
HAL Id: hal-04099563
https://hal.science/hal-04099563v2

Preprint submitted on 4 Oct 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Analysis of an intra-and interspecific interference model
with allelopathic competition *

Radhouane Fekih-Salem

To cite this version:
Radhouane Fekih-Salem. Analysis of an intra-and interspecific interference model with allelopathic
competition *. 2023. �hal-04099563v2�

https://hal.science/hal-04099563v2
https://hal.archives-ouvertes.fr


Analysis of an intra- and interspecific interference model with allelopathic
competition

Radhouane Fekih-Salema,b,∗

aUniversity of Tunis El Manar, National Engineering School of Tunis, LAMSIN, 1002, Tunis, Tunisia
bUniversity of Monastir, Higher Institute of Computer Science of Mahdia, 5147, Mahdia, Tunisia

Abstract

Understanding and exploiting competition and coexistence between microbial species is one of the more challenging
aspects of mathematical biology. In this paper, we propose an original model of two-microbial species competing for
a single nutrient in the chemostat including general intra- and interspecific density-dependent growth rates with allelo-
pathic interactions. Each species produces a toxin that affects the growth of other species as well as its own growth.
The removal rates are distinct and include the specific death rate and the autotoxicity of each species. We establish
an in-depth mathematical analysis by determining the multiplicity of all steady states of the three-dimensional system
and their necessary and sufficient conditions of existence and local stability according to the operating parameters,
which are the dilution rate and the inflowing concentration of the substrate. To describe the asymptotic behavior
of the process according to these control parameters, we first determine theoretically the operating diagram. Using
MATCONT software, these theoretical results are validated numerically but it reveals the cusp bifurcation that occurs
by varying two parameters. The one-parameter bifurcation diagram in the dilution rate shows that there can be either
transcritical or saddle-node bifurcations. Finally, we apply our results to a particular model in the literature without
intra- and interspecific interference but with only allelopathic effects of the second species on the first species. We
show that one of the coexistence steady states is locally exponentially stable when it exists, whereas in the literature
they have not been able to demonstrate that the stability condition of this steady state is always fulfilled.

Keywords: Allelopathy, bifurcation, chemostat, coexistence, density-dependence, operating diagram

1. Introduction

The chemostat is an experimental device used in microbial ecology, microbiology, and evolutionary and applied
biology such as water treatment, biomass energy recovery and biotechnologies in a broad sense. It is the source
of several mathematical models for population dynamics and interactions between microbial species, in particular
competition for resources [22, 26, 50]. The mathematical study of the classical chemostat model of several species
competing on a same limiting resource shows that only the species with the lowest break-even concentration survives
while all other species will be excluded [50]. This result is classical and is well known as the Competitive Exclusion
Principle (CEP) which asserts that at most one species can survive to the competition, namely the species which
makes optimal use of the resource (see [18] and the references therein). Hansen and Hubbell’s laboratory experiments
allowed to identify and validate the CEP in the chemostats [25].

However, the biodiversity and natural species richness appeared as a contradiction with the CEP. The solution
to this paradox is to revise the mathematical modeling by taking into account in the classic chemostat model the
different types of interactions between microbial species. Indeed, this has motivated many recent researches aimed
at understanding and explaining biodiversity in microbial ecosystems by taking into account various mechanisms to
promote the coexistence of species. In the literature, the following coexistence mechanisms can be found: intra- and
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interspecific competition [1, 9], flocculation [13, 14, 16, 17, 23], density-dependence [18, 32–34, 40, 41], predator-
prey interaction [2, 5, 31], simple or complex food web [6, 28, 56], presence of an internal or external inhibitors
[3, 10–12, 27], and the references therein.

While these various coexistence mechanisms have been extensively analyzed with chemostat models, allelopathy
is another mechanism of biodiversity between species that has been relatively neglected. Allelopathy can be defined
as the effect of a toxic substance released by one species and being nocive to their own or their competitor’s growth
rates [36]. The applications of allelopathic competitions can be found in several fields like bio-remediation, biotech-
nological processes, ecological phenomena like algal blooms and so on. This kind of competition is frequent in nature
not only between algal species but also between algae and bacteria, bacteria and bacteria, algae and aquatic plants, as
well as plants and plants (see [20, 21], and the references therein).

Based on the formulation of phenomenological Lotka–Volterra type, allelopathic interaction modeling between
two species was introduced by Maynard-Smith [39] where each species produces a toxic substance to the other but
only when the other is present. An exhaustive analysis of the two-species competition model with allelopathic inter-
actions was carried out in [7]. In order to have a good fit for all the experimental data of the toxic alga, the simple
Lotka–Volterra type model with allelopathic interactions between two marine phytoplankton species was modified
such that the allelopathic term depends on the product of the square of the concentration of the target species by the
concentration of the toxic species [52]. More precisely, if x1 is the population density of a non-toxic alga and x2
that of a toxic one, the mathematical form of the allelopathic interaction term is α1x2

1x2
2, where α1 is the allelopathic

parameter.
Roy [45] introduced a chemostat model with two microbial species competing for a single resource by considering

a single species that is toxin-producing thereby having an allelopathic effect on the other. Growth rates are specified to
be of Michaelis-Menten type. An extension of Roy’s competition model between non-toxic phytoplankton and toxic
phytoplankton was studied in Kengwoung-Keumo [29] by allowing a general class of monotonic growth rates.

Inspired by the way to model competitions of Lotka–Volterra type by including allelopathic terms in the chemostat
[29, 39, 45, 52], we propose a first general model of two species competing for a single resource in the chemostat
involving an intra- and interspecific competition with allelopathic effects. Using distinct removal rates and assuming
that the two populations are toxic, the model takes the form

Ṡ = D(S in − S ) − µ1(S ) x1
y1
− µ2(S ) x2

y2
,

ẋ1 = [µ1(S ) − a11x1 − a12x2 − α1x1x2
2 − D1]x1,

ẋ2 = [µ2(S ) − a22x2 − a21x1 − α2x2x2
1 − D2]x2,

(1)

where S (t) denotes the concentration of nutrient in the culture at time t; x1(t) and x2(t) denote the concentrations of
the two toxic species at time t; µ1(S ) and µ2(S ) represent the per-capita growth rates of the two species; S in and D
denote, respectively, the input concentration of the limiting nutrient and the dilution rate of the chemostat; y1 and y2
are the yield coefficients which can be easily normalized to the unit without loss of generality by the simple change
of variables x1/y1 → x1 and x2/y2 → x2 . In addition, a11 and a22 are the rates of intraspecific competition of the
first and second species, respectively; a12 and a21 are the interspecific competition coefficients of the species j on the
species i, i = 1, 2, j = 1, 2, i , j. As in Solé et al. [52], the phytotoxic (or allelopathic) interactions of the species j
on the species i is modeled by αix2

1x2
2, where αi denotes the phytotoxic coefficient. In addition, Di, i = 1, 2, represents

the disappearance rate of the species i that can be modeled as follows:

Di = θiD + mi,

where θi belongs to [0, 1] and denotes the proportion of the species i leaving the reactor as proposed by Bernard et al.
[4] to model a biomass reactor attached to the support or to decouple the residence time of solids and the hydraulic
residence time (1/D). Moreover, the nonnegative mortality rate mi of the species i is the sum of the specific death rate
εi and the autotoxicity parameters ai, that is, mi = εi + ai and it has unit of the dilution rate (1/day).

In this work, we propose and study a more general model than our first proposed model (1) by allowing generic
functions representing intra- and interspecific competitions as well as toxic effects of each species on the other. This
model is an extension of system (1) and it generalizes several models studied in the literature as we demonstrate later.

2



This general model is written as follows:
Ṡ = D(S in − S ) − µ1(S )x1 − µ2(S )x2,
ẋ1 = [µ1(S ) − q1(x1, x2) − D1]x1,
ẋ2 = [µ2(S ) − q2(x2, x1) − D2]x2,

(2)

where the functions q1(x1, x2) and q2(x2, x1) are assumed to be increasing in each variable x1 and x2.
The particular case of our general model (2) was considered in [45] when the growth rates µ1(S ) and µ2(S ) are

of Michaelis-Menten type and when only the first species produces toxin, that is, q2(x2, x1) = 0. The author has
derived analytically a critical lower bound of allelopathy as a function of the parameters of model which ensures the
coexistence and the coevolution of two phytoplankton species competing for a single limiting nutrient. The local
stability of positive steady states has been determined only numerically. Using a general class of monotonic growth
rates, an extension of model [45] has been studied in [29]. The author has shown the existence of two interior steady
states where the stability of one of them depends on a condition of Routh–Hurwitz criterion. In this work, we will
show that this condition is always satisfied in their particular case.

In Fekih-Salem et al. [15], we have considered only the interspecific interactions in the dynamics of the first
species, that is, q1(x1, x2) = q1(x2) and q2(x2, x1) = 0. We have shown the occurrence of positive steady state of
coexistence but which is unstable as long as it exists. Then, taking into account the intra- and interspecific interference
such that q1(x1, x2) = q1(x2) and q2(x2, x1) = q2(x2), there can be a multiplicity of positive steady states which could
be locally exponentially stable.

Note that the structure of our model (2) is different from that in our paper Fekih-Salem et al. [18]. In fact, here
we consider the growth rates µ1(S ) and µ2(S ) (which depend only on S ) in the dynamics of the substrate S . However,
in [18], it is rather the density-dependent growth rates µ1(S , x1, x2) and µ2(S , x1, x2) (which depend only on S , x1, and
x2) in the dynamics of S .

The aim of this paper is to provide a complete mathematical and numerical analysis of the general model (2) to
understand the joint effect of the intra- and interspecific density-dependence with allelopathic competitions. Our study
presents an extension of the results in [29, 45] by allowing a general class of growth functions and the production of
both species of the toxin and by adding the intra- and interspecific interference. Using distinct removal rates including
mortality and autotoxicity of each species, we describe the multiplicity of all steady states and their necessary and
sufficient conditions of existence and local stability according to the operating parameters S in and D. To determine the
asymptotic behavior of the process with respect to these two operating parameters, we analyze the operating diagram
theoretically from the conditions of existence and stability of all steady states. Using the software MATCONT [37],
the theoretical analysis of the operating diagram is validated by the numerical continuation method. In addition, we
study the one-parameter bifurcation diagram in D describing all types of bifurcations. Then, we apply our theoretical
results to the particular model (27) of [29] by providing the necessary and sufficient conditions of existence and local
stability of all steady states. In particular, we prove that one of the two positive steady states is locally exponentially
stable when it exists, whereas in [29] the author has not been able to demonstrate that the stability condition of this
steady state is always fulfilled. In this particular case of [29], we determine theoretically the operating diagram and the
one-parameter bifurcation diagram which have not been studied in the literature. Finally, the numerical simulations
illustrate the theoretical results.

This paper is organized as follows. The next section presents general assumptions for the density-dependent
functions of model (2). Subsequently, we show mathematically that it is biologically well-posed and we study of
the existence of all steady states and their multiplicity. Section 3 is devoted to the analysis of the local asymptotic
stability of each steady state of system (2). In section 4, the operating diagram is established theoretically from the
existence and the stability conditions, and numerically using the software MATCONT. In section 5, the one-parameter
bifurcation diagram in the dilution rate D illustrates all types of bifurcations. In section 6, our results are applied to
the particular model (27) of [29]. In section 7, we discuss and compare our results with those of the existing literature.
In Appendix A, we show that one of the stability conditions of the Routh–Hurwitz criterion corresponding to the
coexistence steady states holds for all S in and D. Finally, all parameter values used in the numerical simulations are
provided in Appendix B.
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2. Assumptions on the model and steady states

In this work, we assume that the growth rates of model (2) are continuously differentiable (C1) functions that
satisfy the following general conditions.

(H1) µ1(0) = µ2(0) = 0 and µ′1(S ) > 0 and µ′2(S ) > 0, for all S > 0.

Hypothesis (H1) means that the growth can take place if and only if the substrate is present and the growth rate of
each species increases with the concentration of substrate.

(H2) q1(0, 0) = q2(0, 0) = 0, q1(x1, x2) ≥ 0, q2(x2, x1) ≥ 0, ∂q1
∂x1

(x1, x2) ≥ 0, ∂q1
∂x2

(x1, x2) ≥ 0, ∂q2
∂x2

(x2, x1) ≥ 0 and
∂q2
∂x1

(x2, x1) ≥ 0, for all x1 > 0 and x2 > 0.

The negative effects of intra- and interspecific interference and allelopathic competition increase with the concentra-
tion of species x1 and x2.

The following preliminary result shows the positivity and boundedness of the solutions of model (2) which are
very important properties for any biological and ecological system. The proof is standard and hence is left to the
reader.

Proposition 1. For any nonnegative initial condition, the solutions of model (2) remain nonnegative and are positively
bounded. Let Dmin = min(D,D1,D2). The compact set

Ω =

{
(S , x1, x2) ∈ R3

+ : S + x1 + x2 ≤
D

Dmin
S in

}
,

is positively invariant and is a global attractor for system (2).

The steady states are found by setting the right hand sides of equations of (2) equal to zero. Thus, they are the
solutions of the set of equations 

0 = D(S in − S ) − µ1(S )x1 − µ2(S )x2,
0 = [µ1(S ) − q1(x1, x2) − D1]x1,
0 = [µ2(S ) − q2(x2, x1) − D2]x2.

(3)

Indeed, system (2) can have at most four types of steady states labeled as follows:

• E0 = (S in, 0, 0): the washout of both species (x1 = x2 = 0). It always exists.

• E1 = (S̃ 1, x̃1, 0): only the second species is extinct (x2 = 0 and x̃1 > 0).

• E2 = (S̃ 2, 0, x̃2): only the first species is extinct (x1 = 0 and x̃2 > 0).

• E∗ = (S ∗, x∗1, x
∗
2): both species are maintained (x∗1 > 0 and x∗2 > 0).

From Hypothesis (H1), when equation µi(S ) = Di, i = 1, 2 has a solution, it is unique and we define the usual
break-even concentrations

λi = µ−1
i (Di). (4)

When equation µi(S ) = Di has no solution, we put λi = +∞.
The following result determines the components and the uniqueness of the boundary steady states E1 and E2, as

well as their existence conditions according to the operating parameters.

Proposition 2. Assume that Hypotheses (H1) and (H2) hold. The boundary steady states E1 = (S̃ 1, x̃1, 0) and E2 =

(S̃ 2, 0, x̃2) of system (2) are defined by

S̃ i = ϕi(x̃i) := S in −
Di

D
x̃i −

1
D

qi(x̃i, 0)x̃i, i = 1, 2 (5)

and x̃i is the unique solution of equation

ψi(xi) := µi(ϕi(xi)) − qi(xi, 0) − Di. (6)

Ei exists if and only if S in > λi(D). When it exists, Ei is unique.
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Proof. Let i = 1, 2, j = 1, 2, i , j. The components S = S̃ i and x = x̃i of a boundary steady state Ei are the solutions
of (3) with xi > 0 and x j = 0. Thus, S̃ i and x̃i are the solutions of equations{

D(S in − S ) = µi(S )xi,
µi(S ) = qi(xi, 0) + Di.

(7)

Using the two equations of (7), it follows that S = ϕi(xi) which is defined in (5). Replacing this expression of S in the
second equation of (7), we see that xi must be a solution of the equation ψi(xi) = 0. The derivative of ϕi(xi) is given
by

ϕ′i(xi) = −
1
D

(
qi(xi, 0) +

∂qi

∂xi
(xi, 0)xi + Di

)
.

From Hypothesis (H2), the mapping xi 7→ ϕi(xi) is monotonically decreasing from ϕi(0) = S in to

ϕi

(
D
Di

S in

)
= −

S in

Di
qi

(
D
Di

S in, 0
)
≤ 0.

Hence, there exists a unique solution x̂i ∈ (0,DS in/Di] satisfying ϕi(xi) = 0. In addition, S = ϕi(xi) is nonnegative for
all xi ≤ x̂i. On the other hand, we have

ψ′i(xi) = ϕ′i(xi)µ′i(ϕi(xi)) −
∂qi

∂xi
(xi, 0).

From Hypotheses (H1) and (H2), the mapping xi 7→ ψi(xi) is monotonically decreasing from ψi(0) = µi(S in) − Di to
ψi(x̂i) = −qi(x̂i, 0) − Di < 0. Therefore, there exists a unique solution x̃i ∈ (0, x̂i) of equation ψi(xi) = 0 if and only if
µi(S in) > Di, that is, S in > λi.

Now, to establish the existence of the positive steady state E∗ = (S ∗, x∗1, x
∗
2), we need to show the following results.

In fact, the components S = S ∗, x1 = x∗1 and x2 = x∗2 of E∗ must be the solutions of (3) with x1 > 0 and x2 > 0. Thus,
S ∗, x∗1 and x∗2 are the solutions of the set of equations

D(S in − S ) = µ1(S )x1 + µ2(S )x2,
µ1(S ) = q1(x1, x2) + D1,
µ2(S ) = q2(x2, x1) + D2.

(8)

Multiplying the second equation by x1 and the third equation by x2 in system (8), the first equation implies that

S = S in − g(x1, x2), where g(x1, x2) :=
1
D

(D1x1 + x1q1(x1, x2) + D2x2 + x2q2(x2, x1)). (9)

Consider now replacing of S by this expression (9) in the second and third equations of (8) to see that (x1 = x∗1, x2 = x∗2)
must be a solution of the set of equations{

0 = f1(x1, x2) := µ1(S in − g(x1, x2)) − q1(x1, x2) − D1,
0 = f2(x2, x1) := µ2(S in − g(x1, x2)) − q2(x2, x1) − D2.

(10)

Note that the functions f1 and f2 are defined on the set

Λ = {(x1, x2) ∈ R+ × R+ : g(x1, x2) ≤ S in} . (11)

The components of the positive steady state E∗ are positive if and only if system (10) has a solution in Λ◦, the interior
of Λ. To solve system (10) in the open set Λ◦, we define the function corresponding to equation S in = g(x1, x2) in the
following lemma.

Lemma 1. Under Hypothesis (H2), the equation S in = g(x1, 0) [resp. S in = g(0, x2)] has a unique positive solution
x̂1 ∈ (0,DS in/D1] [resp. x̂2 ∈ (0,DS in/D2]]. Moreover, the equation S in = g(x1, x2) defines a smooth decreasing
function

G : [0, x̂1]→ [0, x̂2], x1 7→ G(x1) = x2

where G(x̂1) = 0 and G(0) = x̂2 (see Fig. 1).
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(a)x2
x̂2

γ0

c2

b1

l1

x̂1

x1

(b)x2

x̂2

γ0

γ1

c2

x̄2

b2

b1

l1

x̃1 x̂1

x1

(c)x2

x̂2

γ0
γ2

x̃2

b2
l2

b1 x̄1 c1 x̂1

x1

Figure 1: (a-b-c) Definitions of the functions x2 = G(x1), x2 = F1(x1) and x1 = F2(x2), and the corresponding graphs γ0, γ1 and γ2 (in black, blue
and red), respectively.

Proof. From proof of Proposition 2, there exists a unique solution x̂i ∈ (0,DS in/Di], for i = 1, 2 satisfying ϕi(xi) = 0
which is equivalent to S in = g(x1, 0) and S in = g(0, x2), respectively. This proves the first assertion of the lemma.

Let l1 be the fixed line defined by x1 = b1 (see Fig. 1(a)). To prove the second assertion of the lemma, we must
show that each line l1 intersects the set S in = g(x1, x2) once if and only if 0 ≤ b1 ≤ x̂1. From Hypothesis (H2),
the function x2 7→ S in − g(b1, x2) is decreasing from S in − g(b1, 0) for x2 = 0 to S in − g(b1, x̂2) for x2 = x̂2. Since
S in = g(0, x̂2) and the function x1 7→ g(x1, x̂2) is increasing, then g(0, x̂2) − g(b1, x̂2) ≤ 0. Consequently, there exists a
unique solution c2 ∈ [0, x̂2] of equation S in = g(b1, x2) if and only if

S in − g(b1, 0) ≥ 0 = S in − g(x̂1, 0)

or (equivalently) b1 ≤ x̂1 as the function x1 7→ S in − g(x1, 0) is decreasing. Thus, there exists a unique c2 ∈ [0, x̂2]
solution of equation S in = g(b1, x2), for all b1 ∈ [0, x̂1]. Define the function G by c2 = G(b1). That this function G
is smooth and decreasing follows from the implicit function theorem. In fact, under Hypothesis (H2), the sign of the
partial derivatives of g can be determined by

Gi :=
∂g
∂xi

(x1, x2) =
1
D

(Di + qi + xiQii + x jQ ji), (12)

which is positive for i = 1, 2, j = 1, 2, i , j since Q1i and Q2i are positive and defined by

Q1i =
∂q1

∂xi
(x1, x2), Q2i =

∂q2

∂xi
(x2, x1). (13)

Hence, the function G is smooth and its derivative is

G′(x1) = −

∂g
∂x1

(x1, x2)
∂g
∂x2

(x1, x2)
= −

G1

G2
= −

D1 + q1(x1, x2) + x1Q11 + x2Q21

D2 + q2(x2, x1) + x2Q22 + x1Q12
.

It follows that G is decreasing since all terms in this fraction are positive.

Proposition 3. Assume that Hypotheses (H1) and (H2) hold. Let S in > λi(D), i = 1, 2. For j = 1, 2, i , j, the
equation fi(xi, x j) = 0 defines a smooth decreasing function

Fi : [0, x̃i]→ [0, x̄ j], xi 7→ Fi(xi) = x j,

where Fi(x̃i) = 0 and Fi(0) = x̄ j so that the graph γi of Fi lies in Λ◦, the interior of Λ defined in (11) (see Fig. 1).
Indeed, (x1, F1(x1)) ∈ Λ◦ [resp. (F2(x2), x2) ∈ Λ◦], for all x1 ∈ (0, x̃1) [resp. x2 ∈ (0, x̃2)]. The derivative of Fi is
given by

F′i (xi) = −
EiGi + Qii

EiG j + Qi j
< 0, for all xi ∈ [0, x̃i], where (14)

Ei := µ′i(S ) = µ′i(S in − g(x1, x2)). (15)
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Proof. To facilitate understanding, we choose i = 1 and j = 2. But the case i = 2 and j = 1 can be treated similarly
using the symmetry of system (10). Let l1 be the fixed line defined by x1 = b1. It suffices to show that that each line
l1 intersects the set f1(x1, x2) = 0 once if and only if 0 ≤ b1 ≤ x̃1 so that the intersection belongs to Λ◦ (see Fig. 1(b)).
From Lemma 1, the curve γ0 of the function x2 = G(x1) intersects the line l1 at the point x2 = c2 where

c2 = G(b1) or equivalently S in = g(b1, c2).

From Hypotheses (H1) and (H2), the function x2 7→ µ1(S in − g(b1, x2)) − D1 − q1(b1, x2) is decreasing from µ1(S in −

g(b1, 0)) − D1 − q1(b1, 0) for x2 = 0 to −D1 − q1(b1, c2) for x2 = c2. As −D1 − q1(b1, c2) is negative, then there exists
a unique solution b2 ∈ [0, c2) of equation f1(b1, x2) = 0 if and only if

µ1(S in − g(b1, 0)) − D1 − q1(b1, 0) ≥ 0 = µ1(S in − g(x̃1, 0)) − D1 − q1(x̃1, 0).

Since the function x1 7→ ψ1(x1) defined by (6) is decreasing, this last condition is equivalent to b1 ≤ x̃1. Hence,
there exists a unique solution b2 ∈ [0, c2) of equation f1(b1, x2) = 0 for all b1 ∈ [0, x̃1]. Define the function F1 by
b2 = F1(b1) where F1(x̃1) = 0 and F1(0) = x̄2 which are the solutions of f1(x̃1, 0) = 0 and f1(0, x̄2) = 0. That this
function F1 is smooth and decreasing follows from the implicit function theorem. Indeed, under Hypothesis (H2), the
sign of the partial derivatives of f1 can be determined by

∂ f1
∂x1

(x1, x2) = −(E1G1 + Q11),
∂ f1
∂x2

(x1, x2) = −(E1G2 + Q12),

where E1, G1, G2, Q11 and Q12 are positive and defined in (15), (12) and (13). Consequently, we obtain the function
F′1 defined in (14) which is negative so that the function F1 is smooth and decreasing.

Proposition 4. System (2) has a positive steady state E∗ = (S ∗, x∗1, x
∗
2) if and only if the curves γ1 and γ2 have a

positive intersection such that the coordinates (x∗1, x
∗
2) are the positive solutions of equations

x2 = F1(x1) and x1 = F2(x2), (16)

with S ∗ = S in − g(x∗1, x
∗
2) where the function g is defined in (9).

Proof. A positive steady state E∗ of (2) exists if and only if the equations f1(x1, x2) = 0 and f2(x2, x1) = 0 has a
solution in Λ◦ which is the interior of Λ defined by (11). Using Proposition 3, it exists if and only if the curves γ1 and
γ2 have a positive intersection (x∗1, x

∗
2) such that (16) holds where the expression of S ∗ is given by (9).

(1.a)x2

γ0
γ1

γ2

E2 E∗

x̄2

x̃2

E0 E1

x̃1
x̄1

x1

(1.b)x2

γ0

γ1

γ2
E2
E∗1

E∗2

E∗3

x̄2

x̃2

E0 E1

x̃1
x̄1

x1

(2.a)x2

γ0γ2

γ1

E2

E∗

x̃2

x̄2

E0 E1

x̄1 x̃1

x1

(2.b)x2

γ0

γ2

γ1

E2

E∗1

E∗2

x̃2

x̄2

E0
E∗3 E1

x̄1 x̃1

x1

Figure 2: Case 1 : x̄1 > x̃1 and x̄2 > x̃2; Case 2 : x̄1 < x̃1 and x̄2 < x̃2: (a) unique intersection, (b) an odd number of intersections.

Note that x̃1, x̃2, x̄1 and x̄2 represent the coordinates of the intersections of the curves γ1 and γ2 with the x1 and the
x2 axes. According to the relative positions of these values, the four cases that must be distinguished are summarized
in Table 1.

In the next proposition, we will determine the multiplicity of the positive steady states of (2) according to the four
cases in Table 1 as shown in Figs. 2 and 3.

Proposition 5. Assume that Hypotheses (H1) and (H2) hold. Let S in > λi(D), i = 1, 2.
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(3.a)x2

γ0γ1

γ2

E2

x̄2

x̃2

E0 E1

x̃1x̄1

x1

(3.b)x2

γ0

γ1
γ2

E2

E∗1

E∗2

x̄2

x̃2

E0 E1

x̄1 x̃1

x1

(4.a)x2

γ0
γ2

γ1

E2x̃2

x̄2

E0 E1

x̃1 x̄1

x1

(4.b)x2

γ0
γ2

γ1

E2

E∗1

E∗2

x̃2

x̄2

E0 E1

x̄1x̃1

x1

Figure 3: Case 3 : x̄1 < x̃1 and x̄2 > x̃2; Case 4 : x̄1 > x̃1 and x̄2 < x̃2: (a) no intersection, (b) an even number of intersections.

Table 1: Classification of the values of x̄i and x̃i to four cases for i = 1, 2.
Case x̄1, x̃1 x̄2, x̃2

1 x̃1 < x̄1 x̃2 < x̄2
2 x̄1 < x̃1 x̄2 < x̃2
3 x̄1 < x̃1 x̃2 < x̄2
4 x̃1 < x̄1 x̄2 < x̃2

1. In case 1 and 2, there exists at least one positive steady state. Generically, system (2) has an odd number of
positive steady states.

2. In case 3 and 4, system (2) has generically no positive steady state or an even number of positive steady states.

Note that the multiplicity of steady states of our model (2) and the four cases to be distinguished in Table 1, and
Figs. 2 and 3 are qualitatively similar to those of our density-dependence model in Fekih-Salem et al. [18].

3. Stability of steady states

To investigate the local asymptotic stability of all steady states of model (2), we shall use the abbreviation LES for
Locally Exponentially Stable. Using notations (10), (13) and (15), the Jacobian matrix of model (2) at a steady state
(S , x1, x2) is given by the following 3 × 3 matrix:

J =

−D − E1x1 − E2x2 −µ1(S ) −µ2(S )
E1x1 f1 − Q11x1 −Q12x1
E2x2 −Q21x2 f2 − Q22x2

 .
The stability of the boundary steady states is given by the following result.

Proposition 6. Under Hypotheses (H1) and (H2), we have

• E0 is LES if and only if S in < min(λ1, λ2).

• E1 is LES if and only if x̄1 < x̃1.

• E2 is LES if and only if x̄2 < x̃2.

Proof. For E0 = (S in, 0, 0), the characteristic polynomial is

P0(λ) = (λ + D)(λ − (µ1(S in) − D1))(λ − (µ2(S in) − D2)).

Thus, E0 is LES if and only if µ1(S in) < D1 and µ2(S in) < D2, that is, S in < λ1 and S in < λ2.
For E1 = (S̃ 1, x̃1, 0), the characteristic polynomial is

P1(λ) = (λ − λ0)
(
λ2 + c1λ + c2

)
,
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where

λ0 = f2(0, x̃1) = µ2(S in − g(x̃1, 0)) − q2(0, x̃1) − D2, c1 = D + E1 x̃1 + Q11 x̃1, c2 = (D + E1 x̃1)Q11 x̃1 + E1 x̃1µ1(S̃ 1).

Since c1 and c2 are positive, then the roots of the quadratic factor have negative real parts. In addition, the function
x1 7→ µ2(S in − g(x1, 0)) − q2(0, x1) − D2 is decreasing so that λ0 is negative if and only if

λ0 = µ2(S in − g(x̃1, 0)) − q2(0, x̃1) − D2 < 0 = f2(0, x̄1) = µ2(S in − g(x̄1, 0)) − q2(0, x̄1) − D2.

Consequently, E1 is LES if and only if x̃1 > x̄1.
For E2 = (S̃ 2, 0, x̃2), the characteristic polynomial is

P2(λ) = (λ − λ0)
(
λ2 + c1λ + c2

)
,

where

λ0 = f1(0, x̃2) = µ1(S in − g(0, x̃2)) − q1(0, x̃2) − D1, c1 = D + E2 x̃2 + Q22 x̃2, c2 = (D + E2 x̃2)Q22 x̃2 + E2 x̃2µ2(S̃ 2).

Since c1 and c2 are positive, then the roots of the quadratic factor have negative real parts. In addition, the function
x2 7→ µ1(S in − g(0, x2)) − q1(0, x2) − D1 is decreasing so that λ0 is negative if and only if

λ0 = µ1(S in − g(0, x̃2)) − q1(0, x̃2) − D1 < 0 = f1(0, x̄2) = 0 = µ1(S in − g(0, x̄2)) − q1(0, x̄2) − D1.

Consequently, E2 is LES if and only if x̃2 > x̄2.

In the following, we study the stability of the positive steady states. Let J∗ be the Jacobian matrix of (2) at a steady
state E∗ = (S ∗, x∗1, x

∗
2), that is given by

J∗ =

−m11 −m12 −m13
m21 −m22 −m23
m31 −m32 −m33

 ,
where 

m11 = D + E1x∗1 + E2x∗2, m12 = µ1(S ∗), m13 = µ2(S ∗),
m21 = E1x∗1, m22 = Q11x∗1, m23 = Q12x∗1,
m31 = E2x∗2, m32 = Q21x∗2, m33 = Q22x∗2.

(17)

Note that all mi j are positive for all i, j = 1, 2, 3 and the functions Qi j and Ei, i, j = 1, 2 defined by (13) and (15) are
evaluated at the components of the positive steady state. Thus, the characteristic polynomial of J∗ is given by

P(λ) = λ3 + c1λ
2 + c2λ + c3,

where
c1 = m11 + m22 + m33, c2 = m11(m22 + m33) + m22m33 + m12m21 + m13m31 − m23m32,

c3 = m11(m22m33 − m23m32) + m12(m21m33 − m23m31) + m13(m22m31 − m21m32). (18)

As c1 > 0, according to the Routh–Hurwitz criterion, the positive steady state E∗ is LES if and only if

c3 > 0 and c4 = c1c2 − c3 > 0. (19)

The following result shows that the sign of c3 is provided by the position of the curves γ1 and γ2 of functions x1 7→

F1(x1) = x2 and x1 7→ F−1
2 (x1) = x2, respectively. More precisely, we will determine the relation between the

determinant of the Jacobian matrix J∗ at the positive steady state E∗ and the value of F′1(x∗1)F′2(x∗2) − 1. Indeed, we
will show that c3 is negative [resp. positive] if and only if F′1

(
x∗1

)
F′2

(
x∗2

)
− 1 is negative [resp. positive], that is,

F′1(x∗1) >
(
F−1

2

)′
(x∗1) =

1
F′2(x∗2)

[
resp. F′1(x∗1) <

(
F−1

2

)′
(x∗1)

]
because F′2(x∗2) < 0, or equivalently, on the right of the positive steady state (x∗1, x

∗
2), the tangent of γ1 at this point

(x∗1, x
∗
2) is above [resp. under] the tangent of γ2 at the same point (x∗1, x

∗
2) (see Figs. 2 and 3).
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Proposition 7. Let E∗ = (S ∗, x∗1, x
∗
2) be a positive steady state of (2). We have

c3 = − det(J∗) = Dx∗1x∗2(F′1(x∗1)F′2(x∗2) − 1)(E1G2 + Q12)(E2G1 + Q21), (20)

where the functions Ei, Gi and Qi j are defined by (12), (13), and (15) and are evaluated at the components of the
steady state E∗.

Proof. Using the expression of the derivatives of Fi given by (14), a straightforward calculation shows that

F′1(x∗1)F′2(x∗2) − 1 =
(Q11Q22 − Q12Q21) + G1(E1Q22 − E2Q12) + G2(E2Q11 − E1Q21)

(E1G2 + Q12)(E2G1 + Q21)
. (21)

Let Li, i = 1, 2, 3 be the lines of the matrix J∗. The replacement of L1 by L1 + L2 + L3 preserves the determinant of
the Jacobian matrix J∗ at the steady state E∗ and we obtain

c3 = −

∣∣∣∣∣∣∣∣
−D −µ1(S ∗) − Q11x∗1 − Q21x∗2 −µ2(S ∗) − Q12x∗1 − Q22x∗2

E1x∗1 −Q11x∗1 −Q12x∗1
E2x∗2 −Q21x∗2 −Q22x∗2

 .
By expanding along the first line, we obtain

c3 = x∗1x∗2[D(Q11Q22−Q12Q21)+(µ1(S ∗)+Q11x∗1 +Q21x∗2)(E1Q22−E2Q12)+(µ2(S ∗)+Q12x∗1 +Q22x∗2)(E2Q11−E1Q21)].

Recall that, at the positive steady state E∗, we have

µ1(S ∗) = q1(x∗1, x
∗
2) + D1 and µ2(S ∗) = q2(x∗2, x

∗
1) + D2.

Using (12), it follows that{
µ1(S ∗) + Q11x∗1 + Q21x∗2 = q1(x∗1, x

∗
2) + D1 + Q11x∗1 + Q21x∗2 = DG1,

µ2(S ∗) + Q22x∗2 + Q12x∗1 = q2(x∗2, x
∗
1) + D2 + Q22x∗2 + Q12x∗1 = DG2.

Consequently,

c3 = Dx∗1x∗2 [(Q11Q22 − Q12Q21) + G1(E1Q22 − E2Q12) + G2(E2Q11 − E1Q21)] .

The expression of c3 given by (20) follows by using relation (21).

Thus, we determine in the following proposition the sufficient conditions of instability and stability of a positive
steady state of model (2).

Proposition 8. Let E∗ = (S ∗, x∗1, x
∗
2) be a positive steady state of model (2).

1. When F′1
(
x∗1

)
F′2

(
x∗2

)
< 1, E∗ is unstable.

2. When Q11Q22 ≥ Q12Q21 holds, E∗ is LES if and only if F′1
(
x∗1

)
F′2

(
x∗2

)
> 1.

Proof. Since all the functions Ei, Gi and Qi j in (20) evaluated at E∗ are positive, then from Proposition 7, we have
c3 < 0 when F′1

(
x∗1

)
F′2

(
x∗2

)
< 1. The first assertion of the proposition follows from the first condition of the Routh–

Hurwitz criterion in (19).
Using the coefficients ci of the characteristic polynomial of J∗ given by (18), straightforward calculations show

that
c4 = D(c2 + Q12Q21x∗1x∗2) + (E1x∗1 + E2x∗2)(m11(m22 + m33) + m12m21 + m13m31)

+D((Q11x∗1)2 + (Q22x∗2)2 + Q11Q22x∗1x∗2) + (E1x∗1 + E2x∗2)(Q11x∗1 + Q22x∗2)2

+(Q11x∗1 + Q22x∗2)(Q11Q22 − Q12Q21)x∗1x∗2 + µ1(S ∗)E1Q11(x∗1)2

+µ2(S ∗)E2Q22(x∗2)2 + µ1(S ∗)E2Q12x∗1x∗2 + µ2(S ∗)E1Q21x∗1x∗2,

(22)

where Qi j, Ei, mi j, and c2 are defined in (13), (15), (17), and (18). Note that all terms in the expression of c4 in (22)
are positive, except Q11Q22 − Q12Q21 which can be negative. If Q11Q22 ≥ Q12Q21, that is, m22m33 − m23m32 ≥ 0, it
follows from (18) that c2 > 0. Moreover, from (22), we obtain c4 > 0 in this case. Consequently, E∗ is LES if and
only if c3 > 0, that is, F′1

(
x∗1

)
F′2

(
x∗2

)
> 1.
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When Q11Q22 ≥ Q12Q21, the local stability of positive steady states is completely characterized by the position of
the curves γ1 and γ2. When this condition does not hold, we were not able to prove that c4 is always positive or to
find a set of parameters such that c4 changes sign and becomes negative. This question remains an open problem and
deserves further investigations.

Here, the condition Q11Q22 ≥ Q12Q21 are qualitatively similar to condition (26) in [18] which means that the
intraspecific interference is dominant with respect to interspecific interference. However, in our particular model (1),
this condition becomes (

a11 + α1x2
2

) (
a22 + α2x2

1

)
> (a12 + 2α1x1x2)(a21 + 2α2x1x2).

where it does not only depend on intra- and interspecific interference as in [18] but it also depends on the quadratic
forms representing allelopathic effects of the two species. Moreover, contrary to our density-dependence model [18],
the condition c4 > 0 of the Routh–Hurwitz criterion (19) should be verified in the case of the same removal rate
(D1 = D2 = D). Thus, the addition of mortality is necessary for the model [18] to hope for destabilization of the
coexistence steady state but in our model (2) mortality is not necessary.

4. Operating diagram

The operating diagram is a very useful visual representation for mathematicians and biologists because it provides
a summary and an overall view of the behavior of the process according to the control parameters [26, 50]. In the
existing literature, the study of the operating diagram is classified into three different methods. In the following, we
synthesize the main characteristics of each method, specifying the advantages and disadvantages. However, for more
on these various methods, the reader is referred to [41] and the references therein.

The first method consists in determining the various regions of the operating diagram by numerically solving the
algebraic equations giving the steady states having all the nonnegative components. Then, the sign of the roots of
the characteristic polynomial determines the local asymptotic behavior of each steady state [54]. This method can
be used for complex dynamic systems including a very large number of variables and parameters [24, 30, 55, 57].
However, this method is time-consuming in computation. In addition, some regions of sufficiently small sizes than the
step used for the discretization of the operating parameters could be omitted. Sari et al. [42–44, 48] demonstrated that
regions of coexistence around a stable limit cycle were not detected in the study of the numerical operating diagram
of a process describing the anaerobic mineralization of chlorophenol in a three-step food-web [53].

The second method is numerical and consists in determining the boundaries of the various regions of the operating
diagram using a numerical continuation and correction algorithm. Various software packages have been developed to
solve continuation and bifurcation problems in systems of autonomous ODEs depending on one or two parameters.
The most used are MATCONT, CONTENT, AUTO, and XPPAUT (see [? ] and the reference therein). This method
has the advantage of detecting more complex and subtle bifurcations such as the bifurcations of types limit point of
cycles, cusp, Bogdanov-Takens, Bautin, etc (see for example [51]).

The third method is theoretical and consists in determining the borders of the various regions from the analytical
study of the model by establishing the conditions of existence and stability of all steady states according to the
operating parameters. The disadvantage of this method is the difficulty of analyzing complex models and illustrating
the various curves in some cases with several state variables. However, this method allows us to detect all the regions
of the operating diagram [1, 3, 8, 10–12, 18, 19, 40, 41, 44, 46? –48].

In the following section, we will study theoretically and numerically the operating diagram of system (2). Here,
the operating parameters are the concentration of substrate in the feed bottle S in and the dilution rate D. To study
theoretically the operating diagram, the necessary and sufficient conditions for the existence and local stability of all
steady states of (2) are summarized in Table 2. From these conditions, we define in Table 3 the set Υ = {Υi, i =

1, . . . , 5} of all boundaries between various regions of the (S in,D)-plane. More precisely, when the curves γ1 and γ2
of the functions x1 7→ F1(x1) and x2 7→ F2(x2) are tangent in a point (x1, x2), we have

x2 = F1(x1), x1 = F2(x2), and F′1(x1)F′2(x2) = 1. (23)

The solution (x1, x2) of this set of equations depends on S in and D. Hence, we can define in Table 3 the subset Υ5
which represents a curve in the generic case (see Fig. 4).
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Table 2: Necessary and sufficient conditions of existence and local stability of all steady states of (2) where c4 is defined by (22).

Existence Local stability
E0 always exists S in < min(λ1(D), λ2(D))
E1 S in > λ1(D) x̄1(S in,D) < x̃1(S in,D)
E2 S in > λ2(D) x̄2(S in,D) < x̃2(S in,D)
E∗ Equation (16) has a solution F′1

(
x∗1

)
F′2

(
x∗2

)
> 1 and c4(S in,D) > 0

As we will see in section 5, passing through Υ5 in the operating plan (S in,D) gives rise to two positive steady
states via a saddle-node bifurcation. Moreover, the passages through the subsets Υ1 and Υ2 generate the steady states
E1 and E2, respectively, that coalesce with the washout steady state E0 via a transcritical bifurcation. Finally, crossing
the curves Υ3 and Υ4, a positive steady state appears or disappears through the coalescence with the steady states E1
and E2, respectively, corresponding to a transcritical bifurcation.

Table 3: The set Υ and the corresponding colors in Figs. 4 and 5.

Υ Color
Υ1 = {(S in,D) : S in = λ1(D)} Blue
Υ2 = {(S in,D) : S in = λ2(D)} Red
Υ3 = {(S in,D) : x̃1(S in,D) = x̄1(S in,D)} Cyan
Υ4 = {(S in,D) : x̃2(S in,D) = x̄2(S in,D)} Magenta
Υ5 =

{
(S in,D) : x2 = F1(x1), x1 = F2(x2), and F′1(x1)F′2(x2) = 1

}
Green

Now, to illustrate the operating diagram, we consider model (2) and we choose the following specific growth rates
of Monod-type satisfying Hypotheses (H1) and (H2):

µ1(S ) =
µm

1 S
k1+S , µ2(S ) =

µm
2 S

k2+S , (24)

where µm
1 and µm

2 are the maximum growth rates; k1 and k2 are the Michaelis-Menten constants. The values of these
biological parameters are provided in Table B.14. As in particular model (1), the functions q1 and q2 representing the
intra- and interspecific interactions with the allelopathic competitions of the two species take the form

q1(x1, x2) = a11x1 + a12x2 + α1x1x2
2, q2(x2, x1) = a22x2 + a21x1 + α2x2x2

1. (25)

The construction of this diagram is similar for any other specific growth rate satisfying Hypotheses (H1) and (H2).
Except for the control parameters S in and D, all the biological parameters are fixed since they depend on the nature of
the organisms, the substrate introduced into the bioreactor, and the various interactions between the species. All the
values of these parameters used throughout this paper are provided in Table B.14.

For this set of parameter values, Appendix A shows that the stability condition c4 > 0 holds for all S in and D
in the existence domain of E∗1 and E∗3. Thus, there can be no destabilization of a coexistence steady state via a Hopf
bifurcation with the emergence of a cycle limit. Note that the steady state E∗2 is unstable when it exists because c3
is negative. Consequently, the only curves separating the various regions in the operating diagram are given by Υi,
i = 1, . . . , 5.

MAPLE [35] was able to plot the curves Υi, i = 1, . . . , 4 (see Fig. 4) except the curve Υ5 where the three equations
in (23) must be solved with two variables and two unknown parameters.

The concept of steady state characteristic that was introduced by Lobry et al. [33, 34] could reduce the number of
variables by expressing the concentrations of the biomass x1 and x2 as a function of the concentration of the substrate S
(see [13] for more details). Hence, to determine all the components of the positive steady state, it suffices to determine
the variable S which can be deduced from the resolution of an equation of the system at a positive steady state where S
is the single variable. In some cases, this reduction would allow to determine in MAPLE all the curves of the operating
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diagram (see for example [41]). However, this method of steady state characteristic cannot be applied to our general
model (2) to plot in MAPLE the curve Υ5 because of the structure of model where the equations at a positive steady
state depend on three variables. In section 6, we will show that this method can be used in particular model (2) of
Kengwoung-Keumo [29] where q2(x2, x1) = a11 = a12 = 0, that is, without intra- and interspecific interference in the
dynamics of the two species and without the allelopathic competition of the first species on the second species.

To illustrate the Υ5 curve, the numerical problem is solved by determining the solution of an equivalent system
but more simple. More precisely, system (23) is equivalent to the following system

f1(S in,D, x1, x2) = 0, f2(S in,D, x2, x1) = 0, and c3(S in,D, x1, x2) = 0. (26)

where c3 is defined in (18). To further simplify the numerical problem, we use a procedure in D to reduce the number
of unknown parameters such that the only parameter to be determined is S in. Thus, we have three equations with two
unknowns variables x1 and x2, and one unknown parameter S in. Due to the large number of solutions in S in, we use
the “fsolve” command to solve the three equations in system (26) by specifying the intervals of each variable in which
to search for solutions. Hence, we obtain the curve Υ5 in Fig. 4 representing the saddle-node bifurcation between two
coexistence steady states. Finally, the theoretical operating diagram is illustrated in Fig. 4 by drawing all curves Υi,
i = 1, . . . , 5 defined in Table 3.

(a)
D Υ2

Υ1

J0

J1

J2
S in

(b)
D

Υ1

Υ5

Υ4

Υ3

J2

J3

J4

J5

J6
J7

S in

Figure 4: MAPLE: (a) operating diagram of (2). (b) Magnification when (S in,D) ∈ [0, 20] × [0, 1.6].

(a)
D Υ2

Υ1

J0

J1

J2
S in

(b)
D

Υ1

Υ5

Υ4

Υ3

J2

J3

J4

J5

J6 J7

S in

Figure 5: MATCONT: (a) operating diagram of (2). (b) Magnification showing the cusp bifurcation when (S in,D) ∈ [0, 20] × [0, 1.6].

To compare the theoretical and numerical methods establishing the operating diagram of model (2), we use in the
following the numerical continuation method with the software MATCONT [37]. Indeed, MATCONT is a MATLAB
[38] numerical continuation package for the interactive bifurcation study of continuous and discrete parameterized
systems of ODEs. It allows one to compute curves of steady states and limit cycles (periodic orbits), and their
bifurcations as Branch Points (BP) or transcritical bifurcations, Limit Points (LP) or saddle-node (or fold) bifurcations,
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Cusp bifurcations (CP), Hopf points (H), Limit Point of Cycles (LPC) or fold bifurcation points of limit cycles, and
period doubling bifurcation points of limit cycles. For more on this interesting subject, the reader is referred to [? ]
and the references therein.

Fig. 5 illustrates the numerical operation diagram obtained using MATCONT by drawing the curves Υi, i =

1, . . . , 5. Note that all curves Υi are identical in the theoretical and the numerical operating diagrams. However,
Matcont was able to determine the nature of the two-parameter bifurcation at point CP which corresponds to a cusp
bifurcation (see Fig. 5). Thus, we obtain the following result giving a complete description of the operating diagram.

Proposition 9. For the specific growth rates µ1 and µ2 defined in (24), the functions q1 and q2 defined in (25), and
the set of the biological parameter values in Table B.14, the existence and the local stability of all steady states of (2)
in the eight regions Jk, k = 0, . . . , 7 of the operating diagram in Figs. 4 or 5 are described in Table 4.

Table 4: Existence and local stability of all steady states in the various regions of the operating diagram in Figs. 4 or 5. The letter S [resp. U] means
stable [resp. unstable] steady state. Absence of letter means that the corresponding steady state does not exist.

Region E0 E1 E2 E∗1 E∗2 E∗3
J0 S
J1 U S
J2 U U S
J3 U U U S
J4 U S U
J5 U S U S U
J6 U U U S U S
J7 U U S S U

The operating diagram in Figs. 4 or 5 is divided into eight regions. The region J0 corresponds to the washout
of two species. The regions J1 and J2 [resp. J4] correspond to the competitive exclusion of the first [resp. second]
species. The region J3 corresponds to the coexistence of both species. The region J5 [resp. J7] corresponds to the
bistability with either coexistence or exclusion of the second [resp. first] species. The region J6 corresponds to the
bistability with convergence to one of the two coexistence steady states.

5. Analysis of bifurcations

In this section, we will first study the different types of bifurcation by passing from one region to another in the
two-parameter operating diagram. Next, we will analyze the one-parameter bifurcation diagram. The following result
describes the nature of all the bifurcations that occur by crossing one region to another through the various curves in
the set Υ defined in Table 3.

Proposition 10. The nature of all the bifurcations of the steady states of system (2) by passing between the various
regions of the operating diagram is provided in Table 5.

Now to illustrate the nature of bifurcations by passing through the boundaries of the different regions of the
operating diagram studied in section 4, we study the one-parameter bifurcation diagram. The dilution rate D is
considered as a bifurcation parameter. However, the one-parameter bifurcation diagram in S in can be obtained in the
same way. Throughout this section, we assume that the parameters µm

i , ki, aii, ai j, αi, θi and mi, i = 1, 2, j = 1, 2, i , j
are fixed at the values provided in Table B.14. To maximize the passage number through the various regions of the
operating diagram in Figs. 4 or 5, the inflowing concentration was fixed at S in = 1.4. Using MATCONT [37], we plot
in Fig. 6 the one-parameter bifurcation diagram in D, with S , x1 and x2 on the y-axis. This diagram corresponds to a
vertical line of equation S in = 1.4 in the operating diagram of Figs. 4 or 5.

First, by increasing D from zero, the one-parameter bifurcation diagram in the variable S in Fig. 6(a) illustrates
the Branch Point (BP) bifurcation or the transcritical bifurcation occurring at D = σ1 ≈ 0.032 between E2 and E∗1.
In fact, the steady state of exclusion of the first species E2 becomes unstable while the coexistence steady state E∗1
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Table 5: Nature of all the bifurcations of the steady states of model (2) by crossing the various curves in the set Υ. The letter BP (resp. LP) means
a Branch Point (resp. Limit Point) bifurcation.

Transition Curve Bifurcation Steady states
J0 to J1 Υ2 BP E0 = E2
J1 to J2 Υ1 BP E0 = E1
J2 to J3 Υ4 BP E2 = E∗1
J2 to J7 Υ5 LP E∗1 = E∗2
J3 to J6 Υ5 LP E∗2 = E∗3
J3 to J4 Υ3 BP E1 = E∗1
J4 to J5 Υ5 LP E∗1 = E∗2
J5 to J6 Υ3 BP E1 = E∗3
J6 to J7 Υ4 BP E2 = E∗3

emerges LES into the interior of the admissible region. Since the first bifurcations occur for small values of D, a first
close-up is presented in Fig. 6(b) and a second close-up is presented in Fig. 6(c). The one-parameter bifurcation
diagrams in D presented in Fig. 6(d-g) with x1 and x2 on the y-axis show the same bifurcation values σi, i = 1, . . . , 8
defined in Table 7 and determine the different components of steady states and their local stability.

Next, there is a BP bifurcation at D = σ2 ≈ 0.181 between E∗1 and E1 such that the interior steady state E∗1
disappears while E1 becomes LES. After that, once again a BP bifurcation occurs at D = σ3 ≈ 0.692 between E1
and E∗1 where this last coexistence steady state appears LES while E1 becomes unstable. Increasing D further, a Limit
Points (LP) or saddle-node bifurcation occurs that gives birth to unstable and stable positive steady states E∗2 and E∗3,
respectively, at D = σ4 ≈ 1.163. Next, the stable and unstable steady states E∗1 and E∗2 collide at D = σ5 ≈ 1.182
and disappear through an LP bifurcation. After that, there is a BP bifurcation at D = σ6 ≈ 1.485 between E∗3 and
E2 where the steady state E∗3 disappears while E2 becomes LES. Increasing D further, a BP bifurcation occurs at
D = σ7 ≈ 6.033 between E0 and E1 where the steady state E1 disappears while E0 remains unstable. Finally, a BP
bifurcation occurs at D = σ8 ≈ 44.769 between E0 and E2 such that E0 becomes LES while E2 disappears from the
nonnegative quadrant.

The following result summarizes the study of this one-parameter bifurcation diagram in D from the operating
diagram in Figs. 4 or 5.

Proposition 11. For the specific growth rates µ1 and µ2 (24), the functions q1 and q2 defined in (25), and the set of
the biological parameter values in Table B.14, the existence and the local stability of all steady states of (2) according
to D are described in Table 6 when S in = 1.4 is fixed. The critical values σi, i = 1, . . . , 8 of different bifurcations
according to the parameter D and the corresponding nature are defined in Table 7.

Table 6: Existence and stability of steady states according to D where σi, i = 1, . . . , 8 are defined in Table 7.

Interval of D E0 E1 E2 E∗1 E∗2 E∗3
(0, σ1) U U S
(σ1, σ2) U U U S
(σ2, σ3) U S U
(σ3, σ4) U U U S
(σ4, σ5) U U U S U S
(σ5, σ6) U U U S
(σ6, σ7) U U S
(σ7, σ8) U S
(σ8,+∞) S

15



(a)S
E0 E0 E0

E2E1

D

(b)S E0 E0

E1
E2

D

(c)S E2

E2

E1

E∗1

E∗2
-

E∗3

E1

E1

E∗1

E2-
D

(d)
x1

E1

E2E0

E0 E0 D

(e)x1

E1

E0 E2 E0 E0 D

( f )x1

E1

E∗1

E∗2

E∗3

E2E2 E0

E1

E∗1E1-

E2

HHY
D

(g)x2

E2

E0E0

E1E0

D

(h)x2

E2

E2

E0 D
E1 E0

(i)x2
E2

E2

E2-

E∗3

E∗2

E∗1E∗1

E1 E0

E1 E0E1 E0 D

Figure 6: MATCONT: (a-d-g) one-parameter bifurcation diagrams of (2) in the variables S , x1, x2, (resp.), with D as the bifurcation parameter and
S in = 1.4; (b-e-h) (resp. (c-f-i)) magnifications when D ∈ [0, 7] (resp. D ∈ [0, 1.7]); Red (resp. Blue) curve represents the continuation of a stable
(resp. unstable) steady state.

6. Application to the particular model of Kengwoung-Keumo

Our general model (2) was studied by Kengwoung-Keumo [29] in the particular case where the functions q2(x2, x1) =

0 and q1(x1, x2) = α1x1x2
2 so that a11 = a12 = a22 = a21 = 0, that is, without the effect of intra- and interspecific

interference of the two species and without the allelopathic effect of the first species on the second species. Recall
that kengwong-Keumo’s particular model is written as follows where the yield coefficients are normalized to the unit:

Ṡ = D(S in − S ) − µ1(S )x1 − µ2(S )x2,
ẋ1 = [µ1(S ) − α1x1x2

2 − D1]x1,
ẋ2 = [µ2(S ) − D2]x2.

(27)

In what follows, we apply our theoretical results of existence and stability of all steady states of the general model (2)
to those of the particular model (27) by comparing our results found with those in [29]. Next, we will also analyze the
operating diagram and the one-parameter bifurcation diagram of model (27) which have not been studied in [29].

In order to analyze the existence of the positive steady states of system (27), we can use the method presented
in section 2 by writing the variable x j, j = 1, 2 as a function Fi, i = 1, 2, i , j of the variable xi from the equation
fi(xi, x j) = 0 defined in (10). However, in the following, we will use the concept of steady state characteristic due to
the particularity of the structure of system (27) to give explicit expressions of the components of the positive steady
states by determining their multiplicities and their existence conditions. This method will allow us to theoretically
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Table 7: Definitions of the critical values σi, i = 1, . . . , 8 of D and the corresponding nature of bifurcations when S in = 1.4 is fixed.

Definition Value Bifurcation
σ1 is the first solution of equation x̃2(S in,D) = x̄2(S in,D) 0.032 BP
σ2 is the first solution of equation x̃1(S in,D) = x̄1(S in,D) 0.181 BP
σ3 is the second solution of equation x̃1(S in,D) = x̄1(S in,D) 0.692 BP
σ4 is the first solution of equation c3(S in) = 0 1.163 LP
σ5 is the second solution of equation c3(S in) = 0 1.182 LP
σ6 is the second solution of equation x̃2(S in,D) = x̄2(S in,D) 1.485 BP
σ7 = µ1(S in) 6.033 BP
σ8 = µ2(S in) 44.769 BP

determine all the curves of the operating diagram in the plane (S in,D). To do this, we begin by setting the right-hand
sides of equations in (27) equal to zero:

D(S in − S ) − µ1(S )x1 − µ2(S )x2 = 0, (28)

[µ1(S ) − α1x1x2
2 − D1]x1 = 0, (29)

[µ2(S ) − D2]x2 = 0. (30)

• For E0, x1 = x2 = 0. Hence, (28) results in S = S in. Thus, E0 always exists.

• For E1, x2 = 0 and x1 > 0. Hence, (29) and (28) result in S = λ1 and x1 = D(S in − λ1)/D1. Hence, E1 exists if
and only if S in > λ1.

• For E2, x1 = 0 and x2 > 0. Hence, (30) and (28) result in S = λ2 and x2 = D(S in − λ2)/D2. Hence, E2 exists if
and only if S in > λ2.

• For E∗, x1 > 0 and x2 > 0. Hence, (30) results in S = λ2. Moreover, (29) results

x1 = H(x2) :=
a+

x2
2

, with a+ =
µ1(λ2) − D1

α1
. (31)

Hence, a necessary condition for the positivity of the component x1 is that a+ be positive, that is, λ1 < λ2. In

(a)x1

CH

∆

E0

E1

E2xc
2

xc
1

x2

(b)x1

CH

∆

E0

E1

E2

E∗1

E∗2

xc
2

xc
1

x2

Figure 7: Existence and stability of steady states of model (27) when D = 5 : (a) S in = 8 < S c
in ≈ 9.357, (b) S in = 10.5 > S c

in. In all figures, we
use the red [resp. blue] color for LES [resp. unstable] steady state.

addition, (28) results in

x1 = δ(x2) := b+ − c+x2, with b+ =
D(S in − λ2)
µ1(λ2)

, c+ =
D2

µ1(λ2)
. (32)

17



Since c+ is positive, a necessary condition for the positivity of the component x1 is that b+ be positive, that
is, λ2 < S in. Thus, system (27) has a positive steady state E∗ = (λ2, x∗1, x

∗
2) if and only if the curve CH of the

function x2 7→ H(x2) and the straight line ∆ of equation x1 = δ(x2) have a positive intersection (see Fig. 7) such
that the coordinates (x∗1, x

∗
2) are positive solutions of equations

x1 = H(x2) and x1 = δ(x2),

or equivalently, these solutions satisfy the necessary condition λ1 < λ2 < S in. Using expression (31) of the
function H, we have

H′(x2) = −2
a+

x3
2

< 0 and H′′(x2) = 6
a+

x4
2

> 0.

Thus, the function H is convex (see Fig. 7) with H(0+) = +∞ and H(+∞) = 0. Consequently, there are at most
two solutions of equation H(x2) = δ(x2). Let φ be the function defined by

φ(x2) := H′(x2) − δ′(x2) = H′(x2) + c+.

Since φ is increasing from φ(0+) = −∞ to φ(+∞) = c+, then for all D > 0 there exists a unique solution

x2 = xc
2(D) := 3

√
2a+

c+

of equation H′(x2) = δ′(x2). If in addition, for all D > 0, H(xc
2) = δ(xc

2), then there exists a unique critical value
of S in denoted S c

in(D) that we determine in the following its explicit expression. Indeed, from (31) and (32), it
follows that H(xc

2) = δ(xc
2) is equivalent to

a+

(xc
2)2 = b+ − c+xc

2.

Then, using the expressions of a+, b+ and c+ in (31) and (32), straightforward calculation shows that

S c
in(D) = λ2 +

3
D

3

√
D2

2µ1(λ2)(µ1(λ2) − D1)
4α1

. (33)

Consequently, a positive steady state E∗ exists if and only if λ1(D) < λ2(D) and S in > S c
in. Next, the local stability

of all steady states of system (27) is deduced from that in section 3 by taking q2(x2, x1) = 0 and q1(x1, x2) = α1x1x2
2.

From Proposition 6, E0 is LES if and only if S in < min(λ1, λ2). Moreover, E1 is LES if and only if x̄1 < x̃1 which is
equivalent to λ1(D) < λ2(D). Indeed, from Proposition 2, x̃1 is the unique solution of equation

ψ1(x1) = µ1(ϕ1(x1)) − D1 − q1(x1, 0) = µ1(ϕ1(x1)) − D1 = 0.

From (4) and (5), we have

ϕ1(x1) = λ1 = S in −
D1

D
x̃1, i.e. x̃1 =

D
D1

(S in − λ1).

In addition, from Proposition 3 and system (10), we obtain

x̄1 = F2(0), i.e. f2(0, x̄1) = µ2(S in − g(x̄1, 0)) − D2 = 0,

that is, S in − g(x̄1, 0) = λ2. Using (9), it follows that

x̄1 =
D
D1

(S in − λ2).

Consequently, x̄1 < x̃1 is equivalent to λ1(D) < λ2(D). Similarly, E2 is LES if and only if x̄2 < x̃2 which is equivalent
to λ2(D) < λ1(D) where

x̃2 =
D
D2

(S in − λ2) and x̄2 =
D
D2

(S in − λ1).
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Recall from Table 2 that the positive steady state E∗ is LES if and only if F′1
(
x∗1

)
F′2

(
x∗2

)
> 1 (or equivalently

c3(S in,D) > 0) and c4(S in,D) > 0. Since Q21 = Q22 = 0 and S ∗ = λ2 in the particular case where the function
q2(x2, x1) = 0, some coefficients of the Jacobian matrix J∗ defined in (17) change and we obtain m32 = m33 = 0 and
m13 = D2. From (18), it follows that

c3 = m13m22m31 − m12m23m31.

Using (13) and (17), we get

c3 = α1E2µ1(λ2)x1x3
2

(
D2

µ1(λ2)
− 2

x1

x2

)
.

Since we have δ′(x2) = −c+ = −D2/µ1(λ2), H′(x2) = −2a+x−3
2 and x1 = H(x2) = a+x−2

2 , it follows that

H′(x2) = −2
x1

x2
.

Therefore,
c3 = α1E2µ1(λ2)x1x3

2
(
H′(x2) − δ′(x2)

)
.

On the other hand, from (22), we see in the particular case where Q22 = Q21 = 0 that c4 > 0. Consequently, E∗ is LES
if and only if H′(x∗2) > δ′(x∗2). Now, we can state the following result.

Table 8: Necessary and sufficient conditions of existence and stability of all steady states of model (27).

Steady state Existence Local stability
E0 = (S in, 0, 0) always exists S in < min(λ1(D), λ2(D))
E1 = (λ1,D(S in − λ1)/D1, 0) S in > λ1(D) λ1(D) < λ2(D)
E2 = (λ2, 0,D(S in − λ2)/D2) S in > λ2(D) λ2(D) < λ1(D)
E∗1 = (λ2, x∗1, x

∗
2) λ1(D) < λ2(D), S in > S c

in LES whenever it exists
E∗2 = (λ2, x∗∗1 , x

∗∗
2 ) λ1(D) < λ2(D), S in > S c

in Always unstable

Proposition 12. Assume that Hypothesis (H1) holds. System (27) has at most two positive steady states denoted by
E∗1 = (λ2, x∗1, x

∗
2) and E∗2 = (λ2, x∗∗1 , x

∗∗
2 ) such that x∗1 < x∗∗1 . The components (x∗1, x

∗
2) and (x∗∗1 , x

∗∗
2 ) are given by the

intersection of the curve of the function H(x2) defined in (31) and the straight line ∆ defined in (32) by the equation
x1 = δ(x2) (see Fig. 7). The necessary and sufficient conditions of existence and local stability of all steady states of
model (27) are given in Table 8.

In [29], the author could not demonstrate that in reality the condition c4 > 0 of the Routh–Hurwitz criterion
corresponding to the stability of the positive steady state E∗1 of their model (27) is always satisfied. Here, we have
demonstrate that c4 is always positive such that the positive steady state E∗1 is LES whenever it exists and it cannot be
destabilized by a Hopf bifurcation with the emergence of a stable limit cycle.

In what follows, we study theoretically the operating diagram of system (27). In Table 9, we define the set
Υk = {Υ1,Υ2,Υ5} of the three curves separating the various regions of the (S in,D)-plane.

Table 9: The curves in the set Υk and their corresponding colors in Fig. 8.

Υk Color
Υ1 = {(S in,D) : S in = λ1(D)} Blue
Υ2 = {(S in,D) : S in = λ2(D)} Red
Υ5 =

{
(S in,D) : S in = S c

in(D)
}

Green

To illustrate the operating diagram of model (27), we choose the specific growth rates (24) satisfying Hypothesis
(H1) and the biological parameter values provided in Table B.14 which are the same as those in [29]. Since we have
the explicit expression of the function S c

in(D) corresponding to the curve Υ5, MAPLE was able to plot all the curves
in the set Υk (see Fig. 8).
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Figure 8: MAPLE: (a) the three curves Υ1, Υ2 and Υ5 in the (S in,D)-plane. (b) The corresponding operating diagram of model (27).

Proposition 13. For the specific growth rates µ1 and µ2 defined in (24) and the set of the biological parameter values
in Table B.14, the existence and the local stability of all steady states of (27) in the four regions Jk, k = 0, . . . , 3 of
the operating diagram in Fig. 8 are described in Table 10.

Table 10: Existence and local stability of all steady states in the various regions of the operating diagram in Fig. 8.

Condition Region Color E0 E1 E2 E∗1 E∗2
S in < λ1(D) < λ2(D) J0 Cyan S
λ1(D) < S in < λ2(D) J8 Green U S
λ2(D) < S in < S c

in(D) J4 Green U S U
S c

in(D) < S in J5 Red U S U S U

The following result determines the different types of bifurcations by crossing the four regions Jk, k = 0, 4, 5, 8
of the operating diagram in Fig. 8.

Proposition 14. The nature of all the bifurcations of steady states of system (27) by passing between the various
regions of the operating diagram is provided in Table 11.

Table 11: Nature of all the bifurcations of steady states of model (27) by crossing the curves Υ1, Υ2 and Υ5.

Transition Curve Bifurcation Steady states
J0 to J8 Υ1 BP E0 = E1
J8 to J4 Υ2 BP E0 = E2
J4 to J5 Υ5 LP E∗1 = E∗2

Next, we will show the nature of bifurcations by crossing the different regions of the operating diagram through
the three curves Υ1, Υ2 and Υ5. To this end, we will analyze the one-parameter bifurcation diagram in S in where
the dilution rate is fixed at D = 5. This diagram corresponds to a horizontal line of equation D = 5 in the operating
diagram (see Fig. 8(a)). Fig. 9 illustrates in MAPLE the one-parameter bifurcation diagram in S in, with S , x1 and x2
on the y-axis.

Increasing S in from zero, there is a BP bifurcation occurring at S in = η1 ≈ 0.857 between E0 and E1. Indeed, the
washout steady state E0 becomes unstable while the steady state of exclusion of the second species E1 emerges stable
into the admissible region. Next, there is a BP bifurcation at S in = η2 ≈ 3.5 between the washout steady state E0 and
the steady state of exclusion of the first species E2 such that E0 remains unstable and E2 appears unstable. Finally,
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Figure 9: MAPLE: (a-b-c) one-parameter bifurcation diagrams of system (27) in the variables S , x1, x2, (resp.), with S in as the bifurcation
parameter and D = 5.

an LP bifurcation occurs at S in = η3 ≈ 9.357 that gives birth to stable and unstable coexistence steady states E∗1 and
E∗2, respectively. The study of the one-parameter bifurcation diagram in S in from the operating diagram in Fig. 8 is
summarized in the following result.

Proposition 15. For the specific growth rates µ1 and µ2 defined in (24) and the set of the biological parameter values
in Table B.14 corresponding to the operating diagram in Fig. 8, the existence and the local stability of all steady
states of (27) according to S in are described in Table 12 when D = 5 is fixed. The critical values η1, η2 and η3 of
different bifurcations and the corresponding nature of bifurcations are determined in Table 13.

Table 12: Existence and stability of steady states of model (27) according to S in when D = 5. η1, η2 and η3 are defined in Table 13.

Interval of S in E0 E1 E2 E∗1 E∗2
(0, η1) S
(η1, η2) U S
(η2, η3) U S U
(η3,+∞) U S U S U

Table 13: Definitions of the critical values η1, η2 and η3 of S in and the corresponding nature of bifurcations when D = 5 is fixed and S c
in(D) is

defined in (33).

Definition Value Bifurcation
η1 = λ1(D) 0.857 BP
η2 = λ2(D) 3.5 BP
η3 = S c

in(D) 9.357 LP

Fig. 10 shows the effect of allelopathic interactions of the second species on the first one where there is emergence
of the bistability region J5 (in red) with either coexistence or exclusion of the second species. More precisely,
for small enough values of α1, the operating diagram of the classical chemostat competition model is found where
it exhibits the CEP such that only the species with the lowest break-even concentration survives (see Fig. 10(a)).
Increasing α1, Fig. 10(b-c-d) illustrates how the bistability regionJ5 appears and extends while the exclusion regions
of the second species are reduced.

Using SCILAB [49], Fig. 11(a) illustrates the three-dimensional space (S , x1, x2) in the case S in = 8 < S c
in ≈ 9.357

where there is no interior steady state in R3
+. For various positive initial conditions even close enough to E0 or E2, the

numerical simulations permit to conjecture the global convergence towards E1. In this case, the three steady states are
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Figure 10: MAPLE: effect of the variation of the parameter α1 on the emergence of the coexistence region with bistability in the operating diagram
of (27): (a) α1 = 10−5, (b) α1 = 10−3 (c) α1 = 10−2, (d) α1 = 20.
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Figure 11: SCILAB: the three-dimensional space (S , x1, x2) of (27) when D = 5: (a) S in = 8 < S c
in ≈ 9.357, convergence to E1. (b) S in = 10.5 >

S c
in, bistability with either convergence to E1 or E∗1.

given by
E0 = (8, 0, 0), E1 ' (0.857, 7.143, 0) and E2 = (3.5, 0, 4.5).

Fig. 11(b) shows that system (27) exhibits bistability between the steady states E∗1 of coexistence and E1 corresponding
to the exclusion of second species, when S in = 10.5 > S c

in. In this case, there exist five steady states given by
E0 = (10.5, 0, 0), E1 ' (0.857, 9.643, 0),

E2 = (3.5, 0, 7), E∗1 ' (3.5, 0.528, 6.234) and E∗2 ' (3.5, 3.031, 2.601).

Remark 1. In the case λ1 < λ2, by increasing S in, E1 loses a degree of stability and E2 appears locally asymptotically
stable for (27) is incorrect in section 2.5 of [29] via a transcritical bifurcation of E0 and E2 occurring at S in = λ2.
Similarly, it is an error in the reverse case λ2 < λ1. Indeed, the bifurcation parameter is S in with D is fixed. By
Proposition 12, E1 is LES if and only if λ1(D) < λ2(D). As this last inequality is unchanged by varying S in, then
E1 does not lose a degree of stability and it remains LES (see Fig. 9) through the passage of S in by λ2(D) which
is fixed. Moreover, E2 appears unstable via a transcritical bifurcation with E0 occurring at S in = λ2 because E2 is
LES if and only if λ2(D) < λ1(D). Using the same set of parameter values in [29], the numerical simulations in Fig.
11(a) illustrating the trajectories in the three-dimensional phase space (S , x1, x2) show these contradictions where the
solutions of system (27) converge to E1 for any initial condition, in particular for two initial conditions close enough
to E2.
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7. Discussion and conclusion

Inspired by the way in which the phenomena of intra- and interspecific interference and allelopathic effects have
been formalized to model the competitions of microbial species in [29, 39, 45, 52], we have proposed the original
and general model (2) of two-microbial species in competition for a single-resource in the chemostat. Indeed, we
have included general intra- and interspecific density-dependent growth rates with allelopathic effects describing the
production of each species a toxin that affects the growth of other species as well as its own growth (autotoxicity).
The removal rates are distinct so that the mortality rate of each species is the sum of the specific death rate and the
autotoxicity. Allowing a large class of growth functions, this model generalized those in [29, 45, 52].

Our mathematical analysis provided a complete study of this process. More precisely, we have determined the
necessary and sufficient conditions of existence and local stability of all steady states of model (2) according to the
operating parameters S in and D. To have a global vision of the asymptotic behavior of model (2) according to the
operating parameters, we have analyzed theoretically and numerically the operating diagrams in the two parameters
S in and D. In fact, we have shown that system (2) can have a unique stable steady state: either the washout of two
species (J0), or the exclusion of one species (J1,J2, and J4), or the coexistence (J3). The model (2) can also
exhibit bistability between the coexistence steady state and that of exclusion of the second [resp. first] species (J5
[resp. J7]), or the two coexistence steady states (J6). Crossing the boundary of the various regions in the operating
parameters space of model (2), we have shown that the steady states can appear or disappear only through transcritical
or saddle-node bifurcations. When the input concentration S in is fixed, the analysis of the one-parameter bifurcation
diagram in the dilution rate D illustrated the nature of bifurcations of the steady states.

On the other hand, our theoretical results are applied to the particular model (27) of Kengwoung-Keumo [29]
where the intra- and interspecific interference are neglected, and only the allelopathic effects of the second species on
the first species are considered. The necessary and sufficient conditions of existence and local stability of all steady
states are established according to the operating parameters S in and D. System (27) has at most two coexistence steady
states. We have demonstrated that the stability condition of the coexistence steady state E∗1 in [29] is always fulfilled.
Thus, the stability condition of this steady state in [29] must be removed and corrected by the coexistence steady state
E∗1 is LES when it exists.

In addition, we have established theoretically the operating diagram of model (27) and we have analyzed the effect
of increased toxin production of the second species on the first species. Increasing this allelopathic effect, that is, the
value of α1, the bistability regionJ5 (in red) between a coexistence steady state and that of the exclusion of the second
species has emerged while the regions of competitive exclusion J4 and J8 (in green) are reduced. Decreasing the
value of α1 to zero, we have obtained the operating diagram of the classical chemostat competition model confirming
the CEP [26, 50]. The one-parameter bifurcation diagram in S in has described the nature of bifurcations of all steady
states by crossing the various regions of the operating diagram in Fig. 8 when D is fixed. The numerical simulations
have illustrated in the three-dimensional phase space (S , x1, x2) either the global convergence towards the steady state
of exclusion of the second species or that of the bistability between the coexistence of the two species and the exclusion
of second species.

Thus, the main contribution of our study is to bring out the joint effects of the intra- and interspecific competition
with the allelopathic effects on the growth of the two species which are not studied in the existing literature. Adding
the allelopathic effects of each toxin-producing species to the intra- and interspecific interference of the two species
did not allow to solve the open problem of the stability condition c4 of the Routh–Hurwitz criterion (19) and to show
that the coexistence steady state could destabilize with emergence of periodic oscillations. Despite the structure of
our model (2) being different from that in Fekih-Salem et al. [18], we have found qualitatively similar results for
the existence, multiplicity and local stability of the steady states of the two systems. For example, the condition
Q11Q22 ≥ Q12Q21 given in Proposition 8 is qualitatively similar to condition (26) in [18] which means that the
intraspecific interference is dominant with respect to interspecific interference.

In the density-dependence model [18], mortality is essential for there to be any hope of coexistence around periodic
oscillations. However, our theoretical study of model (2) showed that mortality is not necessary where the coexistence
steady state could destabilize even with identical removal rates of the two species. The production effect of a toxic
substance released by a species and being nocive to their own or their competitor’s growth rates could replace the
mortality effect and hope for coexistence around a stable limit cycle.

The application of our general results to the particular model of [29] with only allelopathic effects has shown that
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there can be coexistence around an interior steady state but in the case where the system exhibits bistability. Thus, the
addition of the toxic effect on the most competitive species in the classic chemostat model is sufficient to guarantee the
coexistence between the two species but under the constraint of suitable choices of the initial conditions in the basin
of attraction of the interior steady state. Moreover, our study also has shown that it is impossible to have coexistence if
the second species is more efficient (λ2 < λ1) without any effect of intra- and interspecific interference and production
of the harmful toxin by the first species in the dynamics of the second species.

Appendix A. Positivity of the stability condition c4

In this section, we show that the stability condition c4 > 0 holds for the two positive steady states E∗1 and E∗3 such
that the curve corresponding to c4 = 0 does not exist in the operating diagram of Figs. 4 or 5 for model (2). To this
end, we consider the specific growth rates µ1 and µ2 defined in (24), the functions q1 and q2 defined in (25), and the set
of the biological parameter values in Table B.14. Note that the critical values σi, i = 1, . . . , 6 of D are defined in Table
7 where σi, i = 1, 2, 3, 6 correspond to Branch Points (BP) bifurcations while σ4 and σ5 correspond to Limit Points
(LP) bifurcations. Using MAPLE, we plot in Fig. B.12(a) the curve of the function D 7→ c4(D) corresponding to the
steady state E∗1 [resp. E∗3] for all D in their existence domain (σ3, σ5) [resp. (σ4, σ6)] when S in = 1.4 and S in = 2.04,
and in (σ4, σ3) [resp. (σ6, σ5)] when S in = 4, S in = 8, and S in = 16. Fig. B.12(b) illustrates a magnification when
D ∈ [0, 0.2] showing the positivity of the function c4(D) corresponding to the steady state E∗1 for all D ∈ (σ1, σ2) and
for the different fixed values of S in. Moreover, the numerical simulations show that c4 is always positive for any value
of S in and D in the existence domain of E∗1 and E∗3.

Appendix B. Parameter values for numerical simulations

All the values of the parameters used in the numerical simulations are provided in Table B.14.

Table B.14: Parameter values used for models (2) and (27) when the growth rates µ1 and µ2 are given by (24) and the functions q1 and q2 are
defined in (25).

Parameter µm
1 k1 µm

2 k2 a11 a12 α1 a22 a21 α2 θ1 m1 θ2 m2
Figs. 4, 5,6, and B.12 7.5 0.5 8.5 1.2 5 6 22 7 5 22 0.8 0.7 0.1 0.1
Figs. 7, 8, 9, 10, and 11 8.5 0.6 6 0.7 0 0 0.11 0 0 0 1 0 1 0
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Figure B.12: MAPLE: (a) curves of the function c4(D) corresponding to E∗1 [resp. E∗3] for all D in their existence domain (σ3, σ5) [resp. (σ4, σ6)]
when S in = 1.4 and S in = 2.04, and in (σ4, σ3) [resp. (σ6, σ5)] when S in = 4, S in = 8, and S in = 16. (b) Magnification of c4(D) corresponding to
E∗1 for all D ∈ (σ1, σ2).
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