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Abstract

This paper proposes a reduced model to simulate the one-dimensional Vlasov-Poisson equation
with the non-linear Fokker-Planck operator. The model provides the space-time dynamics of a few
macroscopic quantities constructed following the Reduced Order Method (ROM) in the velocity
variable: the compression is thus applied to the semi-discretization of the Vlasov equation. To
gain efficiency, a Discrete Empirical Interpolation Method (DEIM) is applied to the compressed
non-linear Fokker-Planck operator. The size of the resulting reduced model is chosen empirically
according to the Knudsen number. Furthermore, we propose a correction to the reduced collision
operator that ensures the reduced moments to satisfy an Euler-type system. Numerical simulations
of the reduced model show that the model can capture the plasma dynamics in different collisional
regimes and initial conditions at a low cost.

1 Introduction
The Vlasov-Poisson-Fokker-Planck equation is a model for the transport of the distribution function of
charged particles in the six-dimensional position-velocity phase space. The non-linear Fokker-Planck
operator describes the short-range binary interactions between charged particles, called collisions. The
weight of collisions in the dynamics is measured by the dimensionless Knudsen number ε, the scaled
mean-free path between collisions: a small Knudsen number corresponds to a collisional regime.

Simulations of such dynamics are very computationally demanding. Indeed, since phase space
is of dimension six, simulations require a lot of memory and cpu resources. In addition, capturing
collisional dynamics leads to numerical constraints on the time step and/or phase-space discretization.
Indeed, the Fokker-Planck operator is a diffusive operator in the velocity variable: stability conditions
for explicit numerical schemes have very stringent stability conditions when the Knudsen number ε is
small. We refer to [BDS01, CA22] and references therein.
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In order to avoid full model simulations, a classical strategy is to design reduced models that are
valid in some parameter regimes. Typically, these reduced models provide the space-time dynamics
of macroscopic quantities, which are integrated quantities over the velocity variables. For instance,
the Euler system, satisfied by the density, the momentum, and the energy, can be obtained with the
moment method and is valid in the strong collisional regime (ε ≪ 1). The Navier-Stokes equations
can be considered for lower Knudsen numbers with ε < 10−2. Models with more moments have been
designed in order to be valid at higher Knudsen number regimes.

Another possible approach is to consider reduced models based on data as proposed by the Reduced
Order Modeling (ROM). The method consists in constructing an adapted basis in which the solution
can be well approximated with few components. The basis is computed through a Proper Orthogonal
decomposition applied to samples of the unknown in the considered physical regime. The reduced
model is then obtained with a projection Galerkin method. We refer to [HPR22b] for more references.
This method has been applied for particle discretization of the Vlasov-Poisson system [HPR22a] with
a reduction in both space and velocity. In order to efficiently tackle Eulerian discretization in the
six-dimensional phase space, low-rank tensor bases have been proposed [FL22, VD17] , as well as their
dynamical version [GEQ23].

Here we propose a mixed method where the ROM approach only compresses the dynamics in the
velocity variable. Like moment models, the resulting reduced model provides the spatial dynamics of
the reduced quantities. Therefore, the method provides a model independent of the spatial discretiza-
tion of the computational domain. In order to provide a first assessment of the method, this study
focuses on the one-dimensional dynamics.

The non-linear collision operator leads to a reduced operator that would require to alternate between
reduced and full dimensional data. To avoid these costly computations, we propose to use the Discrete
Empirical Interpolation Method (DEIM) [CS10]. We also propose a correction of the reduced collision
operator to ensure that it preserves reduced moments (like mass, momentum, and energy). Therefore,
the reduced moments associated with the reduced data will satisfy an Euler-type equation.

This article is structured as follows. Section 2 introduces the Vlasov-Poisson-Fokker-Planck model,
its semi-discretization in velocity, and the reduced model obtained after using the ROM approach in
velocity. In Section 3, we recall the DEIM strategy to reduce the computational complexity for the
non-linear reduced collision operator. Then we present a correction to it such that it preserves the
moments. Finally, in Section 4, we assess the capability of the reduced model in capturing non-linear
and linear dynamics. To this aim, we perform a Landau damping test case with different Knudsen
numbers and perturbation amplitudes.

2 Reduced Order Modeling in velocity of the one-dimensional
Vlasov-Poisson Fokker-Planck model

2.1 Vlasov-Poisson Fokker-Planck model
We consider the one-dimensional Vlasov-Poisson-Fokker-Planck dynamics that describes the evolution
of a statistical distribution of charged particles in position-velocity phase-space, with long-range inter-
actions through the self-induced electric field and short-range interactions. We define f(t, x, v) as the
distribution of particles at time t ⩾ 0 in the phase space (x, v) ∈ [0, L]× R and the system reads:

∂tf(t, x, v) + v ∂xf(t, x, v) + ∂xϕ(t, x) ∂vf(t, x, v) =
1

ε
Q(f)(t, x, v), (1)

−∂2
xϕ(t, x) =

1

L

∫
[0,L]×R

f(t, y, v) dydv −
∫
R
f(t, x, v)dv, (2)

where ϕ(t, x) denotes the electric potential. The electric field is defined by the relation: E(t, x) =
−∂xϕ(t, x).

The right-hand side of the equation models collision interactions: Q(f) models the short-range
interactions, and the positive parameter ε represents the collision timescale. This collision operator
is local in space and acts only on the velocity variable. Here, we consider a non-linear Fokker-Planck
collision operator given by:

Q(f) = ∂v

(
(v − uf )f + Tf ∂vf

)
,
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where ρf (t, x), uf (t, x) and Tf (t, x) denote the particle density (in space), the velocity, and the tem-
perature, respectively, and are defined by:

ρf (t, x) =

∫
R
f(t, x, v) dv, ρf (t, x)uf (t, x) =

∫
R
v f(t, x, v) dv, (3)

and
pf (t, x) = ρf (t, x)Tf (t, x) =

∫
R
(v − uf (t, x))

2f(t, x, v)dv. (4)

The collision operator can be rewritten as:

Q(f) = Tf ∂v

(
Mf ∂v

(
f

Mf

))
, (5)

where Mf (v) = Mρf ,uf ,Tf
(v) is the so-called Maxwellian distribution defined by:

Mρ,u,T (v) =
ρ√
2πT

e−
(v−u)2

2T . (6)

This expression of Q shows that the equilibrium of the collision operator (satisfying Q(f) = 0) is
precisely the Maxwellian distribution.

To reduce the complexity of model (1)-(2), we want to project the velocity distribution function
on a basis adapted to the desired physical parameters. For this purpose, we start by considering a
finite-dimensional approximation of the dynamics.

2.2 Semi-discretized model in velocity
We perform a semi-discretization in velocity of the Vlasov-Poisson equations (1)-(2) using a finite
difference method. We take a velocity interval [−vmax, vmax] and an odd number of nodes Nv: vi =
(i − (Nv − 1)/2)∆v with ∆v = 2vmax/(Nv − 1) and i ∈ {0, Nv − 1}. The unknown vector f(t, x) =
(f(t, x, v0), . . . , f(t, x, vNv−1)) satisfies the following semi-discretized Vlasov equation:

∂tf(t, x) +A∂xf(t, x) + (∂xϕ(t, x))D f(t, x) =
1

ε
Q∆v(f(t, x)), (7)

−∆ϕ(t, x) =
1

L

∫
[0,L]

∆v 1T f(t, x) dx−∆v 1T f(t, x), (8)

where A = Diag(v) denotes the diagonal matrix of size Nv with the vector v = (v0, . . . , vNv−1) on the
diagonal. Matrix D refers to the matrix associated with the centered finite difference of the velocity
derivative with Dirichlet boundary conditions:

D =
1

2∆v



0 1 0 · · · 0

−1
. . . . . . . . .

...

0
. . . . . . . . . 0

...
. . . . . . . . . 1

0 · · · 0 −1 0


.

Symbol 1 denotes the vector (1, . . . , 1)T ∈ RNv . Equation (7) is a hyperbolic system with a source
term.

For the discretization of the collision operator, we consider the scheme proposed in [BDS01] that is
explicit, preserves the density, momentum, and energy, and dissipates entropy. Based on the following
expression of the non-linear Fokker-Planck collision operator,

Q(f) = T ∂v

(
f ∂v log

( f

Mf

))
,

the discretization can be written as:

Q∆v(f)j =
fj+ 1

2

(
log
(

fj+1

(Mf )j+1

)
− log

(
fj

(Mf )j

))
− fj− 1

2

(
log
(

fj
(Mf )j

)
− log

(
fj−1

(Mf )j−1

))
∆v2

,
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where f 1
2
= fNv− 1

2
= 0 and fj+ 1

2
is the entropic average:

for j = 1, . . . , Nv − 2, fj+ 1
2
=

{
fj+1−fj

log(fj+1)−log(fj)
, if fj+1 ̸= fj ,

fj , otherwise .
(9)

The discretization involves the discrete Maxwellian, which equals the evaluation of the Maxwellian
at the velocity grid point, Mf = (Mρf ,ũf ,(ρ̃f T̃f )/ρf

(vj))j , where ρ̃f , ũf , T̃f refer to the modified discrete
moments:

ρ̃f =

Nv−2∑
j=1

∆v fj+ 1
2
,

ρ̃f ũf =

Nv−2∑
j=1

∆v vj+ 1
2
fj+ 1

2
+ Tf (fNv

− f1),

ρ̃f T̃f =

Nv−2∑
j=1

∆v (vj+ 1
2
− ũf )

2 fj+ 1
2
+ ρ̃fTf

(
fNv (vNv+

1
2
− ũf ) + f1(v 1

2
− ũf )

)
,

and where ρf , uf , Tf refer to the classical discrete moments associated with the discrete distribution f
defined by:

ρf = ∆v 1T f ,

ρf uf = ∆v 1TDiag(v)f ,

ρf u
2
f + ρfTf = ∆v 1TDiag(v)2f .

We also define the moment matrix m:

m =

mρ

mρu

mw

 =

 ∆v 1T

∆v 1TDiag(v)
∆v 1TDiag(v)2

 ∈ M3,Nv
(R).

As already said, the discrete moments ρf and ρfuf are conserved by the scheme. We also note that
this discrete collision operator vanishes on the discrete Maxwellian with the modified mean velocity
and temperature.

2.3 Reduced model
We now apply the ROM methodology. Using a Proper Orthogonal Decomposition (POD), we first
generate a reduced basis of size K ≪ Nv from samples of the distribution function and define the
linear decompression operator Φ, that we apply to a reduced vector f̂ to get the full vector f , and the
compression operator ΦT , that we apply to the full vector f to get a reduced vector f̂ :

f ∈ RNv
ΦT

−→ f̂ ∈ RK Φ−→ f̃ ∈ RNv .

Then we perform a Galerkin projection to obtain the reduced model on the reduced quantity f̂ .

Reduced basis and compression/decompression operators. We first consider Ns samples of
the distribution in time and space obtained from the numerical simulations of the model of the previous
section. Spatial discretization is done using finite volume schemes, and the time discretization is done
using an explicit first-order scheme. We refer to Appendix A for more details. The sample matrix is
then given by:

X = [f1(t1, x1), . . . , fn(tn, xn)] ∈ MNv,Ns
(R),

where (fi)i are obtained from Ns possible different initial data and different Knudsen numbers and
(ti, xi) are chosen randomly. The linear decompression operator Φ ∈ MNv,k(R) is defined such that
the compression-decompression error on the samples is minimized:

min
Φ∈MNv,K(R)
ΦTΦ=Id

∥∥X − ΦΦTX
∥∥2
F
, (10)
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where ∥A∥F =
√∑

ij A
2
ij denotes the Frobenius norm for matrices. In practice, the columns of Φ are

given by the first K eigenvectors of the matrix XTX ∈ MNv
(R). These first K eigenvectors define the

reduced basis.

Reduced model by Galerkin projection. Applying the Galerkin projection method to equations
(7)-(8) consists in inserting the ansatz f = Φf̂ into the equation, applying the projection ΦT and then
using the identity ΦTΦ = Id. We get the following model on the reduced variable f̂ :

∂tf̂(t, x) + Â ∂xf̂(t, x) + (∂xϕ(t, x)) D̂ f̂(t, x) =
1

ε
Q̂∆v(f̂), (11)

−∆ϕ(t, x) = m̂ρf̂(t, x), (12)

where matrices Â, D̂,mρ are respectively of size K ×K, K ×K and 1×K and given by:

Â = ΦTDiag(v)Φ, D̂ = ΦTDΦ, m̂ρ = ∆v 1TΦ,

and the reduced collision operator is defined by:

Q̂∆v(f̂) = ΦTQ∆v(Φf̂(t, x)). (13)

This system is a hyperbolic system of size K with two source terms: the first term is linear and comes
from the transport in the velocity variable, while the other one is non-linear and comes from the
collision operator.

3 Hyper-reduction and corrections of the reduced collision op-
erator

The non-linear collision operator (13) requires to evaluate the collision operator Q∆v on the full
vector Φf̂ of size Nv. Since this could be quite numerically expensive, several techniques called hyper-
reduction have been developed. In the present work, we propose to use the classical Discrete Empirical
Interpolation Method method [CS10].

The original discrete collision operator has been constructed to preserve mass, momentum, and
energy. Such properties are crucial to capture the appropriate physical dynamics. We aim to ensure
the same properties on the reduced collision operator. We thus define reduced moments and an
associated corrected collision operator that preserves them.

3.1 DEIM hyper-reduction
Let us briefly describe the DEIM method. Using the Proper Orthogonal Decomposition on samples of
the non-linear collision operator Q∆v(f) (without reduction), the method first generates a basis made
of KQ vectors of size Nv: let ΦQ the matrix of size Nv ×KQ that gathers these vectors. Then for any
f̂ , we are looking at coefficients c(f̂) ∈ RKQ such that:

Q∆v(Φf̂) ≈ ΦQ c(f̂), (14)

The coefficients are chosen such that KQ rows are indeed equalities (hence the name interpolation):

PT
Q Q∆v(Φf̂) = PT

Q ΦQ c(f̂), (15)

where PQ is a selection matrix of size Nv ×KQ, whose columns are made of canonical basis vectors.
The selection of these KQ rows is made iteratively with a greedy-like algorithm. In particular, PQ is
determined such that the matrix PT

Q ΦQ is invertible. Hence plugging back (15) into (14), we get the
following approximation:

Q∆v(Φf̂) ≈ ΦQ(P
T
QΦQ)

−1PT
QQ∆v(Φf̂),

and finally the operator ΦTQ∆v(Φf̂) in expression (13) is replaced by

Q̂DEIM
∆v (f̂) = ΦTΦQ(P

T
QΦQ)

−1PT
QQ∆v(Φf̂),

We refer to [CS10] for more details. The computational gain of this method comes from the fact that
only the KQ selected rows (among Nv) of Q∆v(Φf̂) are actually computed.
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3.2 Preservation of reduced moments
The reduced collision operator does not a priori satisfy the preservation of the reduced moments nor
vanishes on discrete Maxwellians. We propose to slightly change the discrete collision operator to
enforce these two properties, as already proposed in [Rif20]. Similar corrections have been proposed in
the context of spectral methods [GT09], discontinuous Galerkin methods [ZG18] or discrete-velocity
methods [DL13].

We first introduced the reduced moment operator as follows:

m̂ =

 m̂ρ

m̂ρu

m̂w

 =

 ∆v 1T

∆v 1TΦ(ΦTDiag(v)Φ)
1
2∆v 1TΦ(ΦTDiag(v)Φ)2

 ∈ M3,K(R). (16)

Note that this definition differs from the moment operator mΦ, which would be the natural definition
since it first decompresses up to the full size and then applies the classical moment operator. Instead,
the considered reduced moment operator first multiplies the reduced discrete distribution f̂ ∈ RK by
the reduced velocity operator (ΦTDiag(v)Φ), then decompresses and finally integrates. With such a
definition, we have the relations:

m̂ρu = m̂ρÂ, m̂w =
1

2
m̂ρuÂ. (17)

which will be useful in obtaining a good structure of the reduced moments equation.
We modify the reduced collision operator Q̂∆v by taking the closest vector Q̂ such that m̂Q̂ = 0.

We thus define the corrected collision operator Q̂c
∆v as the solution to the minimizing problem:

Q̂c
∆v(Φf̂) = argmin

Q̂∈RK s.t. m̂Q̂=0

∥ΦT Q̂−Q∆v(Φf̂)∥2.

The solution to this minimization problem is given by:

Q̂c
∆v(Φf̂) = ΦTQ∆v(Φf̂)− m̂T (m̂m̂T )−1m̂ΦTQ∆v(Φf̂). (18)

The proof can be found in Appendix B. Naturally, we can apply the DEIM strategy presented in the
previous section to this corrected collision operator. Namely,

Q̂cDEIM
∆v (Φf̂) = Q̂DEIM

∆v (f̂)− m̂T (m̂m̂T )−1m̂Q̂DEIM
∆v (f̂). (19)

3.3 Reduced Maxwellian distributions
Given a set of moments µ ∈ R3, we denote M(µ) = Mρ,u,T the discrete Maxwellian distribution, where
ρ, u, T are defined such that µ = (ρ, ρu, ρu2/2+ρT/2)T . We then defined the reduced Maxwellian M̂(µ)
associated with reduced moments µ as the closest to the full Maxwellian M(µ) after decompression:

M̂(µ) = argmin
f̂∈RK s.t. m̂f̂ =µ

∥Φf̂ −M(µ)∥2. (20)

As in the previous section, the solution to this minimization problem denoted is given by:

M̂(µ) = ΦTM(µ) + m̂T (m̂m̂T )−1
(
µ− m̂ΦTM(µ)

)
.

If µ is associated with the reduced moments of f̂ , then we get the following expression:

M̂(m̂f̂) = ΦTM(m̂f̂) + m̂T (m̂m̂T )−1
(
m̂f̂ − m̂ΦTM(m̂f̂)

)
. (21)

The reduced collision operator is not guaranteed to vanish for reduced Maxwellians. We thus propose
to consider the following second correction:

Q̂c2
∆v(Φf̂) =

(
∥f̂ − M̂(m̂f̂)∥

∥f̂ − M̂(m̂f̂)∥+ δ

)
Q̂c

∆v(Φf̂), (22)
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with δ > 0.
As for the collision operator, we can apply the DEIM method to avoid the computation of M(µ)

appearing in (21) and which is evaluated in the full space. We consider samples of the Maxwellian
distribution and construct a reduced basis of size KM and gather it into the matrix ΦM of dimension
Nv ×KM . Then we consider the following reduced Maxwellian:

M̂DEIM(m̂f̂) = ΦT
(
ΦM (PT

MΦM )−1)PT
MM(m̂f̂)

)
+ m̂T (m̂m̂T )−1

(
m̂f̂ − m̂ΦT

(
ΦM (PT

MΦM )−1PT
MM(m̂f̂)

))
,

where PM is a matrix of size Nv × KM which selects KM rows of M. Then combining the above
definition of the reduced Maxwellian with the second corrected reduced collisional operator (23), the
reduced collision operator writes:

Q̂c2DEIM
∆v (Φf̂) =

(
∥f̂ − M̂DEIM(m̂f̂)∥

∥f̂ − M̂DEIM(m̂f̂)∥+ δ

)
Q̂cDEIM

∆v (Φf̂). (23)

3.4 Reduced moment equations
In this part, we show that the equation on the reduced moments is an Euler-type system. Indeed, let
us consider the semi-discretized reduced equation as

∂tf̂ + Â ∂xf̂ + (∂xϕ) D̂ f̂ =
1

ε
Q̂c

∆v(Φf̂), (24)

where Q̂(2) is the corrected reduced collision kernel defined in (23). As this operator has vanishing
reduced moments, we have:

∂t(m̂f̂) + ∂x(m̂Âf̂) + (∂xϕ) m̂D̂ f̂ = 0,

which is equivalent to the system of equations:
∂t(m̂ρf̂) + ∂x(m̂ρÂf̂) + (∂xϕ) m̂ρD̂ f̂ = 0,

∂t(m̂ρuf̂) + ∂x(m̂ρuÂf̂) + (∂xϕ) m̂ρuD̂ f̂ = 0,

∂t(m̂w f̂) + ∂x(m̂wÂf̂) + (∂xϕ) m̂wD̂ f̂ = 0,

(25)

Next, thanks to relations (17), we get the following property:

Proposition 1. Denoting (ρ̂, ρ̂û, ŵ)T = m̂f̂ , system (25) becomes the following Euler-Poisson type
system: 

∂tρ̂+ ∂x(ρ̂û) = −(∂xϕ) m̂ρD̂ f̂ ,

∂t(ρ̂û) + ∂x(ρ̂û
2 + p̂) = −(∂xϕ) m̂ρuD̂ f̂ ,

∂tŵ + ∂x(ŵû+ p̂û+ q̂) = −(∂xϕ) m̂wD̂ f̂ ,

(26)

where p̂ is such that ŵ = ρ̂û2/2 + p̂/2 and

q̂ =
1

2
∆v 1TΦ

(
Â− û Id

)3
f̂ . (27)

Proof. Indeed, using relations (17), the fluxes of the reduced density and momentum write:

m̂ρÂf̂ = m̂ρuÂf̂ = ρ̂û,

m̂ρuÂf̂ = 2 m̂w f̂ = 2ŵ = ρ̂û2 + p̂.
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Then the flux of the reduced energy is given by:

m̂wÂM̂ =
1

2
∆v 1TΦÂ3M̂

=
1

2
∆v 1TΦ(Â− û Id + û Id)3M̂

=
1

2
∆v 1TΦ

[
(Â− û Id)3 + 3û(Â− û Id)2 + 3û2(Â− û Id) + û3 Id

]
M̂

= q̂ +
3

2
ûp̂+ 0 +

1

2
ρ̂û3

= q̂ + ûp̂+ ŵû,

where, in the second last equality, we used the definition of q̂ given in (27) and the identities:

∆v 1TΦ(Â− û Id)f̂ = ρ̂û− ρ̂û = 0,

∆v 1TΦ(Â− ûId)2f̂ = ∆v 1TΦ(Â2 − 2ûÂ+ û2Id)M̂

= 2ŵ − 2ρ̂û2 + ρ̂û2

= p̂.

Inserting these expressions of fluxes into (25), we obtain (26).

Consequently, the particular choice of the reduced moments (16) ensures the recovery of an Euler-
Poisson type system. Note, however, that the heat flux is a priori non-zero, and there is a priori no
conservation of mass.

4 Numerical results
We test the reduced order model developed in this paper on the Landau damping test case as considered
in [CCL75]. This test consists in considering the following initial distribution:

f(0, x, v) =
1√
2π

exp(−v2/2) (1 + α cos(kx)), x ∈
[
0, 2π/k

]
, v ∈ [−vmax, vmax],

with k = 0.5, vmax = 6. We set α ∈ [0.01, 0.2] and ε ∈ [0.01, 10] in order to assess the method on both
non-linear Landau damping (large α) and collisional regime (small ε). The Vlasov-Poisson-Fokker-
Planck model is discretized with Nx = Nv = 128.

4.1 Reduction for given parameters
In this section, we consider the following parameters: (ε, α) ∈ {0.01, 0.1, 1, 10} × {0.01, 0.1, 0.2}. For
each pair (ε, α), the reduced model is built on Ns = 200 uniform samples. Then we will discuss the
reduced dimensions K, KM , and KQ needed to recover the right dynamics. The final time is taken
equal to T = 40 in this test and δ = 1× 10−10.

Figure 1 shows the singular value distributions corresponding to the samples matrices Ns ×Ns of
the distribution function f , the Maxwellian M(mf) and the collision operator Q(f) for the different
choices of (ε, α). We remark that the singular values associated with the Maxwellian (in green dots)
decrease fast down to 10−11 regardless (ε, α). In red dots, the singular values of the distribution
function decrease slowly for large α and are similar to those of the Maxwellians for small ε. Similarly,
the singular values for the collision operator (in blue dots) increase with both α and ε. For instance,
with ε = 10, they reach a plateau of 10−5 for α = 0.01, 10−3 for α = 0.1 and 10−2 for α = 0.2.
Consequently, the model becomes stiffer with larger values of α and ε. Moreover, vertical lines in
Figure 1 represent the threshold values in order to obtain correct damping results: only eigenvectors
with associated singular values below the threshold are considered in the reduced model. These values
are reported in Table 1.

Figure 2 shows the evolution of the L2 norm of the electric field:

|E(t, .)|L2 =

√∫ 2π
k

0

(−∂xϕ(t, x))2 dx,
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for some pairs (ε, α) obtained with the reduced model, in log scale, and obtained with both the reduced
and the kinetic models. Comparing the results obtained with the reduced model to those obtained
with the kinetic model, we observe that a good damping rate is recovered using the reduced model.
Also, we check that the DEIM and corrected moments do not deteriorate the results.

In conclusion, the reduced model provides good results for various ranges of parameters ε and α
and enables a drastic reduction of unknowns.

(a) ε = 0.01, α = 0.01. (b) ε = 0.01, α = 0.1. (c) ε = 0.01, α = 0.2.

(d) ε = 0.1, α = 0.01. (e) ε = 0.1, α = 0.1. (f) ε = 0.1, α = 0.2.

(g) ε = 1, α = 0.01. (h) ε = 1, α = 0.1. (i) ε = 1, α = 0.2.

(j) ε = 10, α = 0.01. (k) ε = 10, α = 0.1. (l) ε = 10, α = 0.2.

Figure 1: Singular values (σi)i of the samples matrix for the distribution function f , the Maxwellian
M and the collision operator Q.
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ε
α 0.01 0.1 0.2

0.01 (K,KQ,KM ) = (6, 6, 6) (K,KQ,KM ) = (9, 9, 9) (K,KQ,KM ) = (15, 10, 10)
0.1 (K,KQ,KM ) = (5, 3, 3) (K,KQ,KM ) = (9, 5, 5) (K,KQ,KM ) = (10, 7, 7)
1 (K,KQ,KM ) = (7, 7, 7) (K,KQ,KM ) = (7, 7, 7) (K,KQ,KM ) = (7, 7, 7)
10 (K,KQ,KM ) = (11, 11, 11) (K,KQ,KM ) = (11, 11, 11) (K,KQ,KM ) = (11, 11, 11)

Table 1: Number of eigenvectors kept for the solution space (K), the Maxwellian (KM ) and the
collision operator (KQ).

(a) ε = α = 0.01,CFL = 0.0025. (b) ε = 1, α = 0.1,CFL = 0.1. (c) ε = 10, α = 0.2,CFL = 0.5.

Figure 2: Logarithm of the L2 norm of the electric field |E(t, .)|L2 as a function of time for the
reference solution, reduced model, with DEIM and DEIM with corrected moments.

4.2 Preservation of Maxwellian distributions
In Section 3.3, we proposed a second correction of the reduced collisional operator (see Eq. (23)), which
forces it to vanish for reduced Maxwellians thanks to a prefactor. The correction is parameterized by
δ ⩾ 0. This correction is aimed at preserving Maxwellian distributions in time, up to the compression-
decompression error. To assess the effectiveness of this correction, we consider an homogeneous test
case with a Maxwellian initial distribution:

∂tf(t, x, v) =
1

ε
Q(f)(t, x, v), x ∈

[
0, 2π/k

]
, v ∈ [−vmax, vmax],

f(0, x, v) =
1√
2π

e−
v2

2 ,

with the parameter ε ∈ {0.01, 0.1, 1, 10} on the time interval [0, T ] with T = 20. A specific reduced
model is built for each ε using Ns = 200 uniform samples and reduced dimensions (K,KQ,KM ) =
(11, 11, 11). We then compare the solution obtained using the reduced models at time T with the
exact solution f(T, x, v) = f(0, x, v), when using different values of the parameter δ involved in the
correction: from δ = 0, which corresponds to no correction, to δ = 1× 10−2. In Figure 3, we observe
the L2 error for the four different reduced models built for each ε. While for ε = 10, the correction
improves the result by a factor 5 only, the error can be reduced by a factor 1000 when ε = 1. For a
smaller ε = 0.1, the second correction is even more important as the reduced model without correction
(δ = 0) leads to a large error of order 5×10−1, while the correction reduces the error to about 2×10−8

for δ larger than 1 × 10−7. Additionally, for ε = 0.01, when δ values range between 0 and 10−5, the
error remains constant and relatively high. Conversely, the error improves as delta exceeds 10−4.
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Figure 3: L2 error of the DEIM with second correction reduced model as a function of δ

4.3 Generalization to other parameters
In Section 4.1, a different reduced model has been constructed for each set of parameters. Here,
we explore the ability to construct a reduced model valid in a full range of the parameters. This
generalisation property is a key feature: the reduced model could then be used for parameters that are
not involved in the construction of the reduced model, without the need to carry out the full kinetic
simulations. Here, we would like to build a reduced model valid for all the values (ε, α) in the domain
D = [1, 10]× [0.01, 0.1]. Therefore, we consider 25 pairs (ε, α), randomly chosen in D and the reduced
models is built using 30 samples per pairs (ε, α), resulting into Ns = 750 samples. The final time
equals T = 20. We set δ = 1× 10−10.

According to singular value distributions of the sample matrices (see Figure 4), we set K = KM =
KQ = 10. In Figure 4, on the right, is depicted the electric energy field for (ε, α) = (5, 5× 10−2) ∈ D.
We observe that the dynamics are well recovered for each algorithm (with/without DEIM or corrected
moments). We also compute the relative L2 error between the solution of the reduced model after
decompression Φf̂ and the solution of the underlying kinetic model f at the final time T . Furthermore
we compute the L2 norm of the electric field over the time interval [0, T ] in Figure 2. We observe that
each algorithm performs well. Moreover, the error is larger for the corrected DEIM ROM method.

(a) Singular values (σi)i of the snapshots matrix from
the solution u, the Maxwellian M and the collision

operator Q.
(b) Electric energy as a function of time for the

reference solution and each reduced model.

Figure 4: Singular values distributions (left) and logarithm of the norm of the electric field |E(t, .)|L2

as a function of time for (ε, α) = (5, 5× 10−2) ∈ D.

ROM DEIM corrected DEIM

Φf̂(T ) 5.36× 10−4 5.62× 10−4 5.66× 10−4

|E(t, .)|L2 1.73× 10−2 1.85× 10−2 2.63× 10−2

Table 2: relative L2 errors, (ε, α) = (5, 5× 10−2) ∈ D.

11



In addition, we aim to test the reduced model outside its learned domain. We set a final time of
simulation Ttest = 25 > T and consider (ε, α) ∈ Dtest ̸⊂ D. We choose Dtest = {0.1, 0.5, 1, 10, 15, 20}×
{0.2, 0.3} to have more non-linear damping with both collisional and non-collisional regime. The
obtained relative L2 errors on Φf̂ at time Ttest and on the norm of the electric field on the time interval
[0, Ttest] are given in Table 3. Overall, each ROM method provides good results with (t, (α, ε)) ∈
[0, T ]×D and shows good generalisation performance with (t, (α, ε)) ∈ [T, Ttest]×Dtest. For instance,
even with ε = 0.1 and 20, solution errors remain bounded by 2 × 10−1, 2 × 10−2 respectively. Going
outside the training set, the precision of the models decrease slowly and we still have correctness on
both solutions and electric energies.

Going further, we notice that our corrected DEIM ROM performs better when ε < 1. That is due
to the fact that its moments are corrected, such as to obtain an Euler-type system. For example, let
us observe the energy damping with (ε, α) = (0.1, 0.3) on Figure 5a. While the ROM and DEIM ROM
drift from the reference solution, the corrected DEIM ROM remains close to it. On Figure 5b, we
observe that it is no more the case with larger ε.

In conclusion, we have shown that our corrected moments DEIM performs better for small Knudsen
numbers ε ⩽ 1 and is better to be used instead of the usual DEIM. Conversely, this correction is not
effective with large ε > 1 and the latter is better to be used.

α Method ε

0.1 0.5 1 10 15 20

0.2
ROM 1.41× 10−1 5.58× 10−2 3.55× 10−2 6.02× 10−3 4.44× 10−1 6.89× 10−3

DEIM 1.36× 10−1 5.56× 10−2 3.59× 10−2 6.26× 10−3 5.48× 10−3 8.20× 10−3

cDEIM 1.53× 10−2 1.42× 10−2 1.34× 10−2 6.09× 10−3 5.93× 10−3 7.30× 10−3

0.3
ROM 1.94× 10−1 1.18× 10−1 9.62× 10−2 2.15× 10−2 1.75× 10−2 1.62× 10−2

DEIM 1.98× 10−1 1.21× 10−1 9.84× 10−2 2.23× 10−2 1.97× 10−2 1.95× 10−2

cDEIM 3.99× 10−2 4.78× 10−2 3.93× 10−2 1.55× 10−2 1.57× 10−2 1.64× 10−2

(a) relative errors on Φf̂(Ttest).

α Method ε

0.1 0.5 1 10 15 20

0.2
ROM 5.98× 10−1 3.30× 10−1 2.15× 10−1 2.68× 10−2 5.75× 10−2 6.96× 10−2

DEIM 5.79× 10−1 3.27× 10−1 2.12× 10−1 2.69× 10−2 6.52× 10−2 7.92× 10−2

cDEIM 5.42× 10−2 7.35× 10−2 7.83× 10−2 6.75× 10−2 8.92× 10−2 9.30× 10−2

0.3
ROM 6.37× 10−1 4.77× 10−1 3.65× 10−1 6.32× 10−2 5.88× 10−2 6.18× 10−2

DEIM 6.29× 10−1 4.80× 10−1 3.65× 10−1 6.14× 10−2 5.79× 10−2 6.36× 10−2

cDEIM 1.03× 10−1 1.49× 10−1 1.54× 10−1 1.05× 10−1 1.05× 10−1 1.03× 10−1

(b) relative errors on |E(t, .)|L2 over [0, Ttest].

Table 3: relative L2 errors, (α, ε) ∈ Dtest.
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(a) (ε, α) = (0.1, 0.3) (b) (ε, α) = (20, 0.3)

Figure 5: Logarithm of the norm of the electric field as a function of time for several
(t, µ) ∈ [0, Ttest]×Dµ

test.

5 Conclusion
In this paper, we have proposed a reduced order modeling approach in velocity applied to the Vlasov-
Poisson-Fokker-Planck equation. This results in a hyperbolic system with source terms approximating
the dynamics for a given initial data and a given Knudsen number or a range of initial data and
Knudsen numbers. The numerical results show that both collisional and non-collisional regimes can
be approximated with a reduced system of size ≈ 10. We also note that we can consider a smaller
reduced system in a collisional regime. Inversely, the system size should be larger to capture non-
linear dynamics. We have introduced a corrected reduced collision operator that preserves moments.
In addition to ensuring some mathematical structure of the reduced moment equations, it numerically
provides better results in collisional regimes. Finally, to extend the generalization range of the method,
we would have to turn to non-linear reduction methods like quadratic ones [RSK23] or auto-encoder
reduction [KK20].
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A Numerical discretization details

A.1 Discretization of the full model
Equation (7) is a hyperbolic system with a source term whose transport parts can be solved using a
finite volume method, while the Poisson equation (8) is discretized with a finite difference method.
The n-th iteration of the scheme reads:

−
ϕn
i+1 − 2ϕn

i − ϕn
i−1

∆x2
=

1

L

Nx−1∑
i=0

∆x∆v(1, . . . , 1)T fni −∆v(1, . . . , 1)T fni ,

fn+1
i − fni

∆t
+

fn
i+ 1

2

− fn
i− 1

2

∆x
+

(
ϕn
i+1 − ϕn

i−1

2∆x

)
D fni =

1

ε
Q∆v(f

n)i

where fn
i+ 1

2

is an upwind approximation with respect to the velocity given by:

fni+ 1
2
= Diag(v)

fni+1 + fni
2

− Diag(|v|)
fni+1 − fni

2
.

To obtain better accuracy in space, we use a MUSCL method in the upwind flux. The transport
scheme in space and velocity induces a CFL stability condition:

∆t ≤ min
( ∆x

vmax
,

∆v

maxi

∣∣∣ϕn
i+1−ϕn

i−1

2∆x

∣∣∣
)
.

The explicit treatment of the collision operator results in an additional constraint: ∆t ≤ εC∆v2 with
C > 0 related to the discrete Maxwellian distributions [BDS01]. In practice, we take ∆t sufficiently
small in order to ensure the stability of the numerical simulations. Recently, high-order Runge Kutta
methods have been proposed to relax the constraint [CA22].
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A.2 Discretization of the reduced model
Since the reduced model is a hyperbolic system, we use a finite volume scheme. Since the transport is
linear, we consider the upwind scheme, whose fluxes write:

f̂ni+ 1
2
= Â

f̂ni+1 + f̂ni
2

− |Â|
f̂ni+1 − f̂ni

2
. (28)

As for the kinetic solver, we use a MUSCL strategy to obtain second order accuracy.

B Solution to the minimization problem
Proposition 2. Let Φ ∈ MK,Nv , with ΦTΦ = Id, m̂ ∈ M3,K of full rank. Then the unique solution to
the least-square problem:

N̂ c = argmin
N̂∈RK s.t. m̂N̂ = b

∥ΦN̂ −N∥2,

is given by:
N̂ c = ΦTN + m̂T (m̂m̂T )−1

(
b− m̂ΦTN

)
.

Proof. Φ being of full rank, the least-square problem under constraints has a unique solution denoted
N̂ c. Let f(N̂) = ∥ΦN̂ −N∥2. Its gradient is given by:

∇f(N̂) = 2(ΦTΦN̂ − ΦTN) = 2(N̂ − ΦTN).

Applying the Lagrange multiplier method, there exists λ ∈ RK such that

2(N̂ c − ΦTN) + m̂Tλ = 0, (29)

m̂N̂ c = b. (30)

Then multiplying (29) by m̂ and using (30), we get the value of λ:

λ = −2(m̂m̂T )−1(b− m̂ΦTN).

Then, reporting this value into (29), we obtain the expected solution.
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