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Highlights
Experimental assessment of a nonlinear, deterministic sea wave prediction method using instan-
taneous velocity profiles
Marion Huchet,Aurélien Babarit,Guillaume Ducrozet,Pierre Ferrant,Jean-Christophe Gilloteaux,Eloi Droniou

• A nonlinear deterministic wave prediction method, based on a HOS model, is assessed.
• Surface elevation predictions are obtained from instantaneous wave-induced velocities.
• The method is validated in wave tank experiments with wave probes, ADV and ADCPs.
• Results are reliable in the prediction zone and phase information is well predicted.
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A B S T R A C T
This paper presents the experimental proof-of-concept of a nonlinear, deterministic wave prediction
method. The method is based on the adapted version of the HOS-NWT wave model and uses wave-
induced velocity profiles as input information on the sea state. Unlike most HOS approaches, it does
not need any optimization procedure or data assimilation step to initialize the simulation. Wave tank
experiments were conducted to validate the method for irregular, long-crested waves with a low
significant steepness. Data was collected using wave probes, an ADV and the fifth beams of two
ADCP sensors set-up with a High-Resolution mode. Despite challenging experimental conditions for
the ADCPs, the method proved able to reconstruct reliable instantaneous horizontal velocity profiles
from the acoustic sensor measurements. These profiles were used as boundary conditions in the wave
prediction model. The sea surface elevation predicted was compared to wave probe measurements and
showed good agreement all over the theoretical prediction area.

List of symbols and abbreviations

Symbol Description Units

 Simulation domain [-]
𝑥,𝑡 Theoretical prediction zone [-]
ADCP Acoustic Doppler Current

Profiler
[-]

ADV Acoustic Doppler Velocime-
ter

[-]

HOS-NWT-pred Wave propagation model:
version of HOS-NWT
adapted for prediction

[-]

HOS-NWT-twin Numerical wave tank based
on a High-Order Spectral
(HOS) method, used to
create a numerical twin of
the experiments

[-]

𝐶𝑔𝑚𝑎𝑥 Maximum group velocity
considered in the wave
propagation

[ms−1]

𝐶𝑔𝑚𝑖𝑛 Minimum group velocity
considered in the wave
propagation

[ms−1]

𝐻𝑛 Noise level [m]
∗Corresponding author

marion.huchet@dynamocean.com (M. Huchet)
ORCID(s):

𝐻𝑠 Significant wave height [m]
𝐿𝑥 Length of the simulation

domain
[m]

𝑇 Duration of the sea state’s
reconstruction

[s]

𝑇𝑝 Peak wave period [s]
𝑈 Wave-induced horizontal

velocity
[ms−1]

𝑈𝑒𝑥𝑝𝑒 Horizontal velocity measured
experimentally

[ms−1]

𝑈𝑛𝑢𝑚 Synthetic wave-induced
horizontal velocity provided
by the numerical twin

[ms−1]

𝑈𝑟𝑒𝑐 Horizontal velocity recon-
structed from experimental
velocity measurements

[ms−1]

𝑊 Wave-induced vertical
velocity

[ms−1]

𝑊𝑒𝑥𝑝𝑒 Vertical velocity experimen-
tally measured by the ADCPs

[ms−1]

Δ𝑥 Distance between ADCPs
in the wave propagation
direction

[m]

Δ𝑧 Cell size for ADCP
measurements

[m]

𝜖𝑐 Characteristic wave steepness [-]
𝜂 Free surface elevation [m]
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𝜂𝑒𝑥𝑝𝑒 Free surface elevation
experimentally measured
by the wave probes

[m]

𝜂𝑛𝑢𝑚 Synthetic surface elevation
provided by the numerical
twin

[m]

𝜂𝑝𝑟𝑒𝑑 Predicted free surface
elevation

[m]

𝜆𝑝 Peak wavelength [m]
𝜙 Velocity potential [s−1]
𝜙𝑆 Velocity potential at the free

surface
[s−1]

𝜎𝜂 Standard deviation of the free
surface elevation

[m]

𝑓𝑝 Peak frequency of the sea
state

[Hz]

𝑓𝑚𝑖𝑛, 𝑓𝑚𝑎𝑥 Frequency bounds for the
wave spectrum, used in the
definition of the theoretical
prediction zone

[Hz]

ℎ Water depth [m]
𝑥0 Position of the velocity

measurements
[m]

𝑧𝑚𝑎𝑥 Z-coordinate of the highest
ADCP measurements

[m]

𝑧𝑚𝑖𝑛 Z-coordinate of the lowest
ADCP measurements

[m]

𝑧𝑟𝑒𝑓 Z-coordinate of the ADV
measurements

[m]

1. Introduction
As opposed to stochastic prediction, which yields only

averaged information on the wave spectrum, deterministic
sea wave prediction can provide a wave-by-wave description
of the sea state’s characteristics: surface elevation, kine-
matics, wave slope, etc. This information, if available in
real-time, would greatly benefit a wide range of marine
applications, such as dynamic ship positioning, improving
the safety of operations, or developing control strategies for
wave energy converters or offshore wind turbines.

Despite recent progress in computational capabilities
and the development of new oceanographic sensors, real-
time deterministic wave prediction remains a challenge and
several families of methods are still under investigation.
Among them, methods based on Machine Learning are on
the rise and show promising results (Duan et al., 2020; Zhang
et al., 2022). But the currently most advanced approaches
for operational purposes use propagation models based on
linear wave theory, because of the very short associated
computational time. Some solutions are already commer-
cially available (Hilmer and Thornhill, 2015; Kusters et al.,

2016; Naaijen et al., 2018). They offer satisfying results,
provided the space and time scales of propagation are short,
the prediction horizon is limited and the characteristic wave
steepness is small. If these conditions are not met however,
nonlinear effects become significant during wave propaga-
tion and the prediction quality deteriorates (Toffoli et al.,
2008; Bonnefoy et al., 2010; Zhang et al., 2017).

Therefore, despite greater computation times, other ap-
proaches use partially nonlinear wave models, up to the
third order (Trulsen and Stansberg, 2001; Adcock et al.,
2012; Simanesew et al., 2017), or even fully nonlinear mod-
els. Among the latter, the HOS method was found to be
particularly promising for nonlinear wave prediction over
large space-time domains (Wu, 2004; Blondel et al., 2010),
because of its high numerical efficiency and the accuracy of
the results. As already pointed out by Blondel et al. (2010);
Köllisch et al. (2018), with conventional HOS models, most
of the computational time is spent in determining a valid
initial condition for the model, from the collected wave
data. This initialization step is the main obstacle to real-
time prediction today, because it requires the knowledge
of two independent spatial quantities: the free surface el-
evation and the velocity potential at the free surface. As
this is hardly achievable with classical instrumentation, the
velocity potential can be approximated at first order (Klein
et al., 2019), introducing errors, or computed using data
assimilation (Aragh and Nwogu, 2008; Blondel-Couprie and
Naaijen, 2013; Yoon et al., 2016; Köllisch et al., 2018),
which greatly increases the computational cost.

Another approach was recently proposed by Huchet et al.
(2021) and tested numerically. The present paper builds on
this previous work. It develops a nonlinear deterministic sea
wave prediction method based on fixed-point velocity mea-
surements. Rather than sea surface elevation data sets, which
are most widely used (Naaijen and Wijaya, 2014; Desmars
et al., 2020), the method relies on wave-induced velocity
measurements to retrieve information on the incoming sea
state. An instantaneous, deterministic, horizontal velocity
profile is deduced from this measurements. A nonlinear
wave model based on the HOS method then propagates the
corresponding waves downstream. Unlike other approaches
using a HOS model, here we use a formulation which was
initially developed for numerical wave tank simulations,
and slightly adapted to fit our purpose. As a consequence,
while the initialization of the model is usually responsible
for prohibitive computational effort, it is much easier here,
because the simulation starts from rest and there is no need
for data assimilation. In our approach, the critical step is
rather to retrieve an instantaneous wave-induced velocity
profile from available sensors, to feed into the wave model.

As a first step, numerical studies were conducted by
Huchet et al. (2021) to assess the performance of this pre-
diction method. Promising results were obtained when using
perfect, synthetic velocity data, available in the whole water
column. With synthetic data only available in a portion of
the water column, the results showed an increase in error
but were still highly satisfactory. Provided the horizontal
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velocity profiles containing information on the sea state were
accurately retrieved, the whole prediction method showed
high quality results, with a good reproduction of the sea
surface elevation in the spatio-temporal domain theoreti-
cally accessible to prediction. The accurate restitution of the
waves phase information, even for steep sea states, was an
important result of these numerical tests, as it confirmed
the interest of using a nonlinear wave propagation model for
prediction purposes.

Following these results, the present paper reports on
the experimental validation of the method on long-crested
irregular waves, in a controlled wave tank environment. Ve-
locity data were collected with an ADV (Acoustic Doppler
Velocimeter) and two ADCP (Acoustic Doppler Current
Profiler) sensors. This is a particularly challenging experi-
mental set-up, because ADCPs require the presence of small
particles in the water column to work properly, which are
very seldom in wave tanks. However, it allows direct testing
of the suitability of these instruments for the prediction
method. The quality of the measurements was found to be
highly dependent on the experimental conditions (namely,
the homogeneous distribution of scatterers in the water
column). For trials complying with this requirement, the
quality of the horizontal velocity profiles reconstructed from
these acoustic measurements was assessed. The prediction
obtained after feeding these profiles into the wave model
agreed well with the experimental measurements.

The remainder of the present paper is structured as
follows: Section 2 describes the prediction method, Section 3
presents the experimental setup and the validation principle
of the study conducted. Section 4 provides an analysis of the
measurements collected, and Section 5 discusses the results.

2. Prediction method
The prediction method has already been studied numer-

ically. A detailed description of the method is available
in Huchet et al. (2021). Only its essential elements are
reminded here for comprehension.
2.1. Assumptions and general principle

The study considers long-crested waves propagating
over a constant depth ℎ. The effects of wind forcing, wave
breaking and ambient currents are not taken into account.
The space domain  is defined horizontally between 𝑥 = 𝑥0and 𝑥 = 𝑥0 + 𝐿𝑥, and vertically between the flat bottom
𝑧 = −ℎ and the single-valued free surface position 𝑧 =
𝜂(𝑥, 𝑡). We use a Cartesian coordinate system, (𝑂, 𝑥, 𝑧), set
as shown in Figure 1: the horizontal axis is located at the
mean water level, waves are propagating towards 𝑥 > 0,
and the vertical axis is positive-upward. Finally, we use the
potential flow theory, i.e. we assume that the fluid is inviscid,
incompressible and with an irrotational motion.

In this context, the method discussed here aims to pro-
vide a deterministic wave prediction, at a horizon of a few
wave periods (around 20 - 40 seconds for full scale sea
states). Its principle is illustrated in Figure 1. Using a fixed

measurement device deployed upstream of the area of inter-
est, the wave-induced flow velocity is collected continuously
along the water column, at a position noted 𝑥0. The data
is used to reconstruct the profile of the horizontal com-
ponent of the instantaneous fluid velocity: 𝑈 (𝑥0, 𝑧, 𝑡). This
horizontal velocity profile is then passed on as a boundary
condition in a deterministic, nonlinear wave propagation
model. Starting from initial rest, the prediction process can
then be broken down into two steps: the reconstruction of
the sea state and the actual prediction.

• The reconstruction step, of duration 𝑇 , is arbitrarily
set in the past and is presented in Figure 1a. For
−𝑇 ≤ 𝑡 ≤ 0, the velocity measurements collected
at 𝑥0 in the water column are continuously updated.
The boundary condition provided to the propagation
model is obtained from these measurements. It is
given as an instantaneous horizontal velocity profile
imposed at 𝑥0. The model generates and propagates
the corresponding waves from 𝑥0 to the downstream
area of interest.

• The prediction step is illustrated in Figure 1b. At 𝑡 > 0,
velocity data containing information on the incident
waves at 𝑥0 are no longer updated, and the boundary
condition is set to zero in the wave model. Therefore, it
propagates only the information collected before 𝑡 = 0
and already present in the simulation domain.

2.2. Theoretical prediction zone
Because the information collected about the incident

sea state is limited in time and space, the spatio-temporal
region over which a deterministic wave prediction can be
established using these measurements is also bounded. This
region is called the theoretical prediction zone and is noted
𝑥,𝑡 in the present article. The topic has been discussed
extensively before, e.g. in Wu (2004); Naaijen et al. (2014);
Qi et al. (2018); Fucile et al. (2018), so the definition
provided below is directly adapted to the present case study.
We simply indicate here that an accurate description of
the sea state is possible only if the energy content of the
wave spectrum is known. This content propagates at the
wave group velocity. Therefore, besides the location and
duration of wave measurements, the extent of the theoretical
prediction zone also depends on the limiting group velocities
of the sea state components. Assuming the wave energy is
concentrated around the peak frequency of the spectrum,
it becomes negligible outside some well-chosen frequency
bounds 𝑓𝑚𝑖𝑛 and 𝑓𝑚𝑎𝑥, and the spectrum evolution can be
studied within these bounds.

In the present case study, a single, fixed measurement
point upstream is located at 𝑥0 and measures continuously
for a period of time 𝑇 . The corresponding theoretical pre-
diction zone 𝑥,𝑡 is defined by :

(𝑥1, 𝑡1) ∈ 𝑥,𝑡 if −𝑇 +
𝑥1 − 𝑥0
𝐶𝑔𝑚𝑖𝑛

≤ 𝑡1 ≤
𝑥1 − 𝑥0
𝐶𝑔𝑚𝑎𝑥

(1)

where 𝐶𝑔𝑚𝑖𝑛 = 𝐶𝑔(𝑓𝑚𝑎𝑥) and 𝐶𝑔𝑚𝑎𝑥 = 𝐶𝑔(𝑓𝑚𝑖𝑛) are the
group velocities of respectively the slowest and the fastest
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(a) Step 1: Generation, propagation.
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-h

Velocity data 
not available

at x0

Measuring
device

Boundary condition 
set to zero Area of interest

Propagation of known 
sea state using HOS-NWT

(b) Step 2: Prediction.
Figure 1: Proposed method for deterministic wave prediction.

(a) Example of a wave spectrum and associated
𝑓𝑚𝑖𝑛 and 𝑓𝑚𝑎𝑥, bounding the retained contribu-
tions.

x - x0

t

0

fastest
component

Xmax

slowest 
component
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Drec
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reconstruction
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(b) Area theoretically accessible to deterministic wave prediction, depending on the
measurement duration 𝑇 and on the group speed considered.

Figure 2: Definition of the prediction zone in time and space, for a single fixed point measurement.

components of the considered sea state. At any fixed location
𝑥1, the prediction zone is also characterized by its temporal
boundaries 𝑡𝑚𝑖𝑛(𝑥1) = −𝑇 + (𝑥1 − 𝑥0)∕𝐶𝑔𝑚𝑖𝑛 and 𝑡𝑚𝑎𝑥(𝑥1) =
(𝑥1 − 𝑥0)∕𝐶𝑔𝑚𝑎𝑥 , the latter being the maximum prediction
horizon.

The total prediction zone 𝑥,𝑡 can be further divided into
a reconstruction sub-region 𝑟𝑒𝑐 for 𝑡 ≤ 0 and a prediction
sub-region 𝑝𝑟𝑒𝑑 for 𝑡 > 0, as illustrated in Figure 2b.
2.3. Nonlinear wave prediction model

In the present method, the information collected on the
incident sea state is used to reconstruct and propagate the
waves along (𝑂𝑥), using a horizontal flow imposed at 𝑥0.
This step is performed with the open-source wave model
HOS-NWT1. This code is a nonlinear, deterministic Numer-
ical Wave Tank based on the HOS method (Le Touzé, 2003;
Bonnefoy, 2005; Ducrozet, 2007; Bonnefoy et al., 2010). As
shown by Ducrozet et al. (2012), the use of a Fast Fourier
Transforms (FFT) solution coupled to an accelerated scheme
makes the code very efficient, and the fast convergence also
allows for a high accuracy in the results. HOS-NWT thus
appears particularly suitable for the prediction of complex

1Code available at: https://github.com/LHEEA/HOS-NWT

sea states, while maintaining the possibility of reaching real-
time prediction, if properly optimized. Moreover, generat-
ing waves with a numerical wavemaker is very similar to
generating waves by imposing a velocity profile at a fixed
location. Only minor changes were thus needed in the model
to serve the targeted application. Detailed explanations of the
functioning of the HOS-NWT model, as well as validation
cases, are available in several works, such as Ducrozet et al.
(2006, 2012). The minor modifications made to adapt it to
our prediction problem are presented in Huchet et al. (2021).
In the following, the general features of the code are only
reminded for the sake of completeness.

In the original version of HOS-NWT, within the fluid
domain  previously defined, the section 𝑥 = 𝑥0 corre-
sponds to the wavemaker’s rest position, and the section
𝑥 = 𝑥0 + 𝐿𝑥 represents a perfectly reflective wall. HOS-
NWT runs under the potential flow assumptions introduced
in section 2.1. The bottom boundary condition is a no-flow
condition. The free surface boundary conditions are written
in a fully-nonlinear form following Zakharov (1968). They
are solved at the position of the free surface, using the order-
consistent High-Order Spectral method of West et al. (1987).
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It allows a rapid and accurate resolution of the free surface
equations, at an arbitrary order of nonlinearity 𝑀 .

The lateral boundary conditions are expressed as Neu-
mann (no-flow) conditions. In our adapted version of HOS-
NWT, the horizontal flow 𝑈 (𝑥0, 𝑧, 𝑡), which accounts for
the generation of waves, is imposed at 𝑥0 instead of being
written at the position of a moving wavemaker. As de-
scribed in Section 2.1, in the prediction method 𝑈 (𝑥0, 𝑧, 𝑡)corresponds to the instantaneous horizontal velocity profile
obtained from the measurements at 𝑥0. Finally, HOS-NWT
also models the presence of an absorbing beach near the
reflective wall at 𝑥 = 𝑥0 + 𝐿𝑥 (Bonnefoy et al., 2010;
Ducrozet et al., 2012). In a prediction context, the beach
is modeled as fully absorbing and 𝐿𝑥 is set long enough to
avoid reflection in the domain.

The main advantage of using this adapted HOS-NWT
model for prediction purposes is that, while having a fully
nonlinear wave propagation model, there is no need for
a costly optimization procedure, or data assimilation step:
the procedure is simpler than determining proper initial
conditions when using an HOS formulation for open do-
mains. To initialize such simulations based on the open HOS
formulation, two independent spatial quantities are required:
the free surface elevation 𝜂 and the surface velocity potential
𝜙𝑆 . The second quantity is usually hard to extract from field
data. In contrast, in HOS-NWT the waves are continuously
generated (from rest) through the boundary condition at 𝑥0,
and the only quantity needed for this is the instantaneous
horizontal velocity profile.
2.4. Horizontal velocity reconstruction

Like in many prediction methods, the main challenge
is to feed the propagation model with reliable in situ data.
Here, this means building a valid boundary condition at
𝑥 = 𝑥0. This condition is expressed in the form of instanta-
neous profiles of the horizontal velocity associated to wave
propagation. A benchmark of the sensors available on the
market identified ADCPs as the most suitable instruments to
measure velocities in the water column. However, as ADCPs
measure radial velocities (along the acoustic beam’s axis),
an instantaneous horizontal velocity profile is not directly
available with these instruments (Huchet et al., 2021). A
method was thus developed to reconstruct this quantity
using the current measurement capabilities of ADCPs. It
is presented here for unidirectional sea states but could be
extended to multi-directional case, using more instruments,
to retrieve the profile of the 2D horizontal component at a
(single) given point.

Besides the four divergent acoustic beams usually present
in a conventional ADCP, some recent models are also
equipped with a fifth beam, oriented vertically for a bottom-
mounted instrument. It can measure the instantaneous pro-
file of the vertical component of the velocity with a good
resolution, see e.g. Nortek (2022b). The method proposed
here uses only the vertical beam of two ADCPs to recon-
struct an instantaneous horizontal velocity profile. In the
proposed measurement configuration, shown in Figure 3,

Figure 3: Reconstruction of the horizontal velocity profile
𝑈 (𝑥0, 𝑧, 𝑡) from data measured as two vertical velocity pro-
files 𝑊 (𝑥0 ± Δ𝑥∕2, 𝑧, 𝑡) and a horizontal velocity single-point
measurement 𝑈 (𝑥0, 𝑧𝑟𝑒𝑓 , 𝑡).

the two ADCPs are separated by a distance Δ𝑥 in the
direction of wave propagation (𝑂𝑥), that is small with
respect to the wavelength. They measure two instantaneous
velocity profiles, denoted 𝑊 (𝑥0 ± Δ𝑥

2 , 𝑧, 𝑡). The velocity
measurements of both ADCPs are synchronized. Under
the assumption of irrotational flow, and assuming vertical
velocities are available throughout the whole water column
at 𝑥 = 𝑥0 ± Δ𝑥

2 , an approximation 𝑈𝑟𝑒𝑐(𝑥0, 𝑧, 𝑡) of the
instantaneous horizontal velocity profile can be written as:

𝑈𝑟𝑒𝑐(𝑥0, 𝑧0, 𝑡) =
Δ𝑧
Δ𝑥

𝑁𝑧
∑

𝑘=1

Δ𝑊 (𝑥0, 𝑧𝑘−1, 𝑡) + Δ𝑊 (𝑥0, 𝑧𝑘, 𝑡)
2

+ 𝑈 (𝑥0, 𝑧𝑟𝑒𝑓 , 𝑡) + 𝑂(Δ𝑥2) + 𝑂(Δ𝑧2)
(2)

where
• Δ𝑊 (𝑥0, 𝑧0, 𝑡) = 𝑊 (𝑥0+

Δ𝑥
2 , 𝑧0, 𝑡)−𝑊 (𝑥0−

Δ𝑥
2 , 𝑧0, 𝑡);

• 𝑧𝑟𝑒𝑓 is an arbitrary reference depth for which the
horizontal velocity 𝑈 (𝑥0, 𝑧𝑟𝑒𝑓 , 𝑡) is known;

• 𝑧𝑘 are the coordinates of the grid points on which
the integration is made, dividing the interval [𝑧𝑟𝑒𝑓 ; 𝑧0]into 𝑁𝑧 sub-intervals of length Δ𝑧. Here, Δ𝑧 is con-
stant and represents the size of the ADCPs’ measure-
ment cells.

For deep water applications, assuming the vertical veloc-
ity profiles 𝑊 can be measured until the velocity becomes
negligible at 𝑧 = 𝑧𝑟𝑒𝑓 , the reference velocity 𝑈 (𝑥0, 𝑧𝑟𝑒𝑓 , 𝑡)can be set to zero without introducing much error. At in-
termediate depths however, a point velocimeter is useful
in addition to the two profilers, to provide the horizontal
reference velocity.

The proposed method uses instantaneous data, so the
quality of the reconstructed velocity itself does not depend
on the time discretization used. However, it assumes an
accurate synchronization between the measuring devices.
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(a) Top view. (b) Side view (zoomed).
Figure 4: Schematic of the experimental set-up. Real distances are not respected. Coloured zones in Figure 4b represent the range
of ADCP measurements.

3. Experiments
In this experimental validation, irregular, unidirectional

waves were generated in a wave tank. The fluid velocity and
surface elevation associated to these waves were measured in
several locations of the tank. Two sea states characterized by
a Pierson-Moskowitz spectrum were investigated. For a first
validation of the method, a low characteristic wave steepness
was selected: 𝜖𝑐 = 𝐻𝑠∕𝜆𝑝 = 1%. Two different peak periods
(and thus different 𝜆𝑝∕ℎ ratios) were chosen: 𝑇𝑝 = 2 s (case
A, hereafter) and 𝑇𝑝 = 3 s (case B). This was the result of a
compromise between having large enough wave velocities
and enough time before measuring significant reflection
from the end of the tank. The corresponding significant wave
heights were 𝐻𝑠 = 6 cm and 𝐻𝑠 = 12 cm, respectively. For
each sea state, ten phase sets were tested and lasted 350 s
each.

The experiments were carried out to assess the feasibility
of: i) finely measuring instantaneous vertical velocity pro-
files due to wave propagation, using ADCPs; ii) reconstruct-
ing instantaneous, wave-induced horizontal velocity profiles
from such ADCP data; and iii) obtaining a good quality wave
prediction, using these profiles as inputs in the investigated
method.

To do so, surface elevation was measured using 17
resistive wave gauges. An ADV collected single-point, 3D
velocity measurements at a single position (𝑥0, 𝑧𝑟𝑒𝑓 ) in
the tank, and two bottom-mounted, upward-looking ADCPs
deployed on either side of 𝑥0 (in the propagation direction)
measured two distinct vertical velocity profiles. Figure 4
shows a schematic view of the general set-up.

Relatively few studies have considered the deployment
of ADCPs in a tank filled with fresh water, even less for wave
measurements. These studies mostly investigated averaged
flow quantities, like Muste et al. (2010), or the grain size
distribution of suspended sediments, as in Guerrero (2012).
They highlighted that, when measuring in a fresh water tank,
a major difficulty is the non-homogeneous distribution of
scatterers in the water column. Depending on the applica-
tion, it is sometimes possible to use adapted facilities, such

as large-scale towing tanks or tanks equipped with a re-
circulation and mixing system. The wave tank used in the
present study does not benefit from such adaptations, and
the wave measurements conducted therefore represent a very
challenging setup for the use of ADCPs.
3.1. Experimental set-up

The experiments were conducted in the towing tank of
Centrale Nantes, which is 140m long, 5m wide and 3m
deep. Waves are generated at 𝑥 = 0 by a hinged flap rotating
around an axis located at 50 cm from the bottom of the
tank, and an absorbing beach limits their reflection at the
other end of the tank. This beach is composed of a 5m-
long, 20% concrete slope followed by a parabolic, 3.5m-long
perforated part. Two water lines are also laid down near the
beach to further reduce wave reflection. The water depth at
rest is ℎ = 2.90m.

Resistance-type wave probes were installed downstream
to the wave maker and recorded free surface elevation at
64Hz, every 6m in the propagation direction: from 𝑥𝑝1 =
24m to 𝑥𝑝17 = 120m. They were located far enough from
the side wall to avoid spurious reflection and were calibrated
before the trials.

Velocity measurements were collected by a single-point
velocimeter (ADV), fixed at (𝑥0, 𝑧𝑟𝑒𝑓 ) = (20m,−0.54m),
and by two bottom-mounted acoustic profilers (ADCPs).
These profilers were deployed at 𝑥𝐴𝐷𝐶𝑃 1

= 𝑥0 + Δ𝑥∕2 and
𝑥𝐴𝐷𝐶𝑃 2

= 𝑥0 − Δ𝑥∕2. The position 𝑥0 = 20m was set as
close as possible from the wavemaker, but away from the
evanescent modes, see e.g. Molin (2002).

The ADV measuring the “reference” horizontal velocity
time series along 𝑂𝑥 (with the 2 other components of the
velocity) was a Nortek Vectrino. It is equipped with a four-
beam head emitting convergent acoustic beams, and it is
well-adapted to laboratory use. The instrument’s body was
fixed to a pillar immersed in the tank, while the rod bearing
the measuring head with the transmitters allowed measuring
far enough from the structure for the flow not to be influenced
by its presence. Measurements were collected at (𝑥0, 𝑧𝑟𝑒𝑓 ) =
(20m,−0.54m) with a sampling frequency of 16Hz.
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The ADCPs measured instantaneous vertical velocity
profiles and were deployed at the bottom of the tank. Their
centers were separated by Δ𝑥 = 5 cm in the wave propaga-
tion direction. This is the result of a compromise between
minimizing the error in Eq. (2) and the capabilities of the
experimental setup, which must be able to accurately mea-
sure the vertical velocity difference Δ𝑊 = 𝑊 (𝑥0+Δ𝑥∕2)−
𝑊 (𝑥0−Δ𝑥∕2). In the transverse direction, the ADCPs were
separated by Δ𝑦 = 20 cm, their diameter being too large
(15 cm) to obtain the chosen Δ𝑥 spacing if keeping them
aligned in the propagation direction.

The ADCPs used were Nortek Signature 1000 kHz. They
were equipped with a fifth central beam, in addition to the
classical 4 diverging beams. These instruments are usually
deployed at sea and were not designed for laboratory tri-
als. The measurement method remains valid, and with an
adapted set-up to take this point into account, this allows to
directly test the instruments’ capabilities. Nevertheless, this
aspect is emphasized because it is likely the cause of some
difficulties that will be discussed further on.

In these trials, the 4 lateral beams were deactivated
to avoid interference and only the central beam was used
to measure the vertical velocity 𝑊 (𝑥0 ± Δ𝑥∕2, 𝑧, 𝑡). This
central beam offers a High Resolution mode using a pulse-
coherent method. It provides a much higher resolution and a
better accuracy, at the price of a reduced achievable velocity
range and / or profiling range (Rusello, 2009). This is not an
issue at tank scale. Taking into account the blanking distance
and the potential signal degradation near the free surface,
the ADCPs provided velocity measurements between 𝑧𝑚𝑖𝑛 =
−2.46m and 𝑧𝑚𝑎𝑥 = −0.08m, with a cell size Δ𝑧 = 2 cm.
Their sampling frequency was set to 8Hz2.

For all instruments, the start of the recording was trig-
gered by the start of the wavemaker, ensuring the synchro-
nization of the collected data. These were measured for 350 s
after the start of the wavemaker: this is long enough to ensure
that the sea state is completely established and that the waves
have propagated to the area of interest, but it is still shorter
than the repetition period of the wavemaker motion, which
is set to 512 s. After each experiment, the wavemaker was
stopped during 15 minutes to ensure a calm initial state for
the following run.

Finally, ADCPs and ADVs are acoustic instruments and
require backscatter from suspended particles to work prop-
erly. When using such instruments in a clear water tank,
additional seeding particles are then required to ensure a
sufficient return signal. Here, 10 µm glass micro-spheres
with a slightly negative buoyancy were rained down from
the top of the water column around 𝑥0. These particles were
particularly suitable for ADV measurements, but proved less
efficient with ADCPs, as will be seen in Section 5.

2The maximum sampling rate is 16Hz for the most recent instruments,
but connection and hardware constraints induced some limitations in the
present case.

3.2. Validation principle
The measurements made in the wave tank are used in

two ways. First, the velocity data collected, 𝑊𝑒𝑥𝑝𝑒(𝑥0 ±
Δ𝑥∕2, 𝑧, 𝑡) and 𝑈𝑒𝑥𝑝𝑒(𝑥0, 𝑧𝑟𝑒𝑓 , 𝑡), are used to reconstruct a
horizontal velocity profile denoted 𝑈𝑟𝑒𝑐(𝑥0, 𝑧, 𝑡), following
Equation (2). This experimental reconstruction is validated
using a numerical twin, and is fed as input in the prediction
method. Second, the wave probes’ measurements 𝜂𝑒𝑥𝑝𝑒(𝑥𝑝, 𝑡)allow to evaluate the quality of the predicted free surface
elevation 𝜂𝑝𝑟𝑒𝑑(𝑥, 𝑡), obtained with the investigated method.

Regarding the velocity validation, a digital twin was
created for each trial to provide synthetic, reference values
for the quantities of interest in the whole domain. This digital
twin was generated thanks to a feature in the original version
of the HOS-NWT code, which allows to specify the exact
same wavemaker motion in a numerical wavetank as in the
physical experiment (Bonnefoy et al., 2010; Ducrozet et al.,
2012). Using this HOS-NWT-twin, each experiment was
accurately numerically modeled. The synthetic, reference
horizontal velocity𝑈𝑛𝑢𝑚(𝑥0, 𝑧, 𝑡)was used to assess the qual-
ity of the instantaneous profile 𝑈𝑟𝑒𝑐(𝑥0, 𝑧, 𝑡), reconstructed
from experimental velocity data.

This instantaneous horizontal velocity profile obtained
from experimental data was then used to generate and prop-
agate the waves in the prediction model described in Sec-
tion 2.3, denoted HOS-NWT-pred. This is the version of the
HOS-NWT code adapted to prediction purposes. The results
obtained with the prediction model fed by experimental
velocity profiles, denoted 𝜂𝑝𝑟𝑒𝑑(𝑥, 𝑡), were compared to the
surface elevation data 𝜂𝑒𝑥𝑝𝑒(𝑥𝑝, 𝑡) measured by the wave
gauges, to validate the whole prediction method.

The internal time step for both types of HOS-NWT sim-
ulations was around 0.02 s. The velocity profile was linearly
interpolated from the reconstructed boundary condition in
the prediction simulations.

Figure 5 presents a summary of the quantities measured
and their use in the validation procedure.

In the prediction simulations, the velocity profiles were
given as an imposed horizontal flow for the boundary con-
dition at 𝑥0. The corresponding sea state was reconstructed
for 𝑇 = 30 𝑇𝑝 and an additional 5 𝑇𝑝 ramp accounting for
the start of the wave maker. In the common reference frame
aligned on the physical tank, the wave generation was forced
at 𝑥0 = 20m in the prediction model, meaning the prediction
simulations were shifted in space with respect to the physical
experiment and the reference simulations (which started at
𝑥 = 0). The calculation of the theoretical prediction area was
adapted accordingly and the length of the simulation domain
in prediction simulations was set to 𝐿𝑥 = 120m.

4. Analysis
4.1. Reflection in the wave tank

The presence of reflection in the wave tank is evidenced
by the increasing difference, over time, between the free
surface measurements and the reference simulation. When
restricted to periods of time before the reflected component
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Figure 5: Overview of the experimental validation process. Each case is characterized by its frequency spectrum and associated
set of phases, and the instructions are used: i) by the physical wavemaker to generate the sea state in the wave tank and ii) as
input to a digital twin, numerically replicating the trial for validation purposes. The reconstructed horizontal velocity is fed as
input to the prediction model.

of frequency 𝑓𝑚𝑎𝑥 reaches each wave gauge, the analysis
shows that the measurements agree very well with the results
of the digital twin: the mean absolute difference in free
surface elevation (averaged over all wave gauges) is 1.1%
of 𝐻𝑠 for case A.10, and 1.2% of 𝐻𝑠 for case B.1. However,
when considering data over a duration which includes reflec-
tion, the mean absolute difference increases respectively to
4.8% and 6.5% of 𝐻𝑠. Because the probe spacing is regular
and very close to a multiple of 𝜆𝑝∕2 for both considered
sea states, reflection in the experimental data could not be
corrected ex-post using the method proposed by Mansard
and Funke (1980).

Dedicated tests with a single regular wave train evaluated
the reflection coefficient for regular waves: with a period
𝑇 = 2 s (resp. 3 s) and an amplitude 𝐴 = 3 cm (resp. 6 cm),
a reflection of 10% (resp. 12%) in amplitude was measured.

A complementary approach, adapted from Desmars et al.
(2020), measured the residual perturbations in the tank after
the wave maker had stopped and the last wave compo-
nents had propagated past all probes, at a time denoted 𝑡𝑛.
Assuming that the situation is representative of the whole
experiment, the recordings of the free surface elevation from
𝑁 probes were used to calculate a “noise level” 𝐻𝑛, built on
the same model as the significant wave height 𝐻𝑠:

𝐻𝑛 =
1
𝑁

𝑁
∑

𝑖=1
4𝜎𝜂(𝑥𝑖, 𝑡 ≥ 𝑡𝑛) (3)

The noise-to-signal ratio 𝑁𝑆𝑅 = 𝐻𝑛∕𝐻𝑠 derived from
this analysis was estimated at 10% for case A, and at 9% for
case B. In Desmars et al. (2020), for the same wave steepness
the measured NSR was around 20%. This may be explained
by the fact that their experiment was conducted in a wider

wave tank, more likely to generate transverse disturbances
because of the wavemaker flaps.

The frequency distribution of the noise was also esti-
mated by computing the power spectral density 𝑆𝑛 of the
noisy part of the signal, obtained by averaging the results
over the 𝑁 wave probes. The normalized noise spectrum
𝑆∗
𝑛 = 𝑆𝑛𝑓𝑝∕𝑚0, with 𝑚0 = 𝐻𝑛∕16, is presented in Figure 6

for both sea states. The normalized target wave spectrum is
also provided for illustrative purposes.
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Figure 6: Normalized noise spectra.

The reflection maximum frequency is around 𝑓0 =
0.44Hz in both sea states, i.e. 0.9𝑓𝑝 for case A and 1.3𝑓𝑝for case B. The reflected energy is more concentrated around
the peak for case A than for case B. In both cases, noise at
low frequencies is present but at a much lower level than
around the peak. It can be mitigated by processing the data
with a high-pass filter, provided the cut-off frequency does
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not mask information related to energetic components of the
wave spectrum.

As the effects of reflection are particularly important
around 𝑓0, whenever possible the analysis was restrained
to the instants preceding the arrival of the reflected wave
of frequency 𝑓0 at the point of interest. This is the case
when evaluating the quality of the reconstructed horizontal
velocity profile: the position of the instruments around 𝑥0,
i.e. close to the wavemaker, allows a quick establishment
of a complete sea state and the measurements duration is
thus sufficient to analyze the results. Unfortunately, this
is not possible for the prediction results. This is because
the time needed to establish a complete sea state at the
most downstream probes (which are used to evaluate the
prediction on 𝜂) is greater than the travel time of the reflected
wave of frequency 𝑓0 (which is the time taken by the fre-
quency component 𝑓0 to reach the downstream probes after
reflection on the beach).
4.2. Data quality control
4.2.1. Overview

The wave gauges were calibrated before the trials and
their use in this experimental setup is classical: therefore,
applying a perfect low-pass filter at 𝑓𝑐𝑢𝑡 = 8Hz is sufficient
after data collection.

For ADV as well as ADCP measurements, in addition
to raw velocity data the instruments also provide auxiliary
quantities that help evaluate the data quality. One of them
is the correlation, which is “a statistical measure of how
similar the received signal is to itself at a delayed time”
(Nortek, 2022b). The exact definition of correlation varies
depending on the instruments and on manufacturers, but the
principle remains the same. The higher the correlation, the
most reliable the data, because it means the instrument is
more likely to have measured correctly the pulses it emitted,
and determined a valid velocity. Drops in correlation allow
to identify events when the signal can be too weak or too
blurred to allow collecting good data.

Here, the seeding system designed to provide a high
concentration of scatterers in the wave tank worked very
well for the ADV measurements, as expected since this
instrument is routinely used in laboratory experiments. The
correlation values associated to the ADV measurements
remain higher than 80% for all beams from all trials, when
the advised minimum threshold is 70% in usual applications
(Nortek, 2022a). It is even higher than 95% for more than
97% of measurements from beam 13, indicating excellent
data quality. For this ADV data, a (perfect) low-pass filter
at 𝑓𝑐𝑢𝑡 = 8Hz is also sufficient.

In contrast, the quality of the vertical velocity profiles
measured by the ADCPs in the wave tank environment is
overall disappointing. Figure 7 shows an example of raw
ADCP data: the first subplot presents the vertical velocities
measured by the instrument and the bottom subplot shows
the values of associated correlation. Generally, correlation

3According to the Vectrino’s orientation, this beam directly provides
the horizontal velocity.

is used in quality control to identify the reliable data range.
It also helps spotting outliers, discarding any velocity data
point whose associated correlation falls below a user-defined
threshold. As can be seen in Figure 7, the data quality is
unequal, very poor in some areas, and calls for a closer look.
4.2.2. Processing of ADCP data

Numerous outliers are visible in the data, and the signal
quality is not homogeneous. It varies with both the trial
and the depth, with a particularly poor data quality at the
bottom of the water column (very low correlation). This
means this is not a problem of measurement range. Besides,
despite legitimate concerns due to the proximity between
the ADCPs, there were no recognizable signs of interference
between the beams. These would translate into distinct and
consistent areas of poor correlation; what is observed here
looks more like patterns induced by flocks of slowly moving
scatterers, as shown by the stratified patterns.

Regardless of the application, ADCP data need to un-
dergo a proper quality control procedure before they can be
analyzed. This is especially true here, as we need the data to
be accurate enough to reconstruct an instantaneous horizon-
tal velocity profile, which should describe the deterministic
influence of waves in the water column. Here, the signal is
too noisy for a classical spectral filtering to be useful.

The quality check conducted started by removing all data
points associated with a correlation lower than 80%. Then,
because phase-resolved wave prediction is possible only if
a sufficient amount of information is available from both
ADCPs at the same time, only trials where both ADCPs
passed the correlation test more than 90% of the time were
kept. This left only one suitable case for 𝑇𝑝 = 2 s: A.10, and
two for 𝑇𝑝 = 3 s: B.1 and B.3. For the sake of conciseness,
only cases A.10 and B.1 are presented in the following.

Another outlier detection round was conducted cell by
cell, using first the criterion |𝑊𝑜𝑢𝑡𝑙𝑖𝑒𝑟(𝑧, 𝑡) − ⟨𝑊 (𝑧)⟩| >
6 𝜎𝑊 (𝑧), then the Phase-Space Thresholding Method (PSTM).
It is an iterative detection method that was first proposed
by Goring and Nikora (2002) for the despiking of ADV
data time series. It uses 3D Poincaré maps and the first
two time derivatives of the signal. The incorrect data points
spotted were replaced by interpolation. Finally, the resulting
𝑊 arrays were smoothed by vertically fitting a 𝑠𝑖𝑛ℎ-type
function on each instantaneous profile. More detail on the
whole procedure can be found in Appendix A. What can be
noted here, however, is that the processing steps conducted
in the procedure described are not yet compatible with real-
time, as for example the PSTM is applied a posteriori.

This specific treatment is more intensive that what is
usually done for ADCP data, but is necessary here due
to the challenge of collecting good quality data in a lab
environment with fresh clear water. Data quality control in
real conditions is expected to be more simple, and should be
possible with conventional techniques for raw ADCP data
(see e.g. Furgerot et al. (2020)), which rely on ancillary
quantities such as correlation. This type of data is provided
from the instrument’s internal processing, as a direct output
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Figure 7: Overview of raw ADCP data and associated correlation for one trial.

of the ADCP measurements. It is thus available at the same
time as the velocity data itself and requires no additional
processing time.
4.3. Horizontal velocity reconstruction

After data processing, the instantaneous horizontal ve-
locity profile 𝑈𝑟𝑒𝑐(𝑥0, 𝑧, 𝑡) is computed from the single-
point horizontal velocity measurements 𝑈𝑒𝑥𝑝𝑒(𝑥0, 𝑧𝑟𝑒𝑓 , 𝑡)provided by the ADV, and the two vertical velocity profiles
𝑊𝑒𝑥𝑝𝑒(𝑥0 ± Δ𝑥∕2, 𝑧, 𝑡) measured by the ADCPs. Here,
preliminary tests have shown that using 𝑊 data below 𝑧𝑟𝑒𝑓did not improve the quality of the reconstruction. This is
mostly due to the inconsistent quality of ADCP measure-
ments, especially further from the surface. Besides, the
integration error on 𝑧 accumulates when moving away from
𝑧𝑟𝑒𝑓 . The horizontal velocity profile is then reconstructed
using Equation (2) only between 𝑧𝑟𝑒𝑓 and 𝑧𝑚𝑎𝑥. Discarding
data below 𝑧𝑟𝑒𝑓 means that only |𝑧𝑟𝑒𝑓 |∕ℎ ≈ 18% of the
profile is sampled experimentally4. However, this is where
the most important information on waves is found. In the
rest of the profile, a vertical fitting is run for each time step,
where the fitting function is a 3-component approximation
of the expression of the horizontal velocity in the linear
wave theory. Finally, a perfect high-pass filter with a cut-
off frequency 𝑓𝑐 = 0.1Hz is applied to the reconstructed
horizontal velocity, removing any low frequencies present
in the signal that would not be useful for describing the
sea state. Note that applying a perfect (Fourier) filter is
not compatible with real-time data processing, as it is non-
causal. This would need to be improved in the future.
4.4. Error indicators definitions

As stated in Section 4.2, the quality of velocity data
is variable because the scatterers concentration was not
homogeneous in the measurement area, despite the seeding
system being designed to minimize this problem. This led

4This represents |𝑧𝑟𝑒𝑓 |∕𝜆𝑝 ≈ 9% (resp. ≈ 4%) of a peak wavelength
for cases A (resp. for cases B), which means velocity orbitals have not yet
faded away.

to noisy measurements, and thus to a high proportion of
missing data in some areas. Analysis of the experimental
data showed that this heterogeneity is visible within a single
trial: the upper part of the water column is better covered
than the bottom. But experimental conditions also changed
from one tank test to another. Consequently, differences in
data quality are found between trials. In the following, the
analysis of the results is then restricted to the trials for which
the experimental conditions allowed the best quality data
to be collected: one for each sea state tested. This reduces
the number of factors influencing the results and makes the
analysis more simple.
4.4.1. On velocity reconstruction

The reconstructed horizontal velocity profile,𝑈𝑟𝑒𝑐(𝑥0, 𝑧, 𝑡),is compared with the data provided by the reference sim-
ulations, 𝑈𝑛𝑢𝑚(𝑥0, 𝑧, 𝑡). Parasitic reflections at the end of
the physical wave tank are difficult to reproduce accurately
in these simulations (see Section 4.1). To minimize their
influence, the results of the velocity reconstruction are thus
analyzed only for the period 𝑇 limited by:

• the time when a complete sea state is established at
𝑥0: 𝑡𝑚𝑖𝑛 = 𝑥0∕𝐶𝑔(𝑓𝑚𝑎𝑥);

• the time when the waves of frequency 𝑓𝑝 arrive at 𝑥0after being reflected by the beach at 𝑥 = 𝑥0 + 𝐿𝑥,
which are likely to be the main contributor to the
parasite waves: 𝑡𝑚𝑎𝑥 = (2𝐿𝑥 − 𝑥0)∕𝐶𝑔(𝑓𝑝).

With 𝑓𝑚𝑎𝑥 selected to neglect the components responsible
for less than 5% of the maximal spectrum density, this
corresponds to a total reconstruction period 𝑇 = 126 s ≈
63 𝑇𝑝 for cases A (𝑇𝑝 = 2 s), and 𝑇 = 70 s ≈ 23 𝑇𝑝minimum for cases B (𝑇𝑝 = 3 s). The error indicator selected
provides a normalized error profile averaged over this time
range, during which reflection should be minimal:

𝜖𝑁𝑅𝑀𝑆 (𝑧) =

[

∫ 𝑇
0

[

𝑈𝑟𝑒𝑐(𝑥0, 𝑧, 𝑡) − 𝑈𝑛𝑢𝑚(𝑥0, 𝑧, 𝑡)
]2 𝑑𝑡

∫ 𝑇
0 𝑈𝑛𝑢𝑚(𝑥0, 0, 𝑡)2 𝑑𝑡

]1∕2
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(4)
where 𝑈𝑟𝑒𝑐 is the reconstructed velocity, 𝑈𝑛𝑢𝑚 is the velocity
provided by the digital twin, and 𝑇 is the time range consid-
ered for the reconstruction in each trial.
4.4.2. On wave prediction

This section introduces several quality metrics for the
deterministic prediction of free surface elevation. Some of
them are classical error indicators, others were provided to
allow the comparison of our results to previous studies.

Following Desmars et al. (2020), the accuracy of the
predicted wave field is assessed with the misfit indicator
(𝑥, 𝑡) :

(𝑥, 𝑡) = 1
𝑁𝑠

𝑁𝑠
∑

𝑖=1

|𝜂𝑝𝑟𝑒𝑑,𝑖(𝑥, 𝑡) − 𝜂𝑒𝑥𝑝𝑒,𝑖(𝑥, 𝑡)|
𝐻𝑠

(5)

where 𝜂𝑝𝑟𝑒𝑑 is the predicted surface elevation, 𝜂𝑒𝑥𝑝𝑒 is the
surface elevation measured by the wave probes and 𝑁𝑠 is the
number of samples used to get an average misfit. Ideally the
𝑁𝑠 samples should be completely independent, i.e. recorded
from different wave fields with random phases sets. Because
of experimental costs and of the varying experimental con-
ditions, this was not possible in this study. Instead, here the
different phase sets are replaced by 𝑁𝑠 samples from a single
trial, taken as partially overlapping sub-segments of the time
series. Each sub-segment is shifted from the previous one by
a duration Δ𝑡 < 𝑇 . It has been shown (e.g. in Naaijen et al.
(2014) and Desmars et al. (2020)) that this method allows
statistical averaging, provided the total measurement period
is long enough and reflection does not affect the results too
much.

The information used to evaluate the misfit (𝑥, 𝑡) then
covers a total duration of 𝑇𝑡𝑜𝑡 = 𝑇 + (𝑁𝑠 − 1)Δ𝑡. A conver-
gence study (not shown here) determined that in our case,
with Δ𝑡 = 1 s the prediction error (𝑥, 𝑡) is fully converged
for 𝑇𝑡𝑜𝑡 ≈ 60𝑇𝑝, but is already stable from 𝑇𝑡𝑜𝑡 ≥ 50𝑇𝑝,
which is then the criterion defined here. This is important
because in this set-up, the longer we record the signal, the
more important reflection problems become.

From the error field (𝑥, 𝑡), a prediction error at any
given location 𝑥 is obtained by averaging (𝑥, 𝑡) over the
prediction zone :

 (𝑥) = 1
𝑡𝑚𝑎𝑥(𝑥) − 𝑡𝑚𝑖𝑛(𝑥) ∫

𝑡𝑚𝑎𝑥

𝑡𝑚𝑖𝑛
(𝑥, 𝑡)𝑑𝑡 (6)

where 𝑡𝑚𝑖𝑛(𝑥) and 𝑡𝑚𝑎𝑥(𝑥) are respectively the beginning and
the end of the theoretical prediction zone at the considered
location.

Still following Desmars et al. (2020), a complementary
metrics is also provided in the form of a cross-correlation
indicator. Cross-correlation is well adapted to deterministic
comparison because it measures the similarity between two
time series : here, the free surface elevation recorded by a
given probe and the corresponding prediction at this loca-
tion. At any point 𝑥𝑝, the time-averaged cross-correlation is

defined by:

𝐶(𝜏) = 1
𝑡𝑚𝑎𝑥 − 𝑡𝑚𝑖𝑛 ∫

𝑡𝑚𝑎𝑥

𝑡𝑚𝑖𝑛
𝜂∗𝑝𝑟𝑒𝑑(𝑥𝑝, 𝑡)𝜂

∗
𝑒𝑥𝑝𝑒(𝑥𝑝, 𝑡+𝜏)𝑑𝑡 (7)

where 𝜂∗𝑝𝑟𝑒𝑑 = 𝜂𝑝𝑟𝑒𝑑∕𝜎𝜂𝑝𝑟𝑒𝑑 is the free surface elevation
predicted by the investigated method, normalized by its
standard deviation over the (temporal) prediction zone, and
𝜂∗𝑒𝑥𝑝𝑒 = 𝜂𝑒𝑥𝑝𝑒∕𝜎𝜂𝑒𝑥𝑝𝑒 similarly refers to the normalized
free surface elevation measured by the wave probes. The
calculation gives the correlation factor 𝐶 as a function of
a time delay 𝜏. Its maximum 𝐶𝑚𝑎𝑥, and the time lag 𝑇𝑠for which it is reached, allow to estimate respectively the
similarity in shape and amplitude between the signals, and
the phase shift of one with respect to the other. The cross-
correlation of a signal with itself will thus give a maximum
amplitude 𝐶𝑚𝑎𝑥 = 1 for a zero time lag. Here, for each
case considered, 𝐶𝑚𝑎𝑥 and 𝑇𝑠 are calculated for all the
𝑁𝑠 predictions obtained from the data sub-samples, and
averaged over these 𝑁𝑠 simulations for each probe location.

Finally, to allow further comparisons with previous stud-
ies, another classical indicator is provided, relying on corre-
lation as well. As in (5), it is a field indicator, expressed as:

𝑐(𝑥, 𝑡) = 1
𝑁𝑠

𝑁𝑠
∑

𝑖=1
𝜂∗𝑝𝑟𝑒𝑑,𝑖(𝑥, 𝑡) 𝜂

∗
𝑒𝑥𝑝𝑒,𝑖(𝑥, 𝑡) (8)

where, unlike in (7), 𝜎𝜂 the standard deviation of 𝜂 is
computed over the whole measurement time and not only
within the [𝑡𝑚𝑖𝑛; 𝑡𝑚𝑎𝑥] time range.

5. Results
This section presents the findings of the experimental

validation: first for the reconstruction of the horizontal ve-
locity profile, then for the prediction of free surface ele-
vation. As a reminder, because of diverging data quality
between trials, the analysis of the results is restricted to one
trial per sea state.
5.1. Horizontal velocity profile

After the data quality control procedure, trials A.10 and
B.1 still show a high proportion of valid ADCP data near
the free surface for both instruments. They are therefore
interesting examples, especially as they were carried out
one right after the other and the experimental conditions are
likely to be very similar between these two trials.

Figure 8 presents the error profiles obtained for these
cases, respectively for case A.10 (𝑇𝑝 = 2 s, (a)) and case
B.1 (𝑇𝑝 = 3 s, (b)). This error is obtained by comparing
indirect experimental results (i.e. the velocity reconstructed
from experimental data) with the reference 𝑈𝑛𝑢𝑚 from HOS-
NWT-twin. The coloured area indicates the depth range
over which the ADCP data were used. For each case, three
profiles are shown:

• The dashed orange profile ( ) is obtained by us-
ing only measurements in the reconstruction: vertical

Huchet et al.: Preprint submitted to Elsevier Page 11 of 19



Experimental validation of a deterministic wave prediction method

0 20 40 60 80
εNRMSU (%)

−3.0

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

z
(m

)

At z = 0,
εNRMSU = 53.3 %

NRMS error on Û
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(a) Case A.10 (𝑇𝑝 = 2 s).
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(b) Case B.1 (𝑇𝑝 = 3 s).
Figure 8: Error profiles for 𝑈𝑟𝑒𝑐 , computed from one single realization for each sea state. ( ) 𝑊 and 𝑈𝑟𝑒𝑓 from synthetic,
reference data. ( ) 𝑊 from experimental data, 𝑈𝑟𝑒𝑓 from synthetic data. ( ) 𝑊 and 𝑈𝑟𝑒𝑓 from experimental data.

velocities 𝑊𝑒𝑥𝑝𝑒(𝑥0 ±Δ𝑥∕2, 𝑧, 𝑡) provided by the two
ADCPs for 𝑧 ∈

[

𝑧𝑟𝑒𝑓 ; 𝑧𝑚𝑎𝑥
]; reference horizontal

velocity 𝑈𝑒𝑥𝑝𝑒(𝑥0, 𝑧𝑟𝑒𝑓 , 𝑡) given by the ADV.
• The solid gray profile ( ) is obtained by using only

synthetic data from the digital twin, with the same
“measurement” configuration as for the experimental
setup (i.e. 𝑊𝑛𝑢𝑚 data restricted to 𝑧 ∈

[

𝑧𝑟𝑒𝑓 ; 𝑧𝑚𝑎𝑥
]).

It represents the minimum error theoretically achiev-
able with the reconstruction method for a given mea-
surement configuration, assuming perfect data. It also
highlights the consequences of data not being avail-
able outside [

𝑧𝑟𝑒𝑓 ; 𝑧𝑚𝑎𝑥
], without the influence of

measurement errors.
• The dashed blue profile ( ) is obtained by replac-

ing the data from the ADV by the data provided by
the digital twin: 𝑈𝑛𝑢𝑚(𝑥0, 𝑧𝑟𝑒𝑓 , 𝑡). This eliminates the
measurement error of the ADV from the evaluation of
the reconstructed profile, and allows to focus solely on
the performance of the ADCPs.

The results obtained with purely experimental data show
that for both cases, the error is minimal around 𝑧 = 𝑧𝑟𝑒𝑓and increases both upwards and downwards from there. To-
wards the surface, the increase is sharp, while it is smoother
towards the bottom.

Around 𝑧 = 𝑧𝑟𝑒𝑓 , the horizontal velocity is directly
provided by the ADV. The fully experimental error (in
orange) does not reach zero however, because it compares
ADV measurements with the horizontal velocity provided by
the digital twin: the discrepancy between measurements and
synthetic data leads to an error of 6.2% at 𝑧𝑟𝑒𝑓 for case A.10,
and 11% for case B.1. Because the NRMS error is quadratic,
a comparison of time series at this depth (not shown here)
would show that these error levels actually reflect a very
good agreement between the two quantities.

The synthetic (gray) and semi-experimental (blue) error
profiles never reach zero either, even at 𝑧𝑟𝑒𝑓 . This is due to
the vertical fitting step (see Section 4.2.2), which makes the

velocity at 𝑧𝑟𝑒𝑓 slightly different from 𝑈𝑛𝑢𝑚(𝑥0, 𝑧𝑟𝑒𝑓 , 𝑡) in
these profiles. It is also responsible for slightly shifting all
error minima away from 𝑧𝑟𝑒𝑓 .

In the lower part of the water column, the experimental
and the synthetic error profiles are similar: in this area,
the error is mainly driven by the need for extrapolation
caused by missing data. As already shown in Huchet et al.
(2021), the quality of the reconstruction at these depths
is however not the main problem: around |𝑧|∕𝜆𝑝 ≈ 0.3,
the velocity amplitudes involved are lower and contain less
useful information for the generation of the sea state than in
the upper part of the water column.

Between 𝑧𝑟𝑒𝑓 and 𝑧𝑚𝑎𝑥, both the fully experimental
(orange) and the semi-experimental (blue) error profiles
show a sharp increase: up to 53% for case A.10 and to
35% for case B.1, at 𝑧 = 0, for the experimental error.
This confirms that the precision of ADCP measurements
is a determining factor in the quality of the reconstructed
velocity, as expected. By contrast, the purely synthetic error
(in gray) barely varies in this range where ADCP velocity
measurements are available. The sudden increase of the
synthetic error close to the free surface is due to the lack
of data in the last cm below 𝑧 = 05.

Finally, close to the free surface, the experimental error
is higher for 𝑇𝑝 = 2 s than for 𝑇𝑝 = 3 s. The velocities
involved are lower for 𝑇𝑝 = 2 s, so measurement errors
on 𝑊𝐴𝐷𝐶𝑃1,2 are proportionally greater, especially for small
orbital amplitudes. Besides, with no measurements avail-
able right below the free surface, we are blind to small
wavelengths, which results in a poor resolution of very
short waves. This has a greater impact on sea states with
small peak periods, because such waves are proportionally
more important to accurately describe these sea states. This
phenomenon is also visible in the synthetic error profiles.

The error difference is illustrated in Figure 9, which
presents time series of reconstructed horizontal velocities at

5As verified in dedicated tests, this increase is already visible just below
𝑧 = 𝑧𝑚𝑎𝑥 because the vertical fitting step mentioned in Section A.3 induced
small modifications of the profile in the shaded area.
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(b) Case B.1 (𝑇𝑝 = 3 s).
Figure 9: Time series of reference (𝑈𝑛𝑢𝑚) and reconstructed (𝑈𝑟𝑒𝑐) horizontal velocities at 𝑧 = 0.

𝑧 = 0, for 𝑇𝑝 = 2 s and for 𝑇𝑝 = 3 s. The difficulties in
resolving short waves are clearly visible (e.g. around 𝑡∕𝑇𝑝 ≈
37 𝑇𝑝 for case A.10), and are more important in case A.10
than in case B.1. Even with an error around 55% however, the
main patterns of the velocity signal are correctly reproduced
for the larger waves. This suggest the relatively high error
value accounts for the poor resolution of small waves.

In a real-scale deployment, ADCP measurement errors
of this magnitude are anyway unlikely. Indeed, using an
ADCP in a reduced-scale, freshwater tank represents a rather
difficult case study, compared to normal operating condi-
tions. However, in our wave tank context it remains to
be seen what quality of prediction can be reached with
the velocity profiles reconstructed under such experimental
conditions. This topic is explored in the next subsection.
5.2. Wave prediction

To give a first overview of the results, time series of
surface elevation predictions are compared to wave probe
measurements for both sea states studied, in Figure 10 (case
A.10) and Figure 11 (case B.1). In each case, the data sub-
segment used as an illustration was selected to be consistent
with the mean characteristics of the obtained prediction.
These mean characteristics are presented in the following
figures: Figure 12 shows the misfit indicator (𝑥, 𝑡), Fig-
ure 13 shows the correlation map 𝑐(𝑥, 𝑡) as an alternative
metrics, Figure 14 shows the mean prediction error at each
probe  (𝑥𝑝),and Figure 15 shows the overall correlation
magnitude 𝐶𝑚𝑎𝑥 and associated time shift 𝑇𝑠.Overall, the predicted free surface elevation agrees well
with the wave probes’ measurements in the prediction zone.

Discrepancies are visible for small amplitude waves. Fig-
ure 10 and 11a show examples of very good agreement
between the predicted and the measured waves, although
case A.10 shows a tendency to underestimate wave ampli-
tudes by around 4% of 𝐻𝑠. This behaviour is consistent with
the underestimation of the reconstructed velocity amplitudes
already visible in Figure 9a. This bias was not detected
for case B.1. The missing velocity data between 𝑧𝑚𝑎𝑥 and
𝑧 = 0 are likely the cause of this phenomenon, as it means
short waves are not properly accounted for, especially with
𝑇𝑝 = 2 s.

In the representative example time series displayed in
Figure 10 and Figure 11, the quality of the prediction de-
creases outside the prediction zone, as information on fre-
quency components lower than 𝑓𝑚𝑖𝑛 = 0.67𝑓𝑝 are not avail-
able any more. This is consistent with the spatio-temporal
evolution of the average misfit presented in Figure 12, which
confirms that the prediction zone is a relevant indicator of
where a reliable prediction can be generated. The figure
suggests that the frequency boundaries selected for this
case study might even be too conservative, especially for
case A.10. Even outside the prediction zone, the observed
deterioration is progressive: except when small and very
irregular waves are present like in Figure 11b, the method
correctly reproduces the arrival instants of the main waves,
even some time after the maximum theoretical prediction
horizon.

Looking at averaged parameters, Figure 14 shows that
the mean prediction error 𝜀 (𝑥) provided by the new pre-
diction algorithm lies between 5 and 9.5% of 𝐻𝑠, depending
on the sea state and the position of the probes considered.
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Figure 10: Case A.10. Comparison of representative 𝜂𝑒𝑥𝑝𝑒(𝑡) and 𝜂𝑝𝑟𝑒𝑑(𝑡) time series at 𝑥𝑝 = 48m, i.e. 4.5 𝜆𝑝 downstream of 𝑥0.
At selected location, the equivalent of  (𝑥) averaged on one sample only is 7.2%. Corresponding 𝐶𝑚𝑎𝑥 = 96% and 𝑇𝑠∕𝑇𝑝 = 0.
Vertical grey lines ( ) and ( ) outside the prediction zone indicate prediction horizons for alternative frequency bounds
selected at respectively 25% and 75% of the energy peak, instead of 5%.
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(a) At 𝑥𝑝 = 54m i.e. 2.7 𝜆𝑝 downstream of 𝑥0. Equivalent  = 5.4%, 𝐶𝑚𝑎𝑥 = 96%,
𝑇𝑠∕𝑇𝑝 = −0.01.
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(b) At 𝑥 = 90m i.e. 5.6 𝜆𝑝 downstream of 𝑥0. Equivalent  = 8.5%, 𝐶𝑚𝑎𝑥 = 91%,
𝑇𝑠∕𝑇𝑝 = −0.01.
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(c) At 𝑥 = 102m i.e. 6.5 𝜆𝑝 downstream of 𝑥0. Equivalent  (𝑥) = 9.3%, 𝐶𝑚𝑎𝑥 = 94%,
𝑇𝑠∕𝑇𝑝 = −0.03.

Figure 11: Case B.1. Comparison of representative 𝜂𝑒𝑥𝑝𝑒(𝑡) and 𝜂𝑝𝑟𝑒𝑑(𝑡) time series at three locations in the prediction area. Vertical
grey lines ( ) and ( ) outside the prediction zone indicate prediction horizons for alternative frequency bounds selected at
respectively 25% and 75% of the energy peak, instead of 5%.

Huchet et al.: Preprint submitted to Elsevier Page 14 of 19



Experimental validation of a deterministic wave prediction method

0 2 4 6 8 10
(x− x0)/λp

−30

−25

−20

−15

−10

−5

0

5

10

(t
−
T

)/
T
p

0.00

0.05

0.10

0.15

0.20

0.25

0.30

E(
x
,t

)

(a) Case A.10.

0 1 2 3 4 5 6 7
(x− x0)/λp

−30

−25

−20

−15

−10

−5

0

5

10

(t
−
T

)/
T
p

0.00

0.05

0.10

0.15

0.20

0.25

0.30

E(
x
,t

)

(b) Case B.1.
Figure 12: Map of (𝑥, 𝑡) for the two trials considered. Dashed vertical lines show the position of the probes. Solid lines indicate
the prediction zone for a reconstruction period of 30 𝑇𝑝. Frequencies 𝑓𝑚𝑖𝑛 and 𝑓𝑚𝑎𝑥 are associated to the extreme group velocities
bounding the prediction zone: they are chosen so that outside these frequency bounds, each component’s spectral density is less
than 5% of the wave spectrum’s peak density.
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(a) Case A.10.
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(b) Case B.1.
Figure 13: Map of 𝑐(𝑥, 𝑡) for the two trials considered. Black solid lines indicate the prediction zone for a reconstruction period
of 30 𝑇𝑝. Outside the limit frequency bounds, each component’s spectral density is less than 5% of the wave spectrum’s peak
density. Dashed lines ( ) and ( ) show alternative prediction zones for frequency bounds selected using density thresholds
of respectively 25% and 75% of the peak density.

Case A.10 shows a slight but rather constant increase in
the prediction error with propagation distance, from 6 to
8.5 %. Variations of  along 𝑥 are larger for case B.1,
maybe because 𝑇𝑡𝑜𝑡 represents a smaller number of 𝑇𝑝 for
this case. Extending the total recording period could smooth
the results but would increase the influence of parasitic
reflection.

As a complementary information on the prediction’s
quality, the correlation indicators separate the error in am-
plitude and the error in phase. Results are presented in
Figure 15.

The match is overall very good between the prediction
and the measurements for each probe located in the theoret-
ical prediction area, with a correlation factor 𝐶𝑚𝑎𝑥 greater
than 0.9 in most cases. For case A.10 and (𝑥−𝑥0)∕𝜆𝑝 ≈ 8.4,

the very high and dubious value of 𝐶𝑚𝑎𝑥 is probably due to
the small theoretical prediction duration at this location (see
prediction zone in Figure 12a), limiting the relevance of the
statistical metrics.

The phase shift remains very close to zero for both sea
states and at all studied locations. The low steepness of the
sea states tested (𝜖𝑐 = 1%) was not likely to induce large
errors in the wave speeds, even if we were using a linear wave
model, so this result was expected. But it is worth checking,
as a correct phase information is an essential aspect of a
good deterministic wave prediction, especially when aiming
to develop control systems.

Figure 10 and 11a are representative examples of a high
correlation and a small time shift. A weaker correlation
associated with a near-zero time shift, as in Figure 11b, is
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often due to the presence of short waves in the prediction
area (around 𝑡∕𝑇𝑝 = 5), or to small waves superimposed on
larger ones (around 𝑡∕𝑇𝑝 = −2), which are not reproduced
correctly by the prediction simulations. The main waves, on
the other hand, remain fairly well resolved. A high correla-
tion associated with a non-zero phase shift translates into a
small offset in the arrival time of the wave crest, visible for
some large waves around 𝑡∕𝑇𝑝 = 1 and 4 in Figure 11c.
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Figure 14: Prediction error for cases A.10 and B.1. Here,
𝑇𝑡𝑜𝑡 = 57 𝑇𝑝 for A.10, 𝑇𝑡𝑜𝑡 = 50 𝑇𝑝 for B.1 and Δ𝑡 = 1 s.
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Figure 15: Correlation between the measured and predicted
free surface elevation time series for cases A.10 and B.1. Top:
correlation magnitude. Bottom: phase shift, as a fraction of
𝑇𝑝. Values are averaged over the simulations using data sub-
samples.

6. Discussion
As shown in Figure 13, Figure 10 and Figure 11, the 5%

threshold initially selected to define the frequency bounds,
and thus the prediction zone, seems too conservative. These
figures show possible extensions of the cut-off frequencies
with thresholds up to 75% of the energy peak. The spectra
used in the experiments were Pierson-Moskowitz spectra,
which are rather sharp and whose energy is concentrated
around the peak, especially at low frequencies. Therefore the
value of 𝑓𝑚𝑖𝑛 can only be increased carefully, at the risk of
missing high-energy components. However, even with the
highest threshold tested (which led to 𝑓𝑚𝑖𝑛 = 86%𝑓𝑝), the
prediction quality remains reasonable. The spectrum is not
as sharp for 𝑓 > 𝑓𝑝, so the effects of extending the cut-off

frequencies are more visible in the lowest part of the predic-
tion zone i.e., at the start of the (reconstruction) – prediction.
The largest alternative prediction zone, shown in Figure 13,
still allows a rather good agreement with the correlation
pattern. This only means that a shorter measurement time is
needed to obtain a meaningful reconstruction of the sea state,
which is of less interest in the context of wave prediction.

Comparing the experimental results presented in Sec-
tion 5.2 with the literature is not straightforward, as predic-
tion approaches can be very different from one another. As
an example, in the work of Desmars et al. (2020), informa-
tion on the incident waves is collected over a spatio-temporal
area rather than at a single point, and prediction errors are
calculated at locations relatively close to the measurement
area.

In Figure 14, our results show errors in the same order of
magnitude as in their Figure 15, but with slightly greater val-
ues: in their work, 𝜀 (𝑥) varies from 3.5 to 6.4% depending
on the measurement probe and the sea state considered.

The most obvious cause for greater errors in our case
is the imperfect quality of the boundary condition fed into
the nonlinear propagation model, due to noisy and incom-
plete velocity measurements in the water column. The post-
processing step was not able to completely abolish this diffi-
culty: the consequences were already visible in Section 5.1,
with a boundary condition of poorer quality than when
reconstructed from synthetic data.

A second reason is the presence of reflection in the phys-
ical wave tank. Indeed, the prediction method considered
here uses a velocity measurement device upstream of the
prediction area. It can thus only consider the propagation
of waves towards increasing 𝑥. In the tank, despite the
absorbing beach, reflected waves are propagating towards
decreasing 𝑥 (the reflection coefficient has been estimated
at approximately 10 - 12% of amplitude for regular waves,
see Section 4.1). These reflected waves cross the prediction
area before being measured by the sensors around 𝑥0, which
prevents from taking them into account. As the prediction
simulations are compared to the measurements from 𝑡 ≥
𝑇𝑟𝑎𝑚𝑝 + 𝑥0∕𝐶𝑔𝑚𝑖𝑛 , reflection due to the 𝑓𝑝 frequency com-
ponent, which is the main contribution, is present from the
start.

As a side note, the retrieved horizontal velocity profile
was evaluated on a restricted time span in Section 2.4, to
limit the influence of reflection. This way, only the mea-
surement capabilities of the sensors and the relevance of the
reconstruction method were assessed. With reflection being
more and more present over time in the physical wave tank,
the reconstruction error calculated in Section 2.4 is not a true
indicator of the overall fidelity of the boundary condition
really passed to the wave prediction model.

The results presented in this work showed that, provided
adequate experimental conditions are met, the proposed
prediction method can produce good quality predictions of
the sea surface elevation, up to a few peak periods ahead, for
moderate sea states characterized by different 𝜆𝑝∕ℎ ratios.
In Section 5.1, the error on the reconstructed horizontal
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velocity profile was greater in the upper water column for
case A (𝑇𝑝 = 2 s). But the averaged error indicators showed
a similar and satisfactory quality of prediction for both sea
states.

These results were obtained using a wave model based
on a HOS method. This allows to enjoy the accuracy of fully
nonlinear models, while maintaining an efficiency that is still
compatible with real-time prediction, in the long run. The
method investigated in this work achieved results of com-
parable quality to previous attempts using HOS methods,
with a shorter computation time because only one forward
HOS simulation is needed here. In the present work, the
computations were conducted with a single processor and
no code optimization, and the CPU time was comparable to
the simulation time. Considering we were in a model scale
tank configuration with a Froude scaling, this means that the
prediction is actually obtained faster than real-time at full
scale. These are promising results, compared to the existing
non-linear approaches.

7. Conclusions
Following on from previous numerical studies (Huchet

et al., 2021), this paper reported on the experimental valida-
tion of a nonlinear, deterministic wave prediction method,
based on wave-induced instantaneous velocity measure-
ments. The method was tested for long-crested, irregular
waves with a low steepness, as an experimental proof of
concept. The experiments were conducted in a towing tank
using wave probes, a single-point ADV velocity sensor and
two ADCP velocity profilers, the latter instruments being
originally designed to be deployed at sea. A dedicated
method combined the velocity sensors measurements to
retrieve the instantaneous, horizontal velocity profile, which
was not directly accessible using conventional equipment.
This profile was used as a forcing field in the nonlinear wave
propagation model HOS-NWTpred, to generate and propa-
gate the corresponding sea state, and to produce a prediction
of the free surface elevation. The prediction obtained was
compared with the measurements of the wave probes. We
evaluated the overall feasibility of the prediction method in
two parts: first, we assessed the quality of the instantaneous
horizontal velocity profiles retrievable from the acoustic
instruments; then, we examined the quality of the surface
elevation prediction obtained using this information on the
sea state.

This study was conducted under challenging conditions
due to the use of ADCPs in a lab environment with fresh,
clear water. Because of this, the quality of the velocity data
measured was not consistent across all trials.

Still, this work describes the first experimental proof of
concept of a new prediction algorithm, and gave promising
results. When good measuring conditions were ensured,
the reconstruction step proved able to provide a satisfying
horizontal velocity profile, using imperfect velocity data
from the upper part of the water column only. From this
reconstructed profile, the wave model generated good quality

predictions of free surface elevation. In particular, the phase
error on the predicted waves remained very small even
several peak wavelengths downstream the measurements
location. This allows a longer prediction horizon and is also
an important aspect when developing control strategies for
wave energy converters or floating offshore wind turbines.

These results are promising for practical applications, as
the method allows the use of nonlinear propagation while
getting rid of the time-consuming assimilation procedure
usually needed to initialize such nonlinear models. This,
combined with the efficiency of an HOS propagation model,
significantly reduces the CPU time needed to get a predic-
tion, compared to other nonlinear prediction algorithms.

Further work should include the extension of the method
to multi-directional wave prediction. Even with several in-
struments deployed, the data collected will not provide a
full knowledge of the multi-directional sea state and some
assumptions on its characteristics will be needed. There is
also room for improvement in using more effectively the
information already available from the measuring devices:
in the present study, only the central beam of the ADCPs was
used. The slanted beams could be a valuable complementary
source of information as well, provided a suitable processing
method is developed to handle and combine the different
sources of information.
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A. ADCP data quality control
A.1. Correlation test

The first processing step rules out data points associated
to a bad correlation value. Correlation is a quantity provided
directly by the ADCPs for each velocity measurement (i.e.,
for each cell and each ping)and is a proxy for signal quality.
Here, after a close examination of the data set, the minimum
acceptable correlation is set to 80%: all velocities with a
correlation below this threshold are discarded.

This steps leaves very few valid data points in the lower
part of the water column. Therefore, velocity measurements
are kept only for cells above a custom depth limit. This limit
is defined for each trial as the depth below which more than
50% of the data do not pass the correlation test. It generally
falls between 𝑧𝑙𝑖𝑚 = −1.2m and −0.8m.

While allowing to identify many erroneous values, the
correlation check still leaves out numerous outliers. The
most obvious ones are then detected iteratively and inde-
pendently for each depth cell, with the following criterion:
𝑊 (𝑧, 𝑡) is an outlier if |𝑊 (𝑧, 𝑡)−⟨𝑊 (𝑧)⟩| > 6𝜎𝑊 (𝑧), where
⟨𝑊 (𝑧)⟩ is the mean value taken by 𝑊 (𝑧) in the considered
sample (updated at each iteration).
A.2. Phase-Space Thresholding Method

The resulting velocity data is a partially masked array
with missing data in place of outliers. However, in the
following steps a complete time array is needed at each cell,
so the missing data are filled using 2D cubic interpolation.
An iterative Phase-Space Thresholding Method (Goring and
Nikora, 2002; Mori et al., 2007) then detects the remaining
outliers, and replaces them using cubic interpolation. This
step is conducted independently for each depth cell and
requires knowledge of the full time series at each cell.
A.3. Vertical fitting

Finally, after outliers have been identified and replaced,
a vertical fitting is applied on the resulting 𝑊 arrays, using a
3-component approximation of the linear expression for 𝑊
in the Airy wave theory:

𝑓 (𝑧, 𝑎1, 𝑘1, 𝑎2, 𝑘2, 𝑎3, 𝑘3) =
3
∑

𝑖=1
𝑎𝑖
sinh

[

𝑘𝑖(𝑧 + ℎ)
]

sinh
[

𝑘𝑖ℎ
] (9)

At each time step, the parameters (𝑎1, 𝑘1, 𝑎2, 𝑘2, 𝑎3, 𝑘3) are
determined using a non-linear least squares method, to find
the function that best fits the post-processed experimental
𝑊 profile between 𝑧𝑙𝑖𝑚 and 𝑧𝑚𝑎𝑥.

After this last step, the measurements of both ADCPs
present themselves in the form of checked and processed 𝑊
fields, over a depth range restricted to [

𝑧𝑙𝑖𝑚 ; 𝑧𝑚𝑎𝑥
].
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