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Abstract

A new multivariate density estimator for stationary sequences is obtained by Fourier
inversion of the thresholded empirical characteristic function. This estimator does not depend
on the choice of parameters related to the smoothness of the density; it is directly adaptive.
We establish oracle inequalities valid for independent, α-mixing and τ -mixing sequences,
which allows us to derive optimal convergence rates, up to a logarithmic loss. On general
anisotropic Sobolev classes, the estimator adapts to the regularity of the unknown density
but also achieves directional adaptivity. In particular, if A is an invertible matrix, if the
observations are drawn from X ∈ Rd, d ≥ 1, it achieves the rate implied by the regularity of
AX, which may be more regular than X. The estimator is easy to implement and numerically
efficient. It depends on the calibration of a parameter for which we propose an innovative
numerical selection procedure, using the Euler characteristic of the thresholded areas.
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1 Introduction

The problem of adaptive density estimation was mainly studied in a context of i.i.d. (independent
and identically distributed) random variables, but also for dependent data since the late 90’s.
Given the considerable amount of articles on the subject, the following review does not pretend
to be an exhaustive rendition of all the works on the topic. On minimax adaptive multivariate
density estimation from direct independent random vectors, we mention projection methods,
with the preliminary work of Hasminskii and Ibragimov (1990) [24] or more recently Birgé
(2014) [8], wavelet techniques with Kerkyacharian and Picard (2000) [26] and kernel estimators
investigated e.g. in Chacón and Duong (2010) [10], the works of Goldenshluger and Lepski
[22, 23] or Rebelles (2015) [32].

Let us look in more detail at two recent papers. In [12], Comte and Lacour consider the
problem of deconvolution in Rd, but their results also apply to the case where the variables are
observed directly. The authors propose adaptive density estimators for both the pointwise L2-
risk and the integrated L2-risk, by adapting the method of Goldenshluger and Lepski. For the
integrated L2-risk, they obtain adaptive estimators on general anisotropic Sobolev classes, using
tensor products of the sinus-cardinal (sinc) kernel. In [27], Lacour et al. propose a new method
for selecting the bandwidth of kernel density estimators. For a class of kernels described in [23]
they obtain adaptive estimators for anisotropic Nikolskii classes and the integrated L2-risk.
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Regarding dependent sequences, The only article that we know of that deals with adaptive
multivariate density estimation in a mixing context, is that of Bertin et al. [7] . These authors
deal with density estimation on a bounded domain of Rd, for geometrically β-mixing sequences
(see Volkonski and Rozanov(1959) [38] for the definition of β-mixing coefficients).

The other articles we briefly describe below only concern the estimation of the density in
the univariate case. Tribouley and Viennet (1998) [36] propose Lp adaptive estimators for the
common density f of a stationary β-mixing sequence using wavelets, that are minimax optimal
(in the sense that the procedure leads to the same minimax rate as in the i.i.d. case). Considering
discrete or continuous time stationary processes, Comte and Merlevède (2002) [13] study the
adaptive density estimation of the common density f of a α-mixing or β-mixing process (see
Definition 3.1 below for the definition of α-mixing coefficients in the sense of Rosenblatt (1956)
[34]). They use a penalized least square method to compute the adaptive estimators. Comte et
al. (2008) [11] propose a model selection procedure for projection estimators on the Shannon
basis to estimate f on the whole real line for stationary β-mixing sequences. Lerasle [28, 29]
proposes an adaptive estimator based on model selection for the density of a stationary process
which is either β-mixing or τ -mixing (see Definition 3.2 below for the definition of τ -mixing
coefficients). Gannaz and Wintenberger (2010) [21] consider other type of dependence; they
estimate the common marginal density f by a wavelet type estimator, under some conditions
on the λ or ϕ̃ coefficients (see [15] for their definition). Asin and Johannes (2017) [3] give a
data-driven non-parametric estimation procedure for a density and a regression function. They
use an orthogonal series estimator for β-mixing sequences. Bertin and Klutchnikoff (2017) [6]
estimate the common density f of a weakly dependent process, giving upper bounds for the
pointwise risk, and propose a data-driven procedure based on Goldenshluger and Lepskii [22]
for α-mixing and λ-dependent sequences.

We observe that many papers on adaptive density estimation in a dependent context deal
with β-mixing sequences. The reason is a technical one: for β-mixing sequences, one can use
Berbee’s coupling lemma [5], which enables to go back to the i.i.d. case and to apply the powerful
concentration inequalities of Talagrand [35]. This approach is much trickier in the α-mixing case
because the coupling tools for α-mixing sequences are much less efficient (see for instance [33]
Chapter 5). τ -mixing sequences have better coupling properties (see [17]), but they are quite
complicated to handle because of their hereditary properties (individual functions of τ -mixing
sequences are not necessarily τ -mixing).

Let us now briefly underline why the α-mixing case is so attractive. It is well known that
the notion of α-mixing is the weakest type of mixing among the usual mixing conditions (see
e.g. Bradley [9]). It contains two large classes of examples: irreducible, aperiodic and positively
recurrent Markov chains (for which β-mixing is equivalent to α-mixing, see [33], Chapter 9), as
well as functions of Gaussian processes which are naturally ρ-mixing (see [9] for the definition
of ρ-mixing).

However, α-mixing has some limitations: it does not apply in general to non-irreducible
Markov chains. For instance the Markov chains associated with most dynamical systems are
not α-mixing (see for instance [17]). By contrast, the τ -mixing coefficients can be computed
for a large class of dynamical systems, as well as for many other examples (such as functions of
linear processes with discrete innovations). Of course, other notions of dependence can also be
defined: we refer to [17] and [15] for an overview.

The purpose of this paper is to introduce a unified adaptive density estimator for multivariate
stationary random variables that are independent, α-mixing or τ -mixing (see Equation (2.1)
below for the definition of the estimator). It is inspired by the recent adaptive procedure
introduced by Duval and Kappus (2019) [20] to select the optimal cutoff parameter for univariate
density estimators based on a Fourier method, in the i.i.d. case. This procedure is numerically
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easy to implement and the concentration tool used to establish the oracle inequality is a basic
Hoeffding inequality for partial sum of bounded random variables, which makes it eligible for
an extension to the case of dependent variables. More precisely, we shall use Fuk-Nagev type
inequalities, that can be derived from [33] in the α-mixing case (see Lemma 4.4), and from [16]
in the τ -mixing case (see Lemma 4.8). Equation (2.1) below proposes a complete rewriting of
the estimator of [20] for multivariate random variables.

The contributions of the present work are the following. We propose a unique thresholded
estimation procedure which is parameter free. Indeed, if the procedure depends on a threshold-
ing constant (unrelated to the smoothness of the unknown density), this constant can be easily
calibrated through an innovative tool using the Euler characteristic of thresholded area. Oracle
inequalities are established for independent and dependent sequences of multivariate random
variables (which seems quite new in a dependent context, in particular regarding the adaptivity
to anisotropic regularity classes). The proofs of the oracle inequalities rely on fine cuttings of
the quadratic risk, which makes it elegant and easy to adapt in other contexts such as indirect
observations. The bias term appearing in these inequalities has such a general shape that it al-
lows anisotropic regularity classes with a possible change of base (not necessarily orthonormal)
that may lead to faster convergence rates. A property that, to the knowledge of the authors,
has not been studied in the literature and is not shared with existing estimators. We call this
property “Directional Adaptivity”.

The paper is organized as follows. Section 2 is devoted to the multivariate independent
case; we first define our adaptive estimator and state Theorem 2.1 which is an oracle inequality.
Some extensions are discussed as well as a comparison with wavelet thresholded estimators.
Rates of convergence are derived on general anisotropic Sobolev classes, where a linear bijective
transformation of the data is allowed (see Equation (2.4)). As emphasized by Example 2.1 this
transformation can improve the rates of convergence. The remaining of the Section is devoted
to its numerical study. In Section 2.3 we propose a numerical procedure for the calibration of
the only parameter appearing in the definition of the estimator, using the Euler characteristic
of the thresholded areas. Section 2.4 provides numerical illustrations in dimension 2. Section
3 generalizes Theorem 2.1 for stationary sequences that are either α-mixing (see Definition
3.1 and Theorem 3.1) or τ -mixing (see Definition 3.2 and Theorem 3.2). In each case the
numerical performances of the estimator, combined with the selection procedure of Section 2.3,
are investigated in dimension 1. All the proofs are gathered in Section 4.

Notations Given a random variable Z taking values in Rd, ϕZ(u) = E[ei〈u,Z〉] denotes the
characteristic function of Z. For f ∈ L1(Rd),

Ff(u) =

∫
Rd
ei〈u,x〉f(x)dx, u ∈ Rd,

is understood to be the Fourier transform of f . Moreover, we denote by ‖ · ‖ the L2-norm of
functions, ‖f‖2 :=

∫
Rd |f(x)|2dx.

Let A be the class of invertible d × d matrices such that A([−1, 1]d) ⊆ [−1, 1]d. Note that,
if A ∈ A, then |det(A)| ≤ 1. A necessary and sufficient condition for an invertible matrix A to
belong to A is that the `1 norm of each row is less than 1. Given f ∈ L1(Rd)∩L2(Rd) and A ∈ A,
we denote by fA,m, m ∈ Rd+, the uniquely defined function with Fourier transform FfA,m =
(Ff)1A([−m,m]), where [−m,m] = [−m1,m1]× · · · × [−md,md]. The interest of introducing the
matrix A is to capture directional adaptivity and consider general anisotropy classes as defined
in (2.4) (see also Example 2.1).
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2 Directional adaptive procedure: the independent case

2.1 Adaptive thresholded estimator

Consider n i.i.d. realisations Xj , 1 ≤ j ≤ n, of a Rd-valued random variable X, with Lebesgue-
density f . We build an estimator ϕ̂X,n of ϕX as follows

ϕ̂X,n(u) =
1

n

n∑
j=1

ei〈u,Xj〉, u ∈ Rd.

Using Fourier inversion, we define an estimator of f as follows

f̂n(x) =
1

(2π)d

∫
[−n,n]d

e−i〈u,x〉ϕ̃X,n(u)du, x ∈ Rd. (2.1)

where for κn := (1 + κ
√

log n), for some positive κ, we set

ϕ̃X,n(u) = ϕ̂X,n(u)1{|ϕ̂X,n(u)|≥κnn−1/2}, u ∈ Rd. (2.2)

The quantity in (2.1) has no reason to be positive therefore in practice we take f̂n =
(
Re(f̂n)

)
+

.
We underline that contrary to classical Fourier estimators the cutoff parameter is taken equal
to n and that adaptivity will be obtained by thresholding the estimated characteristic function.
Therefore the only parameter in (2.1) that requires a choice is the constant κ appearing in the
threshold. This quantity plays a role only in the order of remainder terms (see Theorem 2.1).
This is why we choose not to make explicit the dependency in κ of f̂n as the choice of κ is not
related to the smoothness of f . In Section 2.3, we propose an innovating adaptive procedure to
select κ using the Euler characteristic of the set {u, |ϕ̂X,n(u)| ≥ κnn−1/2}, which performs quite
well numerically.

Theorem 2.1. Let κ > 0. The following inequality holds

E[‖f̂n−f‖2] ≤ inf
m∈[0,n]d,A∈A

(
18‖f − fA,m‖2 +

(
10 + 2(1 + (κ+ 2)

√
log n)2

)
|det(A)|

πdn
m1 · · ·md

)
+

64

πd
nd−κ

2/4.

Note that a choice of κ > 2
√
d+ 1 ensures that the last term nd−κ

2/4 is negligible (see Remark
2.1 and 2.2 below for modifications of the estimator f̂n allowing a choice of κ independent of
d). Proof of Theorem 2.1 is given in Section 4.1, it is self contained and relies on fine cuttings
of the quadratic risk. The inequality involved is an Hoeffding inequality, which makes the proof
robust to other contexts such as α or τ mixing sequences as shown in Section 3. A discussion
on the resulting rates of convergence is given in the next Section. The generalization to indirect
measurements such as a deconvolution framework with known noise distribution could be easily
derived (see [20]) by replacing ϕX by ϕY /ϕε if one observes i.i.d. realizations of Y = X + ε
where X is independent of ε.

The spirit of estimator (2.1) is closely related to wavelet thresholded estimator where adapti-
vity is achieved by thresholding empirical wavelet coefficients that are too small (namely smaller
than a constant times

√
log n/n) to suppress noise artefacts (see e.g. Kerkyacharian and Picard

(2000) [26] Sections 5 and 6 (in particular Theorem 6.1) for the multivariate isotropic density
estimation (see also Donoho et al. (1995) [18]) or Neumann (2000) [31] (in particular Theorem
2.3) for anisotropic estimation in a Gaussian white noise model). As for estimator (2.1), thres-
holding enables to directly define an adaptive minimax estimator which requires no calibration of
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a parameter depending on the unknown smoothness of the function, at the cost of a logarithmic
loss. If wavelets method have the advantage of facilitating the control of Lp loss functions, the
proof of Theorem 2.1 relies on direct arguments allowing the generalization to mixing sequences
as shown in Section 3.

Remark 2.1. The remaining term 4nd−κ
2/4 in Theorem 2.1 can be improved in Cκ,dn

−κ2/4

by making the threshold in (2.2) depend on u. For a function h : Rd 7→ R+, let ϕ̌X,n(u) =
ϕ̂X,n(u)1{|ϕ̂X,n(u)| ≥ κ

√
log(h(u)n)/n}. It is then straightforward to replace the bound in Lemma

4.1 below by 4(nh(u))−κ
2/4. Depending on the choice of h the remaining term of Theorem 2.1

changes (see Inequality (4.8)). For h ≡ 1 we recover the remaining term 4nd−κ
2/4; choosing

h(u) = (1 + |u1|) . . . (1 + |ud|) enables to replace this term by Cκ,dn
−κ2/4 which is negligible for

κ > 2.

Remark 2.2. If one does not look for the directional adaptivity given by the infimum over the
class A, there is another way to get rid of the quantity nd appearing in the remaining term of
Theorem 2.1. It suffices to modify the estimator f̂n as follows : let

Dn = [−n, n]d ∩ {u ∈ Rd : |u1 · · ·ud| ≤ n} and f̌ (x) =
1

(2π)d

∫
Dn

e−i〈u,x〉ϕ̃X,n(u)du .

Following exactly the proof of Theorem 2.1 and letting fm = fId,m, one gets the oracle inequality:

E[‖f̌− f‖2] ≤ inf
m∈[0,n]d,m1···md≤n

(
18‖f − fm‖2 +

10 + 2(1 + (κ+ 2)
√

log n)2

πdn
m1 · · ·md

)
+ Cdn

1−κ2/4(log n)d−1,

where Cd is a constant depending only on d. Here, the remaining term in the oracle inequality
comes from the estimate∫

Dn

du =

∫
[−n,n]d

1|u1···ud|≤ndu1 . . . dud ∼
n→∞

2d(d− 1)d−1

(d− 1)!
log(n)d−1n. (2.3)

Proof of Equation (2.3) is given in Section 4.

2.2 Rates of convergence on general anisotropic Sobolev classes

To derive the resulting rate of convergence we require some regularity on the density f to control
the order of the bias term. Theorem 2.1 implies that our adaptive estimator f̂n is rate optimal
on Sobolev regularity classes, with a regularity direction given by any matrix A ∈ A, up to a
logarithmic loss. Indeed, consider a Sobolev class S(A, s, L) for s = (s1, . . . , sd), L > 0 and
A ∈ A, defined as follows

S(A, s, L) =

{
f ∈ L1(Rd),

d∑
k=1

∫
Rd
|Ff(Au)|2(1 + |uk|)2skdu ≤ L

}
. (2.4)

For f ∈ S(A, s, L), the bias term can be controlled by

‖f − fA,m‖2 ≤ L|det(A)|(m−2s11 + · · ·+m−2sdd ) .

Minimizing in (m1, . . . ,md) the bound of Theorem 2.1 we find for

1

s
=

d∑
k=1

1

sk
(2.5)
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that the optimal cutoff is such that m∗k �
(

n
logn

) 2s
2sk(2s+1)

leading to a rate n−
2s

2s+1 (log n)
2s

2s+1 . In

case A = Id, this rate is optimal, up to a power of log n (see Hasminskii and Ibragimov (1990)
[24]). Other regularity classes such as super smooth classes of densities can also be considered
to control the bias term and different minimax optimal rates of convergence emerge (see Comte
and Lacour (2013) [12]).

Note that Ff(Au) is the characteristic function of the random variable Y = tAX, if X
has Lebesgue density f . Introducing A allows to define a regularity class dependent free of the
specific frame in which the observations Xj are displayed, since in Theorem 2.1 we take the
infimum over the set A. Example 2.1 below shows that it is a relevant transformation that can
improve the rates, since A and s are connected, namely s = s(A). Taking the infimum over the
set A permits to attain the rate induced by the best orientation of the axes, that is such that
s = s(A) is maximal (see (2.5)).

The introduction of a linear transformation of the data is also evoked in Corollary 1 of Varet
et al. (2019) [37]: it is underlined that considering such transformations can improve the rates.
However, the matrix transformations considered therein are orthonormal and their procedure
numerically investigates all possible transformations matrix whereas thresholding appears to
intrinsically adapt to the optimal transformation.

Example 2.1. Let d = 2, b > 1 and 0 < a < b(1− b). Define X = (bX1, aX1 + bX2) where X1

and X2 are independent, X1 ∼ Γ(α + 1
2 , 1) and X2 ∼ Γ(β + 1

2 , 1), where 0 < β < α. Denote by
f the density of X. It is straightforward to check that

|Ff(u)|2 =
1

(1 + |bu1 + au2|2)α+
1
2

1

(1 + |bu2|2)β+
1
2

.

Denote the associated bias term, for m1 ≥ 1 and m2 ≥ 1, by Bf (m1,m2) =
∫∫

[−m,m]c |Ff(u)|2du.
Consider the matrix

Aa,b =
1

b2

(
b −a
0 b

)
∈ A for which |Ff(Aa,bu)|2 =

1

(1 + |u1|2)α+
1
2

1

(1 + |u2|2)β+
1
2

and the associated bias term defined by BfAa,b (m1,m2) =
∫∫

[−m,m]c |Ff(Aa,bu)|2du. We prove

in Section 4 the following result for 0 < β < α and m1 ≥ 1 ∨ C1
α,β,b, m2 ≥ 1 ∨ C2

α,β,b

Bf (m1,m2) ≥
cα

2bβ(1 + b)2β

(
1

m2β
2

+
1

2m2β
1

)
≥
cβ
2α

1

m2α
1

+
cα
2β

1

m2β
2

≥ BfAa,b (m1,m2), (2.6)

for some positive constants Cjα,β,b and where cγ =
∫
R (1 + z2)−(γ+

1
2
)dz, γ = α, β. Hence, if

0 < β < α, the rate obtained by minimizing in (m1,m2) the quantity

18‖f − fA,m‖2 +

(
10 + 2(1 + (κ+ 2)

√
log n)2

)
|det(A)|

πdn
m1m2

will be strictly better for A = Aa,b than for A = Id : for A = Aa,b, we obtain a rate of

order n−
2s

2s+1 (log n)
2s

2s+1 with s = αβ/(α + β), while for A = Id, we obtain a rate of order

n
− β
β+1 (log n)

β
β+1 .

2.3 Empirical procedure to select κ

Most adaptive methods require the calibration of a constant, here this constant is κ. This
is usually done by preliminary simulation experiments. Calibration strategies (dimension jump
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and slope heuristics) exist for penalized methods, see Baudry et al. (2012) [4] and Lerasle (2012)
[30] for theoretical justifications.

Here, we propose a strategy to select κ adapted to our context and we implement it in the
numerical Sections 2.4 and 3.3. This procedure is the result of two observations. Firstly, the set
{|ϕ̂X,n| ≥ κnn−1/2} (recall that κn = (1+κ

√
log n)) appearing in (2.1) is the excursion set of the

process Z = |ϕ̂X,n| above the level κnn
−1/2. For these sets there exists an important literature

on their geometry which provide an information that we exploit here (see Adler and Taylor
(2009) [1]). One of these geometrical measure is the Euler characteristic; in dimension d = 1
it is a count of the number of connected components and if d = 2 it is a count of the number
of connected components minus the number of holes. Secondly, the constant κ determines how
much information from ϕ̂X,n is dropped. If κ is selected too large relevant information on f is
lost and if κ is selected too small artefact noise may jeopardize its estimation.

We expect that the function κ 7→ χ({|ϕ̂X,n| ≥ κnn
−1/2}), where χ denotes the Euler char-

acteristic, will stabilize once all uninformative areas are thresholded. Then, the first κ where χ
is constant will perform a good compromise between keeping enough information and removing
most of the noise. This motivates the following adaptive procedure to select κ. Set δ > 0 and
define χx := χ({|ϕ̂X,n| ≥ (1 + xδ

√
log n)n−1/2})

κ̂n := inf {κ ∈ {kδ, k ∈ N}, χκ = χκ−1} . (2.7)

Note that this quantity does not depend on any additional calibration constant, except for the
mesh-grid δ that should be taken small.

In the case d = 2 we can visualize the set {|ϕ̂X,n| ≥ κnn
−1/2} as a black and white image

(see Figure 1). On this example X is a Gamma-Beta random variable (see [GB] example in the
next Section), we observe that if κ is two small there are many uninformative areas that are
taken into account in the estimator (left image) and that the Euler characteristic indeed gets
constant for large enough κ (right image).

Figure 1: Representation of the set {|ϕ̂X,n| ≥ κnn
−1/2} on a grid of R2 for the GB example for Σ2 defined

in Section 2.4, n = 104, κ = 0.1 (left) and κ = 1 (center). Yellow pixels corresponds to areas where {|ϕ̂X,n| ≥
κnn

−1/2}. The last image (right) represents κ 7→ χ({|ϕ̂X,n| ≥ κnn−1/2}).

2.4 Numerical study in the independent case

Examples considered We illustrate the performances of the estimator (2.1) with the adap-
tive choice of κ described in (2.7) in dimension d = 2. We consider three examples:

[N] Gaussian: X ∼ N
((

0
0

)
,Σ2

)
, with Σ2 =

(
1 0.5

0.5 3

)
,

[Mix-NN] Mixture of Gaussian: X ∼ 0.4N
((
−2
−2

)
,

(
1 0.2

0.2 3

))
+0.6N

((
2
2

)
,

(
1 0.3

0.3 1

))
,
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[GB] Gamma-Beta : X ∼ WY , where W =

(
1 0.1

0.2 1

)
and Y =

(
Y1
Y2

)
where Y1 ∼ Γ(5, 1)

is independent of Y2 ∼ Beta(2, 2).
To evaluate the performances of the procedure we compute normalized L2-risks to allow the
numerical comparaison of the different examples for which ‖f‖2 may vary. Namely, we evaluate
empirically

E[‖f̂n − f‖2]
‖f‖2

and the associated deviations, from N = 100 independent datasets with different values of
sample size n = 103, 104 and 105.

Results and comments They are displayed in Table 1 and confirm the theoretical results. As
expected the estimated risks decrease as n increases. Since we compute the normalized L2-risks
we can compare them for the different examples. As anticipated the GB case is the most difficult
to estimate and has the largest risk, indeed the Beta distribution is compactly supported which
makes it difficult for a Fourier estimator to recover. Interestingly, the choice of κ by (2.7) leads
in each example to a constant close to 1, except for the Gaussian case where it is a little smaller.
Its dependency in n can also be observed: it has a tendency to decrease with n.

Figure 2: Representation for n = 104 of the estimated Mix-NN (left), the true density (center) and the difference
of both estimated and true density (right).

Case N Mix-NN GB

n 103 104 105 103 104 105 103 104 105

100×Risk 1.04 0.12 1.32 10−2 3.02 0.39 4.70 10−2 5.96 1.65 0.27

100×
√
V(Risk) (0.56) (0.05) (0.58× 10−2) (0.59) (0.07) (1.05× 10−2) (1.47) (0.24) (0.08)

κ̂n
0.88 0.81 0.79 1.06 1.01 0.94 1.09 1.01 1.00
(0.19) (0.15) (0.13) (0.09) (0.09) (0.09) (0.08) (0.09) (0.15)

Table 1: Evaluated empirical risks multiplied by 100 and adaptive κ̂n, the associated squared variances are
given in parenthesis.

3 Directional adaptive procedure: mixing sequences

In this section, we consider X1, ..., Xn a stationary sequence of Rd-valued dependent random
variables with density f with respect to the Lebesgue measure. As in the independent case, we
estimate f on Rd with the estimator (2.1) and evaluate its performances using the quadratic loss
on Rd. We consider the cases of α-mixing and τ -mixing sequences, for which we give analogues
of Theorem 2.1.
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3.1 α-mixing sequences

To measure the dependence between the variables Xi, we consider the usual α-mixing coefficients
introduced by Rosenblatt (1956) [34]. Let us recall the definition of these coefficients.

Definition 3.1. Let (Ω,A,P) be a probability space, and (Xi)i∈Z be a sequence of Rd-valued
random variables. Let Fk = σ(Xi : i ≤ k) and Gk = σ(Xi : i ≥ k). The strong mixing
coefficients (α(n))n≥0 of (Xi)i∈Z (Rosenblatt [34]), are defined by

α(0) =
1

2
and α(n) = sup

k∈Z
α(Fk,Gk+n) for any n > 0,

where, for two σ-algebra F ,G,

α(F ,G) = 2 sup
A∈F ,B∈G

|P(A ∩B)− P(A)P(B)| .

Note that we use here the convention of the book by Rio [33], so that the definition of α(F ,G)
differs from that of Rosenblatt [34] from a factor 2.

For α-mixing sequences, we prove the following oracle inequality :

Theorem 3.1. Let κ > 0. Assume that
∑∞

k=1 α(k) <∞, and let Cα = 1 + 4
∑∞

k=1 α(k). There
exist constants Ki, i ∈ {1, ..., 7}, depending on Cα such that

E[‖f̂n − f‖2]

≤ inf
m∈[0,n]d,A∈A

(
K1‖f − fA,m‖2 +

K2 +
(
2(1 + (κ+

√
K3)
√

log n)2
)
|det(A)|

πdn
m1 · · ·md

)

+
27

πd
n
d− κ2

K3 + fα(n, d, κ) ,

where the residual term fα(n, d, κ) is given by

fα(n, d, κ) =
K4n

(2d+1)/2

√
log n

α

([√
nK5√
log n

])
+
K6n

(2d+1)/2

κ
√

log n
α

([ √
nK7

κ
√

log n

])
.

Explicit upper bounds for the constants Ki, i ∈ {1, ..., 7}, can be computed from the proof
of Theorem 3.1.

Remark 3.1. The term n(2d+1)/2 in the expression of fα(n, d, κ) implies that the polynomial
rate of mixing must depend on d if this residual term is to be of order O(1/n). More precisely,
we need a rate of order α(n) = O(n−a), for a > 3 + 2d. As in Remark 2.2, if one does not
look for the directional adaptivity given by the infimum over the class A, then the term n(2d+1)/2

can be considerably weakened by considering the estimator f̌ of Remark 2.2. Doing so, the term
n(2d+1)/2 in the expression of fα(n, d, κ) is replaced by Cdn(log n)d−1, and the constraint on the
rate of mixing becomes a > 5 (not depending on d).

According to Remark 3.1, if α(n) = O(n−a) for a > 3 + 2d and for κ large enough (κ >√
K3(d+ 1)), the upper bound of Theorem 3.1 is the same, except for the constants, as in

the independent case (Theorem 2.1). Then, the resulting rates of convergence on the Sobolev
class S(A, s, L) defined by (2.4) are minimax optimal up to a logarithmic loss. Note that the
latter choice for κ depends on the unknown constant Cα that involves the mixing coefficients.
In practice, the choice of κ selected by the adaptive procedure described in Section 2.3 leads to
very good numerical results and does not rely on any knowledge on Cα.
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Note that the residual term fα(n, d, κ) tends to zero as soon as α(n) = O(n−a) for a > 2d+1,
and is of order

fα(n, d, κ) = O

(
(log n)(a−1)/2

n(a−(2d+1))/2

)
.

Hence, our adaptive estimator will still be consistent as soon as a > 2d + 1, with possibly a
suboptimal rate of convergence. In the simulations, for d = 1, we shall look at the boundary
case a = 3.

To conclude this section, let us take a look at some articles that consider the problem of
adaptive density estimation in a dependent context. We are going to treat separately the articles
which deal with β-mixing sequences, from those which deal with α-mixing sequences, because
the case of β-mixing is both simpler from a technical point of view, and more restrictive in terms
of examples. Note that in some articles (such as [28, 29], [6]) other notions of dependencies are
also considered.

As mentioned in the Introduction, the only article that we know of that deals with adaptive
estimation in a mixing context and in Rd, is that of Bertin et al. [7]. Note that the context and
method are quite different from ours (kernel estimation on a bounded domain), and that these
authors do not consider the anisotropic case and assume that the β-mixing coefficients decrease
at an exponential rate.

All the articles we are going to discuss now only consider the case d = 1. In the β-mixing
framework, Tribouley and Viennet (1998) [36] proposed a wavelet method and Comte and Mer-
levède (2002) [13] a general model selection procedure (valid for a large class of models) to
estimate the density on a compact support. Both adaptive estimators reach the minimax rates
of convergence over Besov classes under the condition β(k) = O(k−a) for a > 4. Comte et al
(2008) [11] proposed a model selection procedure for projection estimators on the Shannon basis
(i.e. the orthonormal basis generated by the sinus-cardinal function), to estimate the density
on the whole real line. The results are valid under the condition β(k) = O(k−a) for a > 4. In
the same context, Lerasle [28, 29] gave a general model selection result (valid for a large class of
models) under the condition β(k) = O(k−a) for a > 3. Note that in [29], the delicate question of
the “data-driven” penalty is discussed. Asin and Johannes (2018) [3] proposed a model selection
procedure to estimate the density, when the regularity of f is given by the decrease of the coeffi-
cients of the decomposition of f on a fixed orthonormal basis. Here again, the results are valid if
β(k) = O(k−a) for some a > 4 (see the comments on condition (4.6), after their Corollary 4.7).
In the α-mixing framework, Comte and Merlevède (2002) [13] also study the case where α(k)
decreases geometrically (see their Theorem 3.2). Their adaptive estimator reaches the minimax
rates of convergence over Besov classes, up to a power of a logarithmic term. In the case where
α(k) = O(k−a) (see their Proposition 3.2), their results hold provided that a > 6, and under an
additional regularity assumption on the joint densities gXk,X` , k 6= `.

All previously cited articles give results for the integrated quadratic risk (integrated Lp-risk
are also considered in [36]), like the one we are considering here. Let us also mention the article by
Bertin and Klutchnikoff (2017) [6] which proposes an automatic bandwidth selection for a kernel
estimator, and for the pointwise risk. Their result applies to a large class of dependent sequences,
in particular to α-mixing sequences for which the mixing coefficient decreases geometrically.

We can see that, whether for β or α mixing sequences, the constraint a > 3 on the mixing
speed is always required for the adaptive estimation. This corresponds to the minimum con-
straint we found for d = 1. Yet there is no heuristic explanation for this, since when the regularity
is known, non adaptive estimators attain the minimax i.i.d. rate as soon as

∑
α(k) <∞.

The article closest to ours in the case d = 1 is that of Comte and Merlevède (2002) [13],
although the context and the method of estimation are different. The mixing speed we get to
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approach the minimax rate is a bit better than theirs (a > 5 instead of a > 6), but we still have
a loss in a power of log n. Moreover, we do not need any condition on the joint densities gXk,X` .

3.2 Geometrically τ-mixing sequences

To measure the dependence between the variables Xi, we consider the τ -mixing coefficients
introduced by Dedecker an Prieur [17]. Let us recall the definition of these coefficients.

Definition 3.2. Let (Ω,A,P) be a probability space. Let | · |2 be the euclidean norm on Rd. On
(Rd)k, consider the `1 norm |z|k,1 = |z1|2+ · · ·+ |zk|2. Let Z be an (Rd)k-valued random variable
such that E(|Z|k,1) <∞. Let Λ1((Rd)k) be the space of 1-Lipschitz function from ((Rd)k, | · |k,1)
to R. The τ -mixing coefficient between a σ-algebra M and the random variable Z is defined by

τ(M, Z) =

∥∥∥∥∥sup
{∣∣∣ ∫

(Rd)k
f(x)PZ|M(dx)−

∫
(Rd)k

f(x)PZ(dx)
∣∣∣, f ∈ Λ1((Rd)k)

}∥∥∥∥∥
1

.

Let now (Xi)i∈Z be a sequence of Rd-valued random variables, and let Fk = σ(Xi : i ≤ k).
Define then

τ(n) = sup
`≥1

1

`
sup

k+n≤i1<···<i`
τ(σ(Xi : i ≤ k), (Xi1 , . . . , Xi`)) .

As stated in [17], the τ -mixing coefficient is a coupling coefficient for the Kantorovich dis-
tance. This property has two consequences : one can use the coupling properties to demonstrate
very precise deviation inequalities for partial sums, and one can give a bound on these coeffi-
cients for many classes of non-mixing processes in the sense of Rosenblatt (functions of i.i.d.
sequences, non-irreducible Markov chains, dynamical systems... see again [17]). As a recent
exemple, let us mention that this coefficient can be computed for dynamical systems that can
be modelled by Young Towers; for instance, if the return time to the base of the tower has an
exponential moment, then the τ -mixing coefficient decreases at an exponential rate (see [14]).

For τ -mixing sequences whose coefficients decrease at an exponential rate, we consider the
estimator f̂n defined in (2.1) with a slight modification in the power of the logarithm in the
threshold, namely we take κn = 1 + κ log n.

Theorem 3.2. Assume that τ(n) ≤ Kan for some K ≥ 1 and a ∈ (0, 1). There exist constants
K1,K2,K3 depending on (K, a, d) and K4, b ∈ (a, 1) depending on (K, a, d, κ) such that (for
n ≥ 2)

E[‖f̂n − f‖2]

≤ inf
m∈[0,n]d,A∈A

(
K1 log n‖f − fA,m‖2 +

(
K2 log n+ 2(1 + (κ+

√
K3) log n)2

)
|det(A)|

πdn
m1 · · ·md

)

+
27

πd
n
d− κ2

K3 +K4b
n .

Explicit upper bounds for the constants K1,K2,K3,K4 and b can be computed from the
proof of Theorem 3.2. We infer from Theorem 3.2 that the resulting rates of convergence of f̂n
on the Sobolev class S(A, s, L) defined by (2.4) are minimax optimal up to a (log n)2 term.

Remark 3.2. In case of subexponential decay, that is τ(n) ≤ Kanγ for some K ≥ 1, a ∈ (0, 1)
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and γ ∈ (0, 1), one can take κn = 1 + κ(log n)(1+γ)/2γ. This lead to the upper bound

E[‖f̂n − f‖2] ≤ inf
m∈[0,n]d,A∈A

(
K1(log n)

1
γ ‖f − fA,m‖2

+

(
K2(log n)

1
γ + 2(1 + (κ+

√
K3)(log n)(1+γ)/2γ)2

)
|det(A)|

πdn
m1 · · ·md

)

+
27

πd
n
d− κ2

K3 +K4b
nγ

for some b ∈ (a, 1). We refer to [14] for examples of sequences for which τ(n) decreases at a
subexponential rate.

To conclude this section, note that, in the case d = 1, Lerasle [28] gave a model selection
result for a wavelet type estimator under the condition τ(k) = O(k−a) for a > 6 (see also his
Remark 4.4 in case a > 4).

3.3 Numerical study in the dependent case

α-mixing sequences We illustrate our adaptive procedure in dimension 1. We expect that
our empirical procedure to select κ will adapt to the unknown value of Cα.

To simulate α-mixing sequences, we use the Markov chain introduced by Doukhan et al.
(1994) [19]. The interest of this chain is first that it is easy to simulate (as many Markov
chains for which one can exhibit explicitly the iterated random system), and secondly we can
compute exactly its rate of mixing from the parameters of the transition kernel. Since the chain
is irreducible, positively recurrent ans aperiodic, it is also β-mixing in the sense of Volkonskii and
Rozanov (1959) [38]. Recall that, for such Markov chains, β-mixing is equivalent to α-mixing.

Let us now describe this Markov chain in more details. Let a > 1 (as before a will calibrate
the rate of mixing), and let µ and ν be the two probability measures on [0, 1] with respective
densities

fµ(x) = axa−110≤x≤1 and fν(x) = (a+ 1)xa10≤x≤1 .

Let Fν be the cumulative distribution function of ν, and let Y1 be a random variable with law
µ. Let (εj)j≥1 = ((Uj , Vj))j≥2 be a sequence of i.i.d. random variables with uniform law over
[0, 1]2 and independent of Y1. For j ≥ 1 define then

Yj+1 = Yj1Uj+1≥Yj + F−1ν (Vj+1)1Uj+1<Yj .

It is proved in [19] that this chain is strictly stationary, with invariant distribution µ and that
the β-mixing coefficients of this chain are exactly of order n−a. Note also that Y a

j is uniformly
distributed over [0, 1]. To derive from this chain a sequence with invertible cumulative distri-
bution function F , we take Xj = F−1(Y a

j ). The sequence (Xj)j≥1 is also a stationary Markov
chain (as an invertible function of a stationary Markov chain), and its β-mixing coefficients are
such that: there exist two positive constants B > A > 0 such that, for any n ≥ 1,

A

na
≤ β(n) ≤ B

na

(and the same is true for the coefficients α(n) for different constants A,B).

As in Section 2.4 we evaluate the normalized L2-risks from 500 independent datasets, for the
sample sizes n = 500, 2000 and 5000 and different mixing coefficients a ∈ {3, 6, 10}. Note that
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n
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n
=
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00

n
=
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0
0

Figure 3: Estimation of f ∼ Γ(3, 2) (red) and the adaptive estimator (green) from 50 Monte Carlo iterations
for different values of a and n.

n 500 2000 5000

a 3 6 10 3 6 10 3 6 10

100×Risk 1.66 1.37 1.20 0.57 0.49 0.42 0.28 0.22 0.19

100×
√
V(Risk) (0.88) (0.65) (0.59) (0.28) (0.23) (0.20) (0.13) (0.10) (0.08)

κ̂n
0.74 0.62 0.55 0.72 0.61 0.57 0.73 0.61 0.46
(0.26) (0.22) (0.20) (0.24) (0.22) (0.23) (0.27) (0.23) (0.19)

Table 2: Computations via 500 Monte Carlo iterations of the L2 risks for the Gamma distribution Γ(3, 2).

a > 3 is the minimal value for which we proved that our estimator is consistent (without being
necessarily optimal). It is then interesting to see if, numerically, our procedure still works at the
boundary a = 3. If a > 5, Theorem 3.1 shows that our estimator reaches the minimax rate of
the i.i.d. case, up to a logarithmic term.

We consider two distributions Gamma Γ(3, 2) and the mixture 0.7N (3, 2) + 0.3N (8, 1). On
Figures 3 and 4, we observe the behavior of 50 adaptive estimators around the true density
distribution. We observe that even for values of a smaller than 5 the estimator proposed is
relevant and as expected we observe an improvement of the results when a and/or n increase.
The risks empirically estimated in Tables 2 and 3 confirm these observations. It is interesting
to notice that for fixed values of a the selected values for κ are similar, even when n increases,
and that numerically we can proceed without knowing the constant Cα.

τ-mixing sequence We consider a stationary Markov chain (Xj) simulated according to the
following auto-regressive mechanism:{

X0 ∼ U [0, 1]

Xj = 1
2 (Xj−1 + εj) , j ≥ 1,
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a = 3 a = 6 a = 10

n
=

50
0

n
=

20
0
0

n
=

50
00

Figure 4: Estimation of f ∼ 0.7N (3, 2) + 0.3N (8, 1) (red) and the adaptive estimator (green) from 50 Monte
Carlo iterations for different values of a and n.

n 500 2000 5000

a 3 6 10 3 6 10 3 6 10

100×Risk 3.32 2.62 2.44 0.91 0.72 0.65 0.51 0.38 0.34

100×
√
V(Risk) (1.68) (0.69) (0.91) (0.43) (0.34) (0.24) (0.23) (0.15) (0.13)

κ̂n
0.76 0.69 0.68 0.71 0.62 0.58 0.76 0.67 0.64
(0.16) (0.18) (0.20) (0.16) (0.17) (0.16) (0.15) (0.15) (0.16)

Table 3: Computations by 500 Monte Carlo iterations of the L2 risks for the distribution 0.7N (3, 2)+0.3N (8, 1).
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where (εj)j≥1 are i.i.d., with common distribution B
(
1
2

)
, and independent of X0. The Xi’s are

uniformly distributed over [0, 1]. To generate another stationary Markov chain with invariant
cumulative distribution function F , we apply F−1 to this sequence. It is well known that
the Markov chain (Xj)j≥0 is not α-mixing in the sense of Rosenblatt [34] (see for instance [2]).
However, one can prove that other dependence coefficients, such as the τ -dependence coefficients
defined in Definition 3.2, converge to 0 at an exponential rate (an easy argument shows that it
is still the case for the sequence F−1(Xi) for quantile functions F−1 that are Lipschitz on any
interval Iε = [ε, 1− ε], ε > 0, provided the Lipschitz constant on Iε does not grows faster than
Cε−γ for some C > 0, γ > 0).

n = 500 n = 2000 n = 5000

Figure 5: Estimation of f ∼ Γ(3, 2) (red) and the adaptive estimator (green) from 50 Monte Carlo iterations
for different values of n.

n 500 2000 5000

Risk
8.62 ×10−3 2.57 ×10−3 1.25 ×10−3

(5.40× 10−3) (1.39× 10−3) (0.67×10−3)

κ̂n
0.12 0.12 0.13

(0.06) (0.05) (0.05)

Table 4: Computations via 500 Monte Carlo iterations of the L2 risks for a Markov chain generated from the
non mixing auto-regressive model with f ∼ Γ(3, 2).

4 Proofs

4.1 Proof of Theorem 2.1

4.1.1 Preliminaries

We start with two technical lemmas, an Hoeffding inequality for complex valued random variable
and a lemma that enables to control variance terms in the proof of Theorem 2.1.

Lemma 4.1. Let b > 0. For all u ∈ Rd, d ≥ 1, the following inequality holds

P
(
|ϕ̂X,n(u)− ϕX(u)| ≥ b

√
log n√
n

)
≤ 4n−

b2

4 .

Proof of Lemma 4.1. We apply the Hoeffding inequality to the centered variable

ϕ̂X,n(u)− ϕX(u) =
1

n

n∑
j=1

(cos(〈u,Xj〉)− Re(ϕX(u))) + i
1

n

n∑
j=1

(sin(〈u,Xj〉)− Im(ϕX(u))) .

By standard arguments, we first note that, for two real-valued random variables A,B and x > 0,

P
(√

A2 +B2 ≥ x
)
≤ P(|A| ≥ x/

√
2) + P(|B| ≥ x/

√
2) . (4.1)
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Using (4.1), we get

P
(
|ϕ̂X,n(u)− ϕX(u)| ≥ b

√
log n√
n

)
≤P

∣∣∣∣∣∣ 1n
n∑
j=1

(cos(〈u,Xj〉)− Re(ϕX(u)))

∣∣∣∣∣∣ ≥ b
√

log n√
2n


+ P

∣∣∣∣∣∣ 1n
n∑
j=1

(sin(〈u,Xj〉)− Im(ϕX(u)))

∣∣∣∣∣∣ ≥ b
√

log n√
2n


≤4 exp

(
−b

2 log n

4

)
.

Lemma 4.2. Let m = (m1, . . . ,md) ∈ (0, n]d. For any κ > 0 and any A ∈ A, the following
inequality holds

1

(2π)d

∫
A([−m,m])

E
[
|ϕ̃X,n(u)− ϕX(u)|2

]
du ≤

(
5 + (1 + (κ+ 2)

√
log n)2

)
|det(A)|

πdn
m1 · · ·md.

(4.2)

Proof of Lemma 4.2. First note that

E
[
|ϕ̃X,n(u)− ϕX(u)|2

]
= E

[
|ϕ̂X,n(u)− ϕX(u)|21|ϕ̂X,n(u)|≥ κn√

n

]
+ |ϕX(u)|2P

(
|ϕ̂X,n(u)| < κn√

n

)
.

(4.3)
The first term in the right hand side is bounded by 1

n . Recall that κn = 1 + κ
√

log n, we

decompose the second term on the set {u, |ϕX(u)| < 1+(κ+2)
√
logn√

n
} and its complementary

where we derive from the triangle inequality that

1|ϕ̂X,n(u)|< 1+κ
√
logn√
n

1|ϕX(u)|> 1+(κ+2)
√
logn√

n

≤ 1|ϕ̂X,n(u)−ϕX(u)|≥ 2
√
logn√
n

.

This leads to

|ϕX(u)|2P
(
|ϕ̂X,n(u)| < κn√

n

)
≤ (1 + (κ+ 2)

√
log n)2

n
+ P

(
|ϕ̂X,n(u)− ϕX(u)| ≥ 2

√
log n√
n

)
≤ (1 + (κ+ 2)

√
log n)2

n
+

4

n
≤ 4 + (1 + (κ+ 2)

√
log n)2

n
, (4.4)

where we used Lemma 4.1 with b = 2. To conclude the proof, it suffices to note that∫
1A([−m,m])(u)du = |det(A)|m1 · · ·md . (4.5)

4.2 Proof of Theorem 2.1

Let m = (m1, . . . ,md) ∈ (0, n]d. We first note that

E[‖f̂n−f‖2] ≤ 2‖fA,m−f‖2+2E[‖f̂n−fA,m‖2] =
2

(2π)d

∫
A([−m,m])c

|ϕX(u)|2du+2E[‖f̂n−fA,m‖2].
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The first term is a bias term and we treat the second variance term using the Parseval equality
to get that

2E[‖f̂n − fA,m‖2] =
2

(2π)d

∫
Rd

E
[
|ϕ̃X(u)1[−n,n]d(u)− ϕX(u)1A([−m,m])(u)|2

]
du

=
2

(2π)d

∫
A([−m,m])

E
[
|ϕ̃X,n(u)− ϕX(u)|2

]
du+

2

(2π)d

∫
[−n,n]d\A([−m,m])

E
[
|ϕ̃X,n(u)|2

]
du. (4.6)

The first term is a variance term which is controlled with (4.2) for κ > 0. In the sequel we focus
on the second term. To that end notice that

|ϕ̃X,n|2 ≤ 2|ϕX |2 + 2|ϕ̃X,n − ϕX |2.

From which we get

2

(2π)d

∫
[−n,n]d\A([−m,m])

E
[
|ϕ̃X,n(u)|2

]
du ≤ 4

(2π)d

∫
[−n,n]d\A([−m,m])

|ϕX(u)|2du

+
4

(2π)d

∫
[−n,n]d\A([−m,m])

E
[
|ϕ̃X,n(u)− ϕX(u)|2

]
du

≤ 4

(2π)d

∫
A([−m,m])c

|ϕX(u)|2du

+
4

(2π)d

∫
[−n,n]d\A([−m,m])

E
[
|ϕ̃X,n(u)− ϕX(u)|2

]
du.

The first term is a bias term, and we treat the last one by considering the set {u, |ϕX(u)| > n−1/2}
and its complementary. On the set {u, |ϕX(u)| > n−1/2}, we derive that

E[|ϕ̃X,n(u)− ϕX(u)|2] ≤ |ϕX(u)|2 + E[|ϕ̂X,n(u)− ϕX(u)|2] ≤ |ϕX(u)|2 +
1

n
≤ 2|ϕX(u)|2. (4.7)

Consequently, we recover a bias term since

4

(2π)d

∫
[−n,n]d\A([−m,m])

E
[
|ϕ̃X,n(u)− ϕX(u)|2

]
1{|ϕX(u)|>n−1/2}du ≤

8

(2π)d

∫
A([−m,m])c

|ϕX(u)|2du.

Next on the complementary, using that |ϕ̃X,n(u) − ϕX(u)|2 ≤ 4 and the definition of ϕ̃X,n, we
derive that

4

(2π)d
E
[ ∫
[−n,n]d\A([−m,m])

|ϕ̃X,n(u)− ϕX(u)|21{|ϕX(u)|≤n−1/2}du
]

≤ 4

(2π)d

∫
[−n,n]d\A([−m,m])

|ϕX(u)|2du+
16

(2π)d

∫
[−n,n]d\A([−m,m])

P(|ϕ̂X,n(u)| ≥ κnn−1/2)1{|ϕX(u)|≤n−1/2}du

≤ 4

(2π)d

∫
A([−m,m])c

|ϕX(u)|2du+
16

(2π)d

∫
[−n,n]d

P(|ϕ̂X,n(u)− ϕX(u)| > κ(log n/n)1/2)du

≤ 4

(2π)d

∫
A([−m,m])c

|ϕX(u)|2du+
64

πd
nd−κ

2/4. (4.8)

The last inequality is a direct consequence of Lemma 4.1 with b = κ. Gathering all terms it
follows that for all m ∈ (0, n]d,

E[‖f̂n − f‖2] ≤ 18‖f − fA,m‖2 +

(
10 + 2(1 + (κ+ 2)

√
log n)2

)
|det(A)|

πdn
m1 · · ·md +

64

πd
nd−κ

2/4.

Taking the infimum over m completes the proof.
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4.3 Proof of Equation (2.3)

Firstly, note that an inductive argument allows to show that the density of Vd = U1 . . . Ud, d ≥ 1,
where (Uj)1≤j≤d are i.i.d. U([0, 1]) random variables, is given by

gd(z) =
(−1)d(log z)d−1

(d− 1)!
1[0,1](z).

Secondly, we compute the quantity in (2.3) using the latter result and a change of variables∫
Dn

du =

∫
[−n,n]d

1|u1...ud|≤ndu1 . . . dud = 2d
∫
[0,n]d

1|u1...ud|≤ndu1 . . . dud

= 2dnd
∫
[0,1]d

1|u1...ud|≤n1−ddu1 . . . dud = (2n)dP(Vd ≤ n1−d)

= (2n)d
∫ n1−d

0

(−1)d(log z)d−1

(d− 1)!
1[0,1](z)dz

=
(2n)d

(d− 1)!

∫ ∞
log(nd−1)

zd−1e−zdz =
(2n)d

(d− 1)!
Γ(d, log(nd−1))

where we made the change of variable z ← − log(z) and Γ(s, x) is the incomplete Gamma
function. Using the asymptotic expansion Γ(s, x) ∼

x→∞
xs−1e−x we get

∫
Dn

du ∼
n→∞

(2n)d

(d− 1)!
(log(nd−1))d−1e− log(nd−1) =

2d(d− 1)d−1

(d− 1)!
log(n)d−1n.

4.4 Proof of Equation (2.6) in Example 2.1

Let d = 2, b > 1 and 0 < a < b(1 − b), define X = (bX1, aX1 + bX2) where X1 and X2 are
independent, X1 ∼ Γ(α+ 1

2 , 1) and X2 ∼ Γ(β+ 1
2 , 1), where 0 < β < α. Denote by f the density

of X; it is straightforward to check that

|Ff(u)|2 =
1

(1 + |bu1 + au2|2)α+
1
2

1

(1 + |bu2|2)β+
1
2

.

We can give a lower bound of the bias term, let m1 ≥ 1 and m2 ≥ 1,

Bf (m1,m2) ≥
∫∫
|Ff(u)|21u2>m2du1du2 +

∫∫
|Ff(u)|21u2<−m11u1>m1du1du2

≥ cα
∫ ∞
m2

1

(1 + b2u22)
β+ 1

2

du2 +

∫∫
|Ff(u)|21u2<−m11u1>m1du1du2

≥ C1

m2β
2

+

∫∫
|Ff(u)|21u2<−m11u1>m1du1du2
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where we used that (1 + b2u22) ≤ (1 + bu2)
2 and where we defined cα =

∫
R(1 + z2)−(α+

1
2
)dz and

C1 = cα
/

(2βb(1 + b)2β) if m2 ≥ 1. Now for the second term,∫∫
|Ff(u)|21u2<−m11u1>m1du1du2

=

∫ −m1

−∞

1

(1 + |bu2|2)β+
1
2

(∫
1

(1 + |bu1 + au2|2)α+
1
2

1u1>m1du1

)
du2

=

∫ −m1

−∞

1

(1 + |bu2|2)β+
1
2

(∫
1

(1 + z2)α+
1
2

1z>am1+bydz

)
du2

≥
∫ −m1

−∞

1

(1 + |bu2|2)β+
1
2

(∫
1

(1 + z2)α+
1
2

1z>0dz

)
du2

=
cα
2

∫ −m1

−∞

1

(1 + |bu2|2)β+
1
2

du2 ≥
C1

2m2β
1

where we used that am1 + by < 0 for all y < −m1 as a − b < −b2 < 0 and m1 ≥ 1. Gathering
all terms we derive that

Bf (m1,m2) ≥
cα

2bβ(1 + b)2β

(
1

m2β
2

+
1

2m2β
1

)
. (4.9)

Now consider the matrix Aa,b which is such that

|Ff(Aa,bu)|2 =
1

(1 + |u1|2)α+
1
2

1

(1 + |u2|2)β+
1
2

.

The associated bias term can be bounded as follows

BfAa,b (m1,m2) ≤
∫∫
|Ff(Aa,bu)|21|u1|>m1

du1du2 +

∫∫
|Ff(Aa,bu)|21|u2|>m2

du1du2

= cβ

∫ ∞
m1

1

(1 + u21)
α+ 1

2

du1 + cα

∫ ∞
m2

1

(1 + u22)
β+ 1

2

du2

≤ cβ
∫ ∞
m1

1

u2α+1
1

du1 + cα

∫ ∞
m2

1

u2β+1
2

du2 =
cβ
2α

1

m2α
1

+
cα
2β

1

m2β
2

, (4.10)

where cβ =
∫
R (1 + z2)−(β+

1
2
)dz. Gathering (4.9) and (4.10) we get for α > β the announced

result (2.6) if m1 ≥ 1 ∨ C1
α,β,b, m2 ≥ 1 ∨ C2

α,β,b which are positive constants Cjα,β,b, j = 1, 2
ensuring that the right hand side of (4.9) is larger than (4.10).

4.5 Proof of Theorem 3.1

4.5.1 Preliminaries

First, we prove several lemmas that are useful for the proof of Theorem 3.1.

Lemma 4.3. Let Cα,n = 1 + 4
∑n−1

k=1 α(k). The following inequality holds

E
[
|ϕ̂X,n(u)− ϕX(u)|2

]
≤ (2Cα,n − 1)

n
.
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Proof of Lemma 4.3. Note first that

Var(ei〈u,X1〉) = E(ei〈u,X1〉e−i〈u,X1〉)− E(ei〈u,X1〉)E(e−i〈u,X1〉) = 1− |ϕX(u)|2.

Using the stationarity of the sequence (Xi), we get for the variance

E
[
|ϕ̂X,n(u)− ϕX(u)|2

]
≤ 1− |ϕX(u)|2

n
+

2

n

n∑
k=2

|Cov (ei〈u,X1〉, ei〈u,Xk〉)|. (4.11)

We now apply Ibragimov’s inequality [25] : Let X,Y be two real-valued random variables that
are almost surely bounded, and denote by ‖X‖∞ the essential supremum norm of |X|. Then, it
holds

|Cov (X,Y )| ≤ 2α(σ(X), σ(Y ))‖X‖∞‖Y ‖∞ . (4.12)

For complex-valued random variables, whose modulus are almost surely bounded, one can easily
prove that (see for instance [33], Chapter 1, Exercice 7)

|Cov (X,Y )| ≤ 4α(σ(X), σ(Y ))‖X‖∞‖Y ‖∞ . (4.13)

Using the inequality (4.13) and that |ei〈u,Xk〉| < 1, we get

n∑
k=2

|Cov (ei〈u,X1〉, ei〈u,Xk〉)| ≤ 4

n∑
k=2

α(k − 1).

It follows from (4.11) that,

E
[
|ϕ̂X,n(u)− ϕX(u)|2

]
≤ 1

n
+

8

n

n−1∑
k=1

α(k) =
(2Cα,n − 1)

n
,

and Lemma 4.3 is proved.

Our second lemma is a Fuk-Nagaev inequality stated by Rio [33]. We need a version of this
inequality which was proposed as an exercise in [33] (Exercise 1, Chapter 6).

Lemma 4.4. Let (Yi)i>0 be a sequence of real-valued random variables such that ‖Yi‖∞ ≤ 1/2,
and let (α(n))n≥0 be the sequence of strong mixing coefficients of Definition 3.1. Let Sk =∑k

i=1(Yi − E(Yi)) and s2n be such that

s2n ≥
n∑
i=1

n∑
j=1

|Cov (Yi, Yj)|. (4.14)

Then for any λ ≥ sn, it holds

P

(
sup
k∈[1,n]

|Sk| ≥ 4λ

)
≤ 4 exp

(
−λ

2 log 2

2s2n

)
+ 4nλ−1α

([
s2n
λ

])
.

Proof of Lemma 4.4. We start from Theorem 6.2 Inequality (6.4) in [33], we take r = λ2

s2n
and

Q = 1 (since ‖Yi − E(Yi)‖∞ ≤ 1). Using Rio’s notations let

H

(
λ

r

)
= α

([
λ

r

])
= α

([
s2n
λ

])
.
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We obtain that

P

(
sup
k∈[1,n]

|Sk| ≥ 4λ

)
≤ 4

(
1 +

λ2

rs2n

)− r
2

+ 4nλ−1
∫ H(λ/r)

0
Q(u) du

≤ 4

(
1 +

λ2

λ2

s2n
s2n

)− λ2

2s2n

+ 4nλ−1
∫ α([s2n/λ])

0
1 du

≤ 4× 2
− λ2

2s2n + 4nλ−1α

([
s2n
λ

])
≤ 4 exp

(
−λ

2 log 2

2s2n

)
+ 4nλ−1α

([
s2n
λ

])
.

and Lemma 4.4 is proved.

We apply Lemma 4.4 to |ϕ̂X,n(u)− ϕX(u)|.

Lemma 4.5. Recall that Cα,n = 1 + 4
∑n−1

k=1 α(k). For any b > 0, it holds

P
(
|ϕ̂X,n(u)− ϕX(u)| ≥ b

√
log n√
n

)
≤ 8n−b

2/93Cα,n +
64
√

2n

b
√

log n
α

([
2
√

2nCα,n

b
√

log n

])
.

Proof of Lemma 4.5. Using (4.1), we infer that

P (|ϕ̂X,n(u)− ϕX(u)| > x) ≤ P

∣∣∣∣∣∣ 1n
n∑
j=1

(cos(〈u,Xj〉)− Re(ϕX(u)))

∣∣∣∣∣∣ ≥ x√
2


+ P

∣∣∣∣∣∣ 1n
n∑
j=1

(sin(〈u,Xj〉)− Im(ϕX(u)))

∣∣∣∣∣∣ ≥ x√
2

 .

Taking λ = b
√
n log n/8

√
2, one has

P
(
|ϕ̂X,n(u)− ϕX(u)| > b

√
log n√
n

)
≤ P

∣∣∣∣∣∣12
n∑
j=1

(cos(〈u,Xj〉)− Re(ϕX(u)))

∣∣∣∣∣∣ ≥ 4λ


+ P

∣∣∣∣∣∣12
n∑
j=1

(sin(〈u,Xj〉)− Im(ϕX(u)))

∣∣∣∣∣∣ ≥ 4λ

 .

We can now apply Lemma 4.4 to the variables Yj = cos(〈u,Xj〉)/2 (or Yj = sin(〈u,Xj〉)/2),
whose absolute values are bounded by 1/2. Note that, by (4.12), one has

n∑
i=1

n∑
j=1

|Cov (Yi, Yj)| ≤
n

4

(
1 + 4

n−1∑
k=1

α(k)

)
=
n

4
Cα,n .

Hence, one can take s2n = nCα,n/4 in (4.14). It follows that

P
(
|ϕ̂X,n(u)− ϕX(u)| > b

√
log n√
n

)
≤ 8 exp

(
−b

2 log n

93Cα,n

)
+

64
√

2n

b
√

log n
α

([
2
√

2nCα,n

b
√

log n

])
,

proving the lemma (the constant 93 comes from 64/ log 2 < 93).
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Using Lemmas 4.3 and 4.5, we can now prove the last lemma of this subsection:

Lemma 4.6. Let m = (m1, . . . ,md) ∈ (0, n]d. For any κ > 0 and any A ∈ A, the following
inequality holds

1

(2π)d

∫
A([−m,m])

E
[
|ϕ̃X,n(u)− ϕX(u)|2

]
du

≤ m1 · · ·md

(
(2Cα,n + 7) + (1 + (κ+

√
93Cα,n)

√
log n)2

)
|det(A)|

πdn

+
64
√

2n(2d+1)/2

πd
√

93Cα,n
√

log n
α

([
2
√

2nCα,n√
93
√

log n

])
.

Proof of Lemma 4.6. Considering the set {u, |ϕX(u)| < 1+(κ+
√

93Cα,n)
√
logn√

n
}, proceeding as for

(4.3), (4.4), and using Lemma 4.3 and (4.5), we get

1

(2π)d

∫
A([−m,m])

E
[
|ϕ̃X,n(u)− ϕX(u)|2

]
du

≤ m1 · · ·md

(
2Cα,n − 1) + (1 + (κ+

√
93Cα,n)

√
log n)2

)
|det(A)|

πdn

+
1

(2π)d

∫
A([−m,m])

P
(
|ϕ̂X,n(u)− ϕX(u)| ≥

√
93Cα,n

√
log n

√
n

)
du .

This together with Lemma 4.5 (with b =
√

93Cα,n) yield

1

(2π)d

∫
A([−m,m])

E
[
|ϕ̃X,n(u)− ϕX(u)|2

]
du

≤ m1 · · ·md

(
(2Cα,n + 7) + (1 + (κ+

√
93Cα,n)

√
log n)2

)
|det(A)|

πdn

+m1 · · ·md|det(A)|

(
64
√

2n

πd
√

93Cα,n
√

log n
α

([
2
√

2nCα,n√
93
√

log n

]))
,

and Lemma 4.6 is proved (noting that m1 · · ·md|det(A)| ≤ nd for the last term).

4.5.2 End of the proof of Theorem 3.1

We follow exactly the proof of Theorem 2.1 and only indicate the changes resulting from the
application of Lemma 4.5 and Lemma 4.6 instead (respectively) of Lemma 4.1 and Lemma 4.2.

The first change is that the first term in (4.6) is now controlled via Lemma 4.6 instead of
Lemma 4.2.

The second change concerns Inequality (4.7), which becomes (applying Lemma (4.3)) : on
the set {u, |ϕX(u)| > n−1/2},

E[|ϕ̃X,n(u)− ϕX(u)|2] ≤ |ϕX(u)|2 + E[|ϕ̂X,n(u)− ϕX(u)|2]

≤ |ϕX(u)|2 +
(2Cα,n − 1)

n
≤ 2Cα,n|ϕX(u)|2.
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The third change concerns Inequality (4.8), which becomes (applying Lemma 4.5 with b = κ)

4

(2π)d
E
[ ∫

[−n,n]d\A([−m,m])

|ϕ̃X,n(u)− ϕX(u)|21{|ϕX(u)|≤n−1/2}du
]

≤ 4

(2π)d

∫
u∈A([m,m])c

|ϕX(u)|2du+
27nd

πd
n−κ

2/93Cα,n +
210
√

2n(2d+1)/2

πdκ
√

log n
α

([
2
√

2nCα,n

κ
√

log n

])
.

4.6 Proof of Theorem 3.2

4.6.1 Preliminaries

We state the modifications of Lemmas 4.3-4.5 for τ -mixing sequences whose coefficients decrease
at an exponential rate.

Lemma 4.7. Assume that τ(n) ≤ Kan for some K ≥ 1 and a ∈ (0, 1). The following inequality
holds

E
[
|ϕ̂X,n(u)− ϕX(u)|2

]
≤ C1(a,K)

n
+

2 log(n)

n log(1/a)
,

with

C1(a,K) = 1 +
2

1− a
+

2 log(2K
√
d)

log(1/a)
.

Proof of Lemma 4.7. We start from (4.11) and use the following covariance inequalities. Let
X,Y be two real-valued random variables (with X almost surely bounded) and denote by ‖X‖∞
the essential supremum norm of |X| . Then

|Cov (X,Y )| ≤ E(|X(E(Y |X)− E(Y ))|) ≤ ‖X‖∞τ(σ(X), Y ) .

Similarly, for two complex-valued random variables X,Y (with Y = Y1 + iY2 and ‖X‖∞ <∞),
one has

|Cov (X,Y )| ≤ ‖X‖∞(τ(σ(X), Y1) + τ(σ(X), Y2)) . (4.15)

Now, for the variable Yk = cos(〈u,Xk〉) (or Yk = sin(〈u,Xk〉)), we easily see that (for |u| ≤ n)

τ(σ(X1), Yk) ≤ |u|2τ(k − 1) ≤
√
dnτ(k − 1) .

Using the inequality (4.15) and that |ei〈u,Xk〉| < 1, we get

n∑
k=2

|Cov (ei〈u,X1〉, ei〈u,Xk〉)| ≤ 2

n∑
k=2

min(2
√
dnτ(k − 1), 1).

It follows from (4.11) that,

E
[
|ϕ̂X,n(u)− ϕX(u)|2

]
≤ 1

n
+

2

n

∞∑
k=1

min(2
√
dnτ(k), 1) ≤ 1

n
+

2

n

∞∑
k=1

min(2
√
dnKak, 1) .

Now,
∞∑
k=1

min(2
√
dnKak, 1) ≤ 1

1− a
+

log(2K
√
d)

log(1/a)
+

log(n)

log(1/a)
,

completing the proof of Lemma 4.7
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Our second lemma is a Fuk-Nagaev inequality.

Lemma 4.8. Let (Yi)i>0 be a sequence of real-valued random variables such that ‖Yi‖∞ ≤ 1/2
and let (τY (n))n≥0 be the sequence of τ -mixing coefficients of Definition 3.2. Define Sk =∑k

i=1(Yi − E(Yi)) and let s2n be as in (4.14). Then for any λ ≥ sn,

P

(
sup
k∈[1,n]

|Sk| ≥ 5λ

)
≤ 4 exp

(
−λ

2 log 2

2s2n

)
+ 4nλ−1τY

([
s2n
λ

])
.

Proof of Lemma 4.8. The proof is the same as that of Lemma 4.4 by using Theorem 2 in [16]
instead of Theorem 6.2 in [33].

We now apply Lemma 4.8 to |ϕ̂X,n(u)− ϕX(u)|.

Lemma 4.9. Assume that τ(n) ≤ Kan for some K ≥ 1 and a ∈ (0, 1). There exists a positive
constant C2(a,K) such that, for any b > 0,

P
(
|ϕ̂X,n(u)− ϕX(u)| > b log n√

n

)
≤ 8 exp

(
− b2 log n

578C2(a,K)

)
+
n3/280

√
2dK

b log n
a[C2(a,K)10

√
2n/b] .

Proof of Lemma 4.9. Arguing as in Lemma 4.5 and taking λ = b
√
n log n/10

√
2, one has

P
(
|ϕ̂X,n(u)− ϕX(u)| > b log n√

n

)
≤ P

∣∣∣∣∣∣12
n∑
j=1

(cos(〈u,Xj〉)− Re(ϕX(u)))

∣∣∣∣∣∣ ≥ 5λ


+ P

∣∣∣∣∣∣12
n∑
j=1

(sin(〈u,Xj〉)− Im(ϕX(u)))

∣∣∣∣∣∣ ≥ 5λ

 .

We can now apply Lemma 4.4 to the variables Yj = cos(〈u,Xj〉)/2 (or Yj = sin(〈u,Xj〉)/2),
whose absolute values are bounded by 1/2. Proceeding as in the proof of Lemma 4.7, we get

n∑
i=1

n∑
j=1

|Cov (Yi, Yj)| ≤
n

4

(
1 + 2

n−1∑
k=1

min(
√
dnKak, 1)

)

≤ n

4

(
1 +

2

1− a
+

2 log(K
√
d)

log(1/a)
+

2 log(n)

log(1/a)

)
≤ C2(a,K)n log n .

Hence, one can take s2n = C2(a,K)n log n in (4.14). It follows that

P
(
|ϕ̂X,n(u)− ϕX(u)| > b log n√

n

)
≤ 8 exp

(
− b2 log n

578C2(a,K)

)
+
n3/280

√
2dK

b log n
a[C2(a,K)10

√
2n/b] ,

proving the lemma (the constant 578 comes from 400/ log 2 < 578).

Using Lemmas 4.7 and 4.9, we can now prove the last lemma of this subsection.
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Lemma 4.10. Let m = (m1, . . . ,md) ∈ (0, n]d, and assume that τ(n) ≤ Kan for some K ≥ 1
and a ∈ (0, 1). For any κ > 0 and any A ∈ A, the following inequality holds

1

(2π)d

∫
A([−m,m])

E
[
|ϕ̃X,n(u)− ϕX(u)|2

]
du

≤ m1 · · ·md

(
8 + C1(a,K) + 2 log n/ log(1/a) + (1 + (κ+

√
578C2(a,K)) log n)2

)
|det(A)|

πdn

+
n(2d+3)/280

√
dK

πd
√

289C2(a,K) log n
a[
√
C2(a,K)10

√
2n/
√
578] .

Proof of Lemma 4.10. Considering the set {u, |ϕX(u)| < 1+(κ+
√

578C2(a,K)) logn√
n

}, proceeding as

for (4.3), (4.4), and using Lemma 4.7, we get

1

(2π)d

∫
A([−m,m])

E
[
|ϕ̃X,n(u)− ϕX(u)|2

]
du

≤ m1 · · ·md

(
C1(a,K) + 2 log n/ log(1/a) + (1 + (κ+

√
578C2(a,K)) log n)2

)
|det(A)|

πdn

+
1

(2π)d

∫
A([−m,m])

P
(
|ϕ̂X,n(u)− ϕX(u)| ≥

√
578C2(a,K) log n√

n

)
du .

This together with Lemma 4.9 (with b =
√

578C2(a,K)) yield

1

(2π)d

∫
A([−m,m])

E
[
|ϕ̃X,n(u)− ϕX(u)|2

]
du

≤ m1 · · ·md

(
8 + C1(a,K) + 2 log n/ log(1/a) + (1 + (κ+

√
578C2(a,K)) log n)2

)
|det(A)|

πdn

+m1 · · ·md|det(A)|

(
n3/280

√
dK

πd
√

289C2(a,K) log n
a[
√
C2(a,K)10

√
2n/
√
578]

)
,

and Lemma 4.10 is proved since m1 · · ·md|det(A)| ≤ nd.

4.6.2 End of the proof of Theorem 3.2

We follow exactly the proof of Theorem 2.1 (with κn = 1+κ log n), we only indicate the changes
resulting from the application of Lemma 4.9 and Lemma 4.10 instead (respectively) of Lemma
4.1 and Lemma 4.2.

The first change is that the first term in (4.6) is now controlled via Lemma 4.10 instead of
Lemma 4.2.

The second change concerns Inequality (4.7), which becomes (applying Lemma 4.7) : on the
set {u, |ϕX(u)| > n−1/2},

E[|ϕ̃X,n(u)− ϕX(u)|2] ≤ |ϕX(u)|2 + E[|ϕ̂X,n(u)− ϕX(u)|2]

≤ |ϕX(u)|2 +
C1(a,K)

n
+

2 log(n)

n log(1/a)
≤
(

1 + C1(a,K) +
2 log(n)

log(1/a)

)
|ϕX(u)|2.
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The third change concerns Inequality (4.8), which becomes (applying Lemma 4.9 with b = κ)

4

(2π)d
E
[ ∫

[−n,n]d\A([−m,m])

|ϕ̃X,n(u)− ϕX(u)|21{|ϕX(u)|≤n−1/2}du
]

≤ 4

(2π)d

∫
u∈A([m,m])c

|ϕX(u)|2du+
27nd

πd
n−κ

2/578C2(a,K) +
n(2d+3)/228

√
2d5K

πdκ log n
a[C2(a,K)10

√
2n/κ] .
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Boston, MA.

[10] Chacón, J. E. and Duong, T. (2010). Multivariate plug-in bandwidth selection with unconstrained
pilot bandwidth matrices. Test, 19:375–398.

[11] Comte, F., Dedecker, J., and Taupin, M. L. (2008). Adaptive density deconvolution with dependent
inputs. Math. Methods Statist., 17(2):87–112.

[12] Comte, F. and Lacour, C. (2013). Anisotropic adaptive kernel deconvolution. In Annales de l’IHP
Probabilités et statistiques, volume 49, pages 569–609.
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