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ABSTRACT

Contactless monitoring
Terahertz technique
Diffusion coefficient
Image processing

Mass transfer modelling
Inverse method

The investigation of humidity movement during drying or imbibition processes represents a serious chal-
lenge for several industries, such as the wood-based material industry and paper industry. Recently, sev-
eral studies have been conducted on the efficiency contactless Terahertz technique (THz) to map the wa-
ter content, In this study, this technique based on coupling infrared camera and developed Tera-Thermo-
Converter, is used for the estimation of mass diffusion coefficient within hygroscopic materials initially
dry. A water vapour water content excitation device is designed to excite the samples in a THz semitrans-
parent enclosure during the monitoring. The recorded infrared films showed a pronounced mitigation of
the signal over time, indicating penetration of vapour through the sample. Processing image techniques
such as the four-image, algorithm and Singular Value Decomposition (SVD) and averaging are used to
obtain the space-time water content map. A simplified one-dimensional model of mass transfer is pro-
posed to estimate the diffusion coefficient using two inverse methods: a) a statistical method based on
Bayesian approach, and b) a minimization method based on Levenberg-Marquardt algorithm (LM). The
results showed that THz imaging technique coupled with the appropriate processing and the adequate
modelling, is able not only to map the water content field but also to monitor the transient transfer and

estimate the diffusion coefficient without contact.

1. Introduction

In the industries of hygroscopic materials such as wood and pa-
per, the control of water content is a crucial step that directly af-
fects the final quality of the product. The water movement within
materials is often coupled to their mechanical behaviour. Thus,
local measurement is necessary for obtaining reliable products.
Therefore, simulations of the humidity movement within sam-
ples must be accomplished by experimental measurements (Clouet
et al. [1] and Clouet [2]). Conventional techniques such as global
monitoring of water content weight through weighting the sam-
ple at dry and wet case, provide only global information, such
as global water content. Access to reliable monitoring of satura-
tion profiles at the local scale inside a porous medium requires
a more sophisticated imaging technique. Due to the opacity fea-
ture of water (vapour or liquid) to noninvasive techniques, radia-
tive and magnetic techniques represent effective tools allowing the
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detection of water within porous media. This is due to the attenua-
tion of the signal crossing the water. In the literature, several tech-
niques have been used in the context of water content monitor-
ing. These techniques can be classified as nuclear radiation meth-
ods (such as neutron imaging) or electromagnetic radiation meth-
ods (such as X rays, gamma rays, infrared waves, and terahertz
waves). Electromagnetic techniques can also be classified by the
danger represented to the operators depending on the wavelength
range. The waves can be ionizing radiation, such as gamma rays or
X rays, or nonionizing radiation, such as infrared or THz radiation.

Early techniques used gamma rays or X rays, which are harm-
ful to humans. Computed tomography based on the X-rays tech-
nique has been used in the context of water content monitoring,
such as monitoring the local water content in wood in the steady-
state case (Dvinskikh et al. [3]), visualizing the influence of the
microstructure of wood on water movement (Derome et al. [4]),
and checking the displacement of water content in preferential
directions (Sandberg (5] and Zillig [6]). Moreover, magnetic reso-
nance imaging (MRI) is also used as a contactless technique to lo-
cally estimate the water content within wood under different con-



Abbreviations & symbols

Abbreviation
THz Terahertz

T1C TeraThermo-Converter

PTFE Polytetrafluoroethylene

RH Relative humidity

IR Infrared

SVD Singular value decomposition

Symbols

Tr Transmittance (-)

Tr Average transmittance (-)

I Transmitted signal (amplitude) (DL)

Iy Emitted signal (amplitude) (DL)

I height of images along the y-axis

t time (s)

X, ¥,z  Space dimensions (m)

A absorbence (-)

s Density of sample (kg/m?)

P Density of water (kg/m?)

s Absorption coefficient of solid (m~1)

Jhw Absorption coefficient of water (m~')

I Thickness of sample (m)

w Water content field (kg of water kg~'of solid)

D, Diffusion coefficient along the z-axis (m?/s)

Dy Diffusion coefficient along the y-axis (m?/s)

Wi Water content at z = 0 in the boundary condition
(kg of water kg~ "of solid)

Wy Water content at t = 0 in the boundary condition
(kg of water kg~ "of solid)

W Water content at z = oo in the boundary condition
(kg of water kg~ "of solid)

w Average water content (-)

W,x,, Average experimental water content (-)

Wec Average reconstructed (modelled) water content (-)

I Probability density (prior or posterior)

o Parameter to estimate in Bayesian approach

D; Diffusion coefficient base (m?/s)

forab Probability function
Dgayes  Diffusion coefficient estimated by Bayesian ap-
proach (m?fs)

B Parameter to estimate by minimization

Y Experimental data in the minimization model
Modelled function in the minimization model

b Variation in the parameter

S(B) Sum of square error in the minimization model

Iij Jacobian matrix

p Damping factor

Dy Initial parameter (diffusion coefficient) given to the

algorithm (m?/s)

Dyinim Diffusion  coefficient estimated by Levenberg-
Marquardt algorithm (m?/s)

m Mean value of error

o Standard deviation of error

ditions (Hameury and Sterley [7], MacMillan et al. [8] and Ekst-
edt et al. [9]). A recent technique called neutron imaging (NI) has
also been implemented as a contactless technique in water con-
tent estimation and has shown interesting results (Gilani et al.
[10] and Gilani et al. [11]), which allowed the validation of a hygro-
thermomechanical model for wood (Abbasion et al. [12]). Despite
the interest in these techniques, they can include certain obstacles,
making their use in industry complicated. The techniques can be
harmful, expensive, or difficult to implement in industrial produc-

tion lines. Accordingly, a contactless technique based on terahertz
waves is proposed here to study the dynamics of water content
(transient case) within a porous medium and estimate the diffu-
sion coefficient,

Terahertz waves represent nonionizing electromagnetic waves
situated between infrared waves and microwaves and often ab-
breviated THz. Their wavelength situated between 30 pm and
3000 pm. The terahertz technique is safe and inexpensive and re-
quires no particular precaution. These waves penetrate insulating
materials up to a few centimetres, but they are absorbed by wa-
ter. This limitation makes terahertz technology a reliable tool for
many applications, such as Non-destructive testing (NDT), inspec-
tion and mainly water content monitoring. The terahertz technique
was used to study different materials, such as paper quality dur-
ing the drying process (Banerjee et al. [13]), monitoring the wa-
ter content within leaves without contact (Hadjiloucas et al. [14],
Zhang et al. [15], Gente et al. [16] and Santesteban et al. [17]), and
estimating the absorption coefficient within wood (Jordens et al.
[18] and Piesiewiczet et al. [ 19]). This technique has also been used
to estimate the temperature without contact with polymers (Ben-
salem et al. [20]). The study of mass transfer within hygroscopic
materials has often been conducted on two aspects: (a) the anal-
ysis of the water content field and (b) the estimation of the dif-
fusion coefficient during mass transfer (drying or imbibition). In
this context, imaging techniques were mostly conducted on the
first aspect, where relations between global water content and
signal attenuation can be established. Several studies have been
performed on the estimation of the diffusion coefficient (Mukam
Fotsing and Tchagang [21]), where the diffusion coefficient in dif-
ferent directions has been determined. This coefficient was also
determined using Fick's Law with known values of water con-
tent change, distance to the drying source and drying time (Ya-
sushi [22]). Some studies consider the water content dependency
of the diffusion coefficient (Koponen [23]), which can greatly im-
prove the value obtained. The minimization method is used to find
the diffusion coefficient of the water content profile obtained by
the X-rays technique and computed by the finite element method
(Eriksson et al. [24]). Another numerical method based on finite
difference is used to numerically determine the diffusion coeffi-
cient within wood (Liu et al. [25]). The infinite Fourier series so-
lution to the one-dimensional Fick equation is used to estimate
the diffusion coefficient in the unsteady-state case (Peralta and
Bangi [26]).

This study represents a complementary study of (Bensalem
et al. [27]) and is directed to the second aspect of Fickian diffu-
sion coefficient estimation. The diffusion coefficient of hygroscopic
materials represents the ratio of flux density to the opposite of the
concentration gradient in the diffusion direction is a common def-
inition for the diffusion coefficient (Animasaun et al. [28]). The ef-
ficiency of the THz technique based on a Tera-Thermo-Converter
TTC coupled with a vapour excitation device is investigated. TTC
represents a tool developed within the institute of mechanics of
Bordeaux (12M) allowing the transformation of terahertz waves to
an infrared signal directly captured by an infrared camera (Ro-
mano et al. [29]). Herein, the developed measurement system set-
tings are detailed for the first time. The transfer function found in
(Bensalem et al. [27]) based on the Beer-Lambert law and linking
the absorbence to the water content is used to obtain the exper-
imental absolute water content field (kg of water per kg of ma-
terial). Thereafter, the obtained infrared films (raw data) are pro-
cessed using different algorithms to extract the appropriate data,
denoise the information and integrate the convenient model based
on Fick law and simple boundary conditions, The estimation of
the diffusion coefficient is based on two approaches: (a) statis-
tic using Bayesian probability function and (b) an inverse method
based on a minimization between experimental and modelled
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Fig. 1. Terahertz system consisting of an infrared camera, TTC, sample, optical sys-
tem and THz source.

fields of normalized water content using the Levenberg-Marquardt
algorithm.

2. Materials and processing method

In this study, the terahertz system used represents the same
system used in (Bensalem et al. [20]). An important point here
is the development of an excitation device that ensures not only
the water vapour excitation of the sample, but also control of the
space form, amplitude and time form of excitation. Indeed, the ex-
citation about to be realized can have several special forms anal-
ogous to the thermal excitation used in thermography infrared: a
point-like form, linear form or homogeneous excitation at the sur-
face of the sample. On the other hand, the temporal form of the
excitation can also be controlled, such as a Dirac pulse, Heaviside,
step, etc. However, the temporal form of excitation should con-
sider the diffusion characteristic time of mass transfer. This means,
for example, that a mass pulse can last one hour. In addition, the
control of the amplitude of excitation or the intensity can be ob-
tained through the control of saturation of vapour used in the
excitation.

In this study, the excitation is limited to one intensity, one
space form and one time form and is detailed in paragraph 2.1.3.

2.1. Materials

2.L.1. THz measurement system

The imaging setup based on a patented THz-to-IR focal plane
array sensor aiming to carry out contactless measurements of the
water consists of five components: (i) a THz Gunn diode, (ii) an
optical system, (iii) an infrared camera that can be considered the
2D detector, (iv) a TTC and (v) a modulator.

- The THz source used comprises a Gunn diode with a power of
200 mW and a frequency of 110 GHz or wavelength of 2.7 mm.

- The optical system in this experiment consists of a beam ex-
pander (f in Fig. 1) composed of two 110-mm-diameter plano-
convex lenses made of PTFE (THORLABS) with a focal distance
of 100 mm and an objective (c) composed of three Teflon™
lenses designed by Alphanov. The objective situated between
the sample and the detector aims to image the sample on the
TTC, according to different magnifications.

- The camera used in this study (FLIR SC7000) is a mid-wave in-
dium antimonide (InSh) quantum detector-based infrared cam-
era with a spectral band of 3.5 um-5.15 gm and acquisition
frequencies up to 1 kHz. The detector’'s matrix size is 256 px x
320 px with a minimum spatial resolution of 25 pm/px. This
camera can achieve a frame rate (acquisition frequency) of up

to 800 images/s in snapshot mode (when the matrix detectors
work concurrently).

It is important to note that several optical deviations, such as
beam deformation, inhomogeneity due to optical misalignment or
the diffraction phenomenon, are present. This led us to develop
image processing methods to extract the appropriate data pixel by
pixel. The scheme of the THz setup used in this study is shown in
Fig. 1.

The thermal noise linked to the use of a thermal detector can
be avoided through modulation of the signal. The modulation of
the THz beam coupled with image processing allows a decrease in
the thermal noise resulting from the in-plane thermal diffusion on
the TTC.

It is worth noting that in the experiment, the sample shown in
Fig. 1 will be replaced by the THz-semitransparent enclosure con-
taining the sample and connected to a vapour excitation system.

2.1.2. Sample preparation and material conditioning

Blotting paper is a homogeneous one-constituent material that
is often used to absorb excess liquid substances by capillary action.
It is mainly composed of cellulose and a mixture of sulfite without
a charge, glue, or mechanical primer. Since cellulose represents one
of the main constituents of wood, blotting paper represents a good
homogeneous sample on which to perform standard tests, calibra-
tion and validation methods by THz imaging.

The investigated sample consists of 10 stacked blotting papers
(CANSON 160 mm x 210 mm, density of 125 g/m?) with a size of
30 mm x 20 mm x 0.2 mm. First, the samples are dried for 24 h
in an oven at 105 °C to constant mass. The hydric excitation of
the sample is performed via saturated vapour inside a container of
saline solution allowing the generation of wet air at a given rel-
ative humidity RH. The resulting RH is measured by a contactless
sensor (Tinytag plus 2) placed inside the container. An integrated
manual pump connected to the container allows the generation of
a pressure gradient inside the container, promoting vapour move-
ment within the container.

Through a tube and aquarium pump, the container was con-
nected to the enclosure housing the dry blotting paper sample.
Through the use of the pump, the vapour travels from the con-
tainer to the enclosure, excites the sample, and then returns to the
container.

The high-frequency infrared camera used allows hundreds of
full-field images to be obtained per second, which gives detailed
information about the transfer. This allows better monitoring of
the water content over time; for example, in a scan of a region
of interest of 40 px x 30 px, 190 infrared films over 16 h can be
obtained by recording films of only 1 s every 5 min. The samples
and excitation device used are shown in Fig. 2.

2.1.3. Hydric excitation device

Similar to the thermal excitation methods commonly used to
measure the thermal diffusion coefficient of materials (for exam-
ple, the flash method (Parker et al. [20])), the main objective of
the developed hydric excitation device is to establish fixed hydric
conditions. This is through a one-dimensional circulation of wet air
with known RH and flow rate on a defined boundary of the sample
supposed initially dry.

The sample that represents 10 stacked blotting papers is placed
between two plastic enclosures semitransparent to the THz fre-
quency range. A rubber strip is placed on the three sides of the
sample edges to avoid absorption or escape of water content. The
only side of the sample that is not sealed is exposed to a continu-
ous vapour flow. The wet air flow was induced at low velocity by
an aquarium pump (EHEIM air pump 100 with a maximum flow
rate of 100 I/h and a pressure of 200 mbar). The RH of the wet air is



(a)

Fig. 2. (a) Stacked samples of blotting paper. and (b} hydric excitation setup: insulated semitransparent enclosure and aquarium pump.
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Fig. 3. Hydric excitation setup consists of a semitransparent enclosure, a pump, a
rubber insulator, and a wet air container,

chosen to be maximum (97%) to promote the mass transfer thanks
to a saline solution placed in the air circuit and controlled during
the experiments by an RH sensor. The saline solution is kept inside
the vacuum container to stabilize the RH at 97%. It is obtained by
dissolving the salt potassium sulfate K;S0y4 in distilled water in the
container. The sample is then imaged for 16 h (films of 1 s duration
or every 5 min). Once the films are recorded, image processing us-
ing the four-image method and singular value decomposition SVD
decomposition is carried out thanks to MATLAB®. The hydric exci-
tation device is shown in Fig. 3.

As mentioned previously, when the sample is dry, it is placed
inside the excitation device on the sample enclosure for the ex-
periment. The pump is turned on to continuously pump saturated
wet air with RH 97%. The acquisition of the transmitted signal is
started by the infrared camera with a frequency of 200 Hz (200
images per second). Infrared films of 1 s were recorded automati-
cally every 5 min for 16 h.

On the other hand, synchronization of the excitation and acqui-
sition frequencies allows imaging of the excitation and response
phases of the TTC over time. A two-channel waveform generator
(Agilent 335008 Series) is used to synchronize the THz source ig-
nition and camera acquisition (Bensalem et al. [27]).

The generator also allows modulation of the power of the THz
beam to limit thermal diffusion in the TTC plane. The modula-
tion frequency is synchronized with the acquisition frequency. The
modulation is performed via an appropriate duty cycle, which de-
creases the signal-to-noise ratio (SNR) (Bensalem [31]). The duty

cycle represents the ratio between the duration of excitation over
a period and the duration of the period.

2.2. Processing method

The recorded infrared films were processed to obtain the am-
plitude image for each film and enhance the image quality. The
four-image algorithm is used to extract the amplitude of a mod-
ulated signal blurred in noise (Rampnoux et al. [32]). The four-
image method consists of calculating the sum of a signal for each
quarter of a period (7/4). The four sums are then used in an am-
plitude estimation. This method allowed us to obtain the best
quality in a short processing time compared to other methods
(Bensalem [31]).

An additional image processing method, such as the SVD, is
used. The SVD method reduces the effect of noise and reconstructs
amplitude images without high-frequency noise (singular modes).
This technique showed an interesting efficiency in noise process-
ing of 3D complex-valued data in optical diffraction tomography
(Shevkunov et al. [33]). The singular values used to reconstruct the
amplitude images in this study are 6 values. Other singular values
were deleted with their corresponding columns in U and V', This
allowed to reduce data through reducing significantly the size ma-
trices U, S and V.

Once the images of the amplitude of the transmitted signal
are processed, the transmittance can be calculated by dividing the
transmitted signal through sample I(z, y, £) by the transmitted sig-
nal through the semitransparent enclosure without sample Iy(z, y).

_ I(z.y.t)

lo(z,y)

The difference between the transmittance issued from raw
transmitted signal and transmittance issued from denoised signal
by SVD allows the obtaining of the noise image situated between
—0.05 and +0.01 with an average of —0.02.

When the images of transmittance Tr(z, y, t) are obtained, the
space-time field can be obtained through an average transmittance
at different positions of y;. This averaging can be justified by the
homogeneous material and the considered homogenous excitation
along y at z = 0. This can be expressed by the following equation.

Y Tr(zyit) 2)
ym
ym represents the number of lines between y = +l and y = -1
The conversion of transmittance images T(z,y.t) to the aver-
aged transmittance T(z.t) is shown in Fig. 4.

(1)

Tr(z,t) =



Fig. 4. Example showing the principle of averaging images (z, y, [) to space-time
images (z, t) using Eq. (3).

The obtained space-time field of transmittance represents the
experimental transmittance that will be used to obtain the water
content field. The experimental water content field will be used
with an appropriate model allowing the estimation of the diffusion
coefficient of the blotting paper along the z-axis.

In this study, we present the space-time field of transmittance
to avoid confusing the reader since it represents the appropriate
data for the rest of the paper.

The absorbence is defined as the logarithm of the transmitted
signal divided by the emitted signal (without sample). Therefore,
the averaged absorbence A is given by Eq. (3)

A=—log (Tr(z.1)) (3)
3. Diffusion modelling and diffusion coefficient estimation
3.1. Water content imaging under hydric excitation

As indicated previously, in the experiments the excitation is set
with low-velocity saturated wet air from one side at z = 0. Since
the diffusion is supposed to be one-dimensional along the z di-
rection and the signal Iy(z, y) represents the transmitted signal
through the enclosure without sample, the averaged transmittance
and absorbence over time computed by Eqs. (1), (2) and (3) are
summarized in Fig. 5.

Fig. 5-a shows that initially (early in the experiment), the trans-
mittance is maximum along the z-axis, which means that the sam-
ple was dry. Over time, the signal decreases, which indicates that
the vapour diffuses within the sample. However, the decrease in
signal is not the same along z which is predicted because the
closer the position along z to 0, the wetter the area. This can be
seen later in the experiment where the zone of z close to 0 is more
attenuated.

Tf(-
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The absorbence presented in Fig. 5-b shows that initially, the
absorbence is low and homogeneous along the z-axis, with the ab-
sorbence then becoming higher with diffusion within the sample.

This feature was expected since that one of the main character-
istics of terahertz waves is they are attenuated by water content
at its liquid or vapour form. Since the experiment are conducted
in transmission mode, the signal decreases over the time during
wetting the sample. This decrease is exponential with the trans-
mittance according to Beer-Lambert law. This law assumes that the
wet sample consists of two layers: one dry layer having the same
dimensions of the sample and virtual layer of water having the
same surface of the sample and equivalent thickness.

On the other hand, the absorbence representing the absorbed
part of signal with respect to the initial signal I, it is nothing but
the negative logarithm of the transmittance (Eq. (3)).

Therefore, the relationship linking the absorbence and the wa-
ter content is linear and shown in (Bensalem et al. [27]) by the
equation below.

I(M
A ~—log .
I= l( ) = Jhs + Ps % w (4)
t] £ 3
Thus:
Pw A
=—\7" 5
T ( ; l-‘s) (5)
with:

p< - Density of blotting paper given by 243 kg/m’.

Pw: Density of water given by 1000 kg/m?.

1ts: Absorption coefficient of solid 87 m!.

1w Absorption coefficient of water 10,000 m~'.

I : Thickness of sample 2 x 1073 m

By applying Eq. (5), the space-time image of the water content
is obtained and given in Fig. 6.

As shown in Eq. (5), the water content field is proportional to
the absorbence field. A similarity can be noted with a maximum
water content of 16x 102 kg of water [kg of solid. At the beginning
of diffusion, the sample is dry (less than 10-? kg of water kg of
solid) since it was placed inside an oven for 24 h. Then, the water
content increases with time due to the diffusion of vapour with
the material. At z = 0 mm, the water content over time is maximal
since it represents the first point of contact with the vapour. Fig. 7
shows the diffusion process into the material represented by the
evolution of the average water content along z at different times

Al-)
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75
8.75
10
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Fig. 5. (a) Image of averaged transmittance, (b) image of absorbence using Eqs. (1)-(3).
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Fig. 6. Experimental space-time field of water content along z within blotting pa-
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and the average water content at different positions as a function
of time.

Fig. 4-23-a shows that after z = 5 mm, the mass diffusion of
water vapour is low relative to the zone between z = 0 mm and
z = 5 mm, where the dynamics are remarkable. This can be seen
in Fig. 4-23-c, where the water content is almost constant and
no significant transfer occurs, especially at early times (less than
250 min). Therefore, only the part situated between z = 0 mm and
z = 5 mm will be considered in the estimation of the diffusion co-
efficient.

Fig. 7-b shows that the water content increases inside the sam-
ple over time and at different positions along the z-axis. At times
greater than 600 min, all the profiles of water content slightly
change the dynamics and again take the slope of transfer dynamics
at times less than 800 min, which can be due to a possible acqui-
sition problem or related to the camera.

3.2, Mathematical modelling

The measurement of the full field of the THz transmittance by
the camera provides more data about the diffusion due to the ac-
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(b)

Fig. 7. Profiles of water content (a) at different positions as a function of time, (b) at different instants as a function of z



quisition rate used (200 images/s). Based on the system shown in
Fig. 3, several assumptions have been considered in this study:

- The water transfer starts at z = 0 and mainly goes through the
sample towards the z-axis.

- Due to the low thickness of the sample compared to its in-
plane dimensions, we assume that the hydric field is constant
along the x-axis for a given z.

- The mass diffusion towards the sample along the z-axis is the
same regardless of the value of y (different positions along y).
This considers the homogeneity of vapour at z = 0 along the
y-axis.

- The flux is sufficiently low to eliminate the contribution of the
convection coefficient in the boundary conditions of the model.
Therefore, the considered boundary condition is the Neumann-
type condition, which is a constant water content.

- There is no vapour between the stacked layers of blotting paper.

Considering those assumptions, the mass diffusion will be mod-
elled using a simplified solution of the semi-infinite of Fick's equa-
tion. The Fick's second law represents the differential equation of
diffusion derived from the Fick's first law assuming that the rate
of transfer of diffusing substance through unit area of a section is
proportional to the concentration gradient measured normal to the
section. Therefore, the ratio of diffusion flux to the opposite of the
concentration gradient in the diffusion direction (Crank [34]).

The one-dimensional diffusion process can be described by
Fick's law as follows:

IW(zt) a (D HW(z,t))

a0z 0z

Since the material is homogeneous and the excitation along y
at z = 0 mm, the diffusion coefficient D, can be assumed to be a
constant with respect to space, and the expression above becomes:

(6)

aW(z.t) PWi(z.t) (7)
at az2
The boundary conditions in this case can be assumed in this
experiment by the following equation.
awzt) -
% i'm:(yn 2yt~
Z.
D; dz lz=Ly =0 (8)
Wiz t=0)=W((z—- o0 t) =W,
W(z=0.t) =W,

=D,
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Fig. 8. (a) Normalized water content with anomalies early in the experiment, (b) normalized water content after omitting the anomalies.

1000

Since:

- The material is considered to be homogeneous (D; = Dy).

- The sample is insulated at y = -l and y = +1.

- The excitation is considered homogeneous along the left side
(y==x1lLz=0)

The 1D solution modelling of the diffusion problem within the
semi-infinite assumption is then considered and is given by the
equation below:

= Wz—W() z
W=—F—=cer 9

At this stage, the experimental data should be normalized be-
tween 0 and 1 to estimate the diffusion coefficient. In the space-
time image, the initial water content, which is also the same water
content when z tends to infinity (Eq. (8)), represents the last line
of the image (line number 20 corresponds to z = 5 mm), whereas
the water content at z = 0 is estimated to be the first line of the
image. Therefore, the normalized image of the experimental data
to be processed is given by the following expression:

: Im(z;.t;) = Im(za.t;) i
P Im(z1.t) — Im(za.t;) " T m
The normalization expression allows the space-time image to
be obtained, as shown in Fig. 8.

Fig. 8-a shows that there is a problem with inhomogeneity in
the transfer of vapour into the blotting paper early in the exper-
iment. This can be due to the passage of vapour between the 10
stacked blotting papers used in this study (Fig. 2-a). Moreover, at
the beginning, there is no pronounced transfer, which allows us to
omit the first 50 min from the image corresponding to the first 10
columns (every column represents an averaged image taken every
5 min, as explained previously). Therefore, the obtained exploitable
space-time experimental image is shown in Fig. 8-b. Some profiles
of the normalized experimental water content are obtained and
shown in Fig. 9.

(10)

3.3, Estimation method

To estimate the diffusion coefficient based on the model de-
scribed by Eq. (9), the normalized water content is given as a func-
tion of the diffusion coefficient and space-time field. Mathemati-
cally, there are different ways to estimate the diffusion coefficient,
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We propose here two methods to estimate the diffusion coeffi-
cient: a statistical approach method and a nonlinear minimization
inverse method via the software MATLAB®.

3.3.1. Inverse method based on Bayesian approach

This approach consists of modelling the direct problem by re-
constructing a database of normalized water content at different
values of the diffusion coefficient. Then, the experimental data will
be linked to the modelled data through a likelihood function. Thus,
the Bayesian inferences are formulated in (Groz et al. [35]) as
shown below:

P(W (2. t) &) Pyrior (@)
P(W(z.t))

Ppmtm’a(alw(z-t)) = (]1)

Pposterior (@|W (2. 1)) Posterior probability density.

Pyeioe (@) & Prior density.

P(W(z.t)|e) : Likelihood function of different water content
measurements.

P(W(z.t)) : Marginal probability density of measurement.

For any given value of parameter & to estimate for each pixel
(z) at any time (t), the normalized water content can be evaluated.
If the correct space and time scale is created, then the fields of
water content can be obtained and compared with the experimen-
tal values. To optimize the estimation in terms of estimation time,
the values of the estimator (the diffusion coefficient in this case is
D;) can be taken between two limits covering the range of the dif-
fusion process within homogeneous hygroscopic material such as
blotting paper. Thus, the posterior probability density is related to
the likelihood function, as shown in Eq. (12).

Pyosterice (@IW (2.0)) o P(W(2.0) |et). @ € [@inin - - Clmax] (12)
The likelihood function P(W (x, t)|er) is defined by:

P(W(x.t)|a) o e mrWer@-W@abli g ¢ (i arma]  (13)

where:

W (a.z.t): Water content estimated using the direct model in
Eq. (9).

Wexp(z. t): Experimental normalized water content obtained us-
ing Eq. (10).

First, a discretization of the diffusion coefficient was performed
on a logarithmic scale, This can be justified by the equal distri-
bution of discretization for each decade, which allows acceptable

o o o
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Normalized water content

o
N

(b)

Fig. 9. (a) Normalized water content field with positions of represented profiles, (b) profiles of normalized water content at different instants,
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Fig. 10. Logarithmic scale of diffusion coefficient base with 30 points.

sensitivity from decade to decade (one decade is discretization be-
tween 10" and 10"'). The diffusion coefficient limits are set be-
tween 107'° m?/s and 107 m?/s with 30 steps. This means 10 val-
ues are given for each decade. The logarithmic distribution of val-
ues is shown in Fig. 10,

Therefore, 30 normalized space-time images will be modelled
using discretized values of the diffusion coefficient (D;) and the
space (z) and time (t) scales of the experimental image. The
water content fields obtained at different values of the diffu-
sion coefficient (D;_; = 1 x 107% m2/s, D;_;o = 8.53x10-10 m?/s,
Di_zp = 9.24x10°° m?fs and Di_3p = 1 x 107 m?/s) are given in
Fig. 11,

Fig. 11 shows that at low values of the diffusion coefficient, dif-
fusion can be captured (Fig. 11-a). However, for greater values, the
diffusion phenomenon is fast and almost equal to that earlier in
the experiment (Fig. 11-c and d). This is due to the space and time
scales used. However, keeping the space and time used in the ex-
periment constant, this indicates that the diffusion coefficient that
will be obtained is situated close to the diffusion coefficient used
to obtain Fig. 11-a and b.

The probability function was computed based on a simple com-
parison between the quadratic error between the experimental and
the modelled (computed) water content fields estimated at differ-
ent diffusion coefficients. The error here is defined by the differ-
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Fig. 11, Water content modelled (reconstructed) at different diffusion coefficients: (a) D,_; = 1 = 1070 m?/fs, (b) Di_jo = 8.53x10° ni/s, (¢) Dizp = 924105 m?/s and (d)

Digp = 1 x 1077 m?fs.

ence between the experimental and modelled water content fields.
The probability presented by the (Groz et al. [35]) function repre-
sents the inverse of the exponential of these quadratic errors and
is given by Eq. (14).

forop = e WerO-WB2OIE ;e [10770 . 1077] (14)

The probability function is presented in Fig. 12.

Fig. 12 shows that the maximum in the probability function is
obtained at D;_q = 6.723x107'% m?/s. At this value of diffusion, the
estimated water content field is predicted to be the field closest to
the experimental field. In this case, it is important to display the
experimental and modelled water content fields. Moreover, the
error between the two fields can give an indication of both the
efficiency of the estimation method and the statistical distribution
of error. The fields of water content and error are summarized in
Fig. 13.

Fig. 13-a and b show a similarity between the experimental and
modelled water content fields. However, a slight difference can be
seen at t < 400 min and on a position situated between 1 mm and
3 mm. The difference is also seen at z situated between 3 mm and
5 mm for a long time (t = 700 min). The error shown in Fig. 13-
¢ is situated between —0.06 and 0.1, which means that the scale
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Fig. 12. Probability function at different diffusion coefficients used in water content
modelling.

of the obtained error is 6% to 10% with respect to the scale of the
normalized water content fields.
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Fig. 13. (a) Experimental water content, (b) modelled water content with D, = 6,723x10-'° m?/s, () difference between the experimental and modelled normalized water

content (error), (d) distribution of error with Gaussian fit,

The error can be presented in the form of a histogram with
a Gaussian fit to estimate the mean value and the deviation of
the error in all the images. The mean value of error is close to
0 and equal to —0.001, while the standard deviation obtained is
0.033. This means that with a diffusion coefficient of Dgyye =
6.723x10-'0 m?/s, almost 97% of pixels of the modelled water
content represent an almost null difference with the experimental
field.

To improve the estimation, a refined discretization of the dif-
fusion coefficient based on 1000 values in the same range (10-10
m?/s to 1077 m?/s) is performed. The maximum probability func-
tion, corresponding to the minimum difference between the mod-
elled and experimental water contents, is obtained at Dj_,z =
6.424x1071% m?/s. This value is 5% less than the previous value
obtained with 30-point discretization.

Refining the discretization of the diffusion coefficient from 30
points to 1000 points slightly improves the estimation of the water
content field. This estimation provides an adjustment of 5% of the
diffusion coefficient. However, the computation time is increased
26 times from 0.6 s to 15.6 s.

However, more robust methods based on the minimization of
this quadratic error are necessary and allow the validation of
the estimated diffusion coefficient with a statistical fast approach

based on Bayesian. For this, an inverse method based on Marquart-
Levenberg-based minimization is used in the next paragraph.

3.3.2. Inverse method based on the Marquart-Levenberg minimization
approach

As mentioned, a simple fast method based on statistical com-
parison of the error allowed us to estimate a value of the diffusion
coefficient of Dggye; = 642410710 m?/s.

In this part, we propose a method based on the minimization
of quadratic error using a robust method called the Levenberg-
Marquardt (LM) algorithm. The algorithm is optimized and allows
solving nonlinear least squares problems. The minimization prob-
lem arises especially in least squares curve fitting. It interpolates
between the Gauss-Newton algorithm and the method of gradi-
ent descent. The Levenberg-Marquardt algorithm is more robust
for a reasonable starting parameter than the Gauss-Newton algo-
rithm, but it tends to be slower. This method is used to estimate a
given parameter S; of the function f{z, t, £) so that the sum of the
squares of the deviations S(#) is minimized. The estimator can be
expressed by Eq. (15).

B e argming 33" |V - f(zt,. ) (15)
)

=1



The algorithm is an iterative procedure that consists of evaluat-
ing the model with a starting parameter provided by the user and
minimizing the quadratic error between the model at a given po-
sition at a given time and the experimental data. In each iteration,
the parameter vector S (value in our case) is replaced by a new
estimate f+8. To determine variation 4, the function f{z;, t;, f+38)
is approximated by its linearization.

af(zt;, f
f(z,.t).ﬂ +6) :f(z,'.tj.ﬂ) +6]|] :f(z,'.tj.ﬂ) +6W

(16)

The sum of square error S(#) has its minimum at the null gra-
dient; thus, the first-order approximation of f{z;, t;,8+38) is given in
Eq. (17).

SB+8) =33 Wiy~ [(zt;. B) = 81 (17)

=1 j

With the J;; represents the Jacobian matrix. The matrix form
can be given as follows.

S(B+8) =S(B) —2[Y - f(B)'JS +87J'J8 (18)

If the derivative of S(8 + &) with respect to & is equal to zero,
the minimum value can be found by solving the following equa-
tion.

U ns=ry - fpl (19)

In Levenberg-Marquardt method, the adjustment of parameter
£ is based on the adjustment of another positive parameter called
the damping factor A at each iteration. The value of A can be
initialized by the max of diagonal values of the Hessian matrix.
However, its value will be changed at each iteration function of
a multiplicator factor that allows the acceleration of the conver-
gence. This parameter will not be further discussed in this paper
to avoid confusing the message of the article. This factor can be
used in Tikhonov regularization, which is used to solve linear ill-
posed problems and it is introduced in the Eq. (20) as follows.

("] + Md)s =J"[Y - f(B)] (20)

where Id is the identity matrix and § is the variation or the in-
crement used to estimate the parameter vector f. In this case, the
norm 2 of the error (difference between the two fields) in every
iteration will be fed to the algorithm. This aims to calculate the
derivative with respect to the parameter 8 (diffusion coefficient)
in every iteration and therefore, updating the value of variation &
of the parameter to estimate f.

The initial parameter is an important parameter in some inver-
sion problems where many local minima are possible. The initial
parameter used should be on the same order of magnitude as the
diffusion coefficient found with the Bayesian approach. The initial
parameter given to the algorithm is Dy = 1 x 10-10 m?/s.

The estimated wvalue by the LM algorithm s
Dyinim = 5.903x10-19 m?/s, This value represents 8% less than
the value found by the Bayesian approach (Dggyes = 6.424x10°1°
m?/s). The modelled space-time field of normalized water content
obtained using this value is shown with the error field and its
distribution in Fig. 14.

The error field (Fig. 14-c) shows that the difference between
the experimental and modelled fields of water content in the
same range found with the diffusion coefficient estimated by
the Bayesian approach. The values are slightly different (between
—0.06 and 0.1). The mean value obtained here is close to 0 and
equal to 0.0029, and the standard deviation of the distribution is
0.032. The lower value of the standard deviation shows that with
this value of the diffusion coefficient, there are more pixels of the

modelled water content field that have values close to those of the
experimental field. This led to 8% of the refined estimated value,

The diffusion coefficient obtained with the Levenberg-
Marquardt algorithm, which is an optimized algorithm based
on the computation of the derivation of the quadratic error cou-
pled with the parameter of accelerating the convergence through
the damping factor, takes a longer time. However, the Bayesian
approach represents a fast method based on a computation of
the probability function, which is nothing other than a compar-
ison of quadratic errors provided by the difference between the
experimental and modelled fields. The obtained value shows that
this method is efficient in estimating the diffusion coefficient,
The estimated diffusion values in both methods are on the order
of magnitude of the diffusion coefficient of cellulose obtained in
the literature. The diffusion coefficients are comparable to the
modelled values by (Desrosiers [36]), which are 22.4 x 10°19 m?/s
and the reported value by (Ek et al. [37]), which is 16x10-'0 m?/s,

The difference can be attributed to the considered assumptions,
including neglecting the effect of the exchange coefficient with
vapour on the boundary condition for simplification. The diffusion
coefficient in this study is also considered to be constant, which is
not the case in reality. The diffusion coefficient is often taken as
a function of the diffusion coefficient of the material at the initial
water content and the water content concentration. This relation is
given by an exponential expression by (Mannes [38]).

Since the THz technique coupled with appropriate processing
and estimation methods allowed the obtaining of interesting re-
sults, an attempt to extend this estimation method to a hetero-
geneous material such as wood is carried out. However, it should
be mentioned that due to the wavelength size of the source (=
2.7 mm), which is greater than the width of the growth ring of
wood, it is not expected to visualize the rings. Moreover, since the
growth rings have different densities (earlywood and latewood),
the diffusion coefficient will certainly differ from ring to other.
Therefore, the average of images along the y-axis will allow us to
estimate only the average longitudinal diffusion coefficient of mar-
itime pine (Pinus pinaster).

3.4. Application to the heterogeneous material maritime pine

In this part, the same experiment conducted on blotting paper
is performed on a maritime pine sample in the tangential longitu-
dinal direction with a thickness of 2 mm. The setup is shown in
Fig. 15.

It is worth recalling that along the z direction, the diffusion co-
efficient may not be constant due to growth ring alternation within
the wood. This leads us to assume that the averaging of transmit-
tance images will lead to an averaged apparent diffusion coefficient
along the z-axis. This averaging leads to simplification of the 2D
transient model to a 1D transient model, which joins the previous
study carried out on a homogeneous material.

The estimation has been set using the approaches explained
above (Bayesian and minimization method). The obtained values
of the diffusion coefficient are:

Bayesian approach: Dggyeswood = 3.905x 10710 m?fs.
LM algorithm minimization: Dpyim-wood = 3-772x 10710 m?/s.

The diffusion coefficients found for maritime pine during the
wetting process are specific to the direction studied (longitudinal).
Literature on the diffusion coefficient of wood, obtained through
various techniques, shows significant variation depending on the
species, such as tropical species (Perre et al. [39]), spruce (Mou-
chot et al. [40]), beech (Mouchot et al. [41]), and pine (Siau [42]),
as well as the direction of diffusion, whether it's a permanent or
transient process, and whether it's drying or wetting.
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Fig. 14. (a) Experimental water content, (b) modelled water content with Dy = 5.903x 10 mifs, (c] difference between the experimental and modelled normalized

content (error), (d) distribution of error with Gaussian fit.
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Table 1

Values of diffusion coefficients summarized by (Mouchot et al. [41]) obtained in
different experimental conditions (temperature and humidity), different directions
(T: Tangential, R: Radial, L: Longitudinal, R + T: average of the radial and tangential
direction), and by different authors.

Aquarium pump
—

Fig. 15. Hydric excitation of maritime pine sample along the longitudinal direction
L (along the ring z-axis).

Rubber strip

The following table summarizes some values reported by (Mou-
chot et al. [41]) provides a summary of values found in the litera-
ture on wood diffusion coefficients.

The Table 1 demonstrates that the diffusion coefficient within
wood varies greatly, making it difficult to establish a reference
value. However, for pine, we find that the diffusion coefficients for
the three directions (T, R, and L) are established under steady-state

Miffusion coefficient Diffusion coefficient Direction

Species obtained in steady-state obtained in transient
case (m?/s) case (m?/s)
Fir 3.24x10-0 R+T
2.82x10°° R
3 %100 L
497 10°° f
Pine 35 % 1077 T
8.04x10°% L
4.88x10°7 211 < 1079 R
Ra+T
Poplar 922x10-° 2.10x10-1° L
260x10-% R
Oak 1.87x10-7 T
2.82x10°° L
1.85x10°7 R
1.14x10°" R
546x10°" L

conditions. These values are of the order of 10-7 m?/s, which is sig-
nificantly different from the diffusion coefficient obtained during
a transient process (0.21x10-'9 m?/s). This value is closer to the
value obtained for pine in the current study (3.772x107'0 m2/s).



Table 2
Values of the global diffusion coefficients obtained for different laminated pine
samples during drying summarized by (Clouet [2]),

Species Global diffusion coefficient for pine (n?/s)
Sample 1 584x10°1°
Sample 2 7471071
Sample 3 947x10-10

The difference can be attributed to the direction of diffusion and
the process conditions (drying or wetting).

The author (Clouet [2]), has estimated the global value of the
diffusion coefficient for different laminated pine samples using
Nelder-Mead algorithms as the optimization technique. The results
are summarized in Table 2 and report different values for the dif-
fusion coefficient of maritime pine.

The values listed in Table 2 are more in line with the diffusion
coefficient found for pine in this study (3.772x 10 '° m?/s). The dif-
ference can be attributed to two factors: (a) the difference in stud-
ied processes, with (Clouet [2]) focusing on drying and this study
focusing on wetting, and (b) the estimation method, with (Clouet
[2]) estimating the global diffusion coefficient by monitoring the
global weight of the sample and this study monitoring the dif-
fusion along the longitudinal direction without contact using THz
technique.

Weep(=)

1.25

t (min)

(a)

(W — Wiee)(—)

0.1
1.25 0.05
0
3 !
E 25 0.05
N 0.1
375 -0.15
0.2
5 -0.25
250 500 750
t (min)

(c)

Despite all, these values allow validating our values of diffu-
sion coefficient obtained for pine and thereby validating our THz
contactless imaging-based setup and used inverse methods for the
estimation. The validity of our estimated diffusion coefficients for
pine can be confirmed by comparing the average experimental wa-
ter content field with the reconstructed field using the estimated
value. By measuring the difference between the two fields, we can
determine the accuracy of our THz contactless imaging setup and
inverse methods. The results, including the experimental field, the
modelled field using the diffusion coefficient from the IM algo-
rithm, and the error between them, are displayed in Fig. 16.

As shown in Fig. 16-a, the diffusion within wood includes some
problems early in the experiment, which can be attributed to the
heterogeneity of wood that involves more noise with infrared im-
ages and more heterogeneity in the distribution of water content,
The modelled water content field obtained with a diffusion co-
efficient of 3.772x10-'° m?/s shows a similar space-time field of
water content to the experimental field (diffusion dynamics, char-
acteristic time, diffusion depth). However, the error indicating the
difference between the experimental and the modelled fields is sit-
uated between —0.1 and 0.1 with an important gap early in the ex-
periment up to 0.25. The distribution of error shows that the mean
error is close to 0 and equal to —0.001 with a standard deviation
of 0.046. The standard deviation of the error is one and one-half
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Fig. 16. (a) Experimental water content of wood, (b) modelled water content with Dy wror = 3-772x10-1% m?/s, (c) difference between the experimental and modelled

normalized content (error), (d) distribution of error with Gaussian fit.



times that obtained in the case of blotting paper. This can be pre-
dicted due to the alternation of different density-growth rings. In
fact, within wood, diffusion along the y-axis is different from dif-
fusion along the z-axis, and diffusion along the z-axis is different
from earlywood growth rings to latewood growth rings. This in-
duces different diffusion along the z-axis as a function of the po-
sition of y; thus, the obtained images were noisy relative to im-
ages showing diffusion within a homogeneous material. Moreover,
it can be noted that with the same scale time, the diffusion depth
is lower, which intuitively means that the diffusion coefficient of
wood would also be lower.

4. Conclusions and perspectives

The aim of this study was to show the efficiency of THz imag-
ing for contactless characterization of transient water vapour dif-
fusion in hygroscopic materials. The study was conducted on two
hygroscopic materials: homogeneous (blotting paper) and hetero-
geneous (maritime pine). The results were comparable to literature
values, with the obtained diffusion coefficient for blotting paper
and pine being 5.93x10 ' m?/s and 3.77x 10 ' m?/s, respectively,
compared to values of 16x10-'" m?/s and 5.84x10-'% m?/s in the
literature. This demonstrates the capability of THz imaging to mon-
itor transient water vapour diffusion without contact. The differ-
ences with literature can be attributed to various factors, including
the studied process, regime, used methods, boundary conditions,
etc.

The error between the experimental and modelled average wa-
ter content was between —6% and +10% for blotting paper and
4+10% for maritime pine. The inverse method using the LM method
showed a higher accuracy of 8% compared to the Bayesian statisti-
cal approach. However, the latter had a shorter computation time,
taking one-third of the time required by the former in our case.

This study is of great significance from an industrial perspec-
tive. This is because water content diffusion is a crucial factor in
the paper and wood industries, particularly during the humidifica-
tion or drying phases, which has a direct impact on the final prod-
uct quality.

Scientifically, this study lays the foundation for exciting ad-
vancements by combining THz technology for monitoring water
content field and digital image correlation (DIC) for monitoring
mechanical properties field during the drying or wetting of hygro-
scopic materials.

Potential advancements for this study include:

- Incorporating convection in boundary conditions.

- Evaluating the estimation for varying growth ring directions in
wood.

- Experimenting with alternative excitations such as Dirac pulses
and adapting estimation methods from heat transfer to mass
transfer, such as the parabolic method.

It is important to note that the low power of the source re-
stricts the system to thin wood samples, primarily wet samples.
THz technology holds potential for measurements on dry, less-
dense products in other industries such as food and packaging,
which typically lack dependable real-time measurements.
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