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Understanding and exploiting competition and coexistence between microbial species is one of the more challenging aspects of mathematical biology. In this paper, we propose an original model of two-microbial species competing for a single nutrient in the chemostat including general intra-and interspecific density-dependent growth rates with allelopathic interactions. Each species produces a toxin that affects the growth of other species as well as its own growth. The removal rates are distinct and include the specific death rate and the autotoxicity of each species. We establish an in-depth mathematical analysis by determining the multiplicity of all steady states of the three-dimensional system and their necessary and sufficient conditions of existence and local stability according to the operating parameters, which are the dilution rate and the inflowing concentration of the substrate. To describe the asymptotic behavior of the process according to these control parameters, we first determine theoretically the operating diagram. Using MATCONT software, these theoretical results are validated numerically but it reveals the cusp bifurcation that occurs by varying two parameters. The one-parameter bifurcation diagram in the dilution rate shows that there can be either transcritical or saddle-node bifurcations. Finally, we apply our results to a particular model in the literature without intra-and interspecific interference but with only allelopathic effects of the second species on the first species. We show that one of the coexistence steady states is locally exponentially stable when it exists, whereas in the literature they have not been able to demonstrate that the stability condition of this steady state is always fulfilled.

Introduction

The chemostat is an experimental device used in microbial ecology, microbiology, and evolutionary and applied biology such as water treatment, biomass energy recovery and biotechnologies in a broad sense. It is the source of several mathematical models for population dynamics and interactions between microbial species, in particular competition for resources [START_REF] Grover | Resource Competition[END_REF][START_REF] Harmand | The Chemostat: Mathematical Theory of Microorganism Cultures[END_REF][START_REF] Smith | The Theory of the Chemostat: Dynamics of Microbial Competition[END_REF]. The mathematical study of the classical chemostat model of several species competing on a same limiting resource shows that only the species with the lowest break-even concentration survives while all other species will be excluded [START_REF] Smith | The Theory of the Chemostat: Dynamics of Microbial Competition[END_REF]. This result is classical and is well known as the Competitive Exclusion Principle (CEP) which asserts that at most one species can survive to the competition, namely the species which makes optimal use of the resource (see [START_REF] Fekih-Salem | A density-dependent model of competition for one resource in the chemostat[END_REF] and the references therein). Hansen and Hubbell's laboratory experiments allowed to identify and validate the CEP in the chemostats [START_REF] Hansen | Single-nutrient microbial competition: Qualitative agreement between experimental and theoretically forecast outcomes[END_REF].

However, the biodiversity and natural species richness appeared as a contradiction with the CEP. The solution to this paradox is to revise the mathematical modeling by taking into account in the classic chemostat model the different types of interactions between microbial species. Indeed, this has motivated many recent researches aimed at understanding and explaining biodiversity in microbial ecosystems by taking into account various mechanisms to promote the coexistence of species. In the literature, the following coexistence mechanisms can be found: intra-and interspecific competition [START_REF] Abdellatif | Competition for a single resource and coexistence of several species in the chemostat[END_REF][START_REF] Leenheer | Crowding effects promote coexistence in the chemostat[END_REF], flocculation [START_REF] Fekih-Salem | Properties of the chemostat model with aggregated biomass and distinct removal rates[END_REF][START_REF] Fekih-Salem | Operating diagram of a flocculation model in the chemostat[END_REF][START_REF] Fekih-Salem | Extensions of the chemostat model with flocculation[END_REF][START_REF] Fekih-Salem | Emergence of coexistence and limit cycles in the chemostat model with flocculation for a general class of functional responses[END_REF][START_REF] Haegeman | How flocculation can explain coexistence in the chemostat[END_REF], density-dependence [18, 32-34, 40, 41], predatorprey interaction [START_REF] Ballyk | A nutrient-prey-predator model: Stability and bifurcations[END_REF][START_REF] Boer | Food chain dynamics in the chemostat[END_REF][START_REF] Li | Simple food chain in a chemostat with distinct removal rates[END_REF], simple or complex food web [START_REF] Butler | Predator-mediated competition in the chemostat[END_REF][START_REF] Hsu | Analysis of a model of two parallel food chains[END_REF][START_REF] Wolkowicz | Successful invasion of a food web in a chemostat[END_REF], presence of an internal or external inhibitors [START_REF] Bar | The operating diagram for a model of competition in a chemostat with an external lethal inhibitor[END_REF][START_REF] Dellal | Global analysis of a model of competition in the chemostat with internal inhibitor[END_REF][START_REF] Dellal | The operating diagram of a model of two competitors in a chemostat with an external inhibitor[END_REF][START_REF] Dellal | A competition model in the chemostat with allelopathy and substrate inhibition[END_REF][START_REF] Hsu | Competition in the chemostat when one competitor produces a toxin[END_REF], and the references therein.

While these various coexistence mechanisms have been extensively analyzed with chemostat models, allelopathy is another mechanism of biodiversity between species that has been relatively neglected. Allelopathy can be defined as the effect of a toxic substance released by one species and being nocive to their own or their competitor's growth rates [START_REF] Martines | A chemostat model of resource competition and allelopathy[END_REF]. The applications of allelopathic competitions can be found in several fields like bio-remediation, biotechnological processes, ecological phenomena like algal blooms and so on. This kind of competition is frequent in nature not only between algal species but also between algae and bacteria, bacteria and bacteria, algae and aquatic plants, as well as plants and plants (see [START_REF] Fergola | Allelopathy and competition between chlorella vulgaris and pseudokirchneriella subcapitata: Experiments and mathematical model[END_REF][START_REF] Fergola | On the dynamical behavior of some algal allelopathic competitions in chemostat-like environment[END_REF], and the references therein).

Based on the formulation of phenomenological Lotka-Volterra type, allelopathic interaction modeling between two species was introduced by Maynard-Smith [START_REF] Maynard-Smith | Models in Ecology[END_REF] where each species produces a toxic substance to the other but only when the other is present. An exhaustive analysis of the two-species competition model with allelopathic interactions was carried out in [START_REF] Chattopadhyay | Effect of toxic substances on a two-species competitive system[END_REF]. In order to have a good fit for all the experimental data of the toxic alga, the simple Lotka-Volterra type model with allelopathic interactions between two marine phytoplankton species was modified such that the allelopathic term depends on the product of the square of the concentration of the target species by the concentration of the toxic species [START_REF] Solé | Modelling allelopathy among marine algae[END_REF]. More precisely, if x 1 is the population density of a non-toxic alga and x 2 that of a toxic one, the mathematical form of the allelopathic interaction term is α 1 x 2 1 x 2 2 , where α 1 is the allelopathic parameter.

Roy [START_REF] Roy | The coevolution of two phytoplankton species on a single resource: Allelopathy as a pseudo-mixotrophy[END_REF] introduced a chemostat model with two microbial species competing for a single resource by considering a single species that is toxin-producing thereby having an allelopathic effect on the other. Growth rates are specified to be of Michaelis-Menten type. An extension of Roy's competition model between non-toxic phytoplankton and toxic phytoplankton was studied in Kengwoung-Keumo [START_REF] Kengwoung-Keumo | Competition between a nonallelopathic phytoplankton and an allelopathic phytoplankton species under predation[END_REF] by allowing a general class of monotonic growth rates.

Inspired by the way to model competitions of Lotka-Volterra type by including allelopathic terms in the chemostat [START_REF] Kengwoung-Keumo | Competition between a nonallelopathic phytoplankton and an allelopathic phytoplankton species under predation[END_REF][START_REF] Maynard-Smith | Models in Ecology[END_REF][START_REF] Roy | The coevolution of two phytoplankton species on a single resource: Allelopathy as a pseudo-mixotrophy[END_REF][START_REF] Solé | Modelling allelopathy among marine algae[END_REF], we propose a first general model of two species competing for a single resource in the chemostat involving an intra-and interspecific competition with allelopathic effects. Using distinct removal rates and assuming that the two populations are toxic, the model takes the form

         Ṡ = D(S in -S ) -µ 1 (S ) x 1 y 1 -µ 2 (S ) x 2 y 2 , ẋ1 = [µ 1 (S ) -a 11 x 1 -a 12 x 2 -α 1 x 1 x 2 2 -D 1 ]x 1 , ẋ2 = [µ 2 (S ) -a 22 x 2 -a 21 x 1 -α 2 x 2 x 2 1 -D 2 ]x 2 , (1) 
where S (t) denotes the concentration of nutrient in the culture at time t; x 1 (t) and x 2 (t) denote the concentrations of the two toxic species at time t; µ 1 (S ) and µ 2 (S ) represent the per-capita growth rates of the two species; S in and D denote, respectively, the input concentration of the limiting nutrient and the dilution rate of the chemostat; y 1 and y 2 are the yield coefficients which can be easily normalized to the unit without loss of generality by the simple change of variables x 1 /y 1 → x 1 and x 2 /y 2 → x 2 . In addition, a 11 and a 22 are the rates of intraspecific competition of the first and second species, respectively; a 12 and a 21 are the interspecific competition coefficients of the species j on the species i, i = 1, 2, j = 1, 2, i j. As in Solé et al. [START_REF] Solé | Modelling allelopathy among marine algae[END_REF], the phytotoxic (or allelopathic) interactions of the species j on the species i is modeled by α i x 2 1 x 2 2 , where α i denotes the phytotoxic coefficient. In addition, D i , i = 1, 2, represents the disappearance rate of the species i that can be modeled as follows:

D i = θ i D + m i ,
where θ i belongs to [0, 1] and denotes the proportion of the species i leaving the reactor as proposed by Bernard et al. [START_REF] Bernard | Dynamical model development and parameter identification for an anaerobic wastewater treatment process[END_REF] to model a biomass reactor attached to the support or to decouple the residence time of solids and the hydraulic residence time (1/D). Moreover, the nonnegative mortality rate m i of the species i is the sum of the specific death rate i and the autotoxicity parameters a i , that is, m i = i + a i and it has unit of the dilution rate (1/day).

In this work, we propose and study a more general model than our first proposed model (1) by allowing generic functions representing intra-and interspecific competitions as well as toxic effects of each species on the other. This model is an extension of system (1) and it generalizes several models studied in the literature as we demonstrate later. This general model is written as follows:

         Ṡ = D(S in -S ) -µ 1 (S )x 1 -µ 2 (S )x 2 , ẋ1 = [µ 1 (S ) -q 1 (x 1 , x 2 ) -D 1 ]x 1 , ẋ2 = [µ 2 (S ) -q 2 (x 2 , x 1 ) -D 2 ]x 2 , (2) 
where the functions q 1 (x 1 , x 2 ) and q 2 (x 2 , x 1 ) are assumed to be increasing in each variable x 1 and x 2 .

The particular case of our general model (2) was considered in [START_REF] Roy | The coevolution of two phytoplankton species on a single resource: Allelopathy as a pseudo-mixotrophy[END_REF] when the growth rates µ 1 (S ) and µ 2 (S ) are of Michaelis-Menten type and when only the first species produces toxin, that is, q 2 (x 2 , x 1 ) = 0. The author has derived analytically a critical lower bound of allelopathy as a function of the parameters of model which ensures the coexistence and the coevolution of two phytoplankton species competing for a single limiting nutrient. The local stability of positive steady states has been determined only numerically. Using a general class of monotonic growth rates, an extension of model [START_REF] Roy | The coevolution of two phytoplankton species on a single resource: Allelopathy as a pseudo-mixotrophy[END_REF] has been studied in [START_REF] Kengwoung-Keumo | Competition between a nonallelopathic phytoplankton and an allelopathic phytoplankton species under predation[END_REF]. The author has shown the existence of two interior steady states where the stability of one of them depends on a condition of Routh-Hurwitz criterion. In this work, we will show that this condition is always satisfied in their particular case.

In Fekih-Salem et al. [START_REF] Fekih-Salem | Sur un modèle de compétition et de coexistence dans le chémostat[END_REF], we have considered only the interspecific interactions in the dynamics of the first species, that is, q 1 (x 1 , x 2 ) = q 1 (x 2 ) and q 2 (x 2 , x 1 ) = 0. We have shown the occurrence of positive steady state of coexistence but which is unstable as long as it exists. Then, taking into account the intra-and interspecific interference such that q 1 (x 1 , x 2 ) = q 1 (x 2 ) and q 2 (x 2 , x 1 ) = q 2 (x 2 ), there can be a multiplicity of positive steady states which could be locally exponentially stable.

Note that the structure of our model ( 2) is different from that in our paper Fekih-Salem et al. [START_REF] Fekih-Salem | A density-dependent model of competition for one resource in the chemostat[END_REF]. In fact, here we consider the growth rates µ 1 (S ) and µ 2 (S ) (which depend only on S ) in the dynamics of the substrate S . However, in [START_REF] Fekih-Salem | A density-dependent model of competition for one resource in the chemostat[END_REF], it is rather the density-dependent growth rates µ 1 (S , x 1 , x 2 ) and µ 2 (S , x 1 , x 2 ) (which depend only on S , x 1 , and x 2 ) in the dynamics of S .

The aim of this paper is to provide a complete mathematical and numerical analysis of the general model (2) to understand the joint effect of the intra-and interspecific density-dependence with allelopathic competitions. Our study presents an extension of the results in [START_REF] Kengwoung-Keumo | Competition between a nonallelopathic phytoplankton and an allelopathic phytoplankton species under predation[END_REF][START_REF] Roy | The coevolution of two phytoplankton species on a single resource: Allelopathy as a pseudo-mixotrophy[END_REF] by allowing a general class of growth functions and the production of both species of the toxin and by adding the intra-and interspecific interference. Using distinct removal rates including mortality and autotoxicity of each species, we describe the multiplicity of all steady states and their necessary and sufficient conditions of existence and local stability according to the operating parameters S in and D. To determine the asymptotic behavior of the process with respect to these two operating parameters, we analyze the operating diagram theoretically from the conditions of existence and stability of all steady states. Using the software MATCONT [37], the theoretical analysis of the operating diagram is validated by the numerical continuation method. In addition, we study the one-parameter bifurcation diagram in D describing all types of bifurcations. Then, we apply our theoretical results to the particular model ( 27) of [START_REF] Kengwoung-Keumo | Competition between a nonallelopathic phytoplankton and an allelopathic phytoplankton species under predation[END_REF] by providing the necessary and sufficient conditions of existence and local stability of all steady states. In particular, we prove that one of the two positive steady states is locally exponentially stable when it exists, whereas in [START_REF] Kengwoung-Keumo | Competition between a nonallelopathic phytoplankton and an allelopathic phytoplankton species under predation[END_REF] the author has not been able to demonstrate that the stability condition of this steady state is always fulfilled. In this particular case of [START_REF] Kengwoung-Keumo | Competition between a nonallelopathic phytoplankton and an allelopathic phytoplankton species under predation[END_REF], we determine theoretically the operating diagram and the one-parameter bifurcation diagram which have not been studied in the literature. Finally, the numerical simulations illustrate the theoretical results.

This paper is organized as follows. The next section presents general assumptions for the density-dependent functions of model [START_REF] Ballyk | A nutrient-prey-predator model: Stability and bifurcations[END_REF]. Subsequently, we show mathematically that it is biologically well-posed and we study of the existence of all steady states and their multiplicity. Section 3 is devoted to the analysis of the local asymptotic stability of each steady state of system (2). In section 4, the operating diagram is established theoretically from the existence and the stability conditions, and numerically using the software MATCONT. In section 5, the one-parameter bifurcation diagram in the dilution rate D illustrates all types of bifurcations. In section 6, our results are applied to the particular model [START_REF] Hsu | Competition in the chemostat when one competitor produces a toxin[END_REF] of [START_REF] Kengwoung-Keumo | Competition between a nonallelopathic phytoplankton and an allelopathic phytoplankton species under predation[END_REF]. In section 7, we discuss and compare our results with those of the existing literature. In Appendix A, we show that one of the stability conditions of the Routh-Hurwitz criterion corresponding to the coexistence steady states holds for all S in and D. Finally, all parameter values used in the numerical simulations are provided in Appendix B.

Assumptions on the model and steady states

In this work, we assume that the growth rates of model ( 2) are continuously differentiable (C 1 ) functions that satisfy the following general conditions. (H1) µ 1 (0) = µ 2 (0) = 0 and µ 1 (S ) > 0 and µ 2 (S ) > 0, for all S > 0.

Hypothesis (H1) means that the growth can take place if and only if the substrate is present and the growth rate of each species increases with the concentration of substrate.

(H2) q 1 (0, 0) = q 2 (0, 0) = 0, q 1 (x 1 , x 2 ) ≥ 0, q 2 (x 2 , x 1 ) ≥ 0, ∂q 1 ∂x 1 (x 1 , x 2 ) ≥ 0, ∂q 1 ∂x 2 (x 1 , x 2 ) ≥ 0, ∂q 2 ∂x 2 (x 2 , x 1 ) ≥ 0 and ∂q 2 ∂x 1 (x 2 , x 1 ) ≥ 0, for all x 1 > 0 and x 2 > 0.

The negative effects of intra-and interspecific interference and allelopathic competition increase with the concentration of species x 1 and x 2 .

The following preliminary result shows the positivity and boundedness of the solutions of model ( 2) which are very important properties for any biological and ecological system. The proof is standard and hence is left to the reader.

Proposition 1. For any nonnegative initial condition, the solutions of model ( 2) remain nonnegative and are positively bounded. Let D min = min(D, D 1 , D 2 ). The compact set

Ω = (S , x 1 , x 2 ) ∈ R 3 + : S + x 1 + x 2 ≤ D D min S in ,
is positively invariant and is a global attractor for system [START_REF] Ballyk | A nutrient-prey-predator model: Stability and bifurcations[END_REF].

The steady states are found by setting the right hand sides of equations of (2) equal to zero. Thus, they are the solutions of the set of equations

         0 = D(S in -S ) -µ 1 (S )x 1 -µ 2 (S )x 2 , 0 = [µ 1 (S ) -q 1 (x 1 , x 2 ) -D 1 ]x 1 , 0 = [µ 2 (S ) -q 2 (x 2 , x 1 ) -D 2 ]x 2 .
(3) Indeed, system (2) can have at most four types of steady states labeled as follows:

• E 0 = (S in , 0, 0): the washout of both species (x 1 = x 2 = 0). It always exists.

• E 1 = ( S 1 , x1 , 0): only the second species is extinct (x 2 = 0 and x1 > 0).

• E 2 = ( S 2 , 0, x2 ): only the first species is extinct (x 1 = 0 and x2 > 0).

• E * = (S * , x * 1 , x * 2 )
: both species are maintained (x * 1 > 0 and x * 2 > 0). From Hypothesis (H1), when equation µ i (S ) = D i , i = 1, 2 has a solution, it is unique and we define the usual break-even concentrations

λ i = µ -1 i (D i ). ( 4 
)
When equation µ i (S ) = D i has no solution, we put λ i = +∞.

The following result determines the components and the uniqueness of the boundary steady states E 1 and E 2 , as well as their existence conditions according to the operating parameters.

Proposition 2. Assume that Hypotheses (H1) and (H2) hold. The boundary steady states E 1 = ( S 1 , x1 , 0) and E 2 = ( S 2 , 0, x2 ) of system (2) are defined by

S i = ϕ i ( xi ) := S in - D i D xi - 1 D q i ( xi , 0) xi , i = 1, 2 (5) 
and xi is the unique solution of equation

ψ i (x i ) := µ i (ϕ i (x i )) -q i (x i , 0) -D i . (6) 
E i exists if and only if S in > λ i (D). When it exists, E i is unique.

Proof. Let i = 1, 2, j = 1, 2, i j. The components S = S i and x = xi of a boundary steady state E i are the solutions of (3) with x i > 0 and x j = 0. Thus, S i and xi are the solutions of equations

D(S in -S ) = µ i (S )x i , µ i (S ) = q i (x i , 0) + D i . (7) 
Using the two equations of [START_REF] Chattopadhyay | Effect of toxic substances on a two-species competitive system[END_REF], it follows that S = ϕ i (x i ) which is defined in [START_REF] Boer | Food chain dynamics in the chemostat[END_REF]. Replacing this expression of S in the second equation of ( 7), we see that x i must be a solution of the equation ψ i (x i ) = 0. The derivative of ϕ i (x i ) is given by

ϕ i (x i ) = - 1 D q i (x i , 0) + ∂q i ∂x i (x i , 0)x i + D i .
From Hypothesis (H2), the mapping

x i → ϕ i (x i ) is monotonically decreasing from ϕ i (0) = S in to ϕ i D D i S in = - S in D i q i D D i S in , 0 ≤ 0.
Hence, there exists a unique solution xi ∈ (0, DS in /D i ] satisfying ϕ i (x i ) = 0. In addition, S = ϕ i (x i ) is nonnegative for all x i ≤ xi . On the other hand, we have

ψ i (x i ) = ϕ i (x i )µ i (ϕ i (x i )) - ∂q i ∂x i (x i , 0).
From Hypotheses (H1) and (H2), the mapping

x i → ψ i (x i ) is monotonically decreasing from ψ i (0) = µ i (S in ) -D i to ψ i ( xi ) = -q i ( xi , 0) -D i < 0. Therefore, there exists a unique solution xi ∈ (0, xi ) of equation ψ i (x i ) = 0 if and only if µ i (S in ) > D i , that is, S in > λ i .
Now, to establish the existence of the positive steady state E * = (S * , x * 1 , x * 2 ), we need to show the following results. In fact, the components S = S * , x 1 = x * 1 and x 2 = x * 2 of E * must be the solutions of (3) with x 1 > 0 and x 2 > 0. Thus, S * , x * 1 and x * 2 are the solutions of the set of equations

         D(S in -S ) = µ 1 (S )x 1 + µ 2 (S )x 2 , µ 1 (S ) = q 1 (x 1 , x 2 ) + D 1 , µ 2 (S ) = q 2 (x 2 , x 1 ) + D 2 . (8) 
Multiplying the second equation by x 1 and the third equation by x 2 in system (8), the first equation implies that

S = S in -g(x 1 , x 2 ), where g(x 1 , x 2 ) := 1 D (D 1 x 1 + x 1 q 1 (x 1 , x 2 ) + D 2 x 2 + x 2 q 2 (x 2 , x 1 )). (9) 
Consider now replacing of S by this expression [START_REF] Leenheer | Crowding effects promote coexistence in the chemostat[END_REF] in the second and third equations of [START_REF] Daoud | Steady state analysis of a syntrophic model: The effect of a new input substrate concentration[END_REF] to see that (x 1 = x * 1 , x 2 = x * 2 ) must be a solution of the set of equations

0 = f 1 (x 1 , x 2 ) := µ 1 (S in -g(x 1 , x 2 )) -q 1 (x 1 , x 2 ) -D 1 , 0 = f 2 (x 2 , x 1 ) := µ 2 (S in -g(x 1 , x 2 )) -q 2 (x 2 , x 1 ) -D 2 . ( 10 
)
Note that the functions f 1 and f 2 are defined on the set

Λ = {(x 1 , x 2 ) ∈ R + × R + : g(x 1 , x 2 ) ≤ S in } . ( 11 
)
The components of the positive steady state E * are positive if and only if system (10) has a solution in Λ • , the interior of Λ. To solve system [START_REF] Dellal | Global analysis of a model of competition in the chemostat with internal inhibitor[END_REF] in the open set Λ • , we define the function corresponding to equation S in = g(x 1 , x 2 ) in the following lemma.

Lemma 1. Under Hypothesis (H2), the equation S in = g(x 1 , 0) [resp. S in = g(0, x 2 )] has a unique positive solution

x1 ∈ (0, DS in /D 1 ] [resp. x2 ∈ (0, DS in /D 2 ]]. Moreover, the equation S in = g(x 1 , x 2 ) defines a smooth decreasing function G : [0, x1 ] → [0, x2 ], x 1 → G(x 1 ) = x 2
where G( x1 ) = 0 and G(0) = x2 (see Fig. 1).
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Figure 1: (a-b-c) Definitions of the functions x 2 = G(x 1 ), x 2 = F 1 (x 1 ) and x 1 = F 2 (x 2 ), and the corresponding graphs γ 0 , γ 1 and γ 2 (in black, blue and red), respectively.

Proof. From proof of Proposition 2, there exists a unique solution xi ∈ (0, DS in /D i ], for i = 1, 2 satisfying ϕ i (x i ) = 0 which is equivalent to S in = g(x 1 , 0) and S in = g(0, x 2 ), respectively. This proves the first assertion of the lemma. Let l 1 be the fixed line defined by x 1 = b 1 (see Fig. 1(a)). To prove the second assertion of the lemma, we must show that each line l 1 intersects the set S in = g(x 1 , x 2 ) once if and only if 0 ≤ b 1 ≤ x1 . From Hypothesis (H2), the function

x 2 → S in -g(b 1 , x 2 ) is decreasing from S in -g(b 1 , 0) for x 2 = 0 to S in -g(b 1 , x2 ) for x 2 = x2 . Since S in = g(0, x2 ) and the function x 1 → g(x 1 , x2 ) is increasing, then g(0, x2 ) -g(b 1 , x2 ) ≤ 0. Consequently, there exists a unique solution c 2 ∈ [0, x2 ] of equation S in = g(b 1 , x 2 ) if and only if S in -g(b 1 , 0) ≥ 0 = S in -g( x1 , 0) or (equivalently) b 1 ≤ x1 as the function x 1 → S in -g(x 1 , 0) is decreasing. Thus, there exists a unique c 2 ∈ [0, x2 ] solution of equation S in = g(b 1 , x 2 ), for all b 1 ∈ [0, x1 ]. Define the function G by c 2 = G(b 1 )
. That this function G is smooth and decreasing follows from the implicit function theorem. In fact, under Hypothesis (H2), the sign of the partial derivatives of g can be determined by

G i := ∂g ∂x i (x 1 , x 2 ) = 1 D (D i + q i + x i Q ii + x j Q ji ), (12) 
which is positive for i = 1, 2, j = 1, 2, i j since Q 1i and Q 2i are positive and defined by

Q 1i = ∂q 1 ∂x i (x 1 , x 2 ), Q 2i = ∂q 2 ∂x i (x 2 , x 1 ). (13) 
Hence, the function G is smooth and its derivative is

G (x 1 ) = - ∂g ∂x 1 (x 1 , x 2 ) ∂g ∂x 2 (x 1 , x 2 ) = - G 1 G 2 = - D 1 + q 1 (x 1 , x 2 ) + x 1 Q 11 + x 2 Q 21 D 2 + q 2 (x 2 , x 1 ) + x 2 Q 22 + x 1 Q 12 .
It follows that G is decreasing since all terms in this fraction are positive.

Proposition 3. Assume that Hypotheses (H1) and (H2) hold. Let S in > λ i (D), i = 1, 2. For j = 1, 2, i j, the equation f i (x i , x j ) = 0 defines a smooth decreasing function

F i : [0, xi ] → [0, x j ], x i → F i (x i ) = x j ,
where F i ( xi ) = 0 and F i (0) = x j so that the graph γ i of F i lies in Λ • , the interior of Λ defined in [START_REF] Dellal | The operating diagram of a model of two competitors in a chemostat with an external inhibitor[END_REF] (see Fig. 1). Indeed,

(x 1 , F 1 (x 1 )) ∈ Λ • [resp. (F 2 (x 2 ), x 2 ) ∈ Λ • ], for all x 1 ∈ (0, x1 ) [resp. x 2 ∈ (0, x2 )]. The derivative of F i is given by F i (x i ) = - E i G i + Q ii E i G j + Q i j < 0, for all x i ∈ [0, xi ], where (14) 
E i := µ i (S ) = µ i (S in -g(x 1 , x 2 )). ( 15 
)
Proof. To facilitate understanding, we choose i = 1 and j = 2. But the case i = 2 and j = 1 can be treated similarly using the symmetry of system [START_REF] Dellal | Global analysis of a model of competition in the chemostat with internal inhibitor[END_REF]. Let l 1 be the fixed line defined by x 1 = b 1 . It suffices to show that that each line l 1 intersects the set f 1 (x 1 , x 2 ) = 0 once if and only if 0 ≤ b 1 ≤ x1 so that the intersection belongs to Λ • (see Fig. 1(b)).

From Lemma 1, the curve γ 0 of the function x 2 = G(x 1 ) intersects the line l 1 at the point x 2 = c 2 where

c 2 = G(b 1 ) or equivalently S in = g(b 1 , c 2 ).
From Hypotheses (H1) and (H2), the function

x 2 → µ 1 (S in -g(b 1 , x 2 )) -D 1 -q 1 (b 1 , x 2 ) is decreasing from µ 1 (S in - g(b 1 , 0)) -D 1 -q 1 (b 1 , 0) for x 2 = 0 to -D 1 -q 1 (b 1 , c 2 ) for x 2 = c 2 . As -D 1 -q 1 (b 1 , c 2 ) is negative, then there exists a unique solution b 2 ∈ [0, c 2 ) of equation f 1 (b 1 , x 2 ) = 0 if and only if µ 1 (S in -g(b 1 , 0)) -D 1 -q 1 (b 1 , 0) ≥ 0 = µ 1 (S in -g( x1 , 0)) -D 1 -q 1 ( x1 , 0).
Since the function x 1 → ψ 1 (x 1 ) defined by ( 6) is decreasing, this last condition is equivalent to b 1 ≤ x1 . Hence, there exists a unique solution b

2 ∈ [0, c 2 ) of equation f 1 (b 1 , x 2 ) = 0 for all b 1 ∈ [0, x1 ]. Define the function F 1 by b 2 = F 1 (b 1 )
where F 1 ( x1 ) = 0 and F 1 (0) = x2 which are the solutions of f 1 ( x1 , 0) = 0 and f 1 (0, x2 ) = 0. That this function F 1 is smooth and decreasing follows from the implicit function theorem. Indeed, under Hypothesis (H2), the sign of the partial derivatives of f 1 can be determined by

∂ f 1 ∂x 1 (x 1 , x 2 ) = -(E 1 G 1 + Q 11 ), ∂ f 1 ∂x 2 (x 1 , x 2 ) = -(E 1 G 2 + Q 12 ),
where E 1 , G 1 , G 2 , Q 11 and Q 12 are positive and defined in ( 15), ( 12) and ( 13). Consequently, we obtain the function F 1 defined in ( 14) which is negative so that the function F 1 is smooth and decreasing.

Proposition 4. System (2) has a positive steady state

E * = (S * , x * 1 , x * 2 )
if and only if the curves γ 1 and γ 2 have a positive intersection such that the coordinates (x * 1 , x * 2 ) are the positive solutions of equations

x 2 = F 1 (x 1 ) and x 1 = F 2 (x 2 ), ( 16 
)
with S * = S in -g(x * 1 , x * 2 )
where the function g is defined in (9). Proof. A positive steady state E * of (2) exists if and only if the equations f 1 (x 1 , x 2 ) = 0 and f 2 (x 2 , x 1 ) = 0 has a solution in Λ • which is the interior of Λ defined by [START_REF] Dellal | The operating diagram of a model of two competitors in a chemostat with an external inhibitor[END_REF]. Using Proposition 3, it exists if and only if the curves γ 1 and γ 2 have a positive intersection (x * 1 , x * 2 ) such that ( 16) holds where the expression of S * is given by ( 9).

(1.a) Note that x1 , x2 , x1 and x2 represent the coordinates of the intersections of the curves γ 1 and γ 2 with the x 1 and the x 2 axes. According to the relative positions of these values, the four cases that must be distinguished are summarized in Table 1.

x 2 γ 0 γ 1 γ 2 E 2 E * x2 x2 E 0 E 1 x1 x1 x 1 (1.b) x 2 γ 0 γ 1 γ 2 E 2 E * 1 E * 2 E * 3 x2 x2 E 0 E 1 x1 x1 x 1 (2.a) x 2 γ 0 γ 2 γ 1 E 2 E * x2 x2 E 0 E 1 x1 x1 x 1 (2.b) x 2 γ 0 γ 2 γ 1 E 2 E * 1 E * 2 x2 x2 E 0 E * 3 E 1 x1 x1 x 1
In the next proposition, we will determine the multiplicity of the positive steady states of (2) according to the four cases in Table 1 as shown in Figs. 2 and3.

Proposition 5. Assume that Hypotheses (H1) and (H2 

) hold. Let S in > λ i (D), i = 1, 2. (3.a) x 2 γ 0 γ 1 γ 2 E 2 x2 x2 E 0 E 1 x1 x1 x 1 (3.b) x 2 γ 0 γ 1 γ 2 E 2 E * 1 E * 2 x2 x2 E 0 E 1 x1 x1 x 1 (4.a) x 2 γ 0 γ 2 γ 1 E 2 x2 x2 E 0 E 1 x1 x1 x 1 (4.b) x 2 γ 0 γ 2 γ 1 E 2 E * 1 E * 2 x2 x2 E 0 E 1 x1 x1 x 1

Table 1: Classification of the values of xi and xi to four cases for

i = 1, 2. Case x1 , x1 x2 , x2 1 x1 < x1 x2 < x2 2 x1 < x1 x2 < x2 3 x1 < x1 x2 < x2 4 x1 < x1 x2 < x2 1.
In case 1 and 2, there exists at least one positive steady state. Generically, system (2) has an odd number of positive steady states. 2. In case 3 and 4, system (2) has generically no positive steady state or an even number of positive steady states.

Note that the multiplicity of steady states of our model ( 2) and the four cases to be distinguished in Table 1, and Figs. 2 and 3 are qualitatively similar to those of our density-dependence model in Fekih-Salem et al. [START_REF] Fekih-Salem | A density-dependent model of competition for one resource in the chemostat[END_REF].

Stability of steady states

To investigate the local asymptotic stability of all steady states of model (2), we shall use the abbreviation LES for Locally Exponentially Stable. Using notations [START_REF] Dellal | Global analysis of a model of competition in the chemostat with internal inhibitor[END_REF], [START_REF] Fekih-Salem | Properties of the chemostat model with aggregated biomass and distinct removal rates[END_REF] and [START_REF] Fekih-Salem | Sur un modèle de compétition et de coexistence dans le chémostat[END_REF], the Jacobian matrix of model (2) at a steady state (S , x 1 , x 2 ) is given by the following 3 × 3 matrix:

J =           -D -E 1 x 1 -E 2 x 2 -µ 1 (S ) -µ 2 (S ) E 1 x 1 f 1 -Q 11 x 1 -Q 12 x 1 E 2 x 2 -Q 21 x 2 f 2 -Q 22 x 2           .
The stability of the boundary steady states is given by the following result.

Proposition 6. Under Hypotheses (H1) and (H2), we have

• E 0 is LES if and only if S in < min(λ 1 , λ 2 )
.

• E 1 is LES if and only if x1 < x1 . • E 2 is LES if and only if x2 < x2 .
Proof. For E 0 = (S in , 0, 0), the characteristic polynomial is

P 0 (λ) = (λ + D)(λ -(µ 1 (S in ) -D 1 ))(λ -(µ 2 (S in ) -D 2 )).
Thus, E 0 is LES if and only if µ 1 (S in ) < D 1 and µ 2 (S in ) < D 2 , that is, S in < λ 1 and S in < λ 2 .

For E 1 = ( S 1 , x1 , 0), the characteristic polynomial is

P 1 (λ) = (λ -λ 0 ) λ 2 + c 1 λ + c 2 ,
where

λ 0 = f 2 (0, x1 ) = µ 2 (S in -g( x1 , 0)) -q 2 (0, x1 ) -D 2 , c 1 = D + E 1 x1 + Q 11 x1 , c 2 = (D + E 1 x1 )Q 11 x1 + E 1 x1 µ 1 ( S 1 ).
Since c 1 and c 2 are positive, then the roots of the quadratic factor have negative real parts. In addition, the function x 1 → µ 2 (S ing(x 1 , 0))q 2 (0, x 1 ) -D 2 is decreasing so that λ 0 is negative if and only if

λ 0 = µ 2 (S in -g( x1 , 0)) -q 2 (0, x1 ) -D 2 < 0 = f 2 (0, x1 ) = µ 2 (S in -g( x1 , 0)) -q 2 (0, x1 ) -D 2 .
Consequently, E 1 is LES if and only if x1 > x1 .

For E 2 = ( S 2 , 0, x2 ), the characteristic polynomial is

P 2 (λ) = (λ -λ 0 ) λ 2 + c 1 λ + c 2 ,
where

λ 0 = f 1 (0, x2 ) = µ 1 (S in -g(0, x2 )) -q 1 (0, x2 ) -D 1 , c 1 = D + E 2 x2 + Q 22 x2 , c 2 = (D + E 2 x2 )Q 22 x2 + E 2 x2 µ 2 ( S 2 ).
Since c 1 and c 2 are positive, then the roots of the quadratic factor have negative real parts. In addition, the function x 2 → µ 1 (S ing(0, x 2 ))q 1 (0, x 2 ) -D 1 is decreasing so that λ 0 is negative if and only if

λ 0 = µ 1 (S in -g(0, x2 )) -q 1 (0, x2 ) -D 1 < 0 = f 1 (0, x2 ) = 0 = µ 1 (S in -g(0, x2 )) -q 1 (0, x2 ) -D 1 .
Consequently, E 2 is LES if and only if x2 > x2 .

In the following, we study the stability of the positive steady states. Let J * be the Jacobian matrix of (2) at a steady state

E * = (S * , x * 1 , x * 2 )
, that is given by

J * =           -m 11 -m 12 -m 13 m 21 -m 22 -m 23 m 31 -m 32 -m 33           , where          m 11 = D + E 1 x * 1 + E 2 x * 2 , m 12 = µ 1 (S * ), m 13 = µ 2 (S * ), m 21 = E 1 x * 1 , m 22 = Q 11 x * 1 , m 23 = Q 12 x * 1 , m 31 = E 2 x * 2 , m 32 = Q 21 x * 2 , m 33 = Q 22 x * 2 . ( 17 
)
Note that all m i j are positive for all i, j = 1, 2, 3 and the functions Q i j and E i , i, j = 1, 2 defined by ( 13) and ( 15) are evaluated at the components of the positive steady state. Thus, the characteristic polynomial of J * is given by 

P(λ) = λ 3 + c 1 λ 2 + c 2 λ + c 3 ,
As c 1 > 0, according to the Routh-Hurwitz criterion, the positive steady state E * is LES if and only if

c 3 > 0 and c 4 = c 1 c 2 -c 3 > 0. ( 19 
)
The following result shows that the sign of c 3 is provided by the position of the curves γ 1 and γ 2 of functions x 1 → F 1 (x 1 ) = x 2 and x 1 → F -1 2 (x 1 ) = x 2 , respectively. More precisely, we will determine the relation between the determinant of the Jacobian matrix J * at the positive steady state E * and the value of F 1 (x * 1 )F 2 (x * 2 ) -1. Indeed, we will show that c 3 is negative [resp. positive] if and only if

F 1 x * 1 F 2 x * 2 -1 is negative [resp. positive], that is, F 1 (x * 1 ) > F -1 2 (x * 1 ) = 1 F 2 (x * 2 ) resp. F 1 (x * 1 ) < F -1 2 (x * 1 )
because F 2 (x * 2 ) < 0, or equivalently, on the right of the positive steady state (x * 1 , x * 2 ), the tangent of γ 1 at this point (x * 1 , x * 2 ) is above [resp. under] the tangent of γ 2 at the same point (x * 1 , x * 2 ) (see Figs. 2 and3).

Proposition 7. Let E * = (S * , x * 1 , x *
2 ) be a positive steady state of (2). We have

c 3 = -det(J * ) = Dx * 1 x * 2 (F 1 (x * 1 )F 2 (x * 2 ) -1)(E 1 G 2 + Q 12 )(E 2 G 1 + Q 21 ), (20) 
where the functions E i , G i and Q i j are defined by ( 12), [START_REF] Fekih-Salem | Properties of the chemostat model with aggregated biomass and distinct removal rates[END_REF], and [START_REF] Fekih-Salem | Sur un modèle de compétition et de coexistence dans le chémostat[END_REF] and are evaluated at the components of the steady state E * .

Proof. Using the expression of the derivatives of F i given by ( 14), a straightforward calculation shows that

F 1 (x * 1 )F 2 (x * 2 ) -1 = (Q 11 Q 22 -Q 12 Q 21 ) + G 1 (E 1 Q 22 -E 2 Q 12 ) + G 2 (E 2 Q 11 -E 1 Q 21 ) (E 1 G 2 + Q 12 )(E 2 G 1 + Q 21 ) . ( 21 
)
Let L i , i = 1, 2, 3 be the lines of the matrix J * . The replacement of L 1 by L 1 + L 2 + L 3 preserves the determinant of the Jacobian matrix J * at the steady state E * and we obtain

c 3 = - -D -µ 1 (S * ) -Q 11 x * 1 -Q 21 x * 2 -µ 2 (S * ) -Q 12 x * 1 -Q 22 x * 2 E 1 x * 1 -Q 11 x * 1 -Q 12 x * 1 E 2 x * 2 -Q 21 x * 2 -Q 22 x * 2               
.

By expanding along the first line, we obtain

c 3 = x * 1 x * 2 [D(Q 11 Q 22 -Q 12 Q 21 )+(µ 1 (S * )+Q 11 x * 1 +Q 21 x * 2 )(E 1 Q 22 -E 2 Q 12 )+(µ 2 (S * )+Q 12 x * 1 +Q 22 x * 2 )(E 2 Q 11 -E 1 Q 21 )].
Recall that, at the positive steady state E * , we have

µ 1 (S * ) = q 1 (x * 1 , x * 2 ) + D 1 and µ 2 (S * ) = q 2 (x * 2 , x * 1 ) + D 2 . Using (12), it follows that µ 1 (S * ) + Q 11 x * 1 + Q 21 x * 2 = q 1 (x * 1 , x * 2 ) + D 1 + Q 11 x * 1 + Q 21 x * 2 = DG 1 , µ 2 (S * ) + Q 22 x * 2 + Q 12 x * 1 = q 2 (x * 2 , x * 1 ) + D 2 + Q 22 x * 2 + Q 12 x * 1 = DG 2 . Consequently, c 3 = Dx * 1 x * 2 [(Q 11 Q 22 -Q 12 Q 21 ) + G 1 (E 1 Q 22 -E 2 Q 12 ) + G 2 (E 2 Q 11 -E 1 Q 21 )
] . The expression of c 3 given by [START_REF] Fergola | Allelopathy and competition between chlorella vulgaris and pseudokirchneriella subcapitata: Experiments and mathematical model[END_REF] follows by using relation [START_REF] Fergola | On the dynamical behavior of some algal allelopathic competitions in chemostat-like environment[END_REF].

Thus, we determine in the following proposition the sufficient conditions of instability and stability of a positive steady state of model [START_REF] Ballyk | A nutrient-prey-predator model: Stability and bifurcations[END_REF].

Proposition 8. Let E * = (S * , x * 1 , x * 2 ) be a positive steady state of model (2). 1. When F 1 x * 1 F 2 x * 2 < 1, E * is unstable. 2. When Q 11 Q 22 ≥ Q 12 Q 21 holds, E * is LES if and only if F 1 x * 1 F 2 x * 2 > 1.
Proof. Since all the functions E i , G i and Q i j in [START_REF] Fergola | Allelopathy and competition between chlorella vulgaris and pseudokirchneriella subcapitata: Experiments and mathematical model[END_REF] evaluated at E * are positive, then from Proposition 7, we have

c 3 < 0 when F 1 x * 1 F 2 x * 2 < 1.
The first assertion of the proposition follows from the first condition of the Routh-Hurwitz criterion in [START_REF] Fekih-Salem | A mathematical model of anaerobic digestion with syntrophic relationship, substrate inhibition and distinct removal rates[END_REF].

Using the coefficients c i of the characteristic polynomial of J * given by ( 18), straightforward calculations show that

c 4 = D(c 2 + Q 12 Q 21 x * 1 x * 2 ) + (E 1 x * 1 + E 2 x * 2 )(m 11 (m 22 + m 33 ) + m 12 m 21 + m 13 m 31 ) +D((Q 11 x * 1 ) 2 + (Q 22 x * 2 ) 2 + Q 11 Q 22 x * 1 x * 2 ) + (E 1 x * 1 + E 2 x * 2 )(Q 11 x * 1 + Q 22 x * 2 ) 2 +(Q 11 x * 1 + Q 22 x * 2 )(Q 11 Q 22 -Q 12 Q 21 )x * 1 x * 2 + µ 1 (S * )E 1 Q 11 (x * 1 ) 2 +µ 2 (S * )E 2 Q 22 (x * 2 ) 2 + µ 1 (S * )E 2 Q 12 x * 1 x * 2 + µ 2 (S * )E 1 Q 21 x * 1 x * 2 , (22) 
where Q i j , E i , m i j , and c 2 are defined in ( 13), ( 15), [START_REF] Fekih-Salem | Emergence of coexistence and limit cycles in the chemostat model with flocculation for a general class of functional responses[END_REF], and [START_REF] Fekih-Salem | A density-dependent model of competition for one resource in the chemostat[END_REF]. Note that all terms in the expression of c 4 in [START_REF] Grover | Resource Competition[END_REF] are positive, except 

Q 11 Q 22 -Q 12 Q 21 which can be negative. If Q 11 Q 22 ≥ Q 12 Q 21 ,
if c 3 > 0, that is, F 1 x * 1 F 2 x * 2 > 1. 10 When Q 11 Q 22 ≥ Q 12 Q 21 ,
the local stability of positive steady states is completely characterized by the position of the curves γ 1 and γ 2 . When this condition does not hold, we were not able to prove that c 4 is always positive or to find a set of parameters such that c 4 changes sign and becomes negative. This question remains an open problem and deserves further investigations.

Here, the condition Q 11 Q 22 ≥ Q 12 Q 21 are qualitatively similar to condition (26) in [START_REF] Fekih-Salem | A density-dependent model of competition for one resource in the chemostat[END_REF] which means that the intraspecific interference is dominant with respect to interspecific interference. However, in our particular model [START_REF] Abdellatif | Competition for a single resource and coexistence of several species in the chemostat[END_REF], this condition becomes

a 11 + α 1 x 2 2 a 22 + α 2 x 2 1 > (a 12 + 2α 1 x 1 x 2 )(a 21 + 2α 2 x 1 x 2 )
. where it does not only depend on intra-and interspecific interference as in [START_REF] Fekih-Salem | A density-dependent model of competition for one resource in the chemostat[END_REF] but it also depends on the quadratic forms representing allelopathic effects of the two species. Moreover, contrary to our density-dependence model [START_REF] Fekih-Salem | A density-dependent model of competition for one resource in the chemostat[END_REF], the condition c 4 > 0 of the Routh-Hurwitz criterion [START_REF] Fekih-Salem | A mathematical model of anaerobic digestion with syntrophic relationship, substrate inhibition and distinct removal rates[END_REF] should be verified in the case of the same removal rate (D 1 = D 2 = D). Thus, the addition of mortality is necessary for the model [START_REF] Fekih-Salem | A density-dependent model of competition for one resource in the chemostat[END_REF] to hope for destabilization of the coexistence steady state but in our model (2) mortality is not necessary.

Operating diagram

The operating diagram is a very useful visual representation for mathematicians and biologists because it provides a summary and an overall view of the behavior of the process according to the control parameters [START_REF] Harmand | The Chemostat: Mathematical Theory of Microorganism Cultures[END_REF][START_REF] Smith | The Theory of the Chemostat: Dynamics of Microbial Competition[END_REF]. In the existing literature, the study of the operating diagram is classified into three different methods. In the following, we synthesize the main characteristics of each method, specifying the advantages and disadvantages. However, for more on these various methods, the reader is referred to [START_REF] Mtar | Mortality can produce limit cycles in density-dependent models with a predator-prey relationship[END_REF] and the references therein.

The first method consists in determining the various regions of the operating diagram by numerically solving the algebraic equations giving the steady states having all the nonnegative components. Then, the sign of the roots of the characteristic polynomial determines the local asymptotic behavior of each steady state [START_REF] Wade | MI-Sim: A MATLAB package for the numerical analysis of microbial ecological interactions[END_REF]. This method can be used for complex dynamic systems including a very large number of variables and parameters [START_REF] Hanaki | Mathematical study of a two-stage anaerobic model when the hydrolysis is the limiting step[END_REF][START_REF] Khedim | Effect of control parameters on biogas production during the anaerobic digestion of protein-rich substrates[END_REF][START_REF] Weedermann | Optimal biogas production in a model for anaerobic digestion[END_REF][START_REF] Xu | Maintenance affects the stability of a two-tiered microbial 'food chain'?[END_REF]. However, this method is time-consuming in computation. In addition, some regions of sufficiently small sizes than the step used for the discretization of the operating parameters could be omitted. Sari et al. [START_REF] Nouaoura | Mathematical analysis of a three-tiered model of anaerobic digestion[END_REF][START_REF] Nouaoura | Mathematical analysis of a three-tiered food-web in the chemostat[END_REF][START_REF] Nouaoura | Operating diagrams for a three-tiered microbial food web in the chemostat[END_REF][START_REF] Sari | Generalised approach to modelling a three-tiered microbial food-web[END_REF] demonstrated that regions of coexistence around a stable limit cycle were not detected in the study of the numerical operating diagram of a process describing the anaerobic mineralization of chlorophenol in a three-step food-web [START_REF] Wade | Emergent behaviour in a chlorophenol-mineralising three-tiered microbial 'food web[END_REF].

The second method is numerical and consists in determining the boundaries of the various regions of the operating diagram using a numerical continuation and correction algorithm. Various software packages have been developed to solve continuation and bifurcation problems in systems of autonomous ODEs depending on one or two parameters. The most used are MATCONT, CONTENT, AUTO, and XPPAUT (see [? ] and the reference therein). This method has the advantage of detecting more complex and subtle bifurcations such as the bifurcations of types limit point of cycles, cusp, Bogdanov-Takens, Bautin, etc (see for example [START_REF] Sobieszek | Rich dynamics of a three-tiered anaerobic food-web in a chemostat with multiple substrate inflow[END_REF]).

The third method is theoretical and consists in determining the borders of the various regions from the analytical study of the model by establishing the conditions of existence and stability of all steady states according to the operating parameters. The disadvantage of this method is the difficulty of analyzing complex models and illustrating the various curves in some cases with several state variables. However, this method allows us to detect all the regions of the operating diagram [1, 3, 8, 10-12, 18, 19, 40, 41, 44, 46? -48].

In the following section, we will study theoretically and numerically the operating diagram of system (2). Here, the operating parameters are the concentration of substrate in the feed bottle S in and the dilution rate D. To study theoretically the operating diagram, the necessary and sufficient conditions for the existence and local stability of all steady states of (2) are summarized in Table 2. From these conditions, we define in Table 3 the set Υ = {Υ i , i = 1, . . . , 5} of all boundaries between various regions of the (S in , D)-plane. More precisely, when the curves γ 1 and γ 2 of the functions x 1 → F 1 (x 1 ) and x 2 → F 2 (x 2 ) are tangent in a point (x 1 , x 2 ), we have

x 2 = F 1 (x 1 ), x 1 = F 2 (x 2 ), and F 1 (x 1 )F 2 (x 2 ) = 1. ( 23 
)
The solution (x 1 , x 2 ) of this set of equations depends on S in and D. Hence, we can define in Table 3 the subset Υ 5 which represents a curve in the generic case (see Fig. 4). 

Existence

Local stability E 0 always exists

S in < min(λ 1 (D), λ 2 (D)) E 1 S in > λ 1 (D) x1 (S in , D) < x1 (S in , D) E 2 S in > λ 2 (D) x2 (S in , D) < x2 (S in , D) E * Equation (16) has a solution F 1 x * 1 F 2 x * 2 > 1 and c 4 (S in , D) > 0
As we will see in section 5, passing through Υ 5 in the operating plan (S in , D) gives rise to two positive steady states via a saddle-node bifurcation. Moreover, the passages through the subsets Υ 1 and Υ 2 generate the steady states E 1 and E 2 , respectively, that coalesce with the washout steady state E 0 via a transcritical bifurcation. Finally, crossing the curves Υ 3 and Υ 4 , a positive steady state appears or disappears through the coalescence with the steady states E 1 and E 2 , respectively, corresponding to a transcritical bifurcation. 

Υ

Color

Υ 1 = {(S in , D) : S in = λ 1 (D)} Blue Υ 2 = {(S in , D) : S in = λ 2 (D)} Red Υ 3 = {(S in , D) : x1 (S in , D) = x1 (S in , D)} Cyan Υ 4 = {(S in , D) : x2 (S in , D) = x2 (S in , D)} Magenta Υ 5 = (S in , D) : x 2 = F 1 (x 1 ), x 1 = F 2 (x 2 ), and F 1 (x 1 )F 2 (x 2 ) = 1 Green
Now, to illustrate the operating diagram, we consider model ( 2) and we choose the following specific growth rates of Monod-type satisfying Hypotheses (H1) and (H2):

µ 1 (S ) = µ m 1 S k 1 +S , µ 2 (S ) = µ m 2 S k 2 +S , (24) 
where µ m 1 and µ m 2 are the maximum growth rates; k 1 and k 2 are the Michaelis-Menten constants. The values of these biological parameters are provided in Table B. [START_REF] Fekih-Salem | Operating diagram of a flocculation model in the chemostat[END_REF]. As in particular model (1), the functions q 1 and q 2 representing the intra-and interspecific interactions with the allelopathic competitions of the two species take the form

q 1 (x 1 , x 2 ) = a 11 x 1 + a 12 x 2 + α 1 x 1 x 2 2 , q 2 (x 2 , x 1 ) = a 22 x 2 + a 21 x 1 + α 2 x 2 x 2 1 . (25) 
The construction of this diagram is similar for any other specific growth rate satisfying Hypotheses (H1) and (H2). Except for the control parameters S in and D, all the biological parameters are fixed since they depend on the nature of the organisms, the substrate introduced into the bioreactor, and the various interactions between the species. All the values of these parameters used throughout this paper are provided in Table B.14. For this set of parameter values, Appendix A shows that the stability condition c 4 > 0 holds for all S in and D in the existence domain of E * 1 and E * 3 . Thus, there can be no destabilization of a coexistence steady state via a Hopf bifurcation with the emergence of a cycle limit. Note that the steady state E * 2 is unstable when it exists because c 3 is negative. Consequently, the only curves separating the various regions in the operating diagram are given by Υ i , i = 1, . . . , 5.

MAPLE [35] was able to plot the curves Υ i , i = 1, . . . , 4 (see Fig. 4) except the curve Υ 5 where the three equations in (23) must be solved with two variables and two unknown parameters.

The concept of steady state characteristic that was introduced by Lobry et al. [START_REF] Lobry | Persistence in ecological models of competition for a single resource[END_REF][START_REF] Lobry | Sur un modèle densité-dépendant de compétition pour une ressource[END_REF] could reduce the number of variables by expressing the concentrations of the biomass x 1 and x 2 as a function of the concentration of the substrate S (see [START_REF] Fekih-Salem | Properties of the chemostat model with aggregated biomass and distinct removal rates[END_REF] for more details). Hence, to determine all the components of the positive steady state, it suffices to determine the variable S which can be deduced from the resolution of an equation of the system at a positive steady state where S is the single variable. In some cases, this reduction would allow to determine in MAPLE all the curves of the operating diagram (see for example [START_REF] Mtar | Mortality can produce limit cycles in density-dependent models with a predator-prey relationship[END_REF]). However, this method of steady state characteristic cannot be applied to our general model [START_REF] Ballyk | A nutrient-prey-predator model: Stability and bifurcations[END_REF] to plot in MAPLE the curve Υ 5 because of the structure of model where the equations at a positive steady state depend on three variables. In section 6, we will show that this method can be used in particular model (2) of Kengwoung-Keumo [START_REF] Kengwoung-Keumo | Competition between a nonallelopathic phytoplankton and an allelopathic phytoplankton species under predation[END_REF] where q 2 (x 2 , x 1 ) = a 11 = a 12 = 0, that is, without intra-and interspecific interference in the dynamics of the two species and without the allelopathic competition of the first species on the second species.

To illustrate the Υ 5 curve, the numerical problem is solved by determining the solution of an equivalent system but more simple. More precisely, system ( 23) is equivalent to the following system

f 1 (S in , D, x 1 , x 2 ) = 0, f 2 (S in , D, x 2 , x 1 ) = 0, and c 3 (S in , D, x 1 , x 2 ) = 0. ( 26 
)
where c 3 is defined in [START_REF] Fekih-Salem | A density-dependent model of competition for one resource in the chemostat[END_REF]. To further simplify the numerical problem, we use a procedure in D to reduce the number of unknown parameters such that the only parameter to be determined is S in . Thus, we have three equations with two unknowns variables x 1 and x 2 , and one unknown parameter S in . Due to the large number of solutions in S in , we use the "fsolve" command to solve the three equations in system ( 26) by specifying the intervals of each variable in which to search for solutions. Hence, we obtain the curve Υ 5 in Fig. 4 representing the saddle-node bifurcation between two coexistence steady states. Finally, the theoretical operating diagram is illustrated in Fig. 4 by drawing all curves Υ i , i = 1, . . . , 5 defined in Table 3. (a) To compare the theoretical and numerical methods establishing the operating diagram of model ( 2), we use in the following the numerical continuation method with the software MATCONT [37]. Indeed, MATCONT is a MATLAB [START_REF]R2018a[END_REF] numerical continuation package for the interactive bifurcation study of continuous and discrete parameterized systems of ODEs. It allows one to compute curves of steady states and limit cycles (periodic orbits), and their bifurcations as Branch Points (BP) or transcritical bifurcations, Limit Points (LP) or saddle-node (or fold) bifurcations, Cusp bifurcations (CP), Hopf points (H), Limit Point of Cycles (LPC) or fold bifurcation points of limit cycles, and period doubling bifurcation points of limit cycles. For more on this interesting subject, the reader is referred to [? ] and the references therein.

(a) D Υ 2 Υ 1 J 0 J 1 J 2 S in (b) D Υ 1 Υ 5 Υ 4 Υ 3 J 2 J 3 J 4 J 5 J 6 J 7 S in
D Υ 2 Υ 1 J 0 J 1 J 2 S in (b) D Υ 1 Υ 5 Υ 4 Υ 3 J 2 J 3 J 4 J 5 J 6 J 7 S in
Fig. 5 illustrates the numerical operation diagram obtained using MATCONT by drawing the curves Υ i , i = 1, . . . , 5. Note that all curves Υ i are identical in the theoretical and the numerical operating diagrams. However, Matcont was able to determine the nature of the two-parameter bifurcation at point CP which corresponds to a cusp bifurcation (see Fig. 5). Thus, we obtain the following result giving a complete description of the operating diagram. Proposition 9. For the specific growth rates µ 1 and µ 2 defined in [START_REF] Hanaki | Mathematical study of a two-stage anaerobic model when the hydrolysis is the limiting step[END_REF], the functions q 1 and q 2 defined in [START_REF] Hansen | Single-nutrient microbial competition: Qualitative agreement between experimental and theoretically forecast outcomes[END_REF], and the set of the biological parameter values in Table B.14, the existence and the local stability of all steady states of (2) in the eight regions J k , k = 0, . . . , 7 of the operating diagram in Figs. 4 or 5 are described in Table 4. 

Region E 0 E 1 E 2 E * 1 E * 2 E * 3 J 0 S J 1 U S J 2 U U S J 3 U U U S J 4 U S U J 5 U S U S U J 6 U U U S U S J 7 U U S S U
The operating diagram in Figs. 4 or 5 is divided into eight regions. The region J 0 corresponds to the washout of two species. The regions J 1 and J 2 [resp. J 4 ] correspond to the competitive exclusion of the first [resp. second] species. The region J 3 corresponds to the coexistence of both species. The region J 5 [resp. J 7 ] corresponds to the bistability with either coexistence or exclusion of the second [resp. first] species. The region J 6 corresponds to the bistability with convergence to one of the two coexistence steady states. Transition Curve Bifurcation Steady states

J 0 to J 1 Υ 2 BP E 0 = E 2 J 1 to J 2 Υ 1 BP E 0 = E 1 J 2 to J 3 Υ 4 BP E 2 = E * 1 J 2 to J 7 Υ 5 LP E * 1 = E * 2 J 3 to J 6 Υ 5 LP E * 2 = E * 3 J 3 to J 4 Υ 3 BP E 1 = E * 1 J 4 to J 5 Υ 5 LP E * 1 = E * 2 J 5 to J 6 Υ 3 BP E 1 = E * 3 J 6 to J 7 Υ 4 BP E 2 = E * 3
emerges LES into the interior of the admissible region. Since the first bifurcations occur for small values of D, a first close-up is presented in Fig. 6(b) and a second close-up is presented in Fig. 6(c). The one-parameter bifurcation diagrams in D presented in Fig. 6(d-g) with x 1 and x 2 on the y-axis show the same bifurcation values σ i , i = 1, . . . , 8 defined in The following result summarizes the study of this one-parameter bifurcation diagram in D from the operating diagram in Figs. 4 or 5.

Proposition 11. For the specific growth rates µ 1 and µ 2 [START_REF] Hanaki | Mathematical study of a two-stage anaerobic model when the hydrolysis is the limiting step[END_REF], the functions q 1 and q 2 defined in [START_REF] Hansen | Single-nutrient microbial competition: Qualitative agreement between experimental and theoretically forecast outcomes[END_REF], and the set of the biological parameter values in Table B.14, the existence and the local stability of all steady states of (2) according to D are described in Table 6 when S in = 1.4 is fixed. The critical values σ i , i = 1, . . . , 8 of different bifurcations according to the parameter D and the corresponding nature are defined in Table 7.

Table 6: Existence and stability of steady states according to D where σ i , i = 1, . . . , 8 are defined in Table 7. 

Interval of D E 0 E 1 E 2 E * 1 E * 2 E * 3 (0, σ 1 ) U U S (σ 1 , σ 2 ) U U U S (σ 2 , σ 3 ) U S U (σ 3 , σ 4 ) U U U S (σ 4 , σ 5 ) U U U S U S (σ 5 , σ 6 ) U U U S (σ 6 , σ 7 ) U U S (σ 7 , σ 8 ) U S (σ 8 , +∞) S (a) S E 0 E 0 E 0 E 2 E 1 D (b) S E 0 E 0 E 1 E 2 D (c) S E 2 E 2 E 1 E * 1 E * 2 - E * 3 E 1 E 1 E * 1 E 2 - D (d) x 1 E 1 E 2 E 0 E 0 E 0 D (e) x 1 E 1 E 0 E 2 E 0 E 0 D ( f ) x 1 E 1 E * 1 E * 2 E * 3 E 2 E 2 E 0 E 1 E * 1 E 1 - E 2 H H Y D (g) x 2 E 2 E 0 E 0 E 1 E 0 D (h) x 2 E 2 E 2 E 0 D E 1 E 0 (i) x 2 E 2 E 2 E 2 - E * 3 E * 2 E * 1 E * 1 E 1 E 0 E 1 E 0 E 1 E 0 D

Application to the particular model of Kengwoung-Keumo

Our general model ( 2) was studied by Kengwoung-Keumo [START_REF] Kengwoung-Keumo | Competition between a nonallelopathic phytoplankton and an allelopathic phytoplankton species under predation[END_REF] in the particular case where the functions q 2 (x 2 , x 1 ) = 0 and q 1 (x 1 , x 2 ) = α 1 x 1 x 2 2 so that a 11 = a 12 = a 22 = a 21 = 0, that is, without the effect of intra-and interspecific interference of the two species and without the allelopathic effect of the first species on the second species. Recall that kengwong-Keumo's particular model is written as follows where the yield coefficients are normalized to the unit:

         Ṡ = D(S in -S ) -µ 1 (S )x 1 -µ 2 (S )x 2 , ẋ1 = [µ 1 (S ) -α 1 x 1 x 2 2 -D 1 ]x 1 , ẋ2 = [µ 2 (S ) -D 2 ]x 2 . (27) 
In what follows, we apply our theoretical results of existence and stability of all steady states of the general model [START_REF] Ballyk | A nutrient-prey-predator model: Stability and bifurcations[END_REF] to those of the particular model ( 27) by comparing our results found with those in [START_REF] Kengwoung-Keumo | Competition between a nonallelopathic phytoplankton and an allelopathic phytoplankton species under predation[END_REF]. Next, we will also analyze the operating diagram and the one-parameter bifurcation diagram of model [START_REF] Hsu | Competition in the chemostat when one competitor produces a toxin[END_REF] which have not been studied in [START_REF] Kengwoung-Keumo | Competition between a nonallelopathic phytoplankton and an allelopathic phytoplankton species under predation[END_REF].

In order to analyze the existence of the positive steady states of system [START_REF] Hsu | Competition in the chemostat when one competitor produces a toxin[END_REF], we can use the method presented in section 2 by writing the variable x j , j = 1, 2 as a function F i , i = 1, 2, i j of the variable x i from the equation f i (x i , x j ) = 0 defined in [START_REF] Dellal | Global analysis of a model of competition in the chemostat with internal inhibitor[END_REF]. However, in the following, we will use the concept of steady state characteristic due to the particularity of the structure of system [START_REF] Hsu | Competition in the chemostat when one competitor produces a toxin[END_REF] to give explicit expressions of the components of the positive steady states by determining their multiplicities and their existence conditions. This method will allow us to theoretically 

D(S in -S ) -µ 1 (S )x 1 -µ 2 (S )x 2 = 0, (28) 
[µ 1 (S )

-α 1 x 1 x 2 2 -D 1 ]x 1 = 0, (29) 
[µ 2 (S ) -D 2 ]x 2 = 0. (30) 
• For E 0 , x 1 = x 2 = 0. Hence, [START_REF] Hsu | Analysis of a model of two parallel food chains[END_REF] results in S = S in . Thus, E 0 always exists.

• For E 1 , x 2 = 0 and x 1 > 0. Hence, ( 29) and ( 28) result in S = λ 1 and x 1 = D(S in -λ 1 )/D 1 . Hence, E 1 exists if and only if S in > λ 1 .

• For E 2 , x 1 = 0 and x 2 > 0. Hence, ( 30) and ( 28) result in S = λ 2 and

x 2 = D(S in -λ 2 )/D 2 .
Hence, E 2 exists if and only if S in > λ 2 .

• For E * , x 1 > 0 and x 2 > 0. Hence, [START_REF] Khedim | Effect of control parameters on biogas production during the anaerobic digestion of protein-rich substrates[END_REF] results in S = λ 2 . Moreover, (29) results

x 1 = H(x 2 ) := a + x 2 2 , with a + = µ 1 (λ 2 ) -D 1 α 1 . (31) 
Hence, a necessary condition for the positivity of the component x 1 is that a + be positive, that is, addition, (28) results in

λ 1 < λ 2 . In (a) x 1 C H ∆ E 0 E 1 E 2 x c 2 x c 1 x 2 (b) x 1 C H ∆ E 0 E 1 E 2 E * 1 E * 2 x c 2 x c 1 x 2
x 1 = δ(x 2 ) := b + -c + x 2 , with b + = D(S in -λ 2 ) µ 1 (λ 2 ) , c + = D 2 µ 1 (λ 2 ) . (32) 
Since c + is positive, a necessary condition for the positivity of the component x 1 is that b + be positive, that is, λ 2 < S in . Thus, system [START_REF] Hsu | Competition in the chemostat when one competitor produces a toxin[END_REF] has a positive steady state E * = (λ 2 , x * 1 , x * 2 ) if and only if the curve C H of the function x 2 → H(x 2 ) and the straight line ∆ of equation x 1 = δ(x 2 ) have a positive intersection (see Fig. 7) such that the coordinates (x * 1 , x * 2 ) are positive solutions of equations

x 1 = H(x 2 ) and x 1 = δ(x 2 ),
or equivalently, these solutions satisfy the necessary condition λ 1 < λ 2 < S in . Using expression [START_REF] Li | Simple food chain in a chemostat with distinct removal rates[END_REF] of the function H, we have

H (x 2 ) = -2 a + x 3 2 < 0 and H (x 2 ) = 6 a + x 4 2 > 0.
Thus, the function H is convex (see Fig. 7) with H(0 + ) = +∞ and H(+∞) = 0. Consequently, there are at most two solutions of equation H(x 2 ) = δ(x 2 ). Let φ be the function defined by

φ(x 2 ) := H (x 2 ) -δ (x 2 ) = H (x 2 ) + c + .
Since φ is increasing from φ(0 + ) = -∞ to φ(+∞) = c + , then for all D > 0 there exists a unique solution

x 2 = x c 2 (D) := 3 2a + c + of equation H (x 2 ) = δ (x 2 ). If in addition, for all D > 0, H(x c 2 ) = δ(x c 2 )
, then there exists a unique critical value of S in denoted S c in (D) that we determine in the following its explicit expression. Indeed, from ( 31) and ( 32), it follows that

H(x c 2 ) = δ(x c 2 ) is equivalent to a + (x c 2 ) 2 = b + -c + x c 2 .
Then, using the expressions of a + , b + and c + in [START_REF] Li | Simple food chain in a chemostat with distinct removal rates[END_REF] and [START_REF] Lobry | A new hypothesis to explain the coexistence of n species in the presence of a single resource[END_REF], straightforward calculation shows that

S c in (D) = λ 2 + 3 D 3 D 2 2 µ 1 (λ 2 )(µ 1 (λ 2 ) -D 1 ) 4α 1 . (33) 
Consequently, a positive steady state E * exists if and only if λ 1 (D) < λ 2 (D) and S in > S c in . Next, the local stability of all steady states of system ( 27) is deduced from that in section 3 by taking q 2 (x 2 , x 1 ) = 0 and q 1 (x 1 , x 2 ) = α 1 x 1 x 2 2 . From Proposition 6, E 0 is LES if and only if S in < min(λ 1 , λ 2 ). Moreover, E 1 is LES if and only if x1 < x1 which is equivalent to λ 1 (D) < λ 2 (D). Indeed, from Proposition 2, x1 is the unique solution of equation

ψ 1 (x 1 ) = µ 1 (ϕ 1 (x 1 )) -D 1 -q 1 (x 1 , 0) = µ 1 (ϕ 1 (x 1 )) -D 1 = 0.
From ( 4) and ( 5), we have

ϕ 1 (x 1 ) = λ 1 = S in - D 1 D x1 , i.e. x1 = D D 1 (S in -λ 1 ).
In addition, from Proposition 3 and system [START_REF] Dellal | Global analysis of a model of competition in the chemostat with internal inhibitor[END_REF], we obtain Recall from Table 2 that the positive steady state E * is LES if and only if F 1 x * 1 F 2 x * 2 > 1 (or equivalently c 3 (S in , D) > 0) and c 4 (S in , D) > 0. Since Q 21 = Q 22 = 0 and S * = λ 2 in the particular case where the function q 2 (x 2 , x 1 ) = 0, some coefficients of the Jacobian matrix J * defined in [START_REF] Fekih-Salem | Emergence of coexistence and limit cycles in the chemostat model with flocculation for a general class of functional responses[END_REF] change and we obtain m 32 = m 33 = 0 and m 13 = D 2 . From [START_REF] Fekih-Salem | A density-dependent model of competition for one resource in the chemostat[END_REF], it follows that c 3 = m 13 m 22 m 31m 12 m 23 m 31 .

x1 = F 2 (0), i.e. f 2 (0, x1 ) = µ 2 (S in -g( x1 , 0)) -D 2 = 0, that is, S in -g( x1 , 0) = λ 2 .
Using ( 13) and ( 17), we get

c 3 = α 1 E 2 µ 1 (λ 2 )x 1 x 3 2 D 2 µ 1 (λ 2 ) -2 x 1 x 2 .
Since we have δ

(x 2 ) = -c + = -D 2 /µ 1 (λ 2 ), H (x 2 ) = -2a + x -3 2 and x 1 = H(x 2 ) = a + x -2 2 , it follows that H (x 2 ) = -2 x 1 x 2 .
Therefore,

c 3 = α 1 E 2 µ 1 (λ 2 )x 1 x 3 2 H (x 2 ) -δ (x 2
) . On the other hand, from [START_REF] Grover | Resource Competition[END_REF], we see in the particular case where

Q 22 = Q 21 = 0 that c 4 > 0. Consequently, E * is LES if and only if H (x * 2 ) > δ (x * 2 )
. Now, we can state the following result. 

Steady state Existence

Local stability ) are given by the intersection of the curve of the function H(x 2 ) defined in [START_REF] Li | Simple food chain in a chemostat with distinct removal rates[END_REF] and the straight line ∆ defined in [START_REF] Lobry | A new hypothesis to explain the coexistence of n species in the presence of a single resource[END_REF] by the equation x 1 = δ(x 2 ) (see Fig. 7). The necessary and sufficient conditions of existence and local stability of all steady states of model [START_REF] Hsu | Competition in the chemostat when one competitor produces a toxin[END_REF] are given in Table 8.

E 0 = (S in , 0, 0) always exists S in < min(λ 1 (D), λ 2 (D)) E 1 = (λ 1 , D(S in -λ 1 )/D 1 , 0) S in > λ 1 (D) λ 1 (D) < λ 2 (D) E 2 = (λ 2 , 0, D(S in -λ 2 )/D 2 ) S in > λ 2 (D) λ 2 (D) < λ 1 (D) E * 1 = (λ 2 , x * 1 , x * 2 ) λ 1 (D) < λ 2 (D), S in > S c in LES whenever it exists E * 2 = (λ 2 , x * * 1 , x * * 2 ) λ 1 (D) < λ 2 (D), S in > S c
In [START_REF] Kengwoung-Keumo | Competition between a nonallelopathic phytoplankton and an allelopathic phytoplankton species under predation[END_REF], the author could not demonstrate that in reality the condition c 4 > 0 of the Routh-Hurwitz criterion corresponding to the stability of the positive steady state E * 1 of their model ( 27) is always satisfied. Here, we have demonstrate that c 4 is always positive such that the positive steady state E * 1 is LES whenever it exists and it cannot be destabilized by a Hopf bifurcation with the emergence of a stable limit cycle.

In what follows, we study theoretically the operating diagram of system [START_REF] Hsu | Competition in the chemostat when one competitor produces a toxin[END_REF]. In Table 9, we define the set Υ k = {Υ 1 , Υ 2 , Υ 5 } of the three curves separating the various regions of the (S in , D)-plane.

Table 9: The curves in the set Υ k and their corresponding colors in Fig. 8.

Υ k Color Υ 1 = {(S in , D) : S in = λ 1 (D)} Blue Υ 2 = {(S in , D) : S in = λ 2 (D)} Red Υ 5 = (S in , D) : S in = S c in (D) Green
To illustrate the operating diagram of model [START_REF] Hsu | Competition in the chemostat when one competitor produces a toxin[END_REF], we choose the specific growth rates [START_REF] Hanaki | Mathematical study of a two-stage anaerobic model when the hydrolysis is the limiting step[END_REF] satisfying Hypothesis (H1) and the biological parameter values provided in Table B.14 which are the same as those in [START_REF] Kengwoung-Keumo | Competition between a nonallelopathic phytoplankton and an allelopathic phytoplankton species under predation[END_REF]. Since we have the explicit expression of the function S c in (D) corresponding to the curve Υ 5 , MAPLE was able to plot all the curves in the set Υ k (see Fig. 8). Proposition 13. For the specific growth rates µ 1 and µ 2 defined in [START_REF] Hanaki | Mathematical study of a two-stage anaerobic model when the hydrolysis is the limiting step[END_REF] and the set of the biological parameter values in Table B.14, the existence and the local stability of all steady states of ( 27) in the four regions J k , k = 0, . . . , 3 of the operating diagram in Fig. 8 are described in Table 10.

a) D Υ 1 Υ 2 Υ 5 D = 5 η 1 η 2 η 3 S in (b) D Υ 1 Υ 2 Υ 5 J 0 J 8 J 4 J 5 S in
Table 10: Existence and local stability of all steady states in the various regions of the operating diagram in Fig. 8.

Condition

Region

Color E 0 E 1 E 2 E * 1 E * 2 S in < λ 1 (D) < λ 2 (D) J 0 Cyan S λ 1 (D) < S in < λ 2 (D) J 8 Green U S λ 2 (D) < S in < S c in (D) J 4 Green U S U S c in (D) < S in J 5 Red U S U S U
The following result determines the different types of bifurcations by crossing the four regions J k , k = 0, 4, 5, 8 of the operating diagram in Fig. 8.

Proposition 14. The nature of all the bifurcations of steady states of system [START_REF] Hsu | Competition in the chemostat when one competitor produces a toxin[END_REF] by passing between the various regions of the operating diagram is provided in Table 11.

Table 11: Nature of all the bifurcations of steady states of model [START_REF] Hsu | Competition in the chemostat when one competitor produces a toxin[END_REF] by crossing the curves Υ 1 , Υ 2 and Υ 5 .

Transition Curve Bifurcation Steady states

J 0 to J 8 Υ 1 BP E 0 = E 1 J 8 to J 4 Υ 2 BP E 0 = E 2 J 4 to J 5 Υ 5 LP E * 1 = E * 2 
Next, we will show the nature of bifurcations by crossing the different regions of the operating diagram through the three curves Υ 1 , Υ 2 and Υ 5 . To this end, we will analyze the one-parameter bifurcation diagram in S in where the dilution rate is fixed at D = 5. This diagram corresponds to a horizontal line of equation D = 5 in the operating diagram (see Fig. 8(a)). Fig. 9 illustrates in MAPLE the one-parameter bifurcation diagram in S in , with S , x 1 and x 2 on the y-axis.

Increasing S in from zero, there is a BP bifurcation occurring at S in = η 1 ≈ 0.857 between E 0 and E 1 . Indeed, the washout steady state E 0 becomes unstable while the steady state of exclusion of the second species E 1 emerges stable into the admissible region. Next, there is a BP bifurcation at S in = η 2 ≈ 3.5 between the washout steady state E 0 and the steady state of exclusion of the first species E 2 such that E 0 remains unstable and E 2 appears unstable. Finally, an LP bifurcation occurs at S in = η 3 ≈ 9.357 that gives birth to stable and unstable coexistence steady states E * 1 and E * 2 , respectively. The study of the one-parameter bifurcation diagram in S in from the operating diagram in Fig. 8 is summarized in the following result.

(a) S E 0 E 2 E * 1 E * 2 E 1 η 1 η 2 η 3 S in (b) x 1 E 1 E * 1 E * 2 E 0 E 2 η 1 η 2 η 3 S in (c) x 2 E 2 E 1 E * 2 E * 1 E 0 η 1 η 2 η 3 S in
Proposition 15. For the specific growth rates µ 1 and µ 2 defined in [START_REF] Hanaki | Mathematical study of a two-stage anaerobic model when the hydrolysis is the limiting step[END_REF] and the set of the biological parameter values in Table B.14 corresponding to the operating diagram in Fig. 8, the existence and the local stability of all steady states of ( 27) according to S in are described in Table 12 when D = 5 is fixed. The critical values η 1 , η 2 and η 3 of different bifurcations and the corresponding nature of bifurcations are determined in Table 13.

Table 12: Existence and stability of steady states of model [START_REF] Hsu | Competition in the chemostat when one competitor produces a toxin[END_REF] according to S in when D = 5. η 1 , η 2 and η 3 are defined in Table 13.

Interval of S in E

0 E 1 E 2 E * 1 E * 2 (0, η 1 ) S (η 1 , η 2 ) U S (η 2 , η 3 ) U S U (η 3 , +∞) U S U S U
Table 13: Definitions of the critical values η 1 , η 2 and η 3 of S in and the corresponding nature of bifurcations when D = 5 is fixed and S c in (D) is defined in [START_REF] Lobry | Persistence in ecological models of competition for a single resource[END_REF].

Definition

Value Bifurcation

η 1 = λ 1 (D) 0.857 BP η 2 = λ 2 (D) 3.5 BP η 3 = S c
in (D) 9.357 LP Fig. 10 shows the effect of allelopathic interactions of the second species on the first one where there is emergence of the bistability region J 5 (in red) with either coexistence or exclusion of the second species. More precisely, for small enough values of α 1 , the operating diagram of the classical chemostat competition model is found where it exhibits the CEP such that only the species with the lowest break-even concentration survives (see Fig. 10(a)). Increasing α 1 , Fig. 10(b-c-d) illustrates how the bistability region J 5 appears and extends while the exclusion regions of the second species are reduced.

Using SCILAB [START_REF]Enterprises SAS[END_REF], Fig. 11(a) illustrates the three-dimensional space (S , x 1 , x 2 ) in the case S in = 8 < S c in ≈ 9.357 where there is no interior steady state in R 3 + . For various positive initial conditions even close enough to E 0 or E 2 , the numerical simulations permit to conjecture the global convergence towards E 1 . In this case, the three steady states are (a) given by E 0 = (8, 0, 0), E 1 (0.857, 7.143, 0) and E 2 = (3.5, 0, 4.5).

a) D Υ 1 Υ 2 J 0 J 8 J 4 S in (b) D Υ 1 Υ 2 J 0 J 8 J 4 J 5 Υ 5 S in (c) D Υ 1 Υ 2 Υ 5 J 0 J 8 J 4 J 5 S in (d) D Υ 1 Υ 2 Υ 5 - J 0 J 8 J 4 J 5 S in
E 2 E 0 E 1 x 1 S x 2 (b) E 2 E 0 E 1 E * 1 E * 2 x 1 x 2 S
Fig. 11(b) shows that system [START_REF] Hsu | Competition in the chemostat when one competitor produces a toxin[END_REF] exhibits bistability between the steady states E * 1 of coexistence and E 1 corresponding to the exclusion of second species, when S in = 10.5 > S c in . In this case, there exist five steady states given by E 0 = (10.5, 0, 0), E 1 (0.857, 9.643, 0), Remark 1. In the case λ 1 < λ 2 , by increasing S in , E 1 loses a degree of stability and E 2 appears locally asymptotically stable for ( 27) is incorrect in section 2.5 of [START_REF] Kengwoung-Keumo | Competition between a nonallelopathic phytoplankton and an allelopathic phytoplankton species under predation[END_REF] via a transcritical bifurcation of E 0 and E 2 occurring at S in = λ 2 . Similarly, it is an error in the reverse case λ 2 < λ 1 . Indeed, the bifurcation parameter is S in with D is fixed. By Proposition 12, E 1 is LES if and only if λ 1 (D) < λ 2 (D). As this last inequality is unchanged by varying S in , then E 1 does not lose a degree of stability and it remains LES (see Fig. 9) through the passage of S in by λ 2 (D) which is fixed. Moreover, E 2 appears unstable via a transcritical bifurcation with E 0 occurring at S in = λ 2 because E 2 is LES if and only if λ 2 (D) < λ 1 (D). Using the same set of parameter values in [START_REF] Kengwoung-Keumo | Competition between a nonallelopathic phytoplankton and an allelopathic phytoplankton species under predation[END_REF], the numerical simulations in Fig. 11(a) illustrating the trajectories in the three-dimensional phase space (S , x 1 , x 2 ) show these contradictions where the solutions of system [START_REF] Hsu | Competition in the chemostat when one competitor produces a toxin[END_REF] converge to E 1 for any initial condition, in particular for two initial conditions close enough to E 2 .

E 2 = (3.5, 0, 7), E *

Discussion and conclusion

Inspired by the way in which the phenomena of intra-and interspecific interference and allelopathic effects have been formalized to model the competitions of microbial species in [START_REF] Kengwoung-Keumo | Competition between a nonallelopathic phytoplankton and an allelopathic phytoplankton species under predation[END_REF][START_REF] Maynard-Smith | Models in Ecology[END_REF][START_REF] Roy | The coevolution of two phytoplankton species on a single resource: Allelopathy as a pseudo-mixotrophy[END_REF][START_REF] Solé | Modelling allelopathy among marine algae[END_REF], we have proposed the original and general model (2) of two-microbial species in competition for a single-resource in the chemostat. Indeed, we have included general intra-and interspecific density-dependent growth rates with allelopathic effects describing the production of each species a toxin that affects the growth of other species as well as its own growth (autotoxicity). The removal rates are distinct so that the mortality rate of each species is the sum of the specific death rate and the autotoxicity. Allowing a large class of growth functions, this model generalized those in [START_REF] Kengwoung-Keumo | Competition between a nonallelopathic phytoplankton and an allelopathic phytoplankton species under predation[END_REF][START_REF] Roy | The coevolution of two phytoplankton species on a single resource: Allelopathy as a pseudo-mixotrophy[END_REF][START_REF] Solé | Modelling allelopathy among marine algae[END_REF].

Our mathematical analysis provided a complete study of this process. More precisely, we have determined the necessary and sufficient conditions of existence and local stability of all steady states of model ( 2) according to the operating parameters S in and D. To have a global vision of the asymptotic behavior of model ( 2) according to the operating parameters, we have analyzed theoretically and numerically the operating diagrams in the two parameters S in and D. In fact, we have shown that system (2) can have a unique stable steady state: either the washout of two species (J 0 ), or the exclusion of one species (J 1 , J 2 , and J 4 ), or the coexistence (J 3 ). The model [START_REF] Ballyk | A nutrient-prey-predator model: Stability and bifurcations[END_REF] can also exhibit bistability between the coexistence steady state and that of exclusion of the second [resp. first] species (J 5 [resp. J 7 ]), or the two coexistence steady states (J 6 ). Crossing the boundary of the various regions in the operating parameters space of model (2), we have shown that the steady states can appear or disappear only through transcritical or saddle-node bifurcations. When the input concentration S in is fixed, the analysis of the one-parameter bifurcation diagram in the dilution rate D illustrated the nature of bifurcations of the steady states.

On the other hand, our theoretical results are applied to the particular model ( 27) of Kengwoung-Keumo [START_REF] Kengwoung-Keumo | Competition between a nonallelopathic phytoplankton and an allelopathic phytoplankton species under predation[END_REF] where the intra-and interspecific interference are neglected, and only the allelopathic effects of the second species on the first species are considered. The necessary and sufficient conditions of existence and local stability of all steady states are established according to the operating parameters S in and D. System [START_REF] Hsu | Competition in the chemostat when one competitor produces a toxin[END_REF] has at most two coexistence steady states. We have demonstrated that the stability condition of the coexistence state E * 1 in [START_REF] Kengwoung-Keumo | Competition between a nonallelopathic phytoplankton and an allelopathic phytoplankton species under predation[END_REF] is always fulfilled. Thus, the stability condition of this steady state in [START_REF] Kengwoung-Keumo | Competition between a nonallelopathic phytoplankton and an allelopathic phytoplankton species under predation[END_REF] must be removed and corrected by the coexistence steady state E *

1 is LES when it exists.

In addition, we have established theoretically the operating diagram of model ( 27) and we have analyzed the effect of increased toxin production of the second species on the first species. Increasing this allelopathic effect, that is, the value of α 1 , the bistability region J 5 (in red) between a coexistence steady state and that of the exclusion of the second species has emerged while the regions of competitive exclusion J 4 and J 8 (in green) are reduced. Decreasing the value of α 1 to zero, we have obtained the operating diagram of the classical chemostat competition model confirming the CEP [START_REF] Harmand | The Chemostat: Mathematical Theory of Microorganism Cultures[END_REF][START_REF] Smith | The Theory of the Chemostat: Dynamics of Microbial Competition[END_REF]. The one-parameter bifurcation diagram in S in has described the nature of bifurcations of all steady states by crossing the various regions of the operating diagram in Fig. 8 when D is fixed. The numerical simulations have illustrated in the three-dimensional phase space (S , x 1 , x 2 ) either the global convergence towards the steady state of exclusion of the second species or that of the bistability between the coexistence of the two species and the exclusion of second species.

Thus, the main contribution of our study is to bring out the joint effects of the intra-and interspecific competition with the allelopathic effects on the growth of the two species which are not studied in the existing literature. Adding the allelopathic effects of each toxin-producing species to the intra-and interspecific interference of the two species did not allow to solve the open problem of the stability condition c 4 of the Routh-Hurwitz criterion [START_REF] Fekih-Salem | A mathematical model of anaerobic digestion with syntrophic relationship, substrate inhibition and distinct removal rates[END_REF] and to show that the coexistence steady state could destabilize with emergence of periodic oscillations. Despite the structure of our model (2) being different from that in Fekih-Salem et al. [START_REF] Fekih-Salem | A density-dependent model of competition for one resource in the chemostat[END_REF], we have found qualitatively similar results for the existence, multiplicity and local stability of the steady states of the two systems. For example, the condition Q 11 Q 22 ≥ Q 12 Q 21 given in Proposition 8 is qualitatively similar to condition (26) in [START_REF] Fekih-Salem | A density-dependent model of competition for one resource in the chemostat[END_REF] which means that the intraspecific interference is dominant with respect to interspecific interference.

In the density-dependence model [START_REF] Fekih-Salem | A density-dependent model of competition for one resource in the chemostat[END_REF], mortality is essential for there to be any hope of coexistence around periodic oscillations. However, our theoretical study of model [START_REF] Ballyk | A nutrient-prey-predator model: Stability and bifurcations[END_REF] showed that mortality is not necessary where the coexistence steady state could destabilize even with identical removal rates of the two species. The production effect of a toxic substance released by a species and being nocive to their own or their competitor's growth rates could replace the mortality effect and hope for coexistence around a stable limit cycle.

The application of our general results to the particular model of [START_REF] Kengwoung-Keumo | Competition between a nonallelopathic phytoplankton and an allelopathic phytoplankton species under predation[END_REF] with only allelopathic effects has shown that there can be coexistence around an interior steady state but in the case where the system exhibits bistability. Thus, the addition of the toxic effect on the most competitive species in the classic chemostat model is sufficient to guarantee the coexistence between the two species but under the constraint of suitable choices of the initial conditions in the basin of attraction of the interior steady state. Moreover, our study also has shown that it is impossible to have coexistence if the second species is more efficient (λ 2 < λ 1 ) without any effect of intra-and interspecific interference and production of the harmful toxin by the first species in the dynamics of the second species. 
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 2 Figure 2: Case 1 : x1 > x1 and x2 > x2 ; Case 2 : x1 < x1 and x2 < x2 : (a) unique intersection, (b) an odd number of intersections.

Figure 3 :

 3 Figure 3: Case 3 : x1 < x1 and x2 > x2 ; Case 4 : x1 > x1 and x2 < x2 : (a) no intersection, (b) an even number of intersections.

where c 1

 1 = m 11 + m 22 + m 33 , c 2 = m 11 (m 22 + m 33 ) + m 22 m 33 + m 12 m 21 + m 13 m 31m 23 m 32 , c 3 = m 11 (m 22 m 33m 23 m 32 ) + m 12 (m 21 m 33m 23 m 31 ) + m 13 (m 22 m 31m 21 m 32 ).
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 4 Figure 4: MAPLE: (a) operating diagram of (2). (b) Magnification when (S in , D) ∈ [0, 20] × [0, 1.6].

Figure 5 :

 5 Figure 5: MATCONT: (a) operating diagram of (2). (b) Magnification showing the cusp bifurcation when (S in , D) ∈ [0, 20] × [0, 1.6].

Figure 6 :

 6 Figure 6: MATCONT: (a-d-g) one-parameter bifurcation diagrams of (2) in the variables S , x 1 , x 2 , (resp.), with D as the bifurcation parameter and S in = 1.4; (b-e-h) (resp. (c-f-i)) magnifications when D ∈ [0, 7] (resp. D ∈ [0, 1.7]); Red (resp. Blue) curve represents the continuation of a stable (resp. unstable) steady state.

Table 7 :

 7 Definitions of the critical values σ i , i = 1, . . . , 8 of D and the corresponding nature of bifurcations when S in = 1.4 is fixed. Definition Value Bifurcation σ 1 is the first solution of equation x2 (S in , D) = x2 (S in , D) 0.032 BP σ 2 is the first solution of equation x1 (S in , D) = x1 (S in , D) 0.181 BP σ 3 is the second solution of equation x1 (S in , D) = x1 (S in , D) 0.692 BP σ 4 is the first solution of equation c 3 (S in ) = 0 1.163 LP σ 5 is the second solution of equation c 3 (S in ) = 0 1.182 LP σ 6 is the second solution of equation x2 (S in , D) = x2 (S in , D) 1.485 BP σ 7 = µ 1 (S in ) 6.033 BP σ 8 = µ 2 (S in ) 44.769 BP determine all the curves of the operating diagram in the plane (S in , D). To do this, we begin by setting the right-hand sides of equations in (27) equal to zero:

Figure 7 :

 7 Figure 7: Existence and stability of steady states of model (27) when D = 5 : (a) S in = 8 < S c in ≈ 9.357, (b) S in = 10.5 > S c in . In all figures, we use the red [resp. blue] color for LES [resp. unstable] steady state.
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Figure 8 :

 8 Figure 8: MAPLE: (a) the three curves Υ 1 , Υ 2 and Υ 5 in the (S in , D)-plane. (b) The corresponding operating diagram of model (27).

Figure 9 :

 9 Figure 9: MAPLE: (a-b-c) one-parameter bifurcation diagrams of system (27) in the variables S , x 1 , x 2 , (resp.), with S in as the bifurcation parameter and D = 5.
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Figure 10 :

 10 Figure 10: MAPLE: effect of the variation of the parameter α 1 on the emergence of the coexistence region with bistability in the operating diagram of (27): (a) α 1 = 10 -5 , (b) α 1 = 10 -3 (c) α 1 = 10 -2 , (d) α 1 = 20.

Figure 11 :

 11 Figure 11: SCILAB: the three-dimensional space (S , x 1 , x 2 ) of (27) when D = 5: (a) S in = 8 < S c in ≈ 9.357, convergence to E 1 . (b) S in = 10.5 > S c in , bistability with either convergence to E 1 or E * 1 .
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 1323 .5, 0.528, 6.234) and E * .5, 3.031, 2.601).

1 DFigure B. 12 :

 112 Figure B.12: MAPLE: (a) curves of the function c 4 (D) corresponding to E * 1 [resp. E * 3 ] for all D in their existence domain (σ 3 , σ 5 ) [resp. (σ 4 , σ 6 )] when S in = 1.4 and S in = 2.04, and in (σ 4 , σ 3 ) [resp. (σ 6 , σ 5 )] when S in = 4, S in = 8, and S in = 16. (b) Magnification of c 4 (D) corresponding to E * 1 for all D ∈ (σ 1 , σ 2 ).

Table 2 :

 2 Necessary and sufficient conditions of existence and local stability of all steady states of (2) where c 4 is defined by[START_REF] Grover | Resource Competition[END_REF].

Table 3 :

 3 The set Υ and the corresponding colors in Figs.4 and 5.

Table 4 :

 4 Existence and local stability of all steady states in the various regions of the operating diagram in Figs. 4 or 5. The letter S [resp. U] means stable [resp. unstable] steady state. Absence of letter means that the corresponding steady state does not exist.

Table 5 :

 5 Nature of all the bifurcations of the steady states of model (2) by crossing the various curves in the set Υ. The letter BP (resp. LP) means a Branch Point (resp. Limit Point) bifurcation.

  Table 7 and determine the different components of steady states and their local stability. Next, there is a BP bifurcation at D = σ 2 ≈ 0.181 between E * 1 and E 1 such that the interior steady state E Limit Points (LP) or saddle-node bifurcation occurs that gives birth to unstable and stable positive steady states E * 2 and E * 3 , respectively, at D = σ 4 ≈ 1.163. Next, the stable and unstable steady states E * 1 and E * 2 collide at D = σ 5 ≈ 1.182 and disappear through an LP bifurcation. After that, there is a BP bifurcation at D = σ 6 ≈ 1.485 between E * 3 and E 2 where the steady state E * 3 disappears while E 2 becomes LES. Increasing D further, a BP bifurcation occurs at D = σ 7 ≈ 6.033 between E 0 and E 1 where the steady state E 1 disappears while E 0 remains unstable. Finally, a BP bifurcation occurs at D = σ 8 ≈ 44.769 between E 0 and E 2 such that E 0 becomes LES while E 2 disappears from the nonnegative quadrant.

* 1 disappears while E 1 becomes LES. After that, once again a BP bifurcation occurs at D = σ 3 ≈ 0.692 between E 1 and E * 1 where this last coexistence steady state appears LES while E 1 becomes unstable. Increasing D further, a

Table 8 :

 8 Necessary and sufficient conditions of existence and stability of all steady states of model[START_REF] Hsu | Competition in the chemostat when one competitor produces a toxin[END_REF].

Analysis of bifurcations

In this section, we will first study the different types of bifurcation by passing from one region to another in the two-parameter operating diagram. Next, we will analyze the one-parameter bifurcation diagram. The following result describes the nature of all the bifurcations that occur by crossing one region to another through the various curves in the set Υ defined in Table 3.

Proposition 10. The nature of all the bifurcations of the steady states of system (2) by passing between the various regions of the operating diagram is provided in Table 5.

Now to illustrate the nature of bifurcations by passing through the boundaries of the different regions of the operating diagram studied in section 4, we study the one-parameter bifurcation diagram. The dilution rate D is considered as a bifurcation parameter. However, the one-parameter bifurcation diagram in S in can be obtained in the same way. Throughout this section, we assume that the parameters µ m i , k i , a ii , a i j , α i , θ i and m i , i = 1, 2, j = 1, 2, i j are fixed at the values provided in Table B.14. To maximize the passage number through the various regions of the operating diagram in Figs. 4 or In this section, we show that the stability condition c 4 > 0 holds for the two positive steady states E *

1 and E * 3 such that the curve corresponding to c 4 = 0 does not exist in the operating diagram of Figs. 4 or 5 for model [START_REF] Ballyk | A nutrient-prey-predator model: Stability and bifurcations[END_REF]. To this end, we consider the specific growth rates µ 1 and µ 2 defined in [START_REF] Hanaki | Mathematical study of a two-stage anaerobic model when the hydrolysis is the limiting step[END_REF], the functions q 1 and q 2 defined in [START_REF] Hansen | Single-nutrient microbial competition: Qualitative agreement between experimental and theoretically forecast outcomes[END_REF], and the set of the biological parameter values in Table B.14. Note that the critical values σ i , i = 1, . . . , 6 of D are defined in Table 7 where 

Appendix B. Parameter values for numerical simulations

All the values of the parameters used in the numerical simulations are provided in Table B.14. 27) when the growth rates µ 1 and µ 2 are given by [START_REF] Hanaki | Mathematical study of a two-stage anaerobic model when the hydrolysis is the limiting step[END_REF] and the functions q 1 and q 2 are defined in [START_REF] Hansen | Single-nutrient microbial competition: Qualitative agreement between experimental and theoretically forecast outcomes[END_REF].