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Abstract: In this article, we propose to explore the chemical interaction between Pseudosphinx tetrio L.
and Allamanda cathartica L. using different analytical methods, including an innovative electrochemical
approach (called electrochemical ecology) and multivariate analysis, and we investigate the potential
antimicrobial effects (antibacterial and antifungal activities) of this interaction in order to gain a better
understanding of their specific interaction. The analytical study presents a similar chemical profile
between the leaves of healthy and herbivorous A. cathartica and the excretions of the caterpillars.
The similar analytical profile of the leaves of A. cathartica and the excretions of P. tetrio, and the
difference with the caterpillar bodies, suggests a selective excretion of compounds by the caterpillar.
The measured antimicrobial activities support the physicochemical tests. The natural products found
selectively in the excretions (rather than in the body) could explain the ability of P. tetrio to feed on
this toxic Apocynaceae species.

Keywords: chemical ecology; electrochemical ecology; aposematism; allelopathy; plant–insect interac-
tions; Pseudosphinx tetrio; Allamanda cathartica; phytochemical analysis

1. Introduction

The tetrio sphinx, Pseudosphinx tetrio L. (Lepidoptera: Sphingidae), is a moth widely
distributed in tropical and subtropical regions of the Americas and the Caribbean basin,
where suitable host plants for the development of its larvae (large, conspicuous caterpillars)
are present [1–10].

Adult females of P. tetrio [11] lay 50–100 eggs on the underside of the host plant’s
leaves, from which they hatch in about three days [3]. After hatching, the gregarious
larvae live in colonies for at least the first three developing stages, feeding initially on the
upper surface of leaves and in later stages on all leaf tissues except leaf veins and midribs
as they progress to the later instars. Adult larvae (fifth or sixth stages) feed singly or in
small groups on entire leaves can reach a length of 63–69 mm [3,4]. The color of larvae is
characteristic of aposematism (antipredation strategy: warning predators of bad taste or
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toxicity). According to an aposematic hypothesis, it becomes toxic to its predators when
it ingests toxic phytocomponents from the milky sap of some plants [12]. The body is
velvety black with yellow rings on each thoracic and abdominal segment, the head is dark
orange-red, and the prothoracic shield, prominent legs and anal segment are orange-red
with dark markings. The spine on the eighth abdominal segment is black and emerges
from a raised, orange, button-like structure [4,13–15]. The aposematic larvae have few
predators due to their venomous nature. However, the squirrel cuckoo, Piaya cayana Linn.,
of Belize, consumes P. tetrio by taking larvae, beating them against a branch until the
poisonous gut contents are gone, and then swallowing the remains [16]. The larvae wrap
themselves in a cocoon of silk or dead leaves and molt into new pupae about 7.0 cm long.
The adult moths, colored in shades of gray, hatch from the pupae 53 days after egg laying
and have a wingspan of 12.7–14.0 cm (eggs hatch in 3 days or more; average duration of
the 5–6 larval stages is 23–4 days; the prepupal stage lasts about 4 days and the pupal stage
about 22 days [3]). P. tetrio has the ability to eat up to twice its weight in food during a day,
hence its name, “glutton caterpillar”. The larva of P. tetrio feeds preferentially on the leaves
of the Apocynaceae family’s plants, such as Allamanda cathartica L. and Plumeria alba L.,
which are rich in toxic latex [17,18].

A. cathartica is commonly known as yellow allamanda, golden trumpet or “Liane à lait” [19].
This is a common name for the species. In the review paper by Ghosh and coworkers, it was
described as a hermaphroditic, vine-like, woody shrub used primarily in landscaping, more
spreading than tall, and with perennial leaves [20]. A. cathartica is a fast-growing species that
is widely distributed worldwide, but mainly in tropical and subtropical regions, where the
caterpillar P. tetrio is present [21,22]. A. cathartica is one of the fifteen species of the Apocynaceae
family according to the “WFO Plant List” [23].

The plant is native to Brazil [24] and its various parts such as leaves, flowers, roots and
stems are used in traditional medicine [25] for the treatment of jaundice [26], and have vari-
ous pharmacological activities such as wound healing [26], antioxidant [27–30], antimicro-
bial [30–32], antifungal [33], antimalarial [34], anti-inflammatory [35]; anticancer [20,36,37]
and gastrointestinal effects [38]. A dichloromethane (CH2Cl2) extract of the whole plant
tested on two pathogenic dermatophytes, Trichophyton rubrum and Microsporum gypseum,
showed moderate activity at a concentration of 50 µg/disk, but very strong activity at a
concentration of 200 µg/disk, suggesting that A. cathartica may possess antidermatophyte
constituents that could be useful in the treatment of ringworm [39,40].

In general, insects are not strictly restricted to the leaves and reproductive parts of
living plants. Most studies conducted on strict herbivores [41] indicate that larval hosts
of sphingids are concentrated on a few plant families whose foliage is particularly rich
in alkaloids, milky sap, essential oils, irritant acids or other small toxic natural products
(e.g., Rubiaceae, Euphorbiaceae, Apocynaceae, Vitaceae, Bignoniaceae, etc.).

However, all parts of A. cathartica are rich in secondary metabolites, which are ex-
haustively listed in the review by Petricevich and Abarca-Vargas [42], with plumieride,
plumericin, and allamandin being the most characteristic. A total of 151 compounds were
distributed as follows: 3 hydrocarbons in flowers; 7 alcohol compounds, 9 esters, 1 ether,
6 aldehydes, and 1 ketone in flowers, leaves, and stems extracts; 37 fatty acids and phos-
pholipids; 43 volatile compounds mostly in flowers and leaves; 5 phenolic compounds
and 6 flavonoids in the flowers and stems; 2 alkaloids in stems; 11 steroids and terpenes
in leaves, stems and flowers; and 14 lactones in roots, stems, leaves, flowers and bark;
6 carbohydrates in leaves, stems, and nectar. Of the compounds identified, leaves contain:
ursolic acid, β-amyrin; β-sitosterol, sesquiterpenes, plumericin, plumieride, long chain
esters, flavonoids, polyphenols, allamandin, alkaloids, saponins and carbohydrates; stem
and bark contain: ursolic acid, β-amyrin, β-sitosterol, triterpenoids, glucosides, alkaloids,
flavonoids and polyphenols; flowers contain: quercetin, quercitrin, kaempferol, hesperetin,
flavonoids, polyphenols and polysaccharides; and roots contain: lactones, allamandin,
allamandicin, allamdin, plumieride iridoids, triterpenoids, alkaloids and several gluco-
sides [36,38,43] (cited by [44]); [19,21,27,42]. Like A. cathartica, various parts of P. rubra are
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widely used in traditional medicine [45]. P. rubra contains many chemical constituents
such as glycosides, phenolic compounds (phenolic acids and flavonoids), alkaloids, amino
acids and terpenoids (iridoids) which give the flower antibacterial and antifungal activities.
However, the main chemical constituents responsible for the pharmacological activities
of P. rubra are: plumieride, fulvoplumierine, lupeol, rubrinol, stigmasterol, oleanolic acid,
taraxasteryl acetate, rubranonoside, plumieride-p-E-coumarate, isoplumericin, rubrajalellol
and plumericin [46–49]. These molecules form plant may have antimicrobial activities and
effects and may be of interest for use against pathogenic microorganisms.

In nature, predatory insects are highly host-specific and exhibit a variety of traits.
Direct associations between plants and insects are ubiquitous, and in the context of tropical
chemical ecology, many different plant–herbivore interactions are highly specialized [50].
What attracts an egg-laying insect to one plant and prevents it from laying its eggs on
another is often an aspect of plant chemistry that is recognized by the insect [51]. Never-
theless, plants can biosynthesize protective secondary metabolites (in the milky sap or via
vascular tissue or in specialized tissues) in a self-defense process to reduce herbivory. In
turn, herbivores may respond to these compounds and attempt to metabolize them, selec-
tively excrete them, or use them (after ingestion into the body) for their own defense [52,53].
In 2022, McCoy and colleagues showed that for Eocene herbivorous insects that eat leaves
with such defense mechanisms, a distinct burrowing or cutting behavior that disrupts the
supply of protective compounds distal to the plant tissue allowed the insect to eat the
leaf [54].

The coevolution of specialized plant–insect herbivore interactions has been the subject
of decades of study [55–57]. Lepidoptera caterpillars, for example, often specialize on
toxic plants and are able to either sequester [58–60], metabolize [61,62] or excrete chemical
compounds from their hosts in an unmodified form [63]. Understanding how herbivores
deal with toxic phytochemicals in their diet is necessary to understanding the evolution of
the two most biodiverse groups of multicellular organisms: plants and insects.

In this article, we propose to explore the chemical interaction between P. tetrio and
A. cathartica using different analytical methods, including an innovative electrochemical
approach (called electrochemical ecology) and multivariate analysis, and we investigate
the potential antimicrobial effects (antibacterial and antifungal activities) of this interaction,
in order to gain a better understanding of their specificity.

2. Results and Discussion
2.1. Phytochemical Tests

Thin layer chromatography (TLC). First, a TLC study was conducted. The different
results of this approach are presented in Table 1. In our first hypothesis (Hyp. 1), we propose
that the caterpillars take up and store certain metabolites (for example, the metabolite with
an Rf (Retention factor) of 0.16 on TLC 3 (orange color)). The second hypothesis proposed
(Hyp. 2), also listed in Table 1, refers to the selective excretion of an unidentified molecule
by the caterpillars (for example, the metabolite with an Rf of 0.95 on TLCs 2 and 3 (blue
color)). Finally, the third hypothesis (Hyp. 3) refers to the response of the healthy plant
to herbivory. For example, the metabolite with an Rf of 0.28 on TLC 1 (pink color), since
this metabolite is present in healthy leaves and not in predated leaves. The opposite case
is observed with the metabolite with an Rf value of 0.18 on TLC 4 (green color), which
is present only in predated leaves and could therefore be considered a metabolic marker
for herbivores.
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Table 1. Organic phases obtained with TLC results. (A) Healthy A. cathartica leaves, (B) herbivored A.
cathartica leaves, (C) caterpillar bodies and (D) caterpillars’ feces. Solvent percentages are presented
as highest polarity in solution (MeOH and EtOAc) *.

Elution Solvent % * TLC Rf A (1.2) B (1.3) C (1.4) D (1.5)

CH2Cl2 100 1
0.16
0.28 Hyp. 1 and 3 Hyp. 1
0.58

CH2Cl2/MeOH

5 2

0.05
0.19
0.22
0.60
0.91
0.95 Hyp. 2 Hyp. 2 Hyp. 2

10 3

0.16 Hyp. 1 Hyp. 1 Hyp. 1
0.20
0.57
0.90
0.95 Hyp. 2 Hyp. 2 Hyp. 2

1 4

0.18 Hyp. 1 and 3 Hyp. 1
0.30 Hyp. 1 and 3 Hyp. 1 and 3
0.79
0.93
0.94 Hyp. 2 and 3 Hyp. 2

CH2Cl2 100 5

0.08
0.17
0.37
0.62
0.93

C6H14 100 6
0.03
0.37 Hyp. 1 Hyp. 1 Hyp. 1

C6H14/C4H8O2

20 7

0.17
0.30
0.34 Hyp. 1 Hyp. 1 Hyp. 1
0.64
0.94 Hyp. 2 and 3 Hyp. 2
0.97
0.98

1

50 8
0.48 Hyp. 1 and 3 Hyp. 1

0.95
0.97

80 9
0.50
0.91
0.94

* Similarly, metabolites between two extracts or more are described in colors: orange: A, B and C; blue: A, B and
D; pink: A and C; yellow: B and D. Hypotheses that can be illustrated by each compound are cited.

Nuclear magnetic resonance spectroscopy 1H NMR. The 1H NMR data were obtained
only from the organic extracts of the plants and caterpillars using DMSO-d6 as a solvent.
Solvent signals from deuterated DMSO and residual water at 2.5 and 3.3 ppm, respectively,
were removed (Figure 1). The analysis shows minor differences between the spectra of
healthy and predated Allamanda leaves. This result is inconsistent with hypothesis 3 (in
which a plant response to aggression was observed).
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Figure 1. 1H NMR of organic extracts in DMSO-d6. (2_1) Healthy Allamanda leaves; (3_1) predated
Allamanda leaves; (4_1) caterpillar bodies and (5_1) caterpillar feces.

The 1H NMR spectra of caterpillars’ bodies and feces show large differences between
the samples, and the chemical profile of healthy Allamanda leaves and the caterpillar feces
is very similar. This result confirms hypothesis 2 and shows the similarity between the
chemical profile of A. cathartica leaves and caterpillar feces compared to the caterpillar
body. These similarities and dissimilarities confirm our hypothesis (Hyp. 3) of the selective
excretion of toxic compounds.

High performance liquid chromatography coupled with mass spectrometry (HPLC-
MS). In this study, the samples containing the healthy and eaten leaves of A. cathartica,
as well as the caterpillars and their feces, were analyzed using high-performance liquid
chromatography techniques [19,64–66] (Figure 2). The similar profile observed in these
spectra indicates the presence of the same main compounds in the healthy (A) and predated
(B) A. cathartica leaves, with similar retention times (RT) of 20.00 min and 20.50 min,
respectively. A second compound can be identified in these spectra with comparable
retention times to hypothesis 3 (RTs: 25.52 min and 26.02 min). These results are in contrast
to hypothesis 3 (as we can see in the TLCs and 1H NMR profiles). The analysis shows the
presence of this compound in the caterpillar’s feces (D, RT: 25.73 min) but not in its body
(C), which also confirms hypothesis 2 (in agreement with the 1H NMR and TLC results).
Finally, the results show that the compounds found in P. tetrio’s bodies (C, RT: 20.43 min
and 25.66 min) are significantly different from other compounds found in the feces (also
confirming hypothesis 2).
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Figure 2. HPLC-MS profiles of (A) healthy and (B) predated leaves of A. cathartica and (C) caterpillar
bodies and (D) caterpillar feces.

Electrochemical investigation. Cyclic voltammetry (CV) studies have been used to
investigate possible interactions between different compounds and were previously used to
monitor plant defenses against external stressors [67–70]. Here, the predation of A. cathartica
by P. tetrio has been monitored electrochemically using CV. We studied the electrochemical
response of films (on the surface of a glassy carbon electrode) of organic and aqueous
extracts of healthy and predated leaves of the plant and samples of bodies and feces of
P. tetrio in 0.10 mol L−1 phosphate solution buffer at pH 7.0. The reported methodology is
ultimately based on the voltammetry of microparticles (VMP) technique [71].

The behavior of films on glassy carbon electrodes of healthy and predated leaves of
A. cathartica is shown in Figure 3. A series of chemically irreversible oxidation processes: A1, A2
and A3, were observed (0.28 V, 0.65 V and an undefined shoulder at 1.00 V, respectively). While
the peaks A1 and A2 decrease with cycling until a fully passivated and stable state is reached at
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about the second cycle, an increase in the A3 peak was observed. Thus, the variations in the ratio
of peaks A1 and A3 suggest differences in the nature of the redox species of A. cathartica and in
leaves that are strengthened by them. These oxidation processes represent a profile observed in
several plant species and are due to the oxidation of polyphenolic organic compounds. Indeed,
the voltammogram of the predated leaves exhibits the same signals as healthy leaves, but peak
A1 is depleted while the A3 signal is enhanced. Finally, a reduction process can be observed
at about −1.0 V when the potential sweep is reversed to less positive potentials. Although
these processes are slightly more negative in healthy leaves than in predated leaves, both are
consistent with the typical behavior of the oxygen reduction reaction (ORR) in water. This result
basically contradicts hypothesis 3 about the chemical response to the herbivory, but using this
technique, we can identify slight differences between healthy and predated leaves, possibly
related to polyphenols (reaction against oxidative stress) [72].
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glassy carbon electrode in contact with air-saturated 0.10 M phosphate buffer at pH 7.0. Scan rate
10 mV.s−1.

The CV of films on glassy carbon electrodes of P. tetrio’s bodies and its excrement after
predation of leaves of A. cathartica are shown in Figure 4. CV shows no clear oxidation
process in the initial anodic scan for the body of P. tetrio, but three oxidation processes for
its excreta at 0.22, 0.45 and 0.78 V for A1, A2 and A3, respectively, which are similar to those
found for the A. cathartica analysis. Again, a typical oxygen reduction reaction (ORR) in
water was observed in the cathodic region in both analyses. In addition, a characteristic
signal C1 appears in both samples, indicating the presence of oxidized metabolite of P. tetrio.
This result confirms hypothesis 2, in agreement with the other analytical approaches.
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A comparison was made between the CV of films from the water extracts of healthy
and spoiled leaves of A. cathartica in contact with air-saturated 0.10 mol L−1 phosphate
buffer at pH 7.0 (Figure 5). Here, signal A1 appears clearly recorded in the healthy leaves
and is accompanied by a well-defined cathodic peak at—1.25 V (C2). Signal C2 disappears
in the CV of the damaged leaves, while signal A1 decreases and signal A3 is clearly visible
at 0.78 V. This result confirms hypothesis 3, which shows a reaction of leaves against
herbivory; the disappearance of signal C2 and the appearance of signal A3 are a result of
herbivory. This CV is reproduced to some extent reproduced in the aqueous extracts of
P. tetrio and its excrement, as shown in Figure 6, thus suggesting the existence of common
electroactive compounds.
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Principal Component Analysis (PCA). A total of 24 chromatograms were acquired
using HPLC-EI-MS, 12 from the aqueous fraction and 12 from the organic fraction (three
biological replicates for each species). To identify differences in the metabolites or even
in their concentration in the samples, the set of 24 samples was analyzed, obtained from
XCMS and used for data analysis. Two spreadsheets were obtained after data processing of
the HPLC-MS analysis, with 168 and 412 variables from the organic and aqueous fractions,
respectively (retention time m/z). In the PCA analysis, two plots were generated, namely
score and loading plots. The first one shows the sample groupings, whereas the second
one indicates the contribution of each variable to these samples. The PCA analysis was
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focused on the detection of any inherent pattern within the data. As observed in Figure 7,
samples of healthy and predated Allamanda leaves are closely related, with small differences
from each other, when compared with the caterpillars’ bodies and feces. Further, when
all samples are compared, the predated and not predated leaves from Allamanda are very
similar to each other, and different from the other samples. In addition, the caterpillar body
extracts present a great difference. In Figure 8 (loadings plot), the variables that influence
the grouping observed are presented.
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2.2. Microbial Activities

The potential antimicrobial activities of P. tetrio/A. cathartica interaction are shown in
Table 2. The yellow boxes show the effects of the consumption of the A. cathartica leaves
by the caterpillar. The comparison between the healthy leaves (A) and the leaves eaten
by the caterpillar (B) shows an increase or occurrence of inhibitory activity in favor of
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the leaves eaten by the caterpillar (B) on the microorganisms, regardless of the type of
extraction (Aqueous (A); Organic (O)), AO versus BO for Escherichia coli and Candida albicans
(diameter of inhibition: 7 mm versus 0 mm; 9,5 mm versus 7 mm); and AA versus BA
for Escherichia coli and Candida albicans (diameter of inhibition: 7 mm versus 0 mm; 9 mm
versus 8 mm)). The occurrence or enhancement of this bioactivity in the predated leaf could
be explained by the induction of a chemical or biological defense reaction of the host plant
against herbivory (proposed hypothesis 3).

Table 2. Microbial activity results of aqueous and organic extracts, obtained from Allamanda cathartica
(A. cathartica) leaves, caterpillar bodies and caterpillar feces on three bacterial (Escherichia coli; Staphylo-
coccus aureus; Pseudomonas aeruginosa) and two fungal (Candida albicans; Aspergillus fumigatus) strains.

Extracts
(100 µg/disc)

Microorganisms

Caterpillar Feces (D) Caterpillar Bodies (C) Healthy
A. cathartica Leaves (A)

Predated
A. cathartica Leaves (B)

DA Do CA Co AA Ao BA Bo
Escherichia

Coli
- +++

(11)
+

(7)
- - - +

(7)
+

(7)
Staphylococcus

aureus
- ++

(9.5)
- - - +

(8.5)
- +

(8)
Pseudomo-

nas aeruginosa
- - - ++

(9)
- +

(7)
- +

(8,5)
Candida
albicans

++
(8,5)

++
(9)

+
(7)

+
(7)

+
(8)

+
(7)

++
(9)

++
(9,5)

Aspergillus
fumigatus

- +++
(10,5)

- - - +++
(10)

- +++
(11)

Legend: Aqueous extracts (A); organic (O) extracts; healthy A. cathartica leaves (A); predated A. cathartica leaves (B);
caterpillar bodies (C); caterpillar feces (D), on three bacterial (Escherichia coli; Staphylococcus aureus; Pseudomonas
aeruginosa) and two fungal (Candida albicans; Aspergillus fumigatus) strains. (mm): size of the inhibition halos in
millimeters. (-) no inhibitory activity; (+ to +++) more or less intense inhibitory activity.

The green and blue boxes, respectively, represent the non-uptake and the uptake
of bioactive compounds from the leaves into the bodies of the caterpillars. The samples
obtained after extraction with organic solvents (O) show the same evolution of the inhibitory
profile in three of the five microorganisms tested (Escherichia coli, Staphylococcus aureus and
Aspergillus fumigatus). Our results suggest a selective excretion of bioactive compounds
from ingested leaves into the feces without being retained or ingested in the caterpillar’s
body (green boxes). Indeed, the feces of P. tetrio’s (DO) show inhibitory activity that is as
strong or stronger than that of the eaten A. cathartica leaves (BO) [diameter of inhibition
fecal matter (DO) versus eaten leaves (Bo): 11 mm versus 7 mm for Escherichia coli; 9.5 mm
versus 8 mm for Staphylococcus aureus; and 10,5 mm versus 11 mm for Aspergillus fumigatus)
whereas caterpillar body extracts (CO) showed no bio-inhibition (proposed hypothesis
2). The inhibitory effect of the organic and aqueous samples on Pseudomonas aeruginosa
and Escherichia coli, respectively (blue boxes), shows an opposite profile. Indeed, the eaten
leaves and the caterpillar body show a bio-inhibition that is not found in the caterpillar
feces. This suggests that certain bioactive compounds in the eaten leaves, different from the
previous ones, could be selectively taken up and stored specifically in the caterpillar body.

There are few data in the literature on the potential antimicrobial activity of predated
leaves and the interaction between caterpillars and plants. Our samples showed higher an-
timicrobial activity than that reported by Islam et al. (2010) [31] for a concentrated methanol
extract of healthy A. cathartica leaves fractionated into fractions soluble in petroleum ether,
carbon tetrachloride, chloroform and water. The zones of inhibition observed by them have
a diameter of less than 10 mm for E. coli, S. aureus, C. albicans and P. aeruginosa, at a tested
concentration of 400 µg disk−1 against the 100 µg disk−1 in our case. At the same time,
they showed higher antimicrobial activity with their methanolic and ethyl acetate extracts
from healthy leaves [73]. Quercitrin was explicitly attributed antifungal and antibacterial
activity [43].

Our qualitative results on biological activity may explain why P. tetrio can feed on this
toxic Apocynaceae species. Indeed, the spectral (NMR) profiles of the eaten leaves and the
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caterpillar droppings are very similar, but very different from those of the caterpillar bodies.
There is an association between the plant and caterpillar (specific herbivory). The plant
produces organic chemical compounds for defense when the caterpillar attacks, and the
caterpillar excretes or assimilates these molecules or derivatives by its own mechanism. The
inhibition may be due to a synergistic effect of the different molecules contained in the ex-
tracts for all the microorganisms, hence the interest in using different analytical techniques.
The genetic and cellular mechanisms by which metabolite diversity arises are becoming
better understood, but the evolutionary explanations for the continued diversification of
plant secondary metabolites have received less attention. Speed et al. (2019) [74] show a
fundamental coevolutionary asymmetry between plants and their herbivores, which is that
herbivores must resist all plant toxins, whereas plants must challenge and override only a
single resistance trait.

Sequestration likely evolved as a protection from predators [75], [76] because cater-
pillars with chemical protection are less attractive to predators [77]. P. tetrio feeds on toxic
species of the Apocynaceae and is aposematically colored, leading to the hypothesis that
P. tetrio caterpillars may sequester compounds from their host. In many plant species,
herbivory leads to the increased production of a secondary metabolite [78]. In particular,
herbivores specialized in sequestration are thought to benefit from the induction of inter-
mediate levels of chemical defenses, while plants eaten by such herbivores would benefit
most from weak or strong induction. On the other hand, specialists that do not specialize in
sequestration may not be deterred by induction unless it is high [55]. Caterpillars also have
the ability to metabolize some organic chemical compounds and excrete others intact from
the same host plant [63]. This is the case in Monarch butterflies, Danaus plexippus Linn. [58].
The study of Ramos et al., 2015 [79], compared the proteolytic system of the gut of P. tetrio
and D. plexippus with the proteolytic system of the milky sap of their respective host plants
(P. rubra and Calotropis procera Aiton). This revealed that the ability of the insect proteolytic
systems (serine and cysteine peptidase inhibitors) to digest the milk sap proteins (in vivo)
appears to be an important event favoring the caterpillars in overcoming plant chemical
defenses.

3. Materials and Methods
3.1. Plant Material

Sample preparation. Healthy and eaten leaves of A. cathartica, as well as P. tetrio
caterpillars were collected on the island of Guadeloupe (French West Indies), specifically in
Le Gosier (16◦13’00.5” N 61◦31’09.9” W). The leaves were cleaned (with distilled water)
and lyophilized. The caterpillars were kept in a cage for 24 h, to collect their feces, and
starved for 48 h to use their corpse in the evaluation of biomolecule incorporation into the
bodies of the caterpillars, excluding the digestive material. Finally, the dried leaves, the
caterpillars’ bodies and feces were lyophilized and powdered. Afterwards, 50 g of each
sample was extracted by maceration extraction for 48 h. Maceration was performed in a
ternary mixture of dichloromethane/methanol/distilled water [80,81] (1:1:1 v/v, 200 mL).
After the complete extraction, the solutions were filtered and extracted by liquid–liquid
extraction and two phases were obtained for each manipulation (Table 3). Finally, these
phases were dried by rotary evaporation.

Table 3. Phases obtained for each manipulation after liquid–liquid extractions.

Organic Phase Aqueous Phase

Healthy A. cathartica leaves 1.2 2.2

Hervivored A. cathartica leaves 1.3 2.3

Caterpillars 1.4 2.4

Caterpillar feces 1.5 2.5
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3.2. Phytochemical Tests

Analysis and quantification. Analyses were performed using several techniques
such as Thin Layer Chromatography (TLC), Nuclear Magnetic Resonance Spectroscopy
(1H-NMR), High Performance Liquid Chromatography coupled with Mass Spectrometry
(HPLC-MS) and Cyclic Voltammetry (CV).

Thin layer chromatography (TLC). The thin layer chromatography of all the organic
phases was carried out with a gradient of two different mixtures of elution solvents com-
posed of CH2Cl2/MeOH or nhexane/AcOEt with a volume of 10 mL in different pro-
portions (80/20, 50/50, 90/10, 95/5, 99/1, 50/50). Further, TLCs of all aqueous phases
were made on cellulose TLC with a mixture of H2O/MeOH elution solvent in different
proportions (50/50–100) as a mobile phase.

Nuclear magnetic resonance spectroscopy (1H-NMR). 15 mg of each extract was sol-
ubilized in 650 µL of DMSO and transferred to NMR tubes. 1D 1H nuclear magnetic
resonance spectra were recorded with a BRUKER Avance 300 MHz spectrometer equipped
with a BBO probe and automatic tube changer. Chemical shifts (δ) were expressed in
ppm relative to tetramethylsilane (TMS) taken as the external reference, with internal
calibration performed on the solvent signal. All spectra were processed using Topspin 2.1
software. The classical 1D proton with a 90◦ pulse width was performed. The spectra were
acquired using 256 scans and 2 dummy scans of 32 K data points with a spectral width of
5411.255 Hz.

High performance liquid chromatography coupled with mass spectrometry (HPLC-
MS). Triplicates of each extract were made and dissolved in 750 µL of methanol (LCMS
grade) and 750 µL of ultra-pure water (ElgaPurelab Classic). The mixtures were sonicated
in the ultrasonic bath then filtered on 13 mm and 0.45 µm PTFE filters and placed in amber
vials. The analysis was performed on a Waters (Milford, MA, USA) Alliance e2695 liquid
chromatographic system, equipped with a Waters 2996 photodiode array detector (PDA),
coupled with a orthogonal quadrupole mass spectrometer (Micromass ZQ, Manchester,
UK). The systems were controlled by MassLynx v.4.1 software (Micromass, Manchester,
UK). The mass was equipped with an electrospray ionization ESI (Waters) source; the
ionization was performed in positive mode. A double detection was carried out via mass
spectrometry in ESI (range 71 to 1200 Da) and using a PDA diode array detector (UV
detection between 210 and 400 nm). The analytical column was an XTERRA MS C18
column (2.1 x 100 mm, 3.5 µm) (Waters). The elution was performed with a mobile phase
flow rate of 0.2 mL/min consisting of a mixture of ultra-pure water containing 0.1% formic
acid (A) and methanol containing 0.1% formic acid (B). The program started at t = 0 min
with a ratio (A: B) of 95:5, at t = 2 min (95:5), at t = 5 min (70:30), at t = 15 min (60:40),
at t = 40 min (50:50), at t = 55 min (45:55), at t = 60 min (0:100), at t = 65 min (0:100), at
t = 75 min (95:5) and at t = 80 min (95:5). The injection volume was 10 µl and detection
was at 280 nm and at 320 nm. The ESI-MS parameters were as follows: desolvation gas
(N2) flow rate: 650 L/h; cone gas flow rate: 40 L/h; drying gas temperature: 450 ◦C; source
temperature: 120 ◦C; capillary voltage: 3 kV; cone voltage: 85 V; and RF lens voltage: 0.1 V.

Cyclic Voltammetry (CV). Cyclic voltammograms were recorded at 298 ± 1 K in a
conventional three electrode cell using a platinum wire auxiliary electrode and an Ag/AgCl
(3M NaCl) reference electrode. Measurements were carried out with CH I660 equipment
using 0.10 M potassium phosphate buffer at pH 7.0 as a supporting electrolyte. The working
electrode was prepared by evaporating 50 µL of an ethanol (EtOH) suspension of the extract
of interest, ground leaves or insect samples, under air on a glassy carbon electrode (GCE,
BAS MF 2012, geometrical area 0.071 cm2). In order to mimic the natural environment, no
degasification of the electrolyte was performed.

Principal Component Analysis (PCA). The raw data from HPLC-MS were exported
as netCDF files, using DataBridge software (Waters, USA), and pre-processed using XCMS
Online [82,83] for feature detection, retention time correction and alignment of metabolites
detected on HPLC-MS analysis. The dataset was created with 12 samples from each organic
and aqueous extract fraction (3 samples from each manipulation (see Table 1)). Peak
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detection was performed using cent Wave peak detection (∆m/z = 10 ppm; minimum peak
width, 5 s; maximum peak width, 20 s) and mzwid = 0.015, minfrac = 0.5, and bw = 5
were used for the retention time alignment. The processed data (csv file) were further
exported to MetaboAnalyst 4.0 [84]. All data variables were scaled by the pareto method
prior to PCA. PCA is an unsupervised method commonly used to identify patterns between
multivariate samples [85,86] and was recently employed on the chemical variability of
Allamanda cathartica extracts [87].

3.3. Antimicrobial Activities

To investigate the potential antimicrobial effects of the interaction between the cater-
pillar Pseudosphinx tetrio L. and one of its host plants, Allamanda cathartica, we focused our
study on five pathogen microorganisms that are responsible of severe human disease and
usually involved in hospital acquired illness: Escherichia coli, Pseudomonas aeruginosa and
Staphylococcus aureus for bacteria and Candida albicans and Aspergillus fumigatus for fungi.
All strains were supplied by the ATCC (American Type Culture Collection).

The three bacteria were cultured on the non-selective medium Tryptic Soy Agar,
whereas the two fungi were cultured on the selective medium Sabouraud, which is a
selective medium for fungi and yeasts. These two media were provided by the manufacturer
Grosseron, France, and prepared according to the instructions.

For each microorganism, starting cultures were prepared on Tryptic Soy Agar media
for bacteria and Sabouraud media for fungi. From these starting cultures, microbial
suspensions were created by picking two colonies from the starting cultures and adding
them to 2 mL of sterile water. Finally, 200 µL of these microbial suspensions were used to
inoculate the culture media used to test the antimicrobial activities.

Disc diffusion assay was used in order to test the antimicrobial activities of interaction
between P. tetrio and A. cathartica. Sterile filter paper discs of Whatman no.1 (6 mm in
diameter) were placed on the surface of the culture media with sterile forceps and gently
pressed to ensure good contact with the surface. The different organic extracts were
prepared as follows: 5 mg of each extract was mixed in 500 µL of Dimethyl sulfoxide
(DMSO) and 10 µL of these mixtures were placed on antibiotic disks (100 µg/disk). The
plates were incubated for 24 h to 48 h at 37 ◦C for bacteria and 30 ◦C for fungi. The zone of
inhibition was calculated by measuring the diameter of the inhibition zone around the well
(mm). All tests were conducted in duplicate.

4. Conclusions

In conclusion, we investigated the plant–herbivore interaction between the caterpillar
Pseudosphinx tetrio and the flowering plant A. cathartica. In order to better understand
this trophic relationship, several techniques were used, such as TLC, 1H NMR, HPLC-MS
(analyzed using a 13 multivariate PCA) and an innovative approach using electrochemical
methods (electrochemical ecology). The measured antimicrobial activities support the
physicochemical tests. The results show a similar profile between the leaves of healthy and
predated A. cathartica and the excretions of the caterpillars. The similar analytical profile
between the leaves of A. cathartica and the excretions of P. tetrio, and the difference with the
caterpillar bodies, suggests a selective excretion of compounds by the caterpillar (proposed
hypothesis 2). These organic compounds found selectively in the excretions (rather than in
the body) could explain the ability of P. tetrio to feed on this toxic Apocynaceae species.
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