequencing[END_REF][START_REF] Ruiz | A comprehensive review and evaluation of permutation flowshop heuristics[END_REF].

This would mean that industries with less experienced employees and monotonous tasks could use a metaheuristic, as proposed here. On the other hand, if these are experienced workers or the learning effect is weak (highly personalized jobs), and a heuristic such as the NEH achieves good enough results for the makespan minimization flowshop, it could help the production planner to adapt the most suitable algorithm according to the workforce's characteristics.

Concerning the SA API parameters' sensitivity, the double interaction 𝑇𝑇 𝑓𝑓 𝜆𝜆 (𝑇𝑇 𝑓𝑓 = 0.00001 and 𝜆𝜆 = 0.9) has a positive effect on metaheuristic performance for the four cases studied here.

As future research opportunities, we can highlight the integration of variable learning rates and truncation parameters per worker. The inclusion of different learning models into the same system can also be considered. It would be useful to investigate the differences of workers in production systems and their impact on the performance production system [START_REF] Katiraee | Consideration of workers' differences in production systems modelling and design: State of the art and directions for future research[END_REF]. The incorporation of buffers or intermediate stations can also be evaluated as these configurations are closer to real-life production systems, such as assembly or zone-picking lines. Addressing the problem based on a multi-objective optimization that includes economic and social objectives would be a promising line of research. The learning effect could be combined with other phenomena such as fatigue and/or recovery (Dode et el. 2016;[START_REF] Givi | Production planning in DRC systems considering worker performance[END_REF][START_REF] Ostermeier | The impact of human consideration, schedule types and product mix on scheduling objectives for unpaced mixed-model assembly lines[END_REF], for example, which implies interdisciplinary work and allows progress in modeling human factors. Finally, application in industrial contexts with real data (e.g., real learning rates) is crucial to address the challenge that comes with the arrival of the paradigm that the European Commission (2022) has called Industry 5.0: designing sustainable, human-centered, human-friendly production systems [START_REF] Katiraee | Assembly line balancing and worker assignment considering workers' expertise and perceived physical effort[END_REF] with favorable working conditions.

••𝑚𝑚𝑚𝑚𝑥𝑥��1

 Case 2: with truncated position-based learning 𝑝𝑝 𝑖𝑖𝑗𝑗𝑗𝑗 = 𝑝𝑝̅ 𝑖𝑖𝑗𝑗 max{𝑟𝑟 𝛼𝛼 , 𝛽𝛽} • Case 3: with sum-of-processing-time-based learning 𝑝𝑝 𝑖𝑖𝑗𝑗𝑗𝑗 = �1 + 𝜃𝜃 Case 4: with truncated sum-of-processing-time-based learning 𝑃𝑃 𝑖𝑖𝑗𝑗𝑗𝑗 =

Figure 1

 1 Figure 1 Caption: Solution representation

Figure 2

 2 Figure 2 Caption: Diversification strategy representation

FigureFigure 3

 3 Figure 3 Caption: API operator

FigureFigure 4

 4 Figure 4 Caption: NAPI operator

FigureFigure 5

 5 Figure 5 Caption: SA flowchart

Figure 6

 6 Figure 6 shows a representative example with 10 workers and 50 jobs, to show the improvement of the two simulated annealing algorithms (SA API and SA NAPI) in relation to the NEH, segmented by combination.

Figure 6

 6 Figure 6 Caption: Comparison of 𝛥𝛥 𝑆𝑆𝑆𝑆 𝐴𝐴𝐴𝐴𝐴𝐴 -𝑁𝑁𝐸𝐸𝑁𝑁 vs. 𝛥𝛥 𝑆𝑆𝑆𝑆 𝑁𝑁𝐴𝐴𝐴𝐴𝐴𝐴 -𝑁𝑁𝐸𝐸𝑁𝑁

Figure 7

 7 Figure 7 Caption: Double interaction plot

 Figure 1

Figure 6

 6 Figure 6

Figure 7

 7 Figure 7

Table 2 .

 2 Summary of set of problem instances[Table2near here]

Table 4 .

 4 Summary experiment[Table4near here]

Table 5 .

 5 Summary of set of problem instances

	Case 1 and Case 2	Case 3 and Case 4

Table 6 .

 6 Comparison for small instance problems

	Case I J	𝜶𝜶	𝜷𝜷	𝑶𝑶𝑶𝑶𝑶𝑶 -𝑺𝑺𝑺𝑺 𝑺𝑺𝑶𝑶𝑨𝑨 Mean Std	𝑶𝑶𝑶𝑶𝑶𝑶 -𝑺𝑺𝑺𝑺 𝑵𝑵𝑺𝑺𝑶𝑶𝑨𝑨 Mean Std	𝐂𝐂𝐂𝐂𝐂𝐂 𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭 𝑺𝑺𝑺𝑺 𝑺𝑺𝑶𝑶𝑨𝑨 (sec) 𝐂𝐂𝐂𝐂𝐂𝐂 𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭 𝑺𝑺𝑺𝑺 𝑵𝑵𝑺𝑺𝑶𝑶𝑨𝑨 (sec) Mean Std Mean Std	𝐂𝐂𝐂𝐂𝐂𝐂 𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭 𝐎𝐎𝐂𝐂𝐎𝐎 (𝐬𝐬𝐭𝐭𝐬𝐬) Mean Std
			-0.152		-0.02% ± 0.06% 0.02% ± 0.07%	0.02 ±	0.02	0.05 ±	0.04	0.16 ±	0.02
		5	-0.322		-0.15% ± 0.37% 0.21% ± 0.41%	0.03 ±	0.02	0.04 ±	0.04	0.15 ±	0.01
	C1	2	-0.515 -0.152		-0.27% ± 0.62% 0.51% ± 1.00% -0.03% ± 0.12% 0.04% ± 0.09%	0.03 ± 0.05 ±	0.02 0.05	0.05 ± 0.11 ±	0.07 0.09	0.17 ± 2.32 ±	0.01 0.05
		7	-0.322		-0.07% ± 0.28% 0.21% ± 0.49%	0.06 ±	0.05	0.10 ±	0.09	2.26 ±	0.09
			-0.515		-0.11% ± 0.28% 0.37% ± 0.90%	0.06 ±	0.10	0.10 ±	0.08	2.10 ±	0.11
			-0.152 0.25 0.02% ± 0.06% 0.03% ± 0.08%	0.03 ±	0.02	0.05 ±	0.04	0.15 ±	0.01
			-0.152	0.5 0.02% ± 0.06% 0.02% ± 0.08%	0.03 ±	0.02	0.05 ±	0.04	0.15 ±	0.00
			-0.152 0.75 0.02% ± 0.06% 0.02% ± 0.07%	0.03 ±	0.02	0.05 ±	0.04	0.15 ±	0.01
			-0.322 0.25 0.13% ± 0.34% 0.22% ± 0.42%	0.02 ±	0.02	0.05 ±	0.04	0.15 ±	0.01
		5	-0.322	0.5 0.12% ± 0.34% 0.21% ± 0.41%	0.02 ±	0.02	0.04 ±	0.04	0.14 ±	0.01
			-0.322 0.75 0.00% ± 0.00% 0.01% ± 0.13%	0.02 ±	0.02	0.03 ±	0.03	0.15 ±	0.01
			-0.515 0.25 0.31% ± 0.69% 0.46% ± 0.94%	0.03 ±	0.02	0.04 ±	0.04	0.14 ±	0.01
			-0.515	0.5 0.72% ± 2.12% 0.47% ± 1.58%	0.02 ±	0.02	0.04 ±	0.03	0.15 ±	0.01
	C2	2	-0.515 0.75 0.01% ± 0.12% 0.01% ± 0.12% -0.152 0.25 0.03% ± 0.09% 0.04% ± 0.09%	0.03 ± 0.05 ±	0.02 0.04	0.03 ± 0.13 ±	0.02 0.16	0.15 ± 2.32 ±	0.01 0.06
			-0.152	0.5 0.02% ± 0.08% 0.04% ± 0.10%	0.05 ±	0.04	0.13 ±	0.22	2.37 ±	0.07
			-0.152 0.75 0.02% ± 0.09% 0.04% ± 0.12%	0.05 ±	0.04	0.11 ±	0.09	2.31 ±	0.06
			-0.322 0.25 0.07% ± 0.31% 0.22% ± 0.48%	0.05 ±	0.04	0.10 ±	0.09	2.25 ±	0.09
		7	-0.322	0.5 0.07% ± 0.27% 0.19% ± 0.40%	0.05 ±	0.04	0.10 ±	0.09	2.25 ±	0.06
			-0.322 0.75 0.02% ± 0.03% 0.02% ± 0.03%	0.03 ±	0.03	0.04 ±	0.03	2.29 ±	0.06
			-0.515 0.25 0.08% ± 0.19% 0.28% ± 0.67%	0.05 ±	0.04	0.10 ±	0.09	2.10 ±	0.10
			-0.515	0.5 0.11% ± 0.44% 0.31% ± 1.11%	0.04 ±	0.03	0.06 ±	0.05	2.17 ±	0.07
			-0.515 0.75 0.00% ± 0.04% 0.01% ± 0.09%	0.03 ±	0.04	0.03 ±	0.02	2.33 ±	0.07
			-0.152		-0.00% ± 0.00% 0.00% ± 0.01%	0.03 ±	0.03	0.07 ±	0.05	18.48 ±	3.53
		5	-0.322		-0.06% ± 0.22% 0.06% ± 0.20%	0.04 ±	0.03	0.07 ±	0.06	19.12 ±	3.05
	C3	2	-0.515 -0.152		-0.01% ± 0.03% 0.06% ± 0.41% -0.00% ± 0.00% 0.00% ± 0.01%	0.04 ± 0.08 ±	0.03 0.06	0.07 ± 0.18 ±	0.06 0.15 1580.88 ± 19.33 ±	2.88 22.66
		7	-0.322		-0.00% ± 0.00% 0.00% ± 0.02%	0.08 ±	0.06	0.17 ±	0.14 1591.90 ±	48.29
			-0.515		-0.00% ± 0.01% 0.07% ± 0.21%	0.08 ±	0.07	0.17 ±	0.14 1586.26 ±	98.26
			-0.152 0.25 0.01% ± 0.01% 0.01% ± 0.01%	0.07 ±	0.06	0.12 ±	0.10	20.60 ±	3.48
			-0.152	0.5 0.01% ± 0.01% 0.01% ± 0.01%	0.07 ±	0.06	0.12 ±	0.10	22.32 ±	2.74
			-0.152 0.75 0.01% ± 0.01% 0.01% ± 0.01%	0.07 ±	0.06	0.12 ±	0.09	23.76 ±	3.77
			-0.322 0.25 0.11% ± 0.22% 0.09% ± 0.19%	0.08 ±	0.06	0.12 ±	0.10	24.16 ±	4.15
		5	-0.322	0.5 0.09% ± 0.21% 0.10% ± 0.21%	0.08 ±	0.06	0.12 ±	0.10	25.23 ±	7.50
			-0.322 0.75 0.00% ± 0.00% 0.01% ± 0.05%	0.06 ±	0.05	0.10 ±	0.09	25.53 ±	5.07
			-0.515 0.25 0.31% ± 0.70% 0.34% ± 0.73%	0.07 ±	0.06	0.12 ±	0.10	22.87 ±	3.06
			-0.515	0.5 0.31% ± 0.70% 0.33% ± 0.71%	0.07 ±	0.06	0.12 ±	0.10	23.78 ±	2.67
	C4	2	-0.515 0.75 0.00% ± 0.00% 0.00% ± 0.05% -0.152 0.25 0.02% ± 0.04% 0.02% ± 0.04%	0.06 ± 0.16 ±	0.05 0.14	0.09 ± 0.36 ±	0.07 0.30 2570.01 ± 919.55 27.36 ± 8.29
			-0.152	0.5 0.02% ± 0.04% 0.02% ± 0.04%	0.16 ±	0.15	0.36 ±	0.30 2172.26 ± 209.46
			-0.152 0.75 0.02% ± 0.04% 0.02% ± 0.04%	0.16 ±	0.13	0.36 ±	0.29 2457.82 ± 724.04
			-0.322 0.25 0.04% ± 0.08% 0.04% ± 0.08%	0.16 ±	0.13	0.35 ±	0.29 2494.90 ± 725.52
		7	-0.322	0.5 0.04% ± 0.08% 0.04% ± 0.08%	0.16 ±	0.13	0.35 ±	0.29 2207.21 ± 241.34
			-0.322 0.75 0.00% ± 0.02% 0.00% ± 0.03%	0.11 ±	0.10	0.19 ±	0.18 2292.46 ± 440.64
			-0.515 0.25 0.05% ± 0.09% 0.10% ± 0.24%	0.17 ±	0.14	0.34 ±	0.28 2385.95 ± 436.48
			-0.515	0.5 0.01% ± 0.03% 0.03% ± 0.05%	0.14 ±	0.12	0.33 ±	0.27 2496.02 ± 994.31
			-0.515 0.75 0.00% ± 0.02% 0.01% ± 0.04%	0.10 ±	0.09	0.13 ±	0.13 2069.05 ± 222.70

Table 4 .

 4 Summary experiment

		Parameter	Levels	Values
		Local search operator	2	API, NAPI
	Factors	Initial temperature -(𝑇𝑇 0)	3	0.5, 0.3, 0.1
		Final temperature -(𝑇𝑇 𝑓𝑓)	3	0.001, 0.0001, 0.00001
		Cooling velocity -(𝜆𝜆)	2	0.9, 0.5
		Total of treatments		(2*3*3*2) = 36
		Total of combinations		144
		Total instances per combination		(144*10) =1440
	Total instances per combination x treatments	(1440 * 36) = 51840
		Size of the experiment		(51840 * 3) = 155520

Table 5 .

 5 Comparison for large instances problem

	Case	I	J	𝜶𝜶	𝜷𝜷	𝚫𝚫𝑺𝑺𝑺𝑺 𝑺𝑺𝑶𝑶𝑨𝑨 -𝑵𝑵𝑵𝑵𝑵𝑵 Mean Std	𝚫𝚫𝑺𝑺𝑺𝑺 𝑵𝑵𝑺𝑺𝑶𝑶𝑨𝑨 -𝑵𝑵𝑵𝑵𝑵𝑵 Mean Std	𝐂𝐂𝐂𝐂𝐂𝐂 𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭 𝑺𝑺𝑺𝑺 𝑺𝑺𝑶𝑶𝑨𝑨 (sec) Mean Std	𝐂𝐂𝐂𝐂𝐂𝐂 𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭 𝑺𝑺𝑺𝑺𝑵𝑵 𝑵𝑵𝑺𝑺𝑶𝑶𝑨𝑨 (sec) Mean Std
				-0.152		-0.55% ± 0.39%	0.43% ±	0.38%	29.82 ±	19.61	255.58 ±	247.18
			100	-0.322		-1.25% ± 0.74%	1.06% ±	0.68%	27.57 ±	18.60	199.49 ±	204.12
		10		-0.515 -0.152		-1.92% ± 1.01% -1.06% ± 0.68%	1.48% ± 0.82% ±	0.92% 0.57%	20.95 ± 12.53 ±	10.12 13.25	136.46 ± 53.82 ±	138.62 50.18
			50	-0.322		-2.14% ± 1.40%	1.68% ±	1.15%	9.20 ±	9.53	44.19 ±	44.06
	C1			-0.515 -0.152		-3.43% ± 2.10% -0.47% ± 0.30%	2.80% ± 0.41% ±	1.84% 0.28%	6.19 ± 13.77 ±	5.87 7.58	30.83 ± 116.41 ±	31.74 119.11
			100	-0.322		-1.41% ± 0.78%	1.14% ±	0.70%	12.76 ±	6.24	101.79 ±	101.48
		5		-0.515 -0.152		-2.98% ± 1.35% -0.73% ± 0.41%	2.28% ± 0.62% ±	1.19% 0.36%	11.15 ± 4.29 ±	4.60 4.22	74.33 ± 24.77 ±	74.41 24.69
			50	-0.322		-1.56% ± 0.99%	1.22% ±	0.83%	4.23 ±	4.21	23.37 ±	23.13
				-0.515		-3.19% ± 1.43%	2.49% ±	1.26%	3.26 ±	2.78	18.47 ±	19.29
				-0.152 0.25 0.50% ± 0.35%	0.35% ±	0.32%	29.71 ±	12.54	142.74 ±	87.91
				-0.152	0.5 0.51% ± 0.35%	0.36% ±	0.30%	29.34 ±	12.21	140.76 ±	89.08
				-0.152 0.75 0.37% ± 0.37%	0.15% ±	0.21%	54.32 ±	36.32	72.82 ±	54.85
				-0.322 0.25 1.06% ± 0.60%	0.79% ±	0.55%	27.02 ±	12.36	107.23 ±	81.50
			100	-0.322	0.5 0.68% ± 0.48%	0.38% ±	0.37%	46.69 ±	33.39	59.46 ±	44.12
				-0.322 0.75 0.54% ± 0.39%	0.23% ±	0.28%	61.12 ±	40.76	86.40 ±	68.92
				-0.515 0.25 1.12% ± 0.77%	0.47% ±	0.69%	38.10 ±	30.91	39.40 ±	23.06
				-0.515	0.5 0.63% ± 0.57%	0.22% ±	0.36%	58.46 ±	42.07	61.50 ±	45.99
		10		-0.515 0.75 0.47% ± 0.35% -0.152 0.25 0.99% ± 0.63%	0.19% ± 0.76% ±	0.22% 0.53%	65.50 ± 8.45 ±	44.62 5.36	83.53 ± 36.34 ±	64.26 24.32
				-0.152	0.5 1.00% ± 0.63%	0.72% ±	0.51%	8.41 ±	5.27	36.34 ±	24.05
				-0.152 0.75 0.86% ± 0.65%	0.46% ±	0.51%	12.50 ±	7.51	26.69 ±	21.39
				-0.322 0.25 2.12% ± 1.43%	1.61% ±	1.11%	8.05 ±	5.66	33.53 ±	25.48
			50	-0.322	0.5 1.90% ± 0.90%	1.33% ±	0.83%	9.97 ±	7.46	21.05 ±	17.89
				-0.322 0.75 1.29% ± 0.66%	0.67% ±	0.54%	14.77 ±	10.32	28.16 ±	21.86
				-0.515 0.25 2.72% ± 1.81%	1.80% ±	1.81%	7.75 ±	7.31	9.62 ±	6.87
				-0.515	0.5 2.08% ± 1.04%	1.48% ±	1.01%	11.26 ±	9.05	19.04 ±	15.84
	C2			-0.515 0.75 1.44% ± 1.07% -0.152 0.25 0.44% ± 0.27%	0.82% ± 0.36% ±	0.88% 0.25%	16.22 ± 14.75 ±	11.31 5.80	27.24 ± 82.86 ±	21.50 59.67
				-0.152	0.5 0.45% ± 0.28%	0.37% ±	0.25%	14.68 ±	5.77	82.37 ±	59.31
				-0.152 0.75 0.17% ± 0.26%	0.05% ±	0.12%	42.32 ±	29.65	23.93 ±	12.26
				-0.322 0.25 1.27% ± 0.71%	0.91% ±	0.62%	13.52 ±	5.43	64.83 ±	50.93
			100	-0.322	0.5 0.41% ± 0.28%	0.20% ±	0.23%	25.80 ±	20.57	24.07 ±	12.48
				-0.322 0.75 0.24% ± 0.29%	0.08% ±	0.14%	38.04 ±	30.00	23.97 ±	12.51
				-0.515 0.25 1.27% ± 0.78%	0.80% ±	0.83%	18.10 ±	13.82	23.11 ±	11.57
				-0.515	0.5 0.58% ± 0.51%	0.22% ±	0.34%	33.80 ±	28.03	23.75 ±	11.98
		5		-0.515 0.75 0.24% ± 0.25% -0.152 0.25 0.70% ± 0.39%	0.05% ± 0.58% ±	0.09% 0.34%	42.84 ± 4.43 ±	32.28 2.92	24.05 ± 19.86 ±	12.53 15.04
				-0.152	0.5 0.69% ± 0.38%	0.57% ±	0.32%	4.43 ±	2.93	19.99 ±	14.99
				-0.152 0.75 0.29% ± 0.29%	0.12% ±	0.19%	10.08 ±	7.19	5.94 ±	4.06
				-0.322 0.25 1.51% ± 0.99%	1.12% ±	0.76%	4.51 ±	3.07	19.55 ±	14.86
			50	-0.322	0.5 0.68% ± 0.45%	0.16% ±	0.21%	9.39 ±	7.35	5.33 ±	3.34
				-0.322 0.75 0.47% ± 0.41%	0.18% ±	0.28%	10.85 ±	8.33	5.54 ±	3.85
				-0.515 0.25 2.37% ± 1.22%	1.27% ±	1.05%	5.78 ±	5.99	5.18 ±	3.33
				-0.515	0.5 0.57% ± 0.47%	0.32% ±	0.41%	9.03 ±	7.63	5.25 ±	3.32
				-0.515 0.75 0.56% ± 0.44%	0.28% ±	0.36%	10.29 ±	8.30	5.62 ±	3.81
				-0.152		-0.29% ± 0.27%	0.23% ±	0.25%	36.59 ±	18.97	224.76 ±	149.59
			100	-0.322		-0.56% ± 0.56%	0.35% ±	0.41%	32.89 ±	16.50	214.97 ±	153.84
		10		-0.515 -0.152		-1.11% ± 1.00% -0.73% ± 0.58%	1.07% ± 0.57% ±	0.96% 0.51%	27.36 ± 16.07 ±	9.88 17.74	177.34 ± 76.51 ±	143.78 65.82
			50	-0.322		-1.03% ± 0.83%	0.81% ±	0.67%	10.72 ±	10.63	63.96 ±	56.64
	C3			-0.515 -0.152		-1.37% ± 0.85% -0.11% ± 0.18%	1.21% ± 0.09% ±	0.88% 0.14%	10.29 ± 19.98 ±	10.56 8.64	56.34 ± 127.00 ±	54.35 112.24
			100	-0.322		-0.25% ± 0.40%	0.12% ±	0.21%	18.64 ±	6.79	139.82 ±	117.37
		5		-0.515 -0.152		-0.42% ± 0.61% -0.25% ± 0.28%	0.37% ± 0.15% ±	0.60% 0.19%	18.79 ± 5.28 ±	7.52 4.90	136.64 ± 36.44 ±	117.23 37.26
			50	-0.322		-0.47% ± 0.57%	0.35% ±	0.50%	4.96 ±	4.21	37.63 ±	37.84
				-0.515		-0.62% ± 0.79%	0.49% ±	0.63%	5.01 ±	4.33	34.13 ±	35.02
				-0.152 0.25 0.27% ± 0.25%	0.23% ±	0.24%	48.44 ±	17.42	270.22 ±	162.62
				-0.152	0.5 0.29% ± 0.26%	0.22% ±	0.23%	48.33 ±	17.21	271.38 ±	164.23
	C4	10 100	-0.152 0.75 0.34% ± 0.36% -0.322 0.25 0.55% ± 0.53%	0.14% ± 0.35% ±	0.22% 0.42%	82.48 ± 47.10 ±	43.82 18.13	155.47 ± 256.40 ±	115.06 170.64
				-0.322	0.5 0.43% ± 0.51%	0.25% ±	0.33%	71.07 ±	45.40	134.68 ±	105.81
				-0.322 0.75 0.39% ± 0.36%	0.17% ±	0.22%	98.19 ±	58.10	154.63 ±	116.75

Acknowledgments

This work was carried out thanks to research scholarships from Universidad de La Sabana (grants number INGPhD-45-2021 and INGPhD-51-2022) and from the Eiffel Excellence Scholarship PhD stream awarded to the first author by the French Ministry of Europe and Foreign Affairs.

For the purpose of Open Access, a CC-BY public copyright license has been applied by the authors to the present document and will be applied to all subsequent versions up to the Author Accepted Manuscript arising from this submission.

Data Availability Statement

The authors confirm that the data supporting the findings of this study are available within the article.

Disclosure statement

No potential conflict of interest was reported by the author.