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SOME REMARKS ABOUT THE WELL-POSEDNESS OF

LIFSHITZ–SLYOZOV’S EQUATIONS WITH NUCLEATION

KINETICS

JUAN CALVO∗, ERWAN HINGANT†, AND ROMAIN YVINEC‡,$

Abstract. The Lifshitz–Slyozov model is a nonlocal transport equation that
can describe certain types of phase transitions in terms of the temporal evo-

lution of a mixture of monomers and aggregates. Most applications of this

model so far do not require boundary conditions. However, there is a recent
interest in situations where a boundary condition might be needed -e.g. in the

context of protein polymerization phenomena. Actually the boundary condi-

tion may change dynamically in time, depending on an activation threshold for
the monomer concentration. This new setting poses a number of mathemati-

cal difficulties for which the existing literature is scarce. In this contribution
we construct examples of solutions for which the boundary condition becomes

activated (resp. deactivated) dynamically in time; we also discuss how to

approach the well-posedness problem for such situations.

1. Introduction

The Lifshitz–Slyozov model describes the temporal evolution of a mixture of
monomers and aggregates. This is done in terms of the monomer concentration
u(t) and the number density for aggregates, f(t, x), where x is a size variable. The
model reads

∂f(t, x)

∂t
+

∂

∂x
[(a(x)u(t)− b(x))f(t, x)] = 0 , t > 0 , x ∈ (0,∞) , (1.1)

u(t) +

∫ ∞
0

xf(t, x) dx = ρ , t > 0 (1.2)

for some given ρ > 0, subject to the initial condition

f(0, x) = f in(x) , x ∈ (0,∞). (1.3)

Here the transport term in (1.1) describes the changes in size aggregates according
to the following interactions: (i) a monomer attaches to a pre-existing aggregate of
size x, with a rate a(x), (ii) a monomer detaches from a pre-existing aggregate of
size x, with a rate b(x). We interpret ρ > 0 as the total mass of the system, hence
(1.2) encodes mass conservation during evolution.
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The former model was initially introduced to describe phase transitions in su-
persaturated solid solutions [12]. In this context we think of x as a volume variable
and we take a(x) ' x1/3, b(x) ' 1. More general kinetic rates can be considered
and in this way we get a general framework that can be applied to describe var-
ious problems in the science of materials (concerning e.g. crystal precipitation or
metal alloys, see for instance [9, 17]). For those descriptions x usually accounts for
aggregate volume and the kinetic rates a, b are such that small aggregates tend to
diminish in size. Actually, the standard dynamics in those scenarios resembles the
so-called “Ostwald ripening” phenomena, where the growth of large aggregates is
promoted thanks to the monomers gained from the shrinkage of small aggregates.

On mathematical grounds, those works analyzing Ostwald ripening phenomena
in the literature assume from the start kinetic rates such that the transport term
in (1.1) always points outwards at size x = 0 [4, 11, 13, 14]. Therefore no boundary
condition is needed to render the problem (1.1)–(1.3) well-posed. However, this
need not be always the case. We discuss below -Proposition 2.6- a family of kinetic
rates such that the transport term becomes characteristic at x = 0 during the
evolution. This shows that in general we must be prepared for the possibility of
having to prescribe a (dynamic) boundary condition in order to have a well-posed
problem. The interesting point here is to relate the eventual boundary condition
with relevant mechanisms of the process we are trying to describe.

One specific context where these ideas sit in naturally is that of protein poly-
merization phenomena, where we think of aggregates as linear chains of length x.
To trigger the linear growth of a certain aggregate by monomer addition at both
ends, a minimal stable structure is needed first to build upon it. We can represent
the formation of such seeds (zero-size aggregates) via a nucleation step involving a
few monomers, e.g. [15, 10, 16]. Therefore, in this context the following boundary
condition seems reasonable:

(a(0)u(t)− b(0))f(t, 0)χ{a(0)u(t)−b(0)≥0} = n(u(t))χ{a(0)u(t)−b(0)≥0}. (1.4)

Here we think of n as a mass action kinetics, i.e. n(u) ' un; however, more general
choices for n can be considered, which opens the room for additional applications
of this description apart from those to protein polymerization.

To date, the literature on (1.1)–(1.3) with an inflow boundary condition like (1.4)
is scarce. Some instances of this boundary condition have been deduced in [6, 8].
The well-posedness for (1.1)–(1.4) has been treated in [2], where it is shown that
only local-in-time solutions can be expected in the general case. This again is due
to the fact that the transport field may change its character at x = 0 in a dynamic
fashion, in such a way that a boundary condition may be needed at earlier times
but not at later times.

Therefore, a global analysis of (1.1)–(1.4) seems necessary but is still lacking.
The aim of this contribution is to give some partial results about its global well-
posedness. Some of these results were announced without proof in [2].

2. Kinetic rates and local-in-time solutions

It is handy to discuss the properties of (1.1)–(1.3) in terms of the ratio between
polymerization and depolymerization rates, which we now introduce.
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Definition 2.1. Assume that a(x) > 0 for a.e. x ∈ R+. We introduce

Φ : R+ → R+, Φ(x) :=
b(x)

a(x)
.

Let Φsup := supx≥0 Φ(x) and Φinf := infx≥0 Φ(x). We also define

Φ0 := lim
x→0

Φ(x) ≥ 0.

We have that 0 ≤ Φinf ≤ Φ0 ≤ Φsup; note that Φ0, Φsup need not be finite.

Well-posedness for (1.1)–(1.3) can be expected to be true if the boundary con-
dition is always “on” (by which we mean a(0)u(t) − b(0) > 0 for every time) or
always “off”. However, temporal dynamics for which u(t) switches between these
two regimes imply a change in the properties of the system. On modeling grounds,
the physical meaning of this need not be clear a priori, depending on the specific
features of the case under study. Besides, this switching may induce purely mathe-
matical effects whose impact on the well-posedness of the model is not clean cut at
first sight. Our investigation here tries to shed some light on this problem. In that
regard, the quantity Φ0 will constitute an important threshold as it will separate
two different dynamic regimes.

To state our results we should make clear what do we mean by solutions to
(1.1)–(1.3). We need to consider several notions of (weak) solutions. Those are
readapted from [2].

Definition 2.2 (Inflow and outflow solutions). Let T ∈ (0,∞]. We say that a
function f is an inflow solution with nucleation kinetics (resp. outflow solution) to
the Lifshitz–Slyozov equation (1.1)–(1.2) on [0, T ) with mass ρ > 0, kinetic rates
{a, b, n} (resp. {a, b}) and initial value f in ∈ L1(0,∞)+ if the following statements
are satisfied:

(1) The function f belongs to C([0, T ), w−L1((0,∞), (1+x) dx)), is nonnegative
and for each T ∗ < T , it also belongs to L∞((0, T ∗), L1((0,∞), (1 + x) dx)).

(2) For every t ∈ [0, T ),

u(t) := ρ−
∫ ∞
0

xf(t, x) dx > Φ0 . (2.1)

(Resp. with < Φ0.)
(3) For all ϕ ∈ C1c ([0, T )× [0,∞)), there holds that∫ T

0

∫ ∞
0

(∂tϕ(t, x) + (a(x)u(t)− b(x))∂xϕ(t, x)) f(t, x) dx dt

+

∫ T

0

ϕ(t, 0)n(u(t)) dt+

∫ ∞
0

ϕ(0, x)f in(x) dx = 0 . (2.2)

(Resp. for all ϕ ∈ C1c ([0, T ) × (0,∞)), in which case the term in n is not
present.)

One of our aims is to generalize these notions to the case in which an admissible
solution can be constructed by merging outflow solutions with inflow solutions. We
introduce the following concept.

Definition 2.3 (Matching solutions). We say that a pair (u, f) is a matching
solution of (1.1)–(1.3) in [0, t∗) with nucleation boundary condition (1.4) and initial
data (uin, f in) if the following conditions hold:
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(1) The set S := {t ∈ [0, t∗)/u(t) = Φ0} is denumerable. Let (0, t∗)\S =
∪n∈N(tn, tn+1).

(2) If u(t) > Φ0 in (tn, tn+1) then f is an inflow solution of (1.1)–(1.4) in
[tn, tn+1) with initial data (f(t−n ), u(t−n )) -that is, we take f in when n = 0,
otherwise we take f(t−n ) as the limit when t ↗ tn in the weak topology of
L1((0,∞), (1 + x) dx).

(3) If u(t) < Φ0 in (tn, tn+1) then f is an outflow solution of (1.1)–(1.3) in
[tn, tn+1) with initial data (f(t−n ), u(t−n )).

(4) u(t) is continuous at each point of S and f(t) is also continuous at each
point of S, with respect to the weak topology of L1((0,∞), (1 + x) dx).

Next we state our hypotheses on the initial datum and the kinetic rates. We will
not be aiming at full generality in this contribution. Therefore, we shall adopt the
following running assumptions:

(1) f in ∈ L1((0,∞), (1 + x)dx)+ and uin := ρ−
∫∞
0
x f in(x) dx ∈ (0, ρ],

(2) The function Φ(x) := a(x)/b(x) is defined for a.e. x > 0 and has a limit
Φ0 ∈ [0,∞] as x→ 0+.

(3) Attachment and detachment rates are globally Lipschitz and positive for
x > 0. As a consequence, there holds that

a(x) ≤ A(1 + x) for some A > 0. (2.3)

(4) n ∈ L∞([Φ0, ρ])+.

A number of additional assumptions will be required at several points of the
document in order to construct specific examples:

There exist xL, C > 0 such that a(x)(ρ− Φ(x)) ≤ C for x ≥ xL, (2.4)

a(x) ≥ a > 0 for every x ≥ 0. (2.5)

Here (2.4) is a way to state that for large sizes attachment does not overwhelm
detachment, whereas (2.5) guarantees that we have a net attachment rate even for
small aggregates.

A suitable adaptation of the results and proofs in [2, 4] provides us the following
local existence result.

Proposition 2.4. Under our running assumptions, the following statements hold
true:

(1) Let uin > Φ0. Then, there exists some t∗ > 0 such that there is a unique
inflow solution with nucleation kinetics of (1.1)–(1.3) on [0, t∗).

(2) Let uin < Φ0 (or uin = Φ0 with (uin)′ < 0). Then, there exists some t∗ > 0
such that there is a unique outflow solution of (1.1)–(1.3) on [0, t∗).

Furthermore, the following statements are fulfilled in both cases:

(1) u ∈ C1([0, t∗)). Actually, the time derivative is given by the following
expression:

du

dt
=

∫ ∞
0

b(x)f(t, x) dx− u(t)

∫ ∞
0

a(x)f(t, x) dx .

(2) Either t∗ = +∞ or t∗ <∞ and limt↗t∗ u(t) = Φ0.
(3) Provided that t∗ <∞, then u′(t) has a limit as t↗ t∗ and f(t) has a limit

as t↗ t∗ in the weak topology of L1((0,∞), (1 + x) dx).
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To investigate prolongability and matching solutions we shall first rule out sit-
uations where inflow solutions will surely not take place. The following provides a
partial generalization of similar results in [1, 5]:

Lemma 2.5. Assume that the initial pair (uin, f in) is such that ρ < Φinf . Then
any outflow solution of the Lifshitz–Slyozov model is global in time. Furthermore,
under any of the following conditions the outflow solution verifies that u(t)↗ ρ as
t→∞:

(1) a(x) ≥ a0x for some a0 > 0 and for every x ∈ [0,∞).
(2) f in is compactly supported and (2.5) holds.

Proof. Solutions are global in time as u(t) cannot reach Φ0. Let us discuss now the
long time behavior. For the first case we use that

u′ =

∫ ∞
0

a(x)(Φ(x)− u(t))f(t, x) dx ≥ (Φinf − ρ)

∫ ∞
0

a(x)f(t, x) dx .

This provides both the time integrability of the first moment and the monotonicity
of u. Thanks to the time integrability we can find a divergent sequence of times
along which the first moment converges to zero. Therefore u converges to ρ as
t→∞ thanks to (1.2).

For the second case we use the representation of outflow solutions in terms of
characteristics, see for instance [4]. Under our hypotheses, the time derivative of
the characteristic curve with data (t, x) can be estimated from above as

d

ds
X(s; t, x) = a(X(s; t, x))(u(s)− Φ(X(s; t, x)))

≤ (ρ− Φinf )a(X(s; t, x)) < a(ρ− Φinf ) < 0 .

Then for a given datum (t, x) the associated characteristic curve leaves [0,+∞) at
some finite instant t′ > t. Therefore the aggregate distribution f vanishes, actually
in finite time. �

For more general sets of kinetic rates, we cannot presently rule out concentration
behavior at zero size when ρ < Φinf -think for instance in a(x) = xα with α ∈ (0, 1).
See [3] for a more detailed investigation of this pathological phenomenon. At any
rate, we will impose the condition Φ0 < ρ in the sequel, in order to allow for inflow
solutions with nucleation kinetics.

Next we state and prove a result concerning local solutions of the Lifshitz–Slyozov
model in the outflow case. We provide a family of kinetic rates for which such local
solutions cannot be extended to a global outflow solution. Thus, not every initial
configuration that starts to evolve as an outflow solution will undergo an Ostwald
ripening dynamics right away. Even in those cases in which that turns out to be
true, a transient with inflow dynamics might take place before that. A restricted
instance of this result was announced in [2].

Proposition 2.6. Assume that lim infx→∞Φ(x) > Φ0 = Φinf > 0 and that Φinf is
only attained at x = 0. Assume also that Φ′(0) > 0. If f in is compactly supported,
(2.4) and (2.5) hold and uin < Φ0 < ρ then every outflow solution of (1.1)-(1.3) is
local in time.
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Proof. Thanks to the hypotheses we can find a concave, strictly increasing profile
Φc such that Φ(x) ≥ Φc(x) for every x ∈ [0,∞) and Φc(0) = Φ0. Then, notice that

u′ ≥
∫ ∞
0

a(x)(Φc(x)− u(t))f(t, x) dx . (2.6)

Since Φc is concave we have

Φc(x) ≥ Φ(0) +
Φc(z)− Φ(0)

z
x, x ∈ [0, z) (2.7)

-recall that Φ(0) = Φinf = Φ0. Now we shall choose z taking into account that we
can control the spatial support of the solution. Namely, if supp f in ⊂ [0, f̄ in) then
thanks to (2.4) there exists C > 0 such that supp f(t) ⊂ [0, f̄ in+ tC] for every t ≥ 0
in the life span of the solution. That enables us to use (2.7) with z(t) = f̄ in + tC.
It follows that

u′ ≥ (Φ0 − u(t))a

∫ z(t)

0

f(t, x) dx+ a
Φc(z(t))− Φ0

z(t)
(ρ− u(t)) . (2.8)

Note that both terms at the right hand side are positive. We drop the first one; to
handle the second we argue by contradiction and assume that u(t) < Φ0 for every
time. In that way we get to

u(t) ≥ uin + (ρ− Φ0)a

∫ t

0

Φc(z(τ))− Φ0

z(τ)
dτ .

The former integral is strictly positive, and so is ρ − Φ0 by assumption. Since
|Φc(z(t))−Φ0| ≥ |Φc(z(0))−Φ0| the time integral diverges logarithmically. Then
u(t) reaches Φ0 in finite time, say u(t∗) = Φ0. Moreover, from (2.8) we can also
deduce that limt↗t∗ u

′(t) > 0. �

3. Prolongability and global solutions

Our next result gives a sufficient condition to merge inflow solutions with nucle-
ation kinetics and outflow solutions.

Proposition 3.1. Given uin = Φ0, assume that u′(0) < 0 (resp. u′(0) > 0). Then
there is some δ > 0 such that (1.1)–(1.3) has an outflow solution (resp. (1.1)–(1.4)
has an inflow solution with nucleation kinetics) for t ∈ (0, δ), agreeing continuously
with the initial data and such that u(t) < Φ0 (resp. u(t) > Φ0) for t ∈ (0, δ).

Proof. Let us deal first with the case of negative starting derivative. We consider
the auxiliary problem given by (1.3) coupled with

∂f

∂t
+

∂

∂x
[((Φ0 − |u(t)− Φ0|)a− b)f ] = 0, (3.1)

in [0, 1)×R+, say. Note that for this problem the characteristics at x = 0 are never
pointing inwards, so there is no need for a boundary condition. Having Lipschitz
rates grants uniqueness of the characteristic curves; moreover, it enables us to apply
a suitable modification of Proposition 2.4 for the above flow in the specific case uin =
Φ0. This provides us with some δ > 0 –which can be estimated from f, a and b– such
that: (i) there is a pair u ∈ C1(0, δ) and f ∈ C([0, T ), w − L1((0,∞), (1 + x) dx))
which matches continuously the initial data, (ii) the pair solves (3.1) coupled with
(1.2) and (1.3), (iii) the given solution satisfies u(t) < Φ0 on (0, δ). Then, we notice
that on (0, δ) problems (1.1)–(1.2)–(1.3) and (3.1)–(1.2)–(1.3) are equivalent for
this solution, thus proving our first claim.
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The proof for the second claim is nearly the same as for the first one. This time
we consider the following auxiliary problem:

∂f

∂t
+

∂

∂x
[((Φ0 + |u(t)− Φ0|)a(x)− b(x))f(t, x)] = 0, (3.2)

for which characteristics at zero are never pointing outwards. This is complemented
with (1.2) and the following boundary condition replacing (1.4):

((Φ0 + |u(t)− Φ0|)a(0)− b(0))f(t, 0) = n(u(t)) .

The remaining steps can be performed as before. �

There are some particular cases in which we can show a priori that t∗ = +∞
in Proposition 2.4 based on the information we have about the temporal evolution
of the monomer concentration. The existing mathematical results for Ostwald
ripening dynamics [4, 11, 13, 14] are based on a set of assumptions on the rates that
guarantee that the transport field will point outwards for every positive time. Here
we provide another result in the same line but with a different way of formulating
the outflow assumptions.

Proposition 3.2. Assume that Φ0 = Φsup. If uin < Φ0 then the outflow solution
of (1.1)–(1.3) satisfies t∗ =∞ and thus it is globally defined.

Proof. This is clearly true in the case Φ0 = Φsup > ρ, since mass conservation
implies that limt↗t∗ u(t) = Φ0 will never happen. Therefore, we focus on the case
Φ0 = Φsup ≤ ρ. Let (f, u) be the solution pair provided by Proposition 2.4. For
any t < t∗ we have that

d

dt
(u(t)− Φsup) = u′(t) ≤ (Φsup − u(t))

∫ ∞
0

a(x)f(t, x) dx.

This implies that

u(t)− Φ0 ≤
(
uin − Φ0

)
exp

{
−
∫ t

0

∫ ∞
0

a(x)f(τ, x) dxdτ

}
≤
(
uin − Φ0

)
exp

{
−At

(
ρ+

∫ ∞
0

f in(x) dx

)}
< 0.

Thus, if we assume t∗ <∞ we arrive to the fact that limt↗t∗ u(t) < Φ0, which is a
contradiction. Therefore we must have t∗ =∞. �

The proof of the former result is very similar to that of the dual statement for
inflow solutions with nucleation kinetics given in [2], Theorem 1.9; we recall it here
for the reader’s convenience:

Proposition 3.3. Assume that Φ0 = Φinf . If uin > Φ0 then the inflow solution
of (1.1)–(1.3) with nucleation kinetics (1.4) satisfies t∗ =∞ and thus it is globally
defined.

3.1. Hints on finite-time crossings. The purpose of this paragraph is to analyze
some situations for which local-in time solutions can be extended to global matching
solutions. Intuitively speaking, a sufficient condition for prolongability would be
as follows: u(t) should reach Φ0 with non-vanishing derivative. Let us show that
this is enough to extend those local solutions constructed in Proposition 2.6, which
exhibit a change from outflow to inflow behavior. This was announced in [2] and
the proof follows similar ideas to those used to prove Theorem 1.9 in that reference.
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Proposition 3.4. Under the same assumptions of Proposition 2.6, there is a
matching solution in the sense of Definition 2.3 which is globally defined and such
that S is a singleton and lim inft→∞ u(t) ≥ Φ0.

Proof. Proposition 2.4 ensures that there is an outflow solution in some nonempty
time interval [0, t∗) in the sense of Definition 2.2, with initial pair (uin, f in). Actu-
ally, t∗ <∞. In fact, Proposition 2.6 shows that

lim
t↗(t∗)−

u(t) = Φ0, lim
t↗(t∗)−

u′(t) < 0.

Next we use Proposition 3.1 with the initial pair (u((t∗)−), f((t∗)−). This produces
an inflow solution with nucleation kinetics in some nonempty interval [t∗, T ). Here
T can be made arbitrary large after Proposition 3.3. Therefore, the concatenation
of the outflow solution in [0, t∗) and the inflow solution with nucleation kinetics in
[t∗,∞) produces a globally defined matching solution. �

Remark 3.5. The matching solution constructed above is actually unique. This is
due to the fact that matching solutions as introduced in Definition 2.3 are actually
such that u(t) is a C1 function of time, check Proposition 2.4. However, this does
not suffice to disregard nonuniqueness phenomena in a general scenario, where we
have to consider the possibility that u′(t) might vanish as we approach t∗.

For completeness we state a dual result, which covers the case of some solutions
whose behavior changes from inflow to outflow. This can be proved using the same
techniques as the previous proposition and extends the scope of the result already
given in [2].

Corollary 3.6. Assume that lim supx→∞ Φ(x) < Φ0 = Φsup <∞ and that Φsup is
only attained at x = 0. Assume that (2.4) is fulfilled. If f in is compactly supported
and uin > Φ0 then there is a matching solution of (1.1)–(1.4) which is globally
defined and such that S is a singleton and lim supt→∞ u(t) ≤ Φ0.
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