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ABSTRACT
A consistent frame for the numerical simulation of lowering operations is investigated in this paper
from a new wave-structure coupling. The mechanical modeling is based on the Compostite-Rigid-
Body Algorithm, which is able to simulate the nonlinear dynamics of multibody systems. The hydro-
dynamic model is based on the weak-scatterer approach, which allows the computation of unsteady
hydrodynamic loads without being limited by the classical hypotheses of the linear potential flow the-
ory. The coupling of these two models leads to the numerical simulation of articulated multibody
systems with large relative motion in waves. The coupling equation is derived in this paper.

This new numerical modeling is compared to the classical linear potential flow theory in the case
of a lowering operation with a payload in the water. The impact of the lowering velocity is studied.
Results show that this new model matches the classical approach for small lowering velocities but as
soon as nonlinearities arise, differences between the two models appear.

1. Introduction
A floating crane vessel is a crane-mounted ship used to

lift or lower heavy payloads. They are widely used in ma-
rine operations, for instance in shipyard or for transportation,
installation or retrieval of offshore marine structures or for
loading arm operations between side-by-side offloading ves-
sels. The development of marine renewable energies leads
to an increase of these installation operations for wind tur-
bine farms Figure 1a or tidal turbines Figure 1b for example.
To schedule these operations, establish the operational con-
ditions (weather windows), design the equipments or predict
the body motions to reduce risks, collisions or any injury to
the workers, numerical simulation has become an essential
tool.

The numerical simulation of lowering or lifting opera-
tions at sea has been extensively studied in the literature.
These works can be gathered in three domains: structural
analysis, hydrodynamic analysis and motion control analy-
sis (not considered here).

Offshore lowering or lifting operations require to model
an articulated multibody system. The first structural studies
were based on simplified approaches. For instance, by as-
sumption, the crane tip follows a prescribed motion. This
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mechanical model uncouples the dynamics of the payload
from the dynamics of the floating crane. It assumes that
the payload does not influence the crane and the supporting
vessel. Elling and McClinton (1973) and Chin et al. (2001)
computed the dynamics of a single concentrated mass, such
as a pendulum, linked to a crane tip by a rigid cable with
a prescribed harmonic displacement of the boom. This ap-
proach allows studying the motion of the payload subject to
a parametric excitation. It is also possible to linearize the
motion equation at the system’s equilibrium position. The
purpose of a linearized model is to perform a frequency-
domain analysis and compute the natural frequencies of the
system (Schellin et al., 1991, 1993). Another simplification
is to consider a two-dimensional problem. Ellermann et al.
(2002) and Ellermann and Kreuzer (2003) simulated a float-
ing crane linked to a suspended lumped mass by assuming a
motion in a vertical plane.

Uncoupled or linearized or two-dimensional models suf-
fer from a lack of generality. Payload dynamics may in-
fluence the motion of the floating crane in case of heavy
lifting operations, nonlinearities are present in the physics
(mechanics, mooring, hoisting cable dynamics, etc.) and
a two-dimensional model restricts the simulation to planar
motions. Thus, more complex coupled models are neces-
sary.

Many studies (VanDenBoom et al. (1988); Schellin et al.
(1993); Witz (1995); Malenica et al. (2005), etc.) were de-
voted to the simulation of a floating crane with a payload
hanging in the air. The problem is in three dimensions and
the cable is either rigid or elastic. Only few studies consider
the payload in the water. The dynamics of a submerged pay-
load with a constrained motion using a rigid cable was stud-
ied by Bai et al. (2014). Hannan and Bai (2016) performed
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(a) Transportation of a wind turbine1

(b) Lifting of a tidal turbine2
Figure 1: Installation operations

a dynamical analysis of the same constrained payload near
a floating barge. The barge was motionless, which simpli-
fied the mechanical problem. They used phase trajectories,
Poincaré maps and bifurcation diagrams to analyse the pay-
load motion in waves.

Since Cha et al. (2010), mechanical models have started
being based on fully coupled multibody dynamics. These
authors used constraint equations to include the internal de-
grees of freedom of their multibody system. Using this ap-
proach, they could simulate two rigid bodies with six degrees
of freedom each and linked by an elastic cable (a floating
crane with a lifted heavy cargo). This model was also used
by Ku and Roh (2015) in order to simulate the dynamic re-

sponse of an offshore wind turbine suspended in the air by a
floating crane.

So far, motion equations were derived specifically for
each multibody system. In case of a change in the multi-
body system, they had to be derived again. Hence, it became
convenient to usemultibody dynamic algorithms towrite au-
tomatically the motion equations for most or any multibody
systems. Three families of multibody systems may be estab-
lished: open-loop or open-chain system Figure 2a, kinematic
trees or open-chain with multiple branches Figure 2b and
closed-loop systems Figure 2c. Open-loop systems are un-
branched kinematic trees and are composed of bodies which
have exactly one ancestor and one successor. With kinematic
trees, each body may have several successors but always a
single ancestor. Closed-loop systems form the most gen-
eral case. Each body may have several successors and an-
cestors, leading to kinematic loops. Ku and Ha (2014) used
multibody dynamic algorithms based on the Newton-Euler
equation to model a heavy load lifting operation with multi-
cranes. These algorithms are based on a recursive formula-
tion and can be applied to all types of multibody systems.
Ham et al. (2015) preferred the Euler-Lagrange equation.
They formulated it with constraint equations. An applica-
tion was done with a dynamic analysis of a floating crane
with two booms and a heavy load in the air.

(a) Open-loop system (b) Kinematic tree (c) Closed-loop system
Figure 2: Sketches of the di�erent multibody system families.
Black circle: body, black point: joint and red arrow: kinematic
loop.

Regarding the hydrodynamic analysis of lowering and
lifting operations, most of the studies were based on the lin-
ear frequency-domain potential flow theory (Van Den Boom
et al., 1988; Schellin et al., 1993; Malenica et al., 2005; Cha
et al., 2010; Ku and Roh, 2015). A linear time-domain po-
tential flow theory was used by Ku and Ha (2014). The lin-
ear theory (both in frequency and time domains) assumes a
small amplitude motion of the bodies and a small steepness
of the waves. The frequency domain also involves the steadi-
ness of the body motions. It is valid when the payload is in
the air as it is the case in the majority of the works. When
the payload is in the water and is lowered or lifted, the lin-
ear potential flow theory is not applicable with consistency.
The presence of two bodies close to each other leads to hy-
drodynamic interactions and the lowering or the lifting of
the payload may involve a large relative amplitude motion.

That is why, Hannan (2014) used a fully nonlinear po-
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tential flow theory to simulate such marine operations in his
PhD work. In this case, the assumptions of the linear theory
do not have to be satisfied. One part of his work focused on
the motion of a fully immersed cylinder in waves and subject
to a constrained pendulum motion with a lowering velocity
(Bai et al., 2014). He also studied the hydrodynamic inter-
actions between a fixed floating barge and the same cylin-
drical payload (Hannan and Bai, 2016). The presence of the
barge close to the payload modified the motion of this latter
due to the hydrodynamic interactions. As the floating crane
was fixed, there was no mechanical interaction but only hy-
drodynamic interactions. A fully nonlinear potential flow
based solver, although more accurate than a linear potential
flow based solver, has limitations and may present numer-
ical challenges. Moreover, the CPU time is much greater
compared to the linear approach. The comparison between
the nonlinear and linear potential flow theory in case of a
lowering or lifting operation has never been achieved nor
quantified in the literature. The interest of a nonlinear hy-
drodynamic stays an assumption yet.

If a payload is made of slender structures, it is possible to
use theMorison’s equation (Morison et al., 1950) to evaluate
the hydrodynamic loads. This approach neglects the diffrac-
tion and the radiation damping and requires the knowledge
of the necessary drag and added-mass coefficients. Accord-
ing to Li et al. (2015) in case of a monopile lowering, this
method overpredicts the response of the bodies. Li et al.
(2015) also developed a new approach based on the interpo-
lation of the radiation loads at various depth of the payload,
in order to assume steady-state conditions. The Morison’s
equation was used too. More accurate results were obtained
than with the Morison’s equation only. But this approach is
limited to slender payloads in case of small lowering velocity
to divide the lowering into stepwise steady-state conditions.

Wuillaume et al. (2017) used another hydrodynamicmodel
to deal with lowering and lifting operation simulations: the
weak-scatterer approach. It was introduced by Pawlowski
and Bass (1991). This approach is based on the potential
flow theory and the weak-scatterer hypothesis. It is assumed
that the scattered wave components are much smaller than
the incident wave components. Therefore large body mo-
tions, steep waves and unsteady hydrodynamic loads may
be taken into account, contrary to the linear potential flow
theory. Since 2012, a potential flow based solver, named
WS_CN following the weak-scatterer hypothesis has been
under development at LHEEA laboratory of Ecole Centrale
de Nantes. The theory and the interest of the method were
presented by Letournel et al. (2018) in the case of various
submerged wave energy converters. WS_CN was extended
to floating bodies by Chauvigné et al. (2015) and to multi-
body simulations by Wuillaume et al. (2018). It was shown
in Wuillaume (2019) that the weak-scatterer hypothesis is
fully relevant when the free surface nonlinearities and the
body nonlinearities are important, whichmakes this approach
consistent for being applied in case of a lowering or lifting
operation.

WS_CN has been partially coupled by Wuillaume et al.
(2017) with InWave (Combourieu et al., 2014) in view of
simulating marine operations, leading to InWaveS_CN. In-
Wave is a multibody solver which models kinematic trees
(Figure 2b) andwas developed by LHEEA laboratory of Ecole
Centrale de Nantes and INNOSEA. The multibody dynam-
ics algorithm of InWave is the Composite-Rigid-Body Al-
gorithm. The solving of the wave-structure interaction was
achieved in case of a single body subject to hydrodynamic
loads and being the base of themultibody system (body num-
bered 0 in Figure 2). Thus, only a payload in the air could
be considered.

The first objective of this study is the development of the
coupling between the Composite-Rigid-Body Algorithm of
InWave and the weak-scatterer approach of WS_CN in view
of developing a numerical tool, InWaveS_CN, able to simu-
late with consistency a lowering operation with an immersed
payload. The second objective is the comparison of such a
modeling with the classical approach used in the litterature
based on the linear potential flow theory.

The three first parts are dedicated to the presentation of
the governing equations of the Composite-Rigid-Body Al-
gorithm, the cablemodeling and theweak-scatterer approach,
respectively. Then, the coupling equation is derived in the
fourth part. Finally, a comparison is made with the classical
approach in the last part.

2. Governing multibody equations
The dynamics algorithm used through the numerical tool

InWave is the Composite-Rigid-bodyAlgorithm (CRBA). The
CRBA simulates kinematic trees (Figure 2b) made of rigid
bodies. By definition, the multibody system has n+1 bodies
and each body has a number. The body numbered 0 is the
base of the multibody system. Other bodies are numbered
with increasing order from the base. Each body has a local
frame Σj , of originOj . The position of the center of gravity
Gj of body j with respect to Σj is noted jSj . The local baseframe Σ0 is defined with respect to the global earth-fixed in-ertial frame Σe, of origin Oe. Only kinematic trees are con-
sidered, so each body j has a unique ancestor aj . Only the
base has no ancestor.

The base is also the unique body for which Cartesian
coordinates with respect to Σe are used. Other bodies are
located using the modified Denavit-Hartenberg parameters
(mDH) (Khalil and Kleinfinger, 1986), which are a reduced
set of coordinates to locate a body relatively to its unique
ancestor. Their definition may be found in Rongère and Clé-
ment (2013). Only one-degree-of-freedom joints are consid-
ered, either revolute or prismatic. A revolute joint, respec-
tively a prismatic joint, grants for a rotation, respectively a
translation, between two bodies. The articular variable for
the joint j is noted qj . The parameter �j gives the nature ofthe joint j such as �j = 0 for revolute and 1 for prismatic.
More complex joints may be produced using massless bod-
ies to ensure the necessary degrees of freedom.
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2.1. Kinematic recursive equations
To perform automatic dynamic computations, it is nec-

essary to write the kinematic recursive equations between
the bodies. To do so, several elementary quantities are de-
fined and evaluated. From the modified Denavit-Hartenberg
parameters, it is possible to compute (Rongère and Clément,
2013):

• ajRj : the rotation matrix from Σj to the ancestor localframe Σaj ;
• ajPj : the position of the origin of Σj from the origin

of Σaj and expressed in Σaj .
The six-component generalized position vector to locate

Σj with respect to Σe in term of position and orientation is:

�j =

(

(

xj yj zj
)T

(

'j �j  j
)T

)

(1)

with xj , yj , zj , 'j , �j and  j the surge, sway, heave, roll,
pitch and yaw of the body j, respectively. Cardan angles
are used.

The six-component generalized velocity vector of body
j with respect to Σe and expressed in Σj is:

jVj =
( jvj
j!j

)

(2)

with:
• jvj the linear velocity of body j with respect to Σe atthe point Oj and expressed in Σj .
• j!j the angular velocity of body j with respect to Σeand expressed in Σj .
The kinematic recursive equation for velocities is for the

body j of unique ancestor i = aj (Rongère and Clément,
2013):

jVj = jTi iVi + q̇j jaj (3)
with:

• jTi the transformationmatrix between the six-component
generalized velocity vectors:

jTi =
( jRi − jRi S(iPj)
03×3 jRi

)

(4)

• S the skew-symmetric matrix of the cross product de-
fined in Eq. (66);

• jaj the six-component generalized joint axis:
jaj =

(

�j jzTj �̄j jzTj
)T (5)

• jzj the joint axis of joint j in Σj :
jzj =

(

0 0 1
)T (6)

The kinematic recursive equation for accelerations is for
the body j of unique ancestor i = aj (Rongère and Clément,
2013):

jV̇j = jTi iV̇i + j
j + q̈j jaj (7)
with:

• jV̇j the projection in Σj of the generalized accelera-
tion vector of body j with respect to Σe:

jV̇j =
( j v̇j
j!̇j

)

=
( jRe ev̇j
jRe e!̇j

)

(8)

• j
j the Coriolis and relative angular and linear accel-
erations:

j
j =
( jRi S(i!i)S(i!i) iPj + 2�j q̇jS( jRi i!i ) jzj

(1 − �j)q̇jS( jRi i!i ) jzj

)

(9)

2.2. Multibody motion equation
The Composite-Rigid-Body Algorithm is based on the

Newton-Euler equations. The multibody motion equation
is:

HMB(q)
(

0V̇0
q̈

)

=
(

06×1
�

)

− C(q, q̇) (10)

with:
• HMB =

(

H11 H12
H21 H22

)

the (6+n)×(6+n) generalized
mass matrix of the multibody system;

• H11 the (6 × 6) mass matrix of the whole multibody
system seen as a single rigid body;

• H22 the (n × n) mass matrix of the multibody system
when the base is fixed;

• H12 the (6 × n) coupled mass matrix representing the
inertial effects caused by the articulations on the base;

• H21 = HT12 the (n × 6) coupled mass matrix repre-
senting the inertial effects caused by the base on the
articulations;

• C =
(

C1
C2

)

the (6 + n) vector of the external loads
and the Coriolis and relative accelerations on the base
(C1) and the articulations (C2). This vector dependsneither on the base acceleration 0V̇0 nor on the artic-
ular articulation q̈.

• � the (6 + n) vector of the internal loads along or
around the joint axes;

• 0V̇0 the acceleration of the base with respect to the
global inertial frame and expressed in the base local
frame;
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• q̈ the vector of the articular accelerations.
The solving of Eq. (10) requires the knowledge ofHMB ,

C and �. This latter is defined by the user of the multibody
solver. The CRBA aims at computingHMB andC. It unfolds
in three steps:

• a forward loop over the bodies in ascending order for
evaluting the elementary kinematic quantities such as
iRj , iPj , iTj , jVj or j
j ;

• a backward loop in descending order for computing
the necessary projections of the mass matrices and the
external and inertial loads;

• the construction of HMB and C.
The details on each step may be found in Wuillaume (2019).

3. Cable modeling
The numerical simulation of a lowering operation re-

quires to model the cable which links the barge with its pay-
load. To do so, the cable is discretized into cable elements
and nodes where the mass is concentrated. Nodes are con-
nected by spring-damper systems. When this approach is
based on Cartesian coordinates, it is named the lumped mass
method (Masciola et al., 2014; Hall and Goupee, 2015). The
Composite-Rigid-Body Algorithm may be also used to sim-
ulate cables with the same modeling. Each cable element is
composed of three joints to ensure two rotations at the posi-
tion of the node and one translation to take into account the
stretching along the cable element linked to the node. Thus
two revolute joints and one prismatic joint are used. The
bending and the torsion of the cable are neglected. Conse-
quently, the internal loads are only present in the prismatic
joint. For the joint j, they are defined by (Wuillaume et al.,
2017):

Γj =

⎧

⎪

⎨

⎪

⎩

−EA
Lu

(qj + Lu) −
CA
Lu

q̇j if |qj| ⩾ Lu

−CA
Lu

q̇j otherwise
(11)

with E, C , A and Lu the Young’s modulus, the damping
coefficient, the cross sectional area of the cable and its un-
stretched length.

The lumped mass method and the cable modeling using
the CRBA were compared by Wuillaume et al. (2017) and
found identical.

As the payload is lowered, a winch is also necessary.
During the pay-out, the unstretched length of the cable el-
ement connecting to the winch (located at the crane tip) is
increased. The lowering velocity is assumed constant. Once
the cable length is assumed too long, the first element is di-
vided into two elements, as presented in Figure 3. Thus the
cable element linked to the winch is a variable-length ele-
ment while the other ones are constant-length elements. The

cable loads of the variable-length element become:

Γj =

⎧

⎪

⎨

⎪

⎩

− EA
Lu(t)

(qj + Lu(t)) −
CA
Lu(t)

(q̇j + vd(t)) if |qj| ⩾ Lu(t)

− CA
Lu(t)

(q̇j + vd(t)) otherwise
(12)

with vd the deployment velocity, which is negative for a low-
ering operation.

Figure 3: Sketch of a cable splitting during the pay-out of a
cable. The vectors r represent the position of the nodes. The
winch is at the node 0.

4. Governing fluid equations
The fluid is assumed incompressible and inviscidwhereas

the flow is considered as irrotational. Thereby, the fluid prob-
lem is solved in the frame of the potential flow theory. The
velocity field results from a scalar velocity potential:

v = ∇� (13)
The velocity potential, respectively the wave elevation,

is decomposed as an unknown scattered (perturbation) com-
ponent�P and a known incident component�I , respectively
�P and �I :

{

� = �I + �P

� = �I + �P
(14)

The incident wave field is based on the Airy wave theory:

�I =
Ag
!
cosh[k(z + ℎ)]
cosh(kℎ)

sin[k(x cos(�)+y sin(�))−!t]

(15)
where A, !, k and � represent the wave amplitude, the wave
frequency, the wave number and the wave angle of the wave.
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Theweak-scatterer hypothesis assumes the perturbed quan-
tities have to be small compared to the incident quantities:

{

�P ≪ �I

�P ≪ �I
(16)

�P satisfies the Laplace’s equation:
Δ�P = 0 (17)

By using the Green’s second identity, the integral equa-
tion arises:

−�P (xi)Ω(xi) −∬
�P (xj)

)G
)nj

(xi, xj) dS

+∬
G(xi, xj)

)�P

)n
(xj) dS = 0

(18)

where xi and xj are two points ofℝ3. Ω(xi) is the solid angleat the point xi.  denotes the boundary of the fluid domain.
G is the Rankine source Green’s function.

The discretization of Eq. (18) at every node of the mesh
leads to:

G�P = H�Pn (19)
whereG andH are the influence matrices. Their expression
are given in Letournel et al. (2018). �P and�Pn are the veloc-
ity potential and normal velocity vectors of size the number
of nodes in the mesh.

The no-flux condition through the body surfaces leads to
the following body condition:

)�P

)n
= −

)�I

)n
+ vSolid ⋅ n on SB(t) (20)

The far field condition is:
⎧

⎪

⎨

⎪

⎩

�P ←←←←←←←←←←←←←←←←←←←←←←←←←←→
r→+∞

0

�P ←←←←←←←←←←←←←←←←←←←←←←←←←←→
r→+∞

0
(21)

The velocity potential and its normal-derivative are ob-
tained from the first boundary value problem (BVP) consti-
tuted of Eq. (19), (20) and (21) and the free surface boundary
conditions.

At t = 0 s, the flow is assumed to be at rest. The initial
condition on the scattererd components is:

{

�P = 0

�P = 0
(22)

To avoid the generation of non-physical and spurious
waves due to the abrupt appearance of the bodies in the flow,
a ramp function is applied on the body condition:

f (t) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0 when t ⩽ T1
1 when t ⩾ T2

1
2

[

1 − cos
(

�
t − T1
T2 − T1

)]

otherwise
(23)

with T1 and T2 the starting and final time of application of
the ramp function.

The application of the weak-scatterer hypothesis in the
Bernoulli’s equation gives the following expression of the
pressure:

p = −�
(

�̇I + �̇P + 1
2
∇�I ⋅ ∇�I + ∇�I ⋅ ∇�P + gz

)

(24)
Then, the hydrodynamic loads on body j at its center of

gravity eSj in the global frame Σe are:

eFWSC
j =

⎛

⎜

⎜

⎜

⎜

⎝

−∬SBj (t)
pn dS

−∬SBj (t)
p(x − eSj) × n dS

⎞

⎟

⎟

⎟

⎟

⎠

(25)

with SBj the wetted surface of body j and n the inward nor-mal vector.
The time-derivative of the scattered velocity potential,

present in Eq. (24), is computed by solving a second Bound-
ary Value Problem (Letournel et al., 2018). The integral
equation of the second BVP becomes:

G�̇ = H�̇n (26)
The time-derivative of the velocity potential �̇P is known

on the free surface from the free surface boundary equa-
tions and on the body surfaces from the time-derivative of
the body condition (Letournel et al., 2017). After discretiza-
tion, it comes for body j:

�̇Pn (Bj) = −�̇
I
n (Bj) + CKj �̈j +Qj (27)

�̈j represents the Cartesian acceleration of body j at its cen-ter of gravity and expressed in Σe. The expressions of the
matrixCKj and the vectorQj are given in Letournel (2015).The motion equation expressed in Σe (by considering thehydrodynamic loads only) is used to close the system of dif-
ferential equations:

eMj �̈j =e FWSC
j (28)

where eMj is the mass matrix of the body j.
The discretization of the hydrodynamic loads leads to

(Wuillaume, 2019):
eFWSC

j = eCTj�̇
P (Bj) + eTWSC

j (29)
The expressions of the matrix eCTj and the vector eTWSC

jare given in Letournel (2015).
Finally, the secondBoundaryValue Problem used to solve

the wave-structure interaction is formed of Eq. (26), (27),
(28) and (29). These governing equations are used in the
numerical tool WS_CN. More details may be found in Wuil-
laume (2019).
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5. Coupling equation of the wave-structure
interaction
Two main strategies for solving multiphysics problems,

such as wave-structure problems, exist: monolithic approach
and partitioned approach (Felippa et al., 2001). With amono-
lithic approach, the governing differential equations are time-
stepped simultaneously in a single numerical tool. This sys-
tem of differential equations is called the coupling equation.
The advantages of a monolithic approach are the robustness
and the accuracy. But this approach involves a complex as-
sembling and solving of the set of equations. A distinction
is made between a monolithic formulation where a new nu-
merical tool is created ex nihilo, including all the solvers,
and a tight coupling in which different independent subsys-
tems solving a unique field of the physics are linked through
a coupling equation and time-stepped simultaneously.

Tight couplings are part of the partitioned approach (Gasmi
et al., 2013). With such an approach, each field of the physics
is treated in isolation. If the governing equations are sep-
arately stepped in time, the coupling is loose, otherwise it
is tight. The main advantage of the partitioned approach is
the inherent modularity. Tight coupling also have the advan-
tages of themonolithic approach and their drawbacks. Loose
couplings allows fitting the time step, the time integrator and
more generally the physical model for every field solver. The
main drawbacks are the stability problems due to the time lag
between the time integrations of the field solvers. It results
in an artificial increase or decrease of the energy in the sys-
tem which leads to a loss of accuracy (Piperno and Farhat,
2001). Loose couplings may be split between explicit or se-
quential couplings and implicit or iterative couplings. By
using a retroactive loop, an implicit coupling leads to the
same results as a monolithic approach, other things being
equal. Figure 4 summarized the main strategies of multi-
physics problem solving.

Figure 4: Main coupling strategies

To reach a robust, stable and accurate couplingwhile cre-
ating a modular architecture, a tight coupling between the
Composite-Rigid-BodyAlgorithm and theweak-scatterer ap-
proach is chosen. Consequently, it is necessary to solve both
the mechanical and fluid governing equations at the same
time. It requires the introduction of the hydrodynamic loads
Eq. (29) in the multibody motion equation Eq. (4) and the

expression of the body condition Eq. (27) with respect to
the articular acceleration q̈. The integral equation Eq. (26)
of the second Boundary Value Problem stays unchanged.
5.1. Multibody motion equation

The introduction of the hydrodynamic loads Eq. (29) in
the multibody motion equation Eq. (4) leads to:

HMB
(

0V̇0
q̈

)

=
(

06×1
�

)

− C +
( 0FWSC

�WSC

)

(30)
0FWSC is the sum of all hydrodynamic loads acting on

the whole multibody system at O0 and projected in the baseframe:
0FWSC =

∑

j∈WSC

0Nje
eGj eFWSC

j (31)

with:
• WSC the set of the bodies subject to hydrodynamic

loads. Each hydrodynamic body has a number in the
multibody system and a number in WSC . There is:

card(WSC ) = NWSC (32)
card(∗) represents the number of elements of a set and
NWSC the number of bodies subject to hydrodynam-
ics loads.

• eFWSC
j the hydrodynamic loads acting on the body j

at Gj in Σe given by Eq. (29);
• eGj the (6 × 6) matrix to change the point of compu-

tation of the hydrodynamic loads from Gj to Oj :
eGj =

(

I3 03×3
S( eRj jSj ) I3

)

(33)

• 0Nje the (6 × 6) matrix to project the hydrodynamic
loads into the base frame from Oj to O0:

0Nje =
( 0Re 03×3
S( 0Pj ) 0Re 0Re

)

(34)

�WSC is the sum of the hydrodynamic articular loads:
�WSC =

∑

j∈WSC⧵{0}

�WSC
j (35)

where �WSC
j is the projection of the hydrodynamic loads

acting on the body j into the articular space (Featherstone,
2008):

�WSC
j = jJTj

j�e eGj eFWSC
j (36)

with:
• j�e the (6× 6) projection matrix of the hydrodynamic

loads from Σe to Σj :
j�e =

( jRe 03×3
03×3 jRe

)

(37)

Wuillaume et al.: Preprint submitted to Elsevier Page 7 of 16



Short Title of the Article

• jJj the (6 × n) Jacobian matrix of the body j, defined
by:

jVj = jT0 0V0 + jJj q̇ (38)
The Jacobian matrix represents the mapping between the op-
erating space (using Cartesian coordinates) and the articular
space (using articular variables). If the base is fixed, the ktℎ
column of jJj represents the contribution of the ktℎ articularvelocity to the Cartesian velocity jVj . Following this defini-tion, the Jacobian matrix does not exist for the base (j = 0).

Eq. (30) becomes:

HMB
(

0V̇0
q̈

)

−

⎛

⎜

⎜

⎜

⎝

∑

j∈WSC

0Nje eGj eCTj �̇
P (Bj)

∑

j∈WSC⧵{0}

jJTj
j�e eGj eCTj �̇

P (Bj)

⎞

⎟

⎟

⎟

⎠

=
(

06×1
�

)

−C+
⎛

⎜

⎜

⎜

⎝

∑

j∈WSC

0Nje eGj eTWSC
j

∑

j∈WSC⧵{0}

jJTj
j�e eGj eTWSC

j

⎞

⎟

⎟

⎟

⎠

(39)
5.2. Body condition

The body condition Eq. (27) is expressed with respect
to the Cartesian accelerations �̈j whereas the motion equa-
tion Eq. (39) is based on the articular accelerations q̈. In
order to form a linear system, it is necessary to use the same
unknowns, namely the articular accelerations because they
are a reduced set of coordinates. To do so, the first step is
to write the Cartesian velocity with respect to the velocity
of the base and the articular velocities. The angular velocity
of the body e!j in Σe depends on the time-derivative of the
Cardan angles:

e!j = Sj
⎛

⎜

⎜

⎝

'̇j
�̇j
 ̇j

⎞

⎟

⎟

⎠

(40)

with:

Sj =
⎛

⎜

⎜

⎝

cos(�j) cos( j) − sin( j) 0
cos(�j) sin( j) cos( j) 0
− sin(�j) 0 1

⎞

⎟

⎟

⎠

(41)

eVj is the Cartesian velocity of body j atOj with respecttoΣe. �̇j is expressed atGj and using the Cardan angles. eVjand �̇j are related by:
�̇j = �−1j

eVj (42)
with:

�−1j =
(

I3 −S( eRj jSj )
03×3 S−1j

)

(43)

The (6× (n+6)) generalized Jacobian matrix e�j allowsto relate the (6×1) velocity vector of body j in Σe to the baseand articular velocities:
eVj = e�j

(0V0
q̇

)

(44)

The ktℎ column of e�j represents the contribution of the ktℎ
component of the base velocity 0V0, if k ⩽ 6, or the ktℎ, if
k > 6, articular velocity to the Cartesian velocity eVj .

After time-differentiation of Eq. (44) and Eq. (42) and
the introduction of Eq. (67), the Cartesian acceleration, �̈j ,can be expressed as function of the base and articular accel-
erations:

�̈j = �̇
−1
j

e�j
(0V0
q̇

)

+ �−1j
e�̇j

(0V0
q̇

)

+ �−1j
e�j

⎡

⎢

⎢

⎣

(

0V̇0
q̈

)

−
⎛

⎜

⎜

⎝

(

S( 0!0 ) 0v0
03×1

)

0n×1

⎞

⎟

⎟

⎠

⎤

⎥

⎥

⎦

(45)

The time-derivation of �−1j is expressed by:

�̇−1j =
(03×3 − eRj S( j!j )S( jSj ) jRe
03×3 −S−1j ṠjS

−1
j

)

(46)

Finally, the introduction of Eq. (45) in Eq. (27) yields:

�̇Pn (Bj) = −�̇
I
n (Bj) + CKj�

−1
j

e�j
(

0V̇0
q̈

)

+ CKj(�̇−1j
e�j + �−1j

e�̇j )
(0V0
q̇

)

− CKj�−1j
e�j

⎛

⎜

⎜

⎝

(

S( 0!0 ) 0v0
03×1

)

0n×1

⎞

⎟

⎟

⎠

+Qj (47)

It remains to clarify the expressions of the Jacobian ma-
trix jJj , the generalized Jacobian matrix e�j and its time-
differentiation e�̇j .
5.3. Jacobian matrices

From the definition of the Jacobian matrices, let us con-
sider the ktℎ articulation of a multibody system and a body
j such as j > k. The base is assumed motionless. The artic-
ular velocity q̇k leads to a velocity vector kVkj for the body
j:

kVkj =
([

�k kzk + �̄k(kzk × kPj )
]

q̇k
�̄k kzk q̇k

)

(48)

By summing the contributions of all the joints of the di-
rect branch �(j) containing the set of bodies on the direct
branch between the base (not included) and the body j (in-
cluded), one can have:

Vj =
∑

k∈�(j)

kVkj (49)

=
⎛

⎜

⎜

⎝

∑

k∈�(j)

[

�k kzk + �̄k(kzk × kPj )
]

q̇k
∑

k∈�(j)
�̄k kzk q̇k

⎞

⎟

⎟

⎠

(50)

Wuillaume et al.: Preprint submitted to Elsevier Page 8 of 16



Short Title of the Article

It is necessary to define a common frame of projection, for
instance Σj :

jVj =
⎛

⎜

⎜

⎝

∑

k∈�(j)

[

�k jzk + �̄kS( jzk ) jRk kPj )
]

q̇k
∑

k∈�(j)
�̄k jzk q̇k

⎞

⎟

⎟

⎠

(51)

Thus, following the matrix format of Eq. (38), the expres-
sion of jJj is:

colk( jJj ) =
⎧

⎪

⎨

⎪

⎩

(

[

�k jzk + �̄kS( jzk ) jRk kPj )
]

q̇k
�̄k jzk q̇k

)

if k ∈ �(j)
06×1 if k ∉ �(j)

(52)
The change of frames is achieved using the projection

matrix Eq. (37), for instance in the base frame:
0Jj = 0�j jJj (53)

5.4. Expression of e�jThe projection in Σe of Eq. (38) leads to:
eVj = e�0

( 0Lj 0V0 + 0Jj q̇
) (54)

where:
• 0Lj changes the point of computation of 0V0 fromO0to Oj :

0Lj =
(

I3 −S( 0Pj )
03×3 I3

)

(55)

• the expression of 0Jj is given by Eq. (53).
Based on Eq. (44), the expression of the generalized Ja-

cobian matrix is:

e�j =
⎧

⎪

⎨

⎪

⎩

e�0
(

0Lj 0Jj
)

if j ≠ 0
e�0

(

0Lj 06×n
)

if j = 0 (56)

5.5. Expression of e�̇jThe time-differentiation of Eq. (56) is challenging be-
cause of the Jacobian matrix 0Jj . Twomethods exist to com-
pute the time-derivation of such a Jacobian matrix. The first
one is a direct calculation as presented by Hourtash (2005).
The drawback of this approach is its complexity. The second
method is based on a recursive algorithm which computes
e�̇j

(0V0
q̇

)

instead of e�̇j directly (Khalil and Chevallereau,
1987).

The time-derivative of Eq. (44) is:

eV̇j = e�̇j
(0V0
q̇

)

+ e�j
⎡

⎢

⎢

⎣

(

0V̇0
q̈

)

−
⎛

⎜

⎜

⎝

(

S( 0!0 ) 0v0
03×1

)

0n×1

⎞

⎟

⎟

⎠

⎤

⎥

⎥

⎦

(57)
Assuming 0V̇0 = 06×1 and q̈ = 0n×1 and applying Eq. (56):

eV̇∗j =
e�̇j

(0V0
q̇

)

− e�0
(

S( 0!0 ) 0v0
03×1

)

(58)

By denoting:
eV̇∗j =

eV̇j
|

|

|

|

0V̇0=06×1
q̈=0n×1

(59)

eV̇∗j can also be expressed by:
eV̇∗j =

e�j jV̇∗j (60)
The introduction of Eq. (60) in Eq. (58) gives:

e�̇j
(0V0
q̇

)

= e�j jV̇∗j +
e�0

(

S( 0!0 ) 0v0
03×1

)

(61)

Using the assumption q̈ = 0n×1 in Eq. (7) allows writing for
i = aj :

jV̇∗j =
jTi iV̇∗i +

j
j (62)

While the hypothesis 0V̇0 = 06×1 initializes this recursiveequation:
0V̇∗0 = 06×1 (63)

Using Eq. (62) and (63), jV̇∗j can be computed for each
body during the Composite-Rigid-Body Algorithm. Then,
the quantity e�̇j

(0V0
q̇

)

can be calculated from Eq. (61).
Thereby:

e�̇j
(0V0
q̇

)

=

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

e�j jV̇∗j +
e�0

(

S( 0!0 ) 0v0
03×1

)

with:
jV̇∗j =

jTi iV̇∗i +
j
j for i = aj

0V̇∗0 = 06×1

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

if j ≠ 0

e�0

(

S( 0!0 ) 0v0
03×1

)

if j = 0

(64)

5.6. Final linear system
The coupling equation between the Composite-Rigid-Body

Algorithm and the weak-scatterer approach is formed of Eq.
(26), (39) and (47) and leads to a linear system AX = B.
The time-stepping is achieved using a fourth-order explicit
Runge-Kutta scheme.

The Composite-Rigid-Body Algorithm is implemented
in C++ in the numerical tool InWavewhile theweak-scatterer
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approach is implemented in Fortran 90 in the solver WS_CN.
Thus, a language binding is mandatory because of the two
different programming languages. The co-simulation is driven
in a Python environment. Cython makes the language bind-
ing between the C++ source code (Behnel et al., 2011) and
the Python glue code whereas f2py does the same for the
Fortran 90 source code (Peterson, 2009).

The creation and the solving of the tight wave-structure
coupling along with the temporal loop of the co-simulation
are achieved by a Python numerical tool named InWaveS_CN.
Figure 5 presents the relationships between InWave, WS_CN
and InWaveS_CN.

Figure 5: Language binding between InWave and WS_CN
using Python as glue code language. The red, green and blue
colors represent the C++, Python and Fortran languages.

The implementation of the tight coupling between In-
Wave and WS_CN unfolds in five steps:

InWave performs the three stages of the Composite-
Rigid-Body Algorithm while WS_CN solves the first
boundary value problem;

The quantities, required for solving thewave-structure
interaction, are sent to InWaveS_CN;

The linear system AX = B is formed;
The iterative method GMRES is applied to solve

the linear system;
The solution is assigned to the fluid and mechan-

ical solvers, the multibody acceleration is expressed
into the Cartesian space. The state vector of each solver
is time-stepped.

Figure 6 presents the flow diagram of the five differ-
ent steps. Only one stage of the fourth-order Runge-Kutta
method is represented.

6. Lowering operation simulations
This part presents the application of the coupling be-

tween the Composite-Rigid-Algorithm and theweak-scatterer

Figure 6: The �ve steps of the tight coupling between InWave
and WS_CN. The red, green and blue colors represent the
C++, Python and Fortran languages. The arrows denote the
communication between the modules. The color of the arrows
depends on the programming language which sends the data.
The superscript n denotes the ntℎ time step.

approach through InWaveS_CN in the case of a lowering op-
eration with an immersed payload and its comparison with
InWave (Combourieu et al., 2014).
6.1. Crane barge and payload

A cylindrical floating crane barge is considered with a
spherical payload connected to the crane tip by a cable. The
geometrical and inertial properties of the barge and the pay-
load are presented in Table 1. The center of gravity of the
barge, respectively the payload, is at the center of the cylin-
der, respectively the sphere. The crane is considered as being
part of the barge. The cable goes from the crane tip to the
sphere center. Its mechanical properties are given in Table 2.
The cable is considered as very stiff. Its mass and the hydro-
dynamic loads applying on it are neglected. The mechanical
system formed by the barge and the payload are composed
of 4 bodies: the base (numbered 0) and the three bodies nec-
essary for modeling the cable. The payload is represented by
the last body (numbered 3) which is also used for the cable.

Due to the presence of the payload, the barge has a static
angle of 1.007° in pitch.

Table 1

Geometrical and inertial properties of the barge and the
payload at their center of gravity

Barge Payload

Radius (m) 1 0.2
Height (m) 0.6 ø
Initial position (m) (−0.5, 0, 0) (1.5, 0,−0.4)
Mass (kg) 966.04 40
Ixx (kgm2) 270.49 0.64
Iyy (kgm2) 270.49 0.64
Izz (kgm2) 483.02 0.64
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Table 2

Mechanical properties of the cable

Cable

Number of cable elements 1
Unstretched length (m) 2.9
Axial sti�ness (N∕m) 344816
Axial damping (N∕m s) 344,8
Endpoint 1 (m) (1.5, 0, 2.5)
Endpoint 2 (m) (1.5, 0,−0.4)

6.2. Validation in seakeeping
This section presents the comparison between InWave

and InWaveS_CN on the seakeeping of the barge and the pay-
load connected by a cable in a regular wave field. These two
numerical tools are based on the Composite-Rigid-Body Al-
gorithm. Regarding the hydrodynamic theory, InWave uses
Nemoh (Babarit andDelhommeau, 2015), the linear frequency-
domain potential flow based solver of Ecole Centrale deNantes
whereas InWaveS_CN used the weak-scatterer approach of
WS_CN. Therefore, the hydrodynamic theories along with
the wave-structure couplings are different but the dynamics
algorithms are identical. The incident wave field is a regular
Airy wave of amplitude 1mm, wave frequency 6.4 rad∕s and
coming from the positive y. Thewater density is 1025 kg∕m3
and the water depth 10m. A ramp is applied for 15 s. The
meshes used in Nemoh (for InWave) are shown in Figure 7,
while the initial mesh used in InWaveS_CN is displayed in
Figure 8. The simulation lasts 40 s. The comparison of the
heave and pitch motion of the barge is presented in Figure 9.
Once the steady state is reached, InWave and InWaveS_CN
match as expected with a small steeness wave. This result
validates the implementation of the coupling equation pre-
sented in the last section.
6.3. Lowering velocity rise

A lowering velocity rise is now applied to study the effect
of the unsteadyness and the body nonlinearities in a lowering
operation. The incident wave field stays identical to the one
used in the seakeeping case. The lowering velocity is applied
between t = 5s and t = 35s. The considered lowering ve-
locity are: 0.0005m∕s, 0.0015m∕s, 0.003m∕s, 0.005m∕s,
0.008m∕s, 0.015m∕s, 0.025m∕s and 0.035m∕s. The com-
parison between InWave and InWaveS_CN are presented in
Figure 10, Figure 11, Figure 12, Figure 13, Figure 14, Fig-
ure 15, Figure 16 and Figure 17, respectively. As all the sim-
ulations have the same duration, the more important the low-
ering velocity is, the deeper the payload goes down, themore
important the distance is to the equilibrium position of the
payload where the hydrodynamic database was computed. It
can be seen that the weak-scatterer approach and the linear
potential flow theory match as long as the payload is lowered
on a small distance relative to its size. Thus, until a lowering
velocity of 0.003m∕s, which represents a lowering distance
of 0.45 time the radius of the payload, the two hydrodynamic
theories agree. But, above this value, some differences ap-
pear. Progressively, a phase shift in pitch appears and also a

(a) Barge

(b) Payload
Figure 7: View of the initial meshes used in InWave

Figure 8: View of the initial mesh used in InWaveS_CN. The
crane and the cable are in red.

difference on the heave and pitch amplitudes. These differ-
ences are due to the strong hypotheses of the linear potential
flow theory used in InWave through Nemoh. In this classi-
cal modeling, it is assumed that the motions of the bodies
have a small amplitude motion and the waves a small steep-
ness. These hypotheses are violated in such lowering oper-
ations when the relative distances between the payload and
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Figure 9: Comparison of time series of the heave (top) and
pitch (bottom) motion of the barge without lowering velocity
from the numerical results of InWave and InWaveS_CN

the barge and between the payload and the free surface be-
come important. Consequently, the added mass and damp-
ing coefficients of the payload are good as long as it is close
to its equilibrium position and they become more and more
inaccurate with a deeper and deeper lowering.

For the sake of illustration, the perturbed wave pattern
obtainedwith InWaveS_CN for a lowering velocity of 0.025m∕s
is displayed in Figure 18.

7. Conclusion
This paper describes the evaluation of the wave-structure

interaction between a mechanical solver, InWave, based on
the Composite-Rigid-Algorithm and a hydrodynamic solver,
WS_CN, based on the weak-scatterer approach. The dynam-
ics algorithm enables the simulation of multibody systems
withmechanical interactionwhile theweak-scatterer approach
allows to calculate the hydrodynamic interaction between
bodies with large relativemotions and large steepness waves.
The coupling of this two solvers leads to the creation of a
numerical tool, InWaveS_CN, which can simulate with con-
sistency a lowering operation with a payload in the water.

The coupling is chosen as tight in order to preserve the
modularity, the stability and the accuracy of the final solver.
The derivation of the coupling equation between InWave and
WS_CN is presented. It results from the introduction of the
hydrodynamic loads into the multibody motion equation and
the expression of the body condition with respect to the ar-
ticular accelerations.

Once the coupling equation is established, InWaveS_CN
is applied and compared to InWave in the case of lowering

Figure 10: Comparison of time series of the heave (top) and
pitch (bottom) motion of the barge with a lowering velocity
of 0.0005m∕s from the numerical results of InWave and In-
WaveS_CN

Figure 11: Comparison of time series of the heave (top) and
pitch (bottom) motion of the barge with a lowering velocity
of 0.0015m∕s from the numerical results of InWave and In-
WaveS_CN

operations with an immersed payload. The seakeeping with
a zero lowering velocity shows a good agreement which val-
idates the theory of the coupling equation. Then, a lowering
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Figure 12: Comparison of time series of the heave (top) and
pitch (bottom) motion of the barge with a lowering velocity
of 0.003m∕s from the numerical results of InWave and In-
WaveS_CN

Figure 13: Comparison of time series of the heave (top) and
pitch (bottom) motion of the barge with a lowering velocity
of 0.005m∕s from the numerical results of InWave and In-
WaveS_CN

velocity rise is performed in order to distinguish the differ-
ences due to the hydrodynamic modeling. It appears that as
long as the lowering velocity involves a small displacement

Figure 14: Comparison of time series of the heave (top) and
pitch (bottom) motion of the barge with a lowering velocity
of 0.008m∕s from the numerical results of InWave and In-
WaveS_CN

Figure 15: Comparison of time series of the heave (top) and
pitch (bottom) motion of the barge with a lowering velocity
of 0.015m∕s from the numerical results of InWave and In-
WaveS_CN

of the payload with respect to its size, the two hydrodynamic
theories match. Otherwise, some differences appear in terms
of heave and pitch amplitudes and pitch phase shift. In this
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Figure 16: Comparison of time series of the heave (top) and
pitch (bottom) motion of the barge with a lowering velocity
of 0.025m∕s from the numerical results of InWave and In-
WaveS_CN

Figure 17: Comparison of time series of the heave (top) and
pitch (bottom) motion of the barge with a lowering velocity
of 0.035m∕s from the numerical results of InWave and In-
WaveS_CN

condition, it is shown that the classical linear potential flow
theory suffers of its strong assumptions of small bodymotion
amplitude and small wave steepness. The use of a weakly or

(a) t = 5 s

(b) t = 20 s

(c) t = 35 s

Figure 18: Perturbed component of the wave pattern (�P )
from the numerical results of InWaveS_CN for a lowering ve-
locity of 0.025m∕s

fully nonlinear potential flow based solver becomes neces-
sary.

In this work, only the effect of the lowering velocity has
been studied. Future work should consider the impact of
other parameters such as the wave amplitude, the initial po-
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sition of the payload with respect to the free surface and the
barge, the possible gap resonance if the barge and the pay-
load are close enough, the cable parameters and so on.

A. Cross product matrix
The skew-symmetric matrix S of the cross product asso-

ciated with the vector u is defined such as:
u × v = S(u)v (65)

The expression of S for a vector u = (

u1 u2 u3
)T is:

S(u) =
⎛

⎜

⎜

⎝

0 −u3 u2
u3 0 −u1
−u2 u1 0

⎞

⎟

⎟

⎠

(66)

B. Correction for the time derivative of 0V0
From the definition of the linear acceleration, j v̇j = jRe ev̇j ,this term does not match the time-differentiation of jvj =

jRe evj because of the projection. A correction is required.
It comes from Rongère and Clément (2013) for the base:

) 0V0
)t

= 0V̇0 −
(

S( 0!0) 0v0
03×1

)

(67)
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