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Analysis of an intra- and interspecific interference model with allelopathic
competition ∗

Radhouane Fekih-Salem†

Abstract. Understanding and exploiting competition and coexistence between microbial species is one of the
more challenging aspects of mathematical biology. In this paper, we propose an original model of
two-microbial species competing for a single nutrient in the chemostat including general intra- and
interspecific density-dependent growth rates with allelopathic interactions. Each species produces a
toxin that affects the growth of other species as well as its own growth. The removal rates are distinct
and include the specific death rate and the autotoxicity of each species. We establish an in-depth
mathematical analysis by determining the multiplicity of all steady states of the three-dimensional
system and their necessary and sufficient conditions of existence and local stability according to the
operating parameters, which are the dilution rate and the inflowing concentration of the substrate. To
describe the asymptotic behavior of the process according to these control parameters, we determine
the operating diagram by using the software MATCONT. The one-parameter bifurcation diagram in
the dilution rate shows that there can be either transcritical or saddle-node bifurcations. We apply
our results to a particular model in the literature without intra- and interspecific interference but
with only allelopathic effects of the second species on the first species. We demonstrate that one of
the coexistence steady states is locally exponentially stable when it exists, whereas in the literature
they have not been able to demonstrate that the stability condition of this steady state is always
fulfilled.
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1. Introduction. The chemostat is an experimental device used in microbial ecology, mi-
crobiology, and evolutionary and applied biology such as water treatment, biomass energy
recovery and biotechnologies in a broad sense. It is the source of several mathematical models
for population dynamics and interactions between microbial species, in particular competition
for resources [23, 27, 50]. The mathematical study of the classical chemostat model of several
species competing on a same limiting resource shows that only the species with the lowest
break-even concentration survives while all other species will be excluded [50]. This result is
classical and is well known as the Competitive Exclusion Principle (CEP) which asserts that
at most one species can survive to the competition, namely the species which makes optimal
use of the resource (see [16] and the references therein). Hansen and Hubbell’s laboratory
experiments allowed to identify and validate the CEP in the chemostats [26].

However, the biodiversity and natural species richness appeared as a contradiction with
the CEP. The solution to this paradox is to revise the mathematical modeling by taking into
account in the classic chemostat model the different types of interactions between microbial
species. Indeed, this has motivated many recent researches aimed at understanding and
explaining biodiversity in microbial ecosystems by taking into account various mechanisms to
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2 R. FEKIH-SALEM

promote the coexistence of species. In the literature, the following coexistence mechanisms can
be found: intra- and interspecific competition [1, 9], flocculation [15, 17, 18, 19, 24], density-
dependence [16, 33, 34, 35, 40, 41], predator-prey interaction [2, 5, 32], simple or complex
food web [6, 28, 56], presence of an internal or external inhibitors [3, 10, 11, 12, 29], and the
references therein.

While these various coexistence mechanisms have been extensively analyzed with chemo-
stat models, allelopathy is another mechanism of biodiversity between species that has been
relatively neglected. Allelopathy can be defined as the effect of a toxic substance released
by one species and being nocive to their own or their competitor’s growth rates [37]. The
applications of allelopathic competitions can be found in several fields like bio-remediation,
biotechnological processes, ecological phenomena like algal blooms and so on. This kind of
competition is frequent in nature not only between algal species but also between algae and
bacteria, bacteria and bacteria, algae and aquatic plants, as well as plants and plants (see
[21, 22], and the references therein).

Based on the formulation of phenomenological Lotka–Volterra type, allelopathic interac-
tion modeling between two species was introduced by Maynard-Smith [39] where each species
produces a toxic substance to the other but only when the other is present. An exhaustive
analysis of the two-species competition model with allelopathic interactions was carried out
in [7]. In order to have a good fit for all the experimental data of the toxic alga, the simple
Lotka–Volterra type model with allelopathic interactions between two marine phytoplankton
species was modified such that the allelopathic term depends on the product of the square of
the concentration of the target species by the concentration of the toxic species [52]. More
precisely, if x1 is the population density of a non-toxic alga and x2 that of a toxic one, the
mathematical form of the allelopathic interaction term is α1x

2
1x

2
2, where α1 is the allelopathic

parameter.
Roy [45] introduced a chemostat model with two microbial species competing for a single

resource by considering a single species that is toxin-producing thereby having an allelopathic
effect on the other. Growth rates are specified to be of Michaelis-Menten type. An extension
of Roy’s competition model between non-toxic phytoplankton and toxic phytoplankton was
studied in Kengwoung-Keumo [30] by allowing a general class of monotonic growth rates.

Inspired by the way to model competitions of Lotka–Volterra type by including allelo-
pathic terms in the chemostat [30, 39, 45, 52], we propose a first general model of two species
competing for a single resource in the chemostat involving an intra- and interspecific com-
petition with allelopathic effects. Using distinct removal rates and assuming that the two
populations are toxic, the model takes the form

(1.1)


Ṡ = D(Sin − S)− µ1(S)x1y1 − µ2(S)x2y2 ,

ẋ1 = [µ1(S)− a11x1 − a12x2 − α1x1x
2
2 −D1]x1,

ẋ2 = [µ2(S)− a22x2 − a21x1 − α2x2x
2
1 −D2]x2,

where S(t) denotes the concentration of nutrient in the culture at time t; x1(t) and x2(t) denote
the concentrations of the two toxic species at time t; µ1(S) and µ2(S) represent the per-capita
growth rates of the two species; Sin and D denote, respectively, the input concentration of the
limiting nutrient and the dilution rate of the chemostat; y1 and y2 are the yield coefficients
which can be easily normalized to the unit without loss of generality by the simple change of
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DENSITY-DEPENDENCE WITH ALLELOPATHIC COMPETITION 3

variables x1/y1 → x1 and x2/y2 → x2 . In addition, a11 and a22 are the rates of intraspecific
competition of the first and second species, respectively; a12 and a21 are the interspecific
competition coefficients of the species j on the species i, i = 1, 2, j = 1, 2, i 6= j. As in Solé
et al. [52], the phytotoxic (or allelopathic) interactions of the species j on the species i is
modeled by αix

2
1x

2
2, where αi denotes the phytotoxic coefficient. In addition, Di, i = 1, 2,

represents the disappearance rate of the species i that can be modeled as follows:

Di = θiD +mi,

where θi belongs to [0, 1] and denotes the proportion of the species i leaving the reactor as
proposed by Bernard et al. [4] to model a biomass reactor attached to the support or to
decouple the residence time of solids and the hydraulic residence time (1/D). Moreover, the
nonnegative mortality rate mi of the species i is the sum of the specific death rate εi and the
autotoxicity parameters ai, that is, mi = εi + ai and it has unit of the dilution rate (1/day).

In this work, we propose and study a more general model than our first proposed model
(1.1) by allowing generic functions representing intra- and interspecific competitions as well
as toxic effects of each species on the other. This model is an extension of system (1.1) and
it generalizes several models studied in the literature as we demonstrate later. This general
model is written as follows:

(1.2)


Ṡ = D(Sin − S)− µ1(S)x1 − µ2(S)x2,
ẋ1 = [µ1(S)− q1(x1, x2)−D1]x1,
ẋ2 = [µ2(S)− q2(x2, x1)−D2]x2,

where the functions q1(x1, x2) and q2(x2, x1) are assumed to be decreasing in each variable x1

and x2.
The particular case of our general model (1.2) was considered in [45] when the growth

rates µ1(S) and µ2(S) are of Michaelis-Menten type and when only the first species produces
toxin, that is, q2(x2, x1) = 0. The author has derived analytically a critical lower bound of
allelopathy as a function of the parameters of model which ensures the coexistence and the
coevolution of two phytoplankton species competing for a single limiting nutrient. The local
stability of positive steady states has been determined only numerically. Using a general class
of monotonic growth rates, an extension of model [45] has been studied in [30]. The author has
shown the existence of two interior steady states where the stability of one of them depends
on a condition of Routh–Hurwitz criterion. In this work, we will show that this condition is
always satisfied in their particular case.

In Fekih-Salem et al. [20], we have considered only the interspecific interactions in the
dynamics of the first species, that is, q1(x1, x2) = q1(x2) and q2(x2, x1) = 0. We have shown
the occurrence of positive steady state of coexistence but which is unstable as long as it exists.
Then, taking into account the intra- and interspecific interference such that q1(x1, x2) = q1(x2)
and q2(x2, x1) = q2(x2), there can be a multiplicity of positive steady states which could be
locally exponentially stable.

Note that the structure of our model (1.2) is different from that in our paper Fekih-Salem
et al. [16]. In fact, here we consider the growth rates µ1(S) and µ2(S) (which depend only
on S) in the dynamics of the substrate S. However, in [16], it is rather the density-dependent
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4 R. FEKIH-SALEM

growth rates µ1(S, x1, x2) and µ2(S, x1, x2) (which depend only on S, x1, and x2) in the
dynamics of S.

The aim of this paper is to provide a complete mathematical and numerical analysis of
the general model (1.2) to understand the joint effect of the intra- and interspecific density-
dependence with allelopathic competitions. Our study presents an extension of the results in
[30, 45] by allowing a general class of growth functions and the production of both species of
the toxin and by adding the intra- and interspecific interference. Using distinct removal rates
including mortality and autotoxicity of each species, we describe the multiplicity of all steady
states and their necessary and sufficient conditions of existence and local stability according
to the operating parameters Sin and D. To determine the asymptotic behavior of the process
with respect to these two operating parameters, we analyze the operating diagram using
the software MATCONT. To describe all types of bifurcations, we study the one-parameter
bifurcation diagram in D. Then, we apply our theoretical results to the particular model (6.1)
of [30] by providing the necessary and sufficient conditions of existence and local stability of
all steady states. In particular, we prove that one of the two positive steady states is locally
exponentially stable when it exists, whereas in [30] the author has not been able to demonstrate
that the stability condition of this steady state is always fulfilled. In this particular case of [30],
we determine theoretically the operating diagram and the one-parameter bifurcation diagram
which have not been studied in the literature. Finally, the numerical simulations illustrate
the theoretical results.

This paper is organized as follows. The next section presents general assumptions for the
density-dependent functions of model (1.2). Subsequently, we show mathematically that it is
biologically well-posed and we study of the existence of all steady states and their multiplicity.
Section 3 is devoted to the analysis of the local asymptotic stability of each steady state of
system (1.2). Using the software MATCONT [38], the operating diagram is established in
section 4 according to Sin andD as the bifurcation parameters. In section 5, the one-parameter
bifurcation diagram in the dilution rate D illustrates all types of bifurcations. In section 6, our
results are applied to the particular model (6.1) of [30]. In section 7, we discuss and compare
our results with the results of the existing literature. In Appendix A, we show that one of the
stability conditions of the Routh–Hurwitz criterion corresponding to the coexistence steady
states holds for all Sin and D. Finally, all parameter values used in the numerical simulations
are provided in Appendix B.

2. Assumptions on the model and steady states. In this work, we assume that the
growth rates of model (1.2) are continuously differentiable (C1) functions that satisfy the
following general conditions.

Hypothesis 2.1. µ1(0) = µ2(0) = 0 and µ′1(S) > 0 and µ′2(S) > 0, for all S > 0.

Hypothesis 2.1 means that the growth can take place if and only if the substrate is present
and the growth rate of each species increases with the concentration of substrate.

Hypothesis 2.2. q1(0, 0) = q2(0, 0) = 0, q1(x1, x2) ≥ 0, q2(x2, x1) ≥ 0, ∂q1
∂x1

(x1, x2) ≥ 0,
∂q1
∂x2

(x1, x2) ≥ 0, ∂q2
∂x2

(x2, x1) ≥ 0 and ∂q2
∂x1

(x2, x1) ≥ 0, for all x1 > 0 and x2 > 0.

The negative effects of intra- and interspecific interference and allelopathic competition in-
crease with the concentration of species x1 and x2.
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DENSITY-DEPENDENCE WITH ALLELOPATHIC COMPETITION 5

The following preliminary result shows the positivity and boundedness of the solutions of
model (1.2) which are very important properties for any biological and ecological system. The
proof is standard and hence is left to the reader.

Proposition 2.3. For any nonnegative initial condition, the solutions of model (1.2) remain
nonnegative and are positively bounded. Let Dmin = min(D,D1, D2). The compact set

Ω =

{
(S, x1, x2) ∈ R3

+ : S + x1 + x2 ≤
D

Dmin
Sin

}
,

is positively invariant and is a global attractor for system (1.2).

The steady states are found by setting the right hand sides of equations of (1.2) equal to
zero. Thus, they are the solutions of the set of equations

(2.1)


0 = D(Sin − S)− µ1(S)x1 − µ2(S)x2,
0 = [µ1(S)− q1(x1, x2)−D1]x1,
0 = [µ2(S)− q2(x2, x1)−D2]x2.

Indeed, system (1.2) can have at most four types of steady states labeled as follows:
• E0 = (Sin, 0, 0): the washout of both species (x1 = x2 = 0). It always exists.
• E1 = (S̃1, x̃1, 0): only the second species is extinct (x2 = 0 and x̃1 > 0).
• E2 = (S̃2, 0, x̃2): only the first species is extinct (x1 = 0 and x̃2 > 0).
• E∗ = (S∗, x∗1, x

∗
2): both species are maintained (x∗1 > 0 and x∗2 > 0).

From Hypothesis 2.1, when equation µi(S) = Di, i = 1, 2 has a solution, it is unique and
we define the usual break-even concentrations

(2.2) λi = µ−1
i (Di).

When equation µi(S) = Di has no solution, we put λi = +∞.
The following result determines the components and the uniqueness of the boundary steady

states E1 and E2, as well as their existence conditions according to the operating parameters.

Proposition 2.4. Assume that Hypotheses 2.1 and 2.2 hold. The boundary steady states
E1 = (S̃1, x̃1, 0) and E2 = (S̃2, 0, x̃2) of system (1.2) are defined by

(2.3) S̃i = ϕi(x̃i) := Sin −
Di

D
x̃i −

1

D
qi(x̃i, 0)x̃i, i = 1, 2

and x̃i is the unique solution of equation

(2.4) ψi(xi) := µi(ϕi(xi))− qi(xi, 0)−Di.

Ei exists if and only if Sin > λi(D). When it exists, Ei is unique.

Proof. Let i = 1, 2, j = 1, 2, i 6= j. The components S = S̃i and x = x̃i of a boundary
steady state Ei are the solutions of (2.1) with xi > 0 and xj = 0. Thus, S̃i and x̃i are the
solutions of equations

(2.5)

{
D(Sin − S) = µi(S)xi,
µi(S) = qi(xi, 0) +Di.
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Using the two equations of (2.5), it follows that S = ϕi(xi) which is defined in (2.3). Replacing
this expression of S in the second equation of (2.5), we see that xi must be a solution of the
equation ψi(xi) = 0. The derivative of ϕi(xi) is given by

ϕ′i(xi) = − 1

D

(
qi(xi, 0) +

∂qi
∂xi

(xi, 0)xi +Di

)
.

From Hypothesis 2.2, the mapping xi 7→ ϕi(xi) is monotonically decreasing from ϕi(0) = Sin
to

ϕi

(
D

Di
Sin

)
= −Sin

Di
qi

(
D

Di
Sin, 0

)
≤ 0.

Hence, there exists a unique solution x̂i ∈ (0, DSin/Di] satisfying ϕi(xi) = 0. In addition,
S = ϕi(xi) is nonnegative for all xi ≤ x̂i. On the other hand, we have

ψ′i(xi) = ϕ′i(xi)µ
′
i(ϕi(xi))−

∂qi
∂xi

(xi, 0).

From Hypotheses 2.1 and 2.2, the mapping xi 7→ ψi(xi) is monotonically decreasing from
ψi(0) = µi(Sin)−Di to ψi(x̂i) = −qi(x̂i, 0)−Di < 0. Therefore, there exists a unique solution
x̃i ∈ (0, x̂i) of equation ψi(xi) = 0 if and only if µi(Sin) > Di, that is, Sin > λi.

Now, to establish the existence of the positive steady state E∗ = (S∗, x∗1, x
∗
2), we need to

show the following results. In fact, the components S = S∗, x1 = x∗1 and x2 = x∗2 of E∗ must
be the solutions of (2.1) with x1 > 0 and x2 > 0. Thus, S∗, x∗1 and x∗2 are the solutions of the
set of equations

(2.6)


D(Sin − S) = µ1(S)x1 + µ2(S)x2,

µ1(S) = q1(x1, x2) +D1,
µ2(S) = q2(x2, x1) +D2.

Multiplying the second equation by x1 and the third equation by x2 in system (2.6), the first
equation implies that

(2.7) S = Sin−g(x1, x2), where g(x1, x2) :=
1

D
(D1x1+x1q1(x1, x2)+D2x2+x2q2(x2, x1)).

Consider now replacing of S by this expression (2.7) in the second and third equations of (2.6)
to see that (x1 = x∗1, x2 = x∗2) must be a solution of the set of equations

(2.8)

{
0 = f1(x1, x2) := µ1(Sin − g(x1, x2))− q1(x1, x2)−D1,
0 = f2(x2, x1) := µ2(Sin − g(x1, x2))− q2(x2, x1)−D2.

Note that the functions f1 and f2 are defined on the set

(2.9) Λ = {(x1, x2) ∈ R+ × R+ : g(x1, x2) ≤ Sin} .

The components of the positive steady state E∗ are positive if and only if system (2.8) has
a solution in Λ◦, the interior of Λ. To solve system (2.8) in the open set Λ◦, we define the
function corresponding to equation Sin = g(x1, x2) in the following lemma.
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l2

b1 x̄1 c1 x̂1
x1

Figure 1. (a-b-c) Definitions of the functions x2 = G(x1), x2 = F1(x1) and x1 = F2(x2), and the
corresponding graphs γ0, γ1 and γ2 (in black, blue and red), respectively.

Lemma 2.5. Under Hypothesis 2.2, the equation Sin = g(x1, 0) [resp. Sin = g(0, x2)] has a
unique positive solution x̂1 ∈ (0, DSin/D1] [resp. x̂2 ∈ (0, DSin/D2]]. Moreover, the equation
Sin = g(x1, x2) defines a smooth decreasing function

G : [0, x̂1]→ [0, x̂2], x1 7→ G(x1) = x2

where G(x̂1) = 0 and G(0) = x̂2 (see Figure 1).

Proof. From proof of Proposition 2.4, there exists a unique solution x̂i ∈ (0, DSin/Di],
for i = 1, 2 satisfying ϕi(xi) = 0 which is equivalent to Sin = g(x1, 0) and Sin = g(0, x2),
respectively. This proves the first assertion of the lemma.

Let l1 be the fixed line defined by x1 = b1 (see Figure 1(a)). To prove the second assertion
of the lemma, we must show that each line l1 intersects the set Sin = g(x1, x2) once if and
only if 0 ≤ b1 ≤ x̂1. From Hypothesis 2.2, the function x2 7→ Sin−g(b1, x2) is decreasing from
Sin − g(b1, 0) for x2 = 0 to Sin − g(b1, x̂2) for x2 = x̂2. Since Sin = g(0, x̂2) and the function
x1 7→ g(x1, x̂2) is increasing, then g(0, x̂2)− g(b1, x̂2) ≤ 0. Consequently, there exists a unique
solution c2 ∈ [0, x̂2] of equation Sin = g(b1, x2) if and only if

Sin − g(b1, 0) ≥ 0 = Sin − g(x̂1, 0)

or (equivalently) b1 ≤ x̂1 as the function x1 7→ Sin−g(x1, 0) is decreasing. Thus, there exists a
unique c2 ∈ [0, x̂2] solution of equation Sin = g(b1, x2), for all b1 ∈ [0, x̂1]. Define the function
G by c2 = G(b1). That this function G is smooth and decreasing follows from the implicit
function theorem. In fact, under Hypothesis 2.2, the sign of the partial derivatives of g can
be determined by

(2.10) Gi :=
∂g

∂xi
(x1, x2) =

1

D
(Di + qi + xiQii + xjQji),

which is positive for i = 1, 2, j = 1, 2, i 6= j since Q1i and Q2i are positive and defined by

(2.11) Q1i =
∂q1

∂xi
(x1, x2), Q2i =

∂q2

∂xi
(x2, x1).
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Hence, the function G is smooth and its derivative is

G′(x1) = −
∂g
∂x1

(x1, x2)
∂g
∂x2

(x1, x2)
= −G1

G2
= −D1 + q1(x1, x2) + x1Q11 + x2Q21

D2 + q2(x2, x1) + x2Q22 + x1Q12
.

It follows that G is decreasing since all terms in this fraction are positive.

Proposition 2.6. Assume that Hypotheses 2.1 and 2.2 hold. Let Sin > λi(D), i = 1, 2. For
j = 1, 2, i 6= j, the equation fi(xi, xj) = 0 defines a smooth decreasing function

Fi : [0, x̃i]→ [0, x̄j ], xi 7→ Fi(xi) = xj ,

where Fi(x̃i) = 0 and Fi(0) = x̄j so that the graph γi of Fi lies in Λ◦, the interior of Λ defined
in (2.9) (see Figure 1). Indeed, (x1, F1(x1)) ∈ Λ◦ [resp. (F2(x2), x2) ∈ Λ◦], for all x1 ∈ (0, x̃1)
[resp. x2 ∈ (0, x̃2)]. The derivative of Fi is given by

(2.12) F ′i (xi) = −EiGi +Qii
EiGj +Qij

< 0, for all xi ∈ [0, x̃i], where

(2.13) Ei := µ′i(S) = µ′i(Sin − g(x1, x2)).

Proof. To facilitate understanding, we choose i = 1 and j = 2. But the case i = 2 and
j = 1 can be treated similarly using the symmetry of system (2.8). Let l1 be the fixed line
defined by x1 = b1. It suffices to show that that each line l1 intersects the set f1(x1, x2) = 0
once if and only if 0 ≤ b1 ≤ x̃1 so that the intersection belongs to Λ◦ (see Figure 1(b)). From
Lemma 2.5, the curve γ0 of the function x2 = G(x1) intersects the line l1 at the point x2 = c2

where
c2 = G(b1) or equivalently Sin = g(b1, c2).

From Hypotheses 2.1 and 2.2, the function x2 7→ µ1(Sin − g(b1, x2)) − D1 − q1(b1, x2) is
decreasing from µ1(Sin − g(b1, 0))−D1 − q1(b1, 0) for x2 = 0 to −D1 − q1(b1, c2) for x2 = c2.
As −D1 − q1(b1, c2) is negative, then there exists a unique solution b2 ∈ [0, c2) of equation
f1(b1, x2) = 0 if and only if

µ1(Sin − g(b1, 0))−D1 − q1(b1, 0) ≥ 0 = µ1(Sin − g(x̃1, 0))−D1 − q1(x̃1, 0).

Since the function x1 7→ ψ1(x1) defined by (2.4) is decreasing, this last condition is equivalent
to b1 ≤ x̃1. Hence, there exists a unique solution b2 ∈ [0, c2) of equation f1(b1, x2) = 0 for all
b1 ∈ [0, x̃1]. Define the function F1 by b2 = F1(b1) where F1(x̃1) = 0 and F1(0) = x̄2 which
are the solutions of f1(x̃1, 0) = 0 and f1(0, x̄2) = 0. That this function F1 is smooth and
decreasing follows from the implicit function theorem. Indeed, under Hypothesis 2.2, the sign
of the partial derivatives of f1 can be determined by

∂f1

∂x1
(x1, x2) = −(E1G1 +Q11),

∂f1

∂x2
(x1, x2) = −(E1G2 +Q12),

where E1, G1, G2, Q11 and Q12 are positive and defined in (2.10), (2.11), and (2.13). Conse-
quently, we obtain the function F ′1 defined in (2.12) which is negative so that the function F1

is smooth and decreasing.
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Proposition 2.7. System (1.2) has a positive steady state E∗ = (S∗, x∗1, x
∗
2) if and only if the

curves γ1 and γ2 have a positive intersection such that the coordinates (x∗1, x
∗
2) are the positive

solutions of equations

(2.14) x2 = F1(x1) and x1 = F2(x2),

with S∗ = Sin − g(x∗1, x
∗
2) where the function g is defined in (2.7).

Proof. A positive steady state E∗ of (1.2) exists if and only if the equations f1(x1, x2) = 0
and f2(x2, x1) = 0 has a solution in Λ◦ which is the interior of Λ defined by (2.9). Using
Proposition 2.6, it exists if and only if the curves γ1 and γ2 have a positive intersection
(x∗1, x

∗
2) such that (2.14) holds where the expression of S∗ is given by (2.7).

(1.a)x2

γ0γ1

γ2

E2 E∗

x̄2

x̃2

E0 E1
x̃1 x̄1

x1

(1.b)x2

γ0

γ1

γ2
E2
E∗1

E∗2

E∗3

x̄2

x̃2

E0 E1
x̃1 x̄1

x1

(2.a)x2

γ0γ2

γ1

E2

E∗

x̃2

x̄2

E0 E1
x̄1 x̃1

x1

(2.b)x2

γ0
γ2

γ1

E2

E∗1

E∗2

x̃2
x̄2

E0 E∗3 E1
x̄1 x̃1

x1

Figure 2. Case 1 : x̄1 > x̃1 and x̄2 > x̃2; Case 2 : x̄1 < x̃1 and x̄2 < x̃2: (a) unique intersection, (b) an
odd number of intersections.

(3.a)x2

γ0γ1

γ2

E2

x̄2

x̃2

E0 E1
x̃1x̄1

x1

(3.b)x2

γ0

γ1 γ2

E2
E∗1

E∗2

x̄2

x̃2

E0 E1
x̄1 x̃1

x1

(4.a)x2

γ0
γ2

γ1

E2x̃2

x̄2

E0 E1
x̃1 x̄1

x1

(4.b)x2

γ0γ2

γ1

E2

E∗1
E∗2

x̃2
x̄2

E0 E1
x̄1x̃1

x1

Figure 3. Case 3 : x̄1 < x̃1 and x̄2 > x̃2; Case 4 : x̄1 > x̃1 and x̄2 < x̃2: (a) no intersection, (b) an even
number of intersections.

Note that x̃1, x̃2, x̄1 and x̄2 represent the coordinates of the intersections of the curves γ1

and γ2 with the x1 and the x2 axes. According to the relative positions of these values, the
four cases that must be distinguished are summarized in Table 1.

Table 1
Classification of the values of x̄i and x̃i to four cases for i = 1, 2.

Case x̄1, x̃1 x̄2, x̃2

1 x̃1 < x̄1 x̃2 < x̄2

2 x̄1 < x̃1 x̄2 < x̃2

3 x̄1 < x̃1 x̃2 < x̄2

4 x̃1 < x̄1 x̄2 < x̃2
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In the next proposition, we will determine the multiplicity of the positive steady states of
(1.2) according to the four cases in Table 1 as shown in Figures 2 and 3.

Proposition 2.8. Assume that Hypotheses 2.1 and 2.2 hold. Let Sin > λi(D), i = 1, 2.
1. In case 1 and 2, there exists at least one positive steady state. Generically, system

(1.2) has an odd number of positive steady states.
2. In case 3 and 4, system (1.2) has generically no positive steady state or an even number

of positive steady states.

Note that the multiplicity of steady states of our model (1.2) and the four cases to be
distinguished in Table 1, and Figures 2 and 3 are qualitatively similar to those of our density-
dependence model in Fekih-Salem et al. [16].

3. Stability of steady states. To investigate the local asymptotic stability of all steady
states of model (1.2), we shall use the abbreviation LES for Locally Exponentially Stable.
Using notation (2.8), (2.11), and (2.13), the Jacobian matrix of model (1.2) at a steady state
(S, x1, x2) is given by the following 3× 3 matrix:

J =

−D − E1x1 − E2x2 −µ1(S) −µ2(S)
E1x1 f1 −Q11x1 −Q12x1

E2x2 −Q21x2 f2 −Q22x2

 .
The stability of the boundary steady states is given by the following result.

Proposition 3.1. Under Hypotheses 2.1 and 2.2, we have
• E0 is LES if and only if Sin < min(λ1, λ2).
• E1 is LES if and only if x̄1 < x̃1.
• E2 is LES if and only if x̄2 < x̃2.

Proof. For E0 = (Sin, 0, 0), the characteristic polynomial is

P0(λ) = (λ+D)(λ− (µ1(Sin)−D1))(λ− (µ2(Sin)−D2)).

Thus, E0 is LES if and only if µ1(Sin) < D1 and µ2(Sin) < D2, that is, Sin < λ1 and Sin < λ2.
For E1 = (S̃1, x̃1, 0), the characteristic polynomial is

P1(λ) = (λ− λ0)
(
λ2 + c1λ+ c2

)
,

where

λ0 = f2(0, x̃1) = µ2(Sin − g(x̃1, 0))− q2(0, x̃1)−D2

c1 = D + E1x̃1 +Q11x̃1

c2 = (D + E1x̃1)Q11x̃1 + E1x̃1µ1(S̃1).

Since c1 and c2 are positive, then the roots of the quadratic factor have negative real parts.
In addition, the function x1 7→ µ2(Sin − g(x1, 0)) − q2(0, x1) −D2 is decreasing so that λ0 is
negative if and only if

λ0 = µ2(Sin − g(x̃1, 0))− q2(0, x̃1)−D2 < 0 = f2(0, x̄1) = µ2(Sin − g(x̄1, 0))− q2(0, x̄1)−D2.
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Consequently, E1 is LES if and only if x̃1 > x̄1.
For E2 = (S̃2, 0, x̃2), the characteristic polynomial is

P2(λ) = (λ− λ0)
(
λ2 + c1λ+ c2

)
,

where

λ0 = f1(0, x̃2) = µ1(Sin − g(0, x̃2))− q1(0, x̃2)−D1

c1 = D + E2x̃2 +Q22x̃2

c2 = (D + E2x̃2)Q22x̃2 + E2x̃2µ2(S̃2).

Since c1 and c2 are positive, then the roots of the quadratic factor have negative real parts.
In addition, the function x2 7→ µ1(Sin − g(0, x2)) − q1(0, x2) −D1 is decreasing so that λ0 is
negative if and only if

λ0 = µ1(Sin−g(0, x̃2))−q1(0, x̃2)−D1 < 0 = f1(0, x̄2) = 0 = µ1(Sin−g(0, x̄2))−q1(0, x̄2)−D1.

Consequently, E2 is LES if and only if x̃2 > x̄2.

In the following, we study the stability of the positive steady states. Let J∗ be the Jacobian
matrix of (1.2) at a steady state E∗ = (S∗, x∗1, x

∗
2), that is given by

J∗ =

−m11 −m12 −m13

m21 −m22 −m23

m31 −m32 −m33

 ,
where

(3.1)


m11 = D + E1x

∗
1 + E2x

∗
2, m12 = µ1(S∗), m13 = µ2(S∗),

m21 = E1x
∗
1, m22 = Q11x

∗
1, m23 = Q12x

∗
1,

m31 = E2x
∗
2, m32 = Q21x

∗
2, m33 = Q22x

∗
2.

Note that all mij are positive for all i, j = 1, 2, 3 and the functions Qij and Ei, i, j = 1, 2
defined by (2.11) and (2.13) are evaluated at the components of the positive steady state.
Thus, the characteristic polynomial of J∗ is given by

P (λ) = λ3 + c1λ
2 + c2λ+ c3,

where

(3.2)
c1 = m11 +m22 +m33,

c2 = m11(m22 +m33) +m22m33 +m12m21 +m13m31 −m23m32,
c3 = m11(m22m33 −m23m32) +m12(m21m33 −m23m31) +m13(m22m31 −m21m32).

As c1 > 0, according to the Routh–Hurwitz criterion, the positive steady state E∗ is LES if
and only if

(3.3) c3 > 0 and c4 = c1c2 − c3 > 0.
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The following result shows that the sign of c3 is provided by the position of the curves γ1 and
γ2 of functions x1 7→ F1(x1) = x2 and x1 7→ F−1

2 (x1) = x2, respectively. More precisely, we
will determine the relation between the determinant of the Jacobian matrix J∗ at the positive
steady state E∗ and the value of F ′1(x∗1)F ′2(x∗2) − 1. Indeed, we will show that c3 is negative
[resp. positive] if and only if F ′1 (x∗1)F ′2 (x∗2)− 1 is negative [resp. positive], that is,

F ′1(x∗1) >
(
F−1

2

)′
(x∗1) =

1

F ′2(x∗2)

[
resp. F ′1(x∗1) <

(
F−1

2

)′
(x∗1)

]
because F ′2(x∗2) < 0, or equivalently, on the right of the positive steady state (x∗1, x

∗
2), the

tangent of γ1 at this point (x∗1, x
∗
2) is above [resp. under] the tangent of γ2 at the same point

(x∗1, x
∗
2) (see Figures 2 and 3).

Proposition 3.2. Let E∗ = (S∗, x∗1, x
∗
2) be a positive steady state of (1.2). We have

(3.4) c3 = −det(J∗) = Dx∗1x
∗
2(F ′1(x∗1)F ′2(x∗2)− 1)(E1G2 +Q12)(E2G1 +Q21),

where the functions Ei, Gi and Qij are defined by (2.10), (2.11), and (2.13) and are evaluated
at the components of the steady state E∗.

Proof. Using the expression of the derivatives of Fi given by (2.12), a straightforward
calculation shows that

(3.5) F ′1(x∗1)F ′2(x∗2)−1 =
(Q11Q22 −Q12Q21) +G1(E1Q22 − E2Q12) +G2(E2Q11 − E1Q21)

(E1G2 +Q12)(E2G1 +Q21)
.

Let Li, i = 1, 2, 3 be the lines of the matrix J∗. The replacement of L1 by L1 + L2 + L3

preserves the determinant of the Jacobian matrix J∗ at the steady state E∗ and we obtain

c3 = −

∣∣∣∣∣∣
−D −µ1(S∗)−Q11x

∗
1 −Q21x

∗
2 −µ2(S∗)−Q12x

∗
1 −Q22x

∗
2

E1x
∗
1 −Q11x

∗
1 −Q12x

∗
1

E2x
∗
2 −Q21x

∗
2 −Q22x

∗
2

 .
By expanding along the first line, we obtain

c3 = x∗1x
∗
2[D(Q11Q22 −Q12Q21) + (µ1(S∗) +Q11x

∗
1 +Q21x

∗
2)(E1Q22 − E2Q12)+

(µ2(S∗) +Q12x
∗
1 +Q22x

∗
2)(E2Q11 − E1Q21)].

Recall that, at the positive steady state E∗, we have

µ1(S∗) = q1(x∗1, x
∗
2) +D1 and µ2(S∗) = q2(x∗2, x

∗
1) +D2.

Using (2.10), it follows that{
µ1(S∗) +Q11x

∗
1 +Q21x

∗
2 = q1(x∗1, x

∗
2) +D1 +Q11x

∗
1 +Q21x

∗
2 = DG1,

µ2(S∗) +Q22x
∗
2 +Q12x

∗
1 = q2(x∗2, x

∗
1) +D2 +Q22x

∗
2 +Q12x

∗
1 = DG2.

Consequently,

c3 = Dx∗1x
∗
2 [(Q11Q22 −Q12Q21) +G1(E1Q22 − E2Q12) +G2(E2Q11 − E1Q21)] .

The expression of c3 given by (3.4) follows by using relation (3.5).
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Thus, we determine in the following proposition the sufficient conditions of instability and
stability of a positive steady state of model (1.2).

Proposition 3.3. Let E∗ = (S∗, x∗1, x
∗
2) be a positive steady state of model (1.2).

1. When F ′1 (x∗1)F ′2 (x∗2) < 1, E∗ is unstable.
2. When Q11Q22 ≥ Q12Q21 holds, E∗ is LES if and only if F ′1 (x∗1)F ′2 (x∗2) > 1.

Proof. Since all the functions Ei, Gi and Qij in (3.4) evaluated at E∗ are positive, then
from Proposition 3.2, we have c3 < 0 when F ′1 (x∗1)F ′2 (x∗2) < 1. The first assertion of the
proposition follows from the first condition of the Routh–Hurwitz criterion in (3.3).

Using the coefficients ci of the characteristic polynomial of J∗ given by (3.2), straightfor-
ward calculations show that

(3.6)

c4 = D(c2 +Q12Q21x
∗
1x
∗
2) + (E1x

∗
1 + E2x

∗
2)(m11(m22 +m33) +m12m21 +m13m31)

+D((Q11x
∗
1)2 + (Q22x

∗
2)2 +Q11Q22x

∗
1x
∗
2) + (E1x

∗
1 + E2x

∗
2)(Q11x

∗
1 +Q22x

∗
2)2

+(Q11x
∗
1 +Q22x

∗
2)(Q11Q22 −Q12Q21)x∗1x

∗
2 + µ1(S∗)E1Q11(x∗1)2

+µ2(S∗)E2Q22(x∗2)2 + µ1(S∗)E2Q12x
∗
1x
∗
2 + µ2(S∗)E1Q21x

∗
1x
∗
2,

where Qij , Ei, mij , and c2 are defined in (2.11), (2.13), (3.1), and (3.2). Note that all terms
in the expression of c4 in (3.6) are positive, except Q11Q22−Q12Q21 which can be negative. If
Q11Q22 ≥ Q12Q21, that is, m22m33−m23m32 ≥ 0, it follows from (3.2) that c2 > 0. Moreover,
from (3.6), we obtain c4 > 0 in this case. Consequently, E∗ is LES if and only if c3 > 0, that
is, F ′1 (x∗1)F ′2 (x∗2) > 1.

When Q11Q22 ≥ Q12Q21, the local stability of positive steady states is completely char-
acterized by the position of the curves γ1 and γ2. When this condition does not hold, we
were not able to prove that c4 is always positive or to find a set of parameters such that c4

changes sign and becomes negative. This question remains an open problem and deserves
further investigations.

Here, the condition Q11Q22 ≥ Q12Q21 are qualitatively similar to condition (26) in [16]
which means that the intraspecific interference is dominant with respect to interspecific inter-
ference. However, in our particular model (1.1), this condition becomes

(a11 + α1x
2
2)(a22 + α2x

2
1) > (a12 + 2α1x1x2)(a21 + 2α2x1x2).

where it does not only depend on intra- and interspecific interference as in [16] but it also
depends on the quadratic forms representing allelopathic effects of the two species. Moreover,
contrary to our density-dependence model [16], the condition c4 > 0 of the Routh–Hurwitz
criterion (3.3) should be verified in the case of the same removal rate (D1 = D2 = D). Thus,
the addition of mortality is necessary for the model [16] to hope for destabilization of the
coexistence steady state but in our model (1.2) mortality is not necessary.

4. Operating diagram. The operating diagram is a very useful visual representation for
mathematicians and biologists because it provides a summary and an overall view of the be-
havior of the process according to the control parameters [27, 50]. In the existing literature,
the study of the operating diagram is classified into three different methods. In the following,
we synthesize the main characteristics of each method, specifying the advantages and disad-
vantages. However, for more on these various methods, the reader is referred to [41] and the
references therein.
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The first method consists in determining the various regions of the operating diagram by
numerically solving the algebraic equations giving the steady states having all the nonnegative
components. Then, the sign of the roots of the characteristic polynomial determines the local
asymptotic behavior of each steady state [53]. This method can be used for complex dynamic
systems including a very large number of variables and parameters [25, 31, 55, 57]. However,
this method is time-consuming in computation. In addition, some regions of sufficiently small
sizes than the step used for the discretization of the operating parameters could be omitted.
Sari et al. [42, 43, 44, 48] demonstrated that regions of coexistence around a stable limit cycle
were not detected in the study of the numerical operating diagram of a process describing the
anaerobic mineralization of chlorophenol in a three-step food-web [54].

The second method is numerical and consists in determining the boundaries of the various
regions of the operating diagram using a numerical continuation and correction algorithm.
Various software packages have been developed to solve continuation and bifurcation problems
in systems of autonomous ODEs depending on one or two parameters. The most used are
MATCONT, CONTENT, AUTO, and XPPAUT (see [13] and the reference therein). This
method has the advantage of detecting more complex and subtle bifurcations such as the
bifurcations of types limit point of cycles, cusp, Bogdanov-Takens, Bautin, etc (see for example
[51]).

The third method is theoretical and consists in determining the borders of the various
regions from the analytical study of the model by establishing the conditions of existence
and stability of all steady states according to the operating parameters. The disadvantage of
this method is the difficulty of analyzing complex models and illustrating the various curves
in some cases with several state variables. However, this method allows us to detect all the
regions of the operating diagram [1, 3, 8, 10, 11, 12, 13, 16, 14, 40, 41, 44, 46, 47, 48].

We shall now study theoretically and numerically the operating diagram of system (1.2).
It is the most useful tool for biologists describing qualitatively the asymptotic behavior of the
process according to the operating parameters of the model. Here, the operating parameters
are the concentration of substrate in the feed bottle Sin and the dilution rate D.

Table 2
Necessary and sufficient conditions of existence and local stability of all steady states of (1.2) where c4 is

defined by (3.6).

Existence Local stability

E0 always exists Sin < min(λ1(D), λ2(D))
E1 Sin > λ1(D) x̄1(Sin, D) < x̃1(Sin, D)
E2 Sin > λ2(D) x̄2(Sin, D) < x̃2(Sin, D)
E∗ Equation (2.14) has a solution F ′1 (x∗1)F ′2 (x∗2) > 1 and c4(Sin, D) > 0

To study the operating diagram in the next section, the necessary and sufficient conditions
for the existence and local stability of all steady states of (1.2) are summarized in Table 2.
From these conditions, we define in Table 3, the set Υ = {Υ1,Υ2,Υ3,Υ4,Υ5} of all boundaries
between various regions of the (Sin, D)-plane. More precisely, when the curves γ1 and γ2 of
the functions x1 7→ F1(x1) and x2 7→ F2(x2) are tangent in a point (x1, x2), we have

(4.1) x2 = F1(x1), x1 = F2(x2), and F ′1(x1)F ′2(x2) = 1.
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The solution (x1, x2) of this set of equations depends on Sin and D. Hence, we can define in
Table 3 the subset Υ5 which represents a curve in the generic case (see Figure 5). As we will
see in section 5, passing through Υ5 in the operating plan (Sin, D) gives rise to two positive
steady states via a saddle-node bifurcation. Moreover, the passages through the subsets Υ1

and Υ2 generate the steady states E1 and E2, respectively, that coalesce with the washout
steady state E0 via a transcritical bifurcation. Finally, crossing the curves Υ3 and Υ4, a
positive steady state appears or disappears through the coalescence with the steady states E1

and E2, respectively, corresponding to a transcritical bifurcation.

Table 3
The set Υ and the corresponding colors in Figure 4 and Figure 5.

Υ Color

Υ1 = {(Sin, D) : Sin = λ1(D)} Blue
Υ2 = {(Sin, D) : Sin = λ2(D)} Red
Υ3 = {(Sin, D) : x̃1(Sin, D) = x̄1(Sin, D)} Cyan
Υ4 = {(Sin, D) : x̃2(Sin, D) = x̄2(Sin, D)} Magenta
Υ5 = {(Sin, D) : x2 = F1(x1), x1 = F2(x2), and F ′1(x1)F ′2(x2) = 1} Green

Now, to illustrate the operating diagram, we consider model (1.2) and we choose the
following specific growth rates of Monod-type satisfying Hypotheses 2.1 and 2.2:

(4.2) µ1(S) =
µm1 S
k1+S , µ2(S) =

µm2 S
k2+S ,

where µm1 and µm2 are the maximum growth rates; k1 and k2 are the Michaelis-Menten con-
stants. The values of these biological parameters are provided in Table 14. As in particular
model (1.1), the functions q1 and q2 representing the intra- and interspecific interactions with
the allelopathic competitions of the two species take the form

(4.3) q1(x1, x2) = a11x1 + a12x2 + α1x1x
2
2, q2(x2, x1) = a22x2 + a21x1 + α2x2x

2
1.

The construction of this diagram is similar for any other specific growth rate satisfying Hy-
potheses 2.1 and 2.2. Except for the control parameters Sin and D, all the biological param-
eters are fixed since they depend on the nature of the organisms, the substrate introduced
into the bioreactor, and the various interactions between the species. All the values of these
parameters used throughout this paper are provided in Table 14.

For this set of parameter values, Appendix A shows that the stability condition c4 >
0 holds for all Sin and D in the existence domain of E∗1 and E∗3 . Thus, there can be no
destabilization of a coexistence steady state via a Hopf bifurcation with the emergence of a
cycle limit. Note that the steady state E∗2 is unstable when it exists because c3 is negative.
Consequently, the only curves separating the various regions in the operating diagram are
given by Υi, i = 1, . . . , 5. MAPLE [36] was able to plot the curves Υi, i = 1, . . . , 4 (see
Figure 4) except the curve Υ5 where it must resolve the three equations in (4.1) with two
variables and two unknown parameters.

The concept of steady state characteristic that was introduced by Lobry et al. [34, 35]
could reduce the number of variables by expressing the concentrations of the biomass x1
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and x2 as a function of the concentration of the substrate S (see [18] for more details).
Hence, to determine all the components of the positive steady state, it suffices to determine
the variable S which can be deduced from the resolution of an equation of the system at
a positive steady state where S is the single variable. In some cases, this reduction would
allow to determine in MAPLE all the curves of the operating diagram (see for example [41]).
However, this method of steady state characteristic cannot be applied to our general model
(1.2) to plot in MAPLE the saddle-node bifurcation curve Υ5 because of the structure of
model where the equations at a positive steady state depend on three variables. In section 6,
we will show that this method can be used in particular model (1.2) of Kengwoung-Keumo
[30] where q2(x2, x1) = a11 = a12 = 0, that is, without intra- and interspecific interference in
the dynamics of the two species and without the allelopathic competition of the first species
on the second species.

(a)
D Υ2

Υ1
Υ3

���

Υ4

���
Sin

(b)
D

Υ2
Υ1

Υ3 Υ4

Sin

(c)D

Υ4Υ3

Sin

Figure 4. MAPLE: (a) curves Υi, i = 1, . . . , 4. (b)-(c) Magnification when (Sin, D) ∈ [0, 25]× [0, 10] and
(Sin, D) ∈ [0, 25]× [0, 1.5], respectively.

(a)
D Υ2

Υ1

J0

J1

J2
Sin

(b)
D

Υ1

Υ3

Υ4

Υ5

J2

J3

J4
J5

J6 J7

Sin

Figure 5. MATCONT: (a) operating diagram of (1.2). (b) Magnification when (Sin, D) ∈ [0, 20]× [0, 1.6].

Figure 4 illustrates the theoretical operating diagram obtained in MAPLE by drawing the
curves Υi, i = 1, . . . , 4 defined in Table 3 but the curve Υ5 is missing which corresponds to
the saddle-node bifurcation.

To solve the numerical problem in MAPLE determining the saddle-node bifurcation curve
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Υ5, we use in the following the numerical method to determine the operating diagram of
model (1.2) with the software MATCONT [38]. Indeed, MATCONT is a MATLAB numerical
continuation package for the interactive bifurcation study of continuous and discrete param-
eterized systems of ODEs. It allows one to compute curves of steady states and limit cycles
(periodic orbits), and their bifurcations as Branch Points (BP) or transcritical bifurcations,
Limit Points (LP) or saddle-node (or fold) bifurcations, Cusp bifurcations (CP), Hopf points
(H), Limit Point of Cycles (LPC) or fold bifurcation points of limit cycles, and period doubling
bifurcation points of limit cycles. For more on this interesting subject, the reader is referred
to [13] and the references therein.

Figure 5 illustrates the numerical operation diagram obtained using MATCONT by draw-
ing the curves Υi, i = 1, . . . , 5. For i = 1, . . . , 4, the curves Υi are identical in the theoretical
and the numerical operating diagrams. Thus, we obtain the following result giving a complete
description of the operating diagram.

Proposition 4.1. For the specific growth rates µ1 and µ2 defined in (4.2), the functions q1

and q2 defined in (4.3), and the set of the biological parameter values in Table 14, the existence
and the local stability of all steady states of (1.2) in the eight regions Jk, k = 0, . . . , 7 of the
operating diagram in Figure 5 are described in Table 4.

Table 4
Existence and local stability of all steady states in the various regions of the operating diagram in Figure 5.

The letter S [resp. U] means stable [resp. unstable] steady state. Absence of letter means that the corresponding
steady state does not exist.

Region E0 E1 E2 E∗1 E∗2 E∗3
J0 S
J1 U S
J2 U U S
J3 U U U S
J4 U S U
J5 U S U S U
J6 U U U S U S
J7 U U S S U

The operating diagram in Figure 5 is divided into eight regions. The region J0 corresponds
to the washout of two species. The regions J1 and J2 [resp. J4] correspond to the competitive
exclusion of the first [resp. second] species. The region J3 corresponds to the coexistence of
both species. The region J5 [resp. J7] corresponds to the bistability with either coexistence
or exclusion of the second [resp. first] species. The region J6 corresponds to the bistability
with convergence to one of the two coexistence steady states.

5. Analysis of bifurcations. In this section, we will first study the different types of
bifurcation by passing from one region to another in the two-parameter operating diagram.
Next, we will analyze the one-parameter bifurcation diagram. The following result describes
the nature of all the bifurcations that occur by crossing one region to another through the
various curves in the set Υ defined in Table 3.

This manuscript is for review purposes only.



18 R. FEKIH-SALEM

Proposition 5.1. The nature of all the bifurcations of the steady states of system (1.2) by
passing between the various regions of the operating diagram is provided in Table 5.

Table 5
Nature of all the bifurcations of the steady states of model (1.2) by crossing the various curves in the set

Υ. The letter BP (resp. LP) means a Branch Point (resp. Limit Point) bifurcation.

Transition Curve Bifurcation Steady states

J0 to J1 Υ2 BP E0 = E2

J1 to J2 Υ1 BP E0 = E1

J2 to J3 Υ4 BP E2 = E∗1
J2 to J7 Υ5 LP E∗1 = E∗2
J3 to J6 Υ5 LP E∗2 = E∗3
J3 to J4 Υ3 BP E1 = E∗1
J4 to J5 Υ5 LP E∗1 = E∗2
J5 to J6 Υ3 BP E1 = E∗3
J6 to J7 Υ4 BP E2 = E∗3

Now to illustrate the nature of bifurcations by passing through the boundaries of the
different regions of the operating diagram studied in section 4, we study the one-parameter
bifurcation diagram. The dilution rate D is considered as a bifurcation parameter. However,
the one-parameter bifurcation diagram in Sin can be obtained in the same way. Throughout
this section, we assume that the parameters µmi , ki, aii, aij , αi, θi and mi, i = 1, 2, j = 1, 2,
i 6= j are fixed at the values provided in Table 14. To maximize the passage number through
the various regions of the operating diagram in Figure 5, the inflowing concentration was
fixed at Sin = 1.4. Using MATCONT [38], we plot in Figure 6 the one-parameter bifurcation
diagram in D, with S, x1 and x2 on the y-axis. This diagram corresponds to a vertical line
of equation Sin = 1.4 in the operating diagram of Figure 5.

First, by increasing D from zero, the one-parameter bifurcation diagram in the variable
S in Figure 6(a) illustrates the Branch Point (BP) bifurcation or the transcritical bifurcation
occurring at D = σ1 ≈ 0.032 between E2 and E∗1 . In fact, the steady state of exclusion of the
first species E2 becomes unstable while the coexistence steady state E∗1 emerges LES into the
interior of the admissible region. Since the first bifurcations occur for small values of D, a
first close-up is presented in Figure 6(b) and a second close-up is presented in Figure 6(c).
The one-parameter bifurcation diagrams in D presented in Figure 6(d-g) with x1 and x2 on
the y-axis show the same bifurcation values σi, i = 1, . . . , 8 defined in Table 7 and determine
the different components of steady states and their local stability.

Next, there is a BP bifurcation at D = σ2 ≈ 0.181 between E∗1 and E1 such that the interior
steady state E∗1 disappears while E1 becomes LES. After that, once again a BP bifurcation
occurs at D = σ3 ≈ 0.692 between E1 and E∗1 where this last coexistence steady state appears
LES while E1 becomes unstable. Increasing D further, a Limit Points (LP) or saddle-node
bifurcation occurs that gives birth to unstable and stable positive steady states E∗2 and E∗3 ,
respectively, at D = σ4 ≈ 1.163. Next, the stable and unstable steady states E∗1 and E∗2
collide at D = σ5 ≈ 1.182 and disappear through an LP bifurcation. After that, there is a
BP bifurcation at D = σ6 ≈ 1.485 between E∗3 and E2 where the steady state E∗3 disappears
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while E2 becomes LES. Increasing D further, a BP bifurcation occurs at D = σ7 ≈ 6.033
between E0 and E1 where the steady state E1 disappears while E0 remains unstable. Finally,
a BP bifurcation occurs at D = σ8 ≈ 44.769 between E0 and E2 such that E0 becomes LES
while E2 disappears from the nonnegative quadrant.

The following result summarizes the study of this one-parameter bifurcation diagram in
D from the operating diagram in Figure 5.

Proposition 5.2. For the specific growth rates µ1 and µ2 (4.2), the functions q1 and q2

defined in (4.3), and the set of the biological parameter values in Table 14, the existence and
the local stability of all steady states of (1.2) according to D are described in Table 6 when
Sin = 1.4 is fixed. The critical values σi, i = 1, . . . , 8 of different bifurcations according to the
parameter D and the corresponding nature are defined in Table 7.

(a)S
E0 E0 E0

E2E1

D

(b)S E0 E0

E1 E2

D

(c)S E2

E2

E1
E∗1

E∗2
-

E∗3

E1
E1

E∗1
E2-

D

(d)
x1

E1

E2E0
E0 E0 D

(e)x1

E1

E0 E2 E0 E0 D

(f)x1
E1

E∗1

E∗2

E∗3
E2E2 E0

E1

E∗1E1-

E2
HHY

D

(g)x2

E2

E0E0

E1E0

D

(h)x2

E2

E2

E0 D
E1 E0

(i)x2
E2

E2

E2-

E∗3

E∗2

E∗1E∗1

E1E0

E1 E0E1 E0 D

Figure 6. MATCONT: (a-d-g) one-parameter bifurcation diagrams of (1.2) in the variables S, x1, x2,
(resp.), with D as the bifurcation parameter and Sin = 1.4; (b-e-h) (resp. (c-f-i)) magnifications when D ∈ [0, 7]
(resp. D ∈ [0, 1.7]); Red (resp. Blue) curve represents the continuation of a stable (resp. unstable) steady state.
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Table 6
Existence and stability of steady states according to D where σi, i = 1, . . . , 8 are defined in Table 7.

Interval of D E0 E1 E2 E∗1 E∗2 E∗3
(0, σ1) U U S
(σ1, σ2) U U U S
(σ2, σ3) U S U
(σ3, σ4) U U U S
(σ4, σ5) U U U S U S
(σ5, σ6) U U U S
(σ6, σ7) U U S
(σ7, σ8) U S
(σ8,+∞) S

Table 7
Definitions of the critical values σi, i = 1, . . . , 8 of D and the corresponding nature of bifurcations when

Sin = 1.4 is fixed.

Definition Value Bifurcation

σ1 is the first solution of equation x̃2(Sin, D) = x̄2(Sin, D) 0.032 BP
σ2 is the first solution of equation x̃1(Sin, D) = x̄1(Sin, D) 0.181 BP
σ3 is the second solution of equation x̃1(Sin, D) = x̄1(Sin, D) 0.692 BP
σ4 is the first solution of equation c3(Sin) = 0 1.163 LP
σ5 is the second solution of equation c3(Sin) = 0 1.182 LP
σ6 is the second solution of equation x̃2(Sin, D) = x̄2(Sin, D) 1.485 BP
σ7 = µ1(Sin) 6.033 BP
σ8 = µ2(Sin) 44.769 BP

6. Application to the particular model of Kengwoung-Keumo. Our general model (1.2)
was studied by Kengwoung-Keumo [30] in the particular case where the functions q2(x2, x1) =
0 and q1(x1, x2) = α1x1x

2
2 so that a11 = a12 = a22 = a21 = 0, that is, without the effect of

intra- and interspecific interference of the two species and without the allelopathic effect of
the first species on the second species. Recall that kengwong-Keumo’s particular model is
written as follows where the yield coefficients are normalized to the unit:

(6.1)


Ṡ = D(Sin − S)− µ1(S)x1 − µ2(S)x2,
ẋ1 = [µ1(S)− α1x1x

2
2 −D1]x1,

ẋ2 = [µ2(S)−D2]x2.

In what follows, we apply our theoretical results of existence and stability of all steady states of
the general model (1.2) to those of the particular model (6.1) by comparing our results found
with those in [30]. Next, we will also analyze the operating diagram and the one-parameter
bifurcation diagram of model (6.1) which have not been studied in [30].

In order to analyze the existence of the positive steady states of system (6.1), we can use
the method presented in section 2 by writing the variable xj , j = 1, 2 as a function Fi, i = 1, 2,
i 6= j of the variable xi from the equation fi(xi, xj) = 0 defined in (2.8). However, in the
following, we will use the concept of steady state characteristic due to the particularity of the
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structure of system (6.1) to give explicit expressions of the components of the positive steady
states by determining their multiplicities and their existence conditions. The advantage of
this method is that it will allow us to theoretically determine all the curves of the operating
diagram in the plane (Sin, D) without having recourse to MATCONT to draw the curve Υ5

which corresponds to a saddle-node bifurcation. To do this, we begin by setting the right-hand
sides of equations in (6.1) equal to zero:

D(Sin − S)− µ1(S)x1 − µ2(S)x2 = 0,(6.2)

[µ1(S)− α1x1x
2
2 −D1]x1 = 0,(6.3)

[µ2(S)−D2]x2 = 0.(6.4)

• For E0, x1 = x2 = 0. Hence, (6.2) results in S = Sin. Thus, E0 always exists.
• For E1, x2 = 0 and x1 > 0. Hence, (6.2) and (6.3) result in S = λ1 and x1 = D(Sin−λ1)/D1.

Hence, E1 exists if and only if Sin > λ1.
• For E2, x1 = 0 and x2 > 0. Hence, (6.2) and (6.4) result in S = λ2 and x2 = D(Sin−λ2)/D2.

Hence, E2 exists if and only if Sin > λ2.
• For E∗, x1 > 0 and x2 > 0. Hence, (6.4) results in S = λ2. Moreover, (6.3) results

(6.5) x1 = H(x2) :=
a+

x2
2

, with a+ =
µ1(λ2)−D1

α1
.

Hence, a necessary condition for the positivity of the component x1 is that a+ be positive,

(a)x1

CH

∆

E0

E1

E2xc2

xc1

x2

(b)x1

CH

∆

E0

E1

E2

E∗1

E∗2

xc2

xc1

x2

Figure 7. Existence and stability of steady states of model (6.1) when D = 5 : (a) Sin = 8 < Sc
in ≈ 9.357,

(b) Sin = 10.5 > Sc
in. In all figures, we use the red [resp. blue] color for LES [resp. unstable] steady state.

that is, λ1 < λ2. In addition, (6.2) results in

(6.6) x1 = δ(x2) := b+ − c+x2, with b+ =
D(Sin − λ2)

µ1(λ2)
, c+ =

D2

µ1(λ2)
.

Since c+ is positive, a necessary condition for the positivity of the component x1 is that b+

be positive, that is, λ2 < Sin. Thus, system (6.1) has a positive steady state E∗ = (λ2, x
∗
1, x
∗
2)

if and only if the curve CH of the function x2 7→ H(x2) and the straight line ∆ of equation
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x1 = δ(x2) have a positive intersection (see Figure 7) such that the coordinates (x∗1, x
∗
2) are

positive solutions of equations

x1 = H(x2) and x1 = δ(x2),

or equivalently, these solutions satisfy the necessary condition λ1 < λ2 < Sin. Using
expression (6.5) of the function H, we have

H ′(x2) = −2
a+

x3
2

< 0 and H ′′(x2) = 6
a+

x4
2

> 0.

Thus, the function H is convex (see Figure 7) with H(0+) = +∞ and H(+∞) = 0.
Consequently, there are at most two solutions of equation H(x2) = δ(x2). Let φ be the
function defined by

φ(x2) := H ′(x2)− δ′(x2) = H ′(x2) + c+.

Since φ is increasing from φ(0+) = −∞ to φ(+∞) = c+, then for all D > 0 there exists a
unique solution

x2 = xc2(D) :=
3

√
2a+

c+

of equation H ′(x2) = δ′(x2). If in addition, for all D > 0, H(xc2) = δ(xc2), then there exists
a unique critical value of Sin denoted Scin(D) that we determine in the following its explicit
expression. Indeed, from (6.5) and (6.6), it follows that H(xc2) = δ(xc2) is equivalent to

a+

(xc2)2
= b+ − c+xc2.

Then, using the expressions of a+, b+ and c+ in (6.5) and (6.6), straightforward calculation
shows that

(6.7) Scin(D) = λ2 +
3

D
3

√
D2

2µ1(λ2)(µ1(λ2)−D1)

4α1
.

Consequently, a positive steady state E∗ exists if and only if λ1(D) < λ2(D) and Sin > Scin.
Next, the local stability of all steady states of system (6.1) is deduced from that in section 3
by taking q2(x2, x1) = 0 and q1(x1, x2) = α1x1x

2
2. From Proposition 3.1, E0 is LES if and

only if Sin < min(λ1, λ2). Moreover, E1 is LES if and only if x̄1 < x̃1 which is equivalent to
λ1(D) < λ2(D). Indeed, from Proposition 2.4, x̃1 is the unique solution of equation

ψ1(x1) = µ1(ϕ1(x1))−D1 − q1(x1, 0) = µ1(ϕ1(x1))−D1 = 0.

From (2.2) and (2.3), we have

ϕ1(x1) = λ1 = Sin −
D1

D
x̃1, i.e. x̃1 =

D

D1
(Sin − λ1).

In addition, from Proposition 2.6 and system (2.8), we obtain

x̄1 = F2(0), i.e. f2(0, x̄1) = µ2(Sin − g(x̄1, 0))−D2 = 0,
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that is, Sin − g(x̄1, 0) = λ2. Using (2.7), it follows that

x̄1 =
D

D1
(Sin − λ2).

Consequently, x̄1 < x̃1 is equivalent to λ1(D) < λ2(D). Similarly, E2 is LES if and only if
x̄2 < x̃2 which is equivalent to λ2(D) < λ1(D) where

x̃2 =
D

D2
(Sin − λ2) and x̄2 =

D

D2
(Sin − λ1).

Recall from Table 2 that the positive steady state E∗ is LES if and only if F ′1 (x∗1)F ′2 (x∗2) > 1
(or equivalently c3(Sin, D) > 0) and c4(Sin, D) > 0. Since Q21 = Q22 = 0 and S∗ = λ2 in the
particular case where the function q2(x2, x1) = 0, some coefficients of the Jacobian matrix J∗

defined in (3.1) change and we obtain m32 = m33 = 0 and m13 = D2. From (3.2), it follows
that

c3 = m13m22m31 −m12m23m31.

Using (2.11) and (3.1), we get

c3 = α1E2µ1(λ2)x1x
3
2

(
D2

µ1(λ2)
− 2

x1

x2

)
.

Since we have δ′(x2) = −c+ = −D2/µ1(λ2), H ′(x2) = −2a+x−3
2 and x1 = H(x2) = a+x−2

2 , it
follows that

H ′(x2) = −2
x1

x2
.

Therefore,
c3 = α1E2µ1(λ2)x1x

3
2

(
H ′(x2)− δ′(x2)

)
.

On the other hand, from (3.6), we see in the particular case where Q22 = Q21 = 0 that c4 > 0.
Consequently, E∗ is LES if and only if H ′(x∗2) > δ′(x∗2). Now, we can state the following result.

Table 8
Necessary and sufficient conditions of existence and stability of all steady states of model (6.1).

Steady state Existence Local stability

E0 = (Sin, 0, 0) always exists Sin < min(λ1(D), λ2(D))
E1 = (λ1, D(Sin − λ1)/D1, 0) Sin > λ1(D) λ1(D) < λ2(D)
E2 = (λ2, 0, D(Sin − λ2)/D2) Sin > λ2(D) λ2(D) < λ1(D)
E∗1 = (λ2, x

∗
1, x
∗
2) λ1(D) < λ2(D), Sin > Scin LES whenever it exists

E∗2 = (λ2, x
∗∗
1 , x

∗∗
2 ) λ1(D) < λ2(D), Sin > Scin Always unstable

Proposition 6.1. Assume that Hypothesis 2.1 holds. System (6.1) has at most two positive
steady states denoted by E∗1 = (λ2, x

∗
1, x
∗
2) and E∗2 = (λ2, x

∗∗
1 , x

∗∗
2 ) such that x∗1 < x∗∗1 . The

components (x∗1, x
∗
2) and (x∗∗1 , x

∗∗
2 ) are given by the intersection of the curve of the function

H(x2) defined in (6.5) and the straight line ∆ defined in (6.6) by the equation x1 = δ(x2) (see
Figure 7). The necessary and sufficient conditions of existence and local stability of all steady
states of model (6.1) are given in Table 8.
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In [30], the author could not demonstrate that in reality the condition c4 > 0 of the
Routh–Hurwitz criterion corresponding to the stability of the positive steady state E∗1 of their
model (6.1) is always satisfied. Here, we have demonstrate that c4 is always positive such that
the positive steady state E∗1 is LES whenever it exists and it cannot be destabilized by a Hopf
bifurcation with the emergence of a stable limit cycle.

In what follows, we study theoretically the operating diagram of system (6.1). In Table 9,
we define the set Υk = {Υ1,Υ2,Υ5} of the three curves separating the various regions of the
(Sin, D)-plane.

Table 9
The curves in the set Υk and their corresponding colors in Figure 8.

Υk Color

Υ1 = {(Sin, D) : Sin = λ1(D)} Blue
Υ2 = {(Sin, D) : Sin = λ2(D)} Red
Υ5 = {(Sin, D) : Sin = Scin(D)} Green

(a)D

Υ1

Υ2

Υ5

D = 5

η1 η2 η3
Sin

(b)D

Υ1

Υ2

Υ5

J0

J8

J4 J5

Sin

Figure 8. MAPLE: (a) the three curves Υ1, Υ2 and Υ5 in the (Sin, D)-plane. (b) The corresponding
operating diagram of model (6.1).

To illustrate the operating diagram of model (6.1), we choose the specific growth rates
(4.2) satisfying Hypothesis 2.1 and the biological parameter values provided in Table 14 which
are the same as those in [30]. Since we have the explicit expression of the function Scin(D)
corresponding to the curve Υ5, MAPLE was able to plot all the curves in the set Υk (see
Figure 8).

Proposition 6.2. For the specific growth rates µ1 and µ2 defined in (4.2) and the set of the
biological parameter values in Table 14, the existence and the local stability of all steady states
of (6.1) in the four regions Jk, k = 0, . . . , 3 of the operating diagram in Figure 8 are described
in Table 10.

The following result determines the different types of bifurcations by crossing the four
regions Jk, k = 0, 4, 5, 8 of the operating diagram in Figure 8.

Proposition 6.3. The nature of all the bifurcations of steady states of system (6.1) by pass-
ing between the various regions of the operating diagram is provided in Table 11.
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Table 10
Existence and local stability of all steady states in the various regions of the operating diagram in Figure 8.

Condition Region Color E0 E1 E2 E∗1 E∗2
Sin < λ1(D) < λ2(D) J0 Cyan S
λ1(D) < Sin < λ2(D) J8 Green U S
λ2(D) < Sin < Scin(D) J4 Green U S U
Scin(D) < Sin J5 Red U S U S U

Table 11
Nature of all the bifurcations of steady states of model (6.1) by crossing the curves Υ1, Υ2 and Υ5.

Transition Curve Bifurcation Steady states

J0 to J8 Υ1 BP E0 = E1

J8 to J4 Υ2 BP E0 = E2

J4 to J5 Υ5 LP E∗1 = E∗2

Next, we will show the nature of bifurcations by crossing the different regions of the
operating diagram through the three curves Υ1, Υ2 and Υ5. To this end, we will analyze the
one-parameter bifurcation diagram in Sin where the dilution rate is fixed at D = 5. This
diagram corresponds to a horizontal line of equation D = 5 in the operating diagram (see
Figure 8(a)). Figure 9 illustrates in MAPLE the one-parameter bifurcation diagram in Sin,
with S, x1 and x2 on the y-axis.

(a)S

E0

E2 E∗1 E∗2

E1

η1 η2 η3
Sin

(b)x1

E1

E∗1

E∗2

E0
E2η1 η2 η3

Sin

(c)x2

E2

E1

E∗2

E∗1

E0
η1 η2 η3

Sin

Figure 9. MAPLE: (a-b-c) one-parameter bifurcation diagrams of system (6.1) in the variables S, x1, x2,
(resp.), with Sin as the bifurcation parameter and D = 5.

Increasing Sin from zero, there is a BP bifurcation occurring at Sin = η1 ≈ 0.857 between
E0 and E1. Indeed, the washout steady state E0 becomes unstable while the steady state of
exclusion of the second species E1 emerges stable into the admissible region. Next, there is a
BP bifurcation at Sin = η2 ≈ 3.5 between the washout steady state E0 and the steady state
of exclusion of the first species E2 such that E0 remains unstable and E2 appears unstable.
Finally, an LP bifurcation occurs at Sin = η3 ≈ 9.357 that gives birth to stable and unstable
coexistence steady states E∗1 and E∗2 , respectively. The study of the one-parameter bifurcation
diagram in Sin from the operating diagram in Figure 8 is summarized in the following result.
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Proposition 6.4. For the specific growth rates µ1 and µ2 defined in (4.2) and the set of the
biological parameter values in Table 14 corresponding to the operating diagram in Figure 8,
the existence and the local stability of all steady states of (6.1) according to Sin are described
in Table 12 when D = 5 is fixed. The critical values η1, η2 and η3 of different bifurcations
and the corresponding nature of bifurcations are determined in Table 13.

Table 12
Existence and stability of steady states of model (6.1) according to Sin when D = 5. η1, η2 and η3 are

defined in Table 13.

Interval of Sin E0 E1 E2 E∗1 E∗2
(0, η1) S
(η1, η2) U S
(η2, η3) U S U
(η3,+∞) U S U S U

Table 13
Definitions of the critical values η1, η2 and η3 of Sin and the corresponding nature of bifurcations when

D = 5 is fixed and Sc
in(D) is defined in (6.7).

Definition Value Bifurcation

η1 = λ1(D) 0.857 BP
η2 = λ2(D) 3.5 BP
η3 = Scin(D) 9.357 LP
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Υ2
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J8

J4

Sin

(b)D
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(c)D
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Υ5

J0

J8

J4 J5
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(d)D
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Υ2

Υ5-

J0

J8

J4� J5

Sin

Figure 10. MAPLE: effect of the variation of the parameter α1 on the emergence of the coexistence region
with bistability in the operating diagram of (6.1): (a) α1 = 10−5, (b) α1 = 10−3 (c) α1 = 10−2, (d) α1 = 20.

Figure 10 shows the effect of allelopathic interactions of the second species on the first
one where there is emergence of the bistability region J5 (in red) with either coexistence or
exclusion of the second species. More precisely, for small enough values of α1, the operating
diagram of the classical chemostat competition model is found where it exhibits the CEP such
that only the species with the lowest break-even concentration survives (see Figure 10(a)).
Increasing α1, Figure 10(b-c-d) illustrates how the bistability region J5 appears and extends
while the exclusion regions of the second species are reduced.

Using SCILAB [49], Figure 11(a) illustrates the three-dimensional space (S, x1, x2) in the
case Sin = 8 < Scin ≈ 9.357 where there is no interior steady state in R3

+. For various positive
initial conditions even close enough to E0 or E2, the numerical simulations permit to conjecture
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Figure 11. SCILAB: the three-dimensional space (S, x1, x2) of (6.1) when D = 5: (a) Sin = 8 < Sc
in ≈

9.357, convergence to E1. (b) Sin = 10.5 > Sc
in, bistability with either convergence to E1 or E∗1 .

the global convergence towards E1. In this case, the three steady states are given by

E0 = (8, 0, 0), E1 ' (0.857, 7.143, 0) and E2 = (3.5, 0, 4.5).

Figure 11(b) shows that system (6.1) exhibits bistability between the steady states E∗1 of
coexistence and E1 corresponding to the exclusion of second species, when Sin = 10.5 > Scin.
In this case, there exist five steady states given by E0 = (10.5, 0, 0), E1 ' (0.857, 9.643, 0),

E2 = (3.5, 0, 7), E∗1 ' (3.5, 0.528, 6.234) and E∗2 ' (3.5, 3.031, 2.601).

Remark 6.5. In the case λ1 < λ2, by increasing Sin, E1 loses a degree of stability and
E2 appears locally asymptotically stable for (6.1) is incorrect in Section 2.5 of [30] via a
transcritical bifurcation of E0 and E2 occurring at Sin = λ2. Similarly, it is an error in the
reverse case λ2 < λ1. Indeed, the bifurcation parameter is Sin with D is fixed. By Proposition
Proposition 6.1, E1 is LES if and only if λ1(D) < λ2(D). As this last inequality is unchanged
by varying Sin, then E1 does not lose a degree of stability and it remains LES (see Figure 9)
through the passage of Sin by λ2(D) which is fixed. Moreover, E2 appears unstable via
a transcritical bifurcation with E0 occurring at Sin = λ2 because E2 is LES if and only if
λ2(D) < λ1(D). Using the same set of parameter values in [30], the numerical simulations
in Figure 11(a) illustrating the trajectories in the three-dimensional phase space (S, x1, x2)
show these contradictions where the solutions of system (6.1) converge to E1 for any initial
condition, in particular for two initial conditions close enough to E2.

7. Discussion and conclusion. Inspired by the way in which the phenomena of intra-
and interspecific interference and allelopathic effects have been formalized to model the com-
petitions of microbial species in [30, 39, 45, 52], we have proposed the original and general
model (1.2) of two-microbial species in competition for a single-resource in the chemostat.
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Indeed, we have included general intra- and interspecific density-dependent growth rates with
allelopathic effects describing the production of each species a toxin that affects the growth of
other species as well as its own growth (autotoxicity). The removal rates are distinct so that
the mortality rate of each species is the sum of the specific death rate and the autotoxicity.
Allowing a large class of growth functions, this model generalized those in [30, 45, 52].

Our mathematical analysis provided a complete study of this process. More precisely,
we have determined the necessary and sufficient conditions of existence and local stability of
all steady states of model (1.2) according to the operating parameters Sin and D. To have a
global vision of the asymptotic behavior of model (1.2) according to the operating parameters,
we have analyzed theoretically and numerically the operating diagrams in the two parameters
Sin and D. In fact, we have shown that system (1.2) can have a unique stable steady state:
either the washout of two species (J0), or the exclusion of one species (J1,J2, and J4), or
the coexistence (J3). The model (1.2) can also exhibit bistability between the coexistence
steady state and that of exclusion of the second [resp. first] species (J5 [resp. J7]), or the two
coexistence steady states (J6). Crossing the boundary of the various regions in the operating
parameters space of model (1.2), we have shown that the steady states can appear or disappear
only through transcritical or saddle-node bifurcations. When the input concentration Sin is
fixed, the analysis of the one-parameter bifurcation diagram in the dilution rate D illustrated
the nature of bifurcations of the steady states.

On the other hand, our theoretical results are applied to the particular model (6.1) of
Kengwoung-Keumo [30] where the intra- and interspecific interference are neglected, and only
the allelopathic effects of the second species on the first species are considered. The necessary
and sufficient conditions of existence and local stability of all steady states are established
according to the operating parameters Sin and D. System (6.1) has at most two coexistence
steady states. We have demonstrated that the stability condition of the coexistence steady
state E∗1 in [30] is always fulfilled. Thus, the stability condition of this steady state in [30]
must be removed and corrected by the coexistence steady state E∗1 is LES when it exists.

In addition, we have established theoretically the operating diagram of model (6.1) and we
have analyzed the effect of increased toxin production of the second species on the first species.
Increasing this allelopathic effect, that is, the value of α1, the bistability region J5 (in red)
between a coexistence steady state and that of the exclusion of the second species has emerged
while the regions of competitive exclusion J4 and J8 (in green) are reduced. Decreasing
the value of α1 to zero, we have obtained the operating diagram of the classical chemostat
competition model confirming the CEP [27, 50]. The one-parameter bifurcation diagram
in Sin has described the nature of bifurcations of all steady states by crossing the various
regions of the operating diagram in Figure 8 when D is fixed. The numerical simulations
have illustrated in the three-dimensional phase space (S, x1, x2) either the global convergence
towards the steady state of exclusion of the second species or that of the bistability between
the coexistence of the two species and the exclusion of second species.

Thus, the main contribution of our study is to bring out the joint effects of the intra-
and interspecific competition with the allelopathic effects on the growth of the two species
which are not studied in the existing literature. Adding the allelopathic effects of each toxin-
producing species to the intra- and interspecific interference of the two species did not allow
to solve the open problem of the stability condition c4 of the Routh–Hurwitz criterion (3.3)
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and to show that the coexistence steady state could destabilize with emergence of periodic
oscillations. Despite the structure of our model (1.2) being different from that in Fekih-Salem
et al. [16], we have found qualitatively similar results for the existence, multiplicity and local
stability of the steady states of the two systems. For example, the condition Q11Q22 ≥ Q12Q21

given in Proposition 3.3 is qualitatively similar to condition (26) in [16] which means that the
intraspecific interference is dominant with respect to interspecific interference.

In the density-dependence model [16], mortality is essential for there to be any hope of
coexistence around periodic oscillations. However, our theoretical study of model (1.2) showed
that mortality is not necessary where the coexistence steady state could destabilize even with
identical removal rates of the two species. The production effect of a toxic substance released
by a species and being nocive to their own or their competitor’s growth rates could replace
the mortality effect and hope for coexistence around a stable limit cycle.

The application of our general results to the particular model of [30] with only allelopathic
effects has shown that there can be coexistence around an interior steady state but in the case
where the system exhibits bistability. Thus, the addition of the toxic effect on the most
competitive species in the classic chemostat model is sufficient to guarantee the coexistence
between the two species but under the constraint of suitable choices of the initial conditions in
the basin of attraction of the interior steady state. Moreover, our study also has shown that
it is impossible to have coexistence if the second species is more efficient (λ2 < λ1) without
any effect of intra- and interspecific interference and production of the harmful toxin by the
first species in the dynamics of the second species.

Appendix A. Positivity of the stability condition c4. In this section, we show that
the stability condition c4 > 0 holds for the two positive steady states E∗1 and E∗3 such that
the curve corresponding to c4 = 0 does not exist in the operating diagram of Figure 5 for
model (1.2). To this end, we consider the specific growth rates µ1 and µ2 defined in (4.2), the
functions q1 and q2 defined in (4.3), and the set of the biological parameter values in Table 14.
Note that the critical values σi, i = 1, . . . , 6 of D are defined in Table 7 where σi, i = 1, 2, 3, 6
correspond to Branch Points (BP) bifurcations while σ4 and σ5 correspond to Limit Points
(LP) bifurcations. Using MAPLE, we plot in Figure 12(a) the curve of the function D 7→ c4(D)
corresponding to the steady state E∗1 [resp. E∗3 ] for all D in their existence domain (σ3, σ5)
[resp. (σ4, σ6)] when Sin = 1.4 and Sin = 2.04, and in (σ4, σ3) [resp. (σ6, σ5)] when Sin = 4,
Sin = 8, and Sin = 16. Figure 12(b) illustrates a magnification when D ∈ [0, 0.2] showing
the positivity of the function c4(D) corresponding to the steady state E∗1 for all D ∈ (σ1, σ2)
and for the different fixed values of Sin. Moreover, the numerical simulations show that c4 is
always positive for any value of Sin and D in the existence domain of E∗1 and E∗3 .

Appendix B. Parameter values for numerical simulations. All the values of the param-
eters used in the numerical simulations are provided in Table 14.

Table 14
Parameter values used for models (1.2) and (6.1) when the growth rates µ1 and µ2 are given by (4.2) and

the functions q1 and q2 are defined in (4.3).

Parameter µm1 k1 µm2 k2 a11 a12 α1 a22 a21 α2 θ1 m1 θ2 m2

Figures 4 to 6 and 12 7.5 0.5 8.5 1.2 5 6 22 7 5 22 0.8 0.7 0.1 0.1
Figures 7 to 11 8.5 0.6 6 0.7 0 0 0.11 0 0 0 1 0 1 0
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Figure 12. MAPLE: (a) curves of the function c4(D) corresponding to E∗1 [resp. E∗3 ] for all D in their
existence domain (σ3, σ5) [resp. (σ4, σ6)] when Sin = 1.4 and Sin = 2.04, and in (σ4, σ3) [resp. (σ6, σ5)] when
Sin = 4, Sin = 8, and Sin = 16. (b) Magnification of c4(D) corresponding to E∗1 for all D ∈ (σ1, σ2).
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C. R. Biol., 329 (2006), pp. 63–70, https://doi.org/10.1016/j.crvi.2005.11.004.

This manuscript is for review purposes only.

https://doi.org/10.1137/20M1376480
https://doi.org/10.1016/j.jmaa.2012.07.055
https://doi.org/10.1016/j.jmaa.2012.07.055
https://doi.org/10.1016/j.mbs.2017.02.007
https://doi.org/10.1016/j.apm.2016.03.028
https://doi.org/10.1137/18M1171801
https://doi.org/10.1137/18M1171801
https://hal.archives-ouvertes.fr/hal-02160798
http://arima.inria.fr/014/014002.html
https://doi.org/https://doi.org/10.1016/j.ecolmodel.2007.05.024
https://doi.org/https://doi.org/10.1007/s11587-011-0108-y
https://doi.org/https://doi.org/10.1007/s11587-011-0108-y
https://doi.org/10.1007/978-1-4615-6397-6
https://doi.org/10.1007/978-1-4615-6397-6
https://doi.org/10.1080/17513750801942537
https://doi.org/10.3390/pr9112050
https://doi.org/10.3390/pr9112050
https://doi.org/10.1002/9781119437215
https://doi.org/10.1002/9781119437215
https://doi.org/10.3934/dcdsb.2009.12.337
https://doi.org/10.1007/BF03167323
https://doi.org/10.3934/mbe.2016018
https://doi.org/10.3934/mbe.2016018
https://doi.org/10.1016/j.apm.2018.04.020
https://doi.org/10.1006/jmaa.1999.6655
https://doi.org/10.1016/j.crvi.2005.10.004
https://doi.org/10.1016/j.crma.2004.12.021
https://doi.org/10.1016/j.crvi.2005.11.004


32 R. FEKIH-SALEM

[36] MAPLE [Software], Waterloo Maple Inc., Waterloo, Ontario, https://fr.maplesoft.com/.
[37] I. P. Martines, H. V. Kojouharov, and J. P. Grover, A chemostat model of resource competition and allelopathy,

Appl. Math. Comput., 215 (2009), pp. 573–582, https://doi.org/10.1016/j.amc.2009.05.033.
[38] MATCONT [Software], W. Govaerts, Y. A. Kuznetsov, and H.G.E. Meijer, https://sourceforge.net/projects/

matcont/.
[39] J. Maynard-Smith, Models in Ecology, Cambridge University Press, London, 1974.
[40] T. Mtar, R. Fekih-Salem, and T. Sari, Interspecific density-dependent model of predator-prey relationship in

the chemostat, Int. J. Biomath., 14 (2021), p. 2050086, https://doi.org/10.1142/S1793524520500862.
[41] T. Mtar, R. Fekih-Salem, and T. Sari, Mortality can produce limit cycles in density-dependent models with

a predator-prey relationship, Discrete and Continuous Dyn. Syst. - B, 27 (2022), pp. 7445–7467,
https://doi.org/10.3934/dcdsb.2022049.

[42] S. Nouaoura, N. Abdellatif, R. Fekih-Salem, and T. Sari, Mathematical analysis of a three-tiered model
of anaerobic digestion, SIAM J. Appl. Math., 81 (2021), pp. 1264–1286, https://doi.org/10.1137/
20M1353897.

[43] S. Nouaoura, R. Fekih-Salem, N. Abdellatif, and T. Sari, Mathematical analysis of a three-tiered food-web in
the chemostat, Discrete and Continuous Dyn. Syst. - B, 26 (2021), pp. 5601–5625, https://doi.org/
10.3934/dcdsb.2020369.

[44] S. Nouaoura, R. Fekih-Salem, N. Abdellatif, and T. Sari, Operating diagrams for a three-tiered microbial food
web in the chemostat, J. Math. Biol., 85 (2022), https://doi.org/10.1007/s00285-022-01812-5.

[45] S. Roy, The coevolution of two phytoplankton species on a single resource: Allelopathy as a pseudo-
mixotrophy, Theor. Popul. Biol., 75 (2009), pp. 68–75, https://doi.org/https://doi.org/10.1016/j.tpb.
2008.11.003.

[46] T. Sari and B. Benyahia, The operating diagram for a two-step anaerobic digestion model, Nonlinear Dyn.,
105 (2021), pp. 2711–2737, https://doi.org/10.1007/s11071-021-06722-7.

[47] T. Sari and J. Harmand, A model of a syntrophic relationship between two microbial species in a chemostat
including maintenance, Math. Biosci., 275 (2016), pp. 1–9, https://doi.org/10.1016/j.mbs.2016.02.
008.

[48] T. Sari and M. J. Wade, Generalised approach to modelling a three-tiered microbial food-web, Math. Biosci.,
291 (2017), pp. 21–37, https://doi.org/10.1016/j.mbs.2017.07.005.

[49] SCILAB [Software], Enterprises SAS, https://www.scilab.org/.
[50] H. Smith and P. Waltman, The Theory of the Chemostat: Dynamics of Microbial Competition, Cambridge

University Press, Cambridge, UK, 1995.
[51] S. Sobieszek, M. J. Wade, and G. S. K. Wolkowicz, Rich dynamics of a three-tiered anaerobic food-web in

a chemostat with multiple substrate inflow, Math. Biosci. Eng., 17 (2020), pp. 7045–7073, https:
//doi.org/10.3934/mbe.2020363.
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