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Abstract We study the problem of crack front segmentation into facets under mixed mode I+III loading.

Discrete facet network nucleation is determined based on the match asymptotic expansion approach of the

coupled criterion considering both the influence of T-stress (parallel to the initial crack front) and mode-

dependent fracture properties. We show that considering exclusively either T-stress or mode dependent

properties, facet nucleation may be more favorable than straight crack propagation but in conditions

that are incompatible with experimental observations. It is only by coupling mode-dependent fracture

properties with T-stress that we are able to determine configurations compatible with experimental

observations for which facet nucleation is more likely to occur than straight crack propagation. These

configurations depend on the T-stress magnitude and critical shear energy release rate. We thus highlight

that crack front segmentation into facets is material and loading dependent phenomenon that is not

related to a sole mode mixity threshold but also to T-stress magnitude and shear critical energy release

rate.
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1 Introduction

In the context of Linear Elastic Fracture Mechanics (LEFM), the propagation of a crack loaded in mode

I+II is nowadays generally well predicted [14,44] using symmetry arguments [17] or Griffith’s energy

minimization principles [15]. It is less straightforward when some amount of mode III is present mainly

because of the intrinsic three-dimensional character of the problem and the complexity of the propagation

path topology. Fracture under mixed mode I+III loading has been studied since the first experimental

works of Sommer [48] who highlighted lance-like fracture facets in glass and Knauss [23,39] who evidenced

the formation of penny-shaped fractures surfaces straddling the original straight crack front in a crossed

linked polymer. The complex fracture pattern induced by such a loading has since then been evidenced

in other materials and configurations such as for instance fault formation [6,45], cracks in rocks [52],

polymers [2,4,21,24,35], metals [49,50], gels [47] or even cheese [16].

A commonly used test is 3- or 4-points single edge notched bending performed on rectangular beams

containing a crack inclined with respect to mode I (Fig. 1a) [25,35]. In this setup, a rotation of the

original straight crack toward a pure mode I propagation configuration is observed at the macroscale,

but closer look at the crack surface indicates that it rather has the shape of a saw-tooth factory roof.

This particular profile actually originates from the formation of small aligned facets along the initial

crack front (Fig. 1b). The macroscopic rotation results from the presence of mode II that changes sign on

either side of the front [24] since the crack opens onto free edges [8]. Hence it is usually well captured by

fracture propagation simulations based on LEFM and the Principle Local Symmetry [17] or equivalently

Griffith’s based energy minimization principle [1], using for instance extended finite element method [18],

virtual crack closure integral method [2,8,24], dual boundary element modeling [5], eigen erosion [40]

or phase-field approach to fracture [38,43]. The facets originate from the presence of a dominant mode

F

a)
b)

Fig. 1: a) Macroscale illustration of straight inclined crack rotation towards pure mode I propagation
configuration under three point bending. b) Experimental observation of saw-tooth factory roof crack.
The length of the initial crack front before segmentation is about 12 mm.
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III over mode II contribution at the center of the crack front [24]. Some of these facets then grow and

finally coalesce (Fig. 1b) due to the shielding interaction between facets [41]. In spite of their complexity,

this crack topology can be obtained accurately by propagating already existing facets following classical

LEFM rules, as has been evidenced by continuum phase field simulations [4,20,43].

Although generally occurring in presence of mode III, crack front segmentation into facets does not

develop systematically [13,47]. Several authors related the occurrence of facets to a certain threshold in

terms of mode III (KIII) to mode I (KI) stress intensity factor (SIF) ratio. For instance, Eberlein et al. [13]

showed experimentally that in some configurations, below KIII/KI=0.57 threshold, no facet formation is

observed and the crack grows continuously. Facets observed by Sommer [48] were obtained for KIII/KI =

0.06. Cambonie and Lazarus evidenced the presence of facets forKIII/KI ratios between 0.1 and 0.6. Pham

and Ravi-Chandar observed facets for KIII/KI = 0.58 [42], but also for a very small KIII/KI = 0.001

threshold in another configuration [41]. Finally, it seems that there is no clear experimental consensus

regarding the existence of a KIII/KI threshold for facet nucleation. At least if this threshold is a condition

for the facet appearance, it is obviously not the only one.

Toughening induced by the presence of mode III has been reported in several experiments [7,13,19,

35,36]. Using a two-scale cohesive zone (CZ) model [26,30], this increasing resistance to fracture has been

shown to be due to the presence of facets at the microscale, whose further propagation requires a higher

load than the one promoting a smooth propagation [19]. The toughness increase can be determined by the

CZ model provided the existence of facets whose geometry can be described by profilometry measurements

[3]. Nevertheless, a self-sufficient prediction requires a better understanding of why and how crack front

segmentation into facets occurs from the initial crack.

The formation of facets was tackled from two different points of view. The first one considers that

facets develop by continuous propagation of all the points of the initial crack following stability and

bifurcation arguments. The second one considers that the facet segmentation results from the nucleation

of new cracks that are connected to the initial crack front along a discontinuous set of points. In presence

of mode III, straight crack propagation may be unstable and the development of a segmented crack

front may be favored. It has been evidenced numerically by phase-field simulations [46] and confirmed

by a thorough closed-form linear stability analysis of the problem [28]. This analysis evidenced the

existence of a theoretical threshold KIII/KI depending on the material’s Poisson’s ratio below which

straight propagation is expected to occur. It is however generally too large compared to that measured

experimentally [41]. The instability has been shown to be subcritical [4], meaning that even below the

linear stability threshold, out-of-plane propagation may occur in line with experimental observations, if

the number of defects is high enough. The number of required defects needed to trigger the instability

remains however unknown, and the linear stability threshold may express below this level. Dependance
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of the fracture energy on the mode mixity ratio has been shown to reduce the threshold [29]. However

non-physical fracture energy values had to be used to retrieve thresholds measured experimentally. This

limitation was recently improved by considering the influence of non-singular stresses (T -stresses) on the

stability threshold [27]. It was observed, in some experiments allowing observation at small scales, that

the propagation does apparently not occur by propagation of all the point of the crack front but rather

by spontaneous nucleation of new cracks from isolated points [42]. These facet nucleations may be at

the origin of the instability development, in other words they may form the required defects to trigger

the subcritical instability. Why and how facets nucleate still remains unclear. Facet nucleation under

mixed mode I+III loading was studied numerically by Mittelman and Yosibash [37,51] and Doitrand and

Leguillon [9]. These works made it possible to predict the initiation loading level of one facet [51] or of a

periodic array of facets [9] based on the coupled criterion (CC) [31], assuming that the crack orientation

is defined by the direction maximizing the stress normal to the crack plane. The crack shape was either

idealized [37,51] or defined by stress isocontours [9], which yielded crack shapes close to the shapes

observed experimentally by Pham and Ravi-Chandar [42]. Nevertheless, in these studies, the predicted

loading level at facet initiation was actually larger than the one obtained for straight propagation of the

initial crack front predicted by LEFM. In our previous work [9], both non-singular stresses and mode-

dependent fracture parameters were disregarded in the analysis. But they may both have an influence

on the facet initiation loading level as well as facet geometrical features. The objective of this work is

thus to revisit the problem of facet nucleation using the CC by investigating the influence of T -stress as

well as of mode-dependent fracture properties. We present the matched asymptotic expansion approach

of the CC to predict facet nucleation and its numerical implementation in Section 2-3, then we study the

influence of T-stress and mode-dependent fracture properties on facet nucleation in Sections 4-6.

2 Determination of the incremental energy release rate

2.1 Matched asymptotic approach

We study the problem of sharp rectilinear crack front loaded in combined mode I+III+T-stress. We only

focus on the T-stress component T3 parallel to the crack front direction (Ox3) (Fig. 2). We consider two

possible scenarii, namely either crack propagation in the initial crack direction (Fig. 2c) or crack front

segmentation into an array of small facets that are inclined with respect to the initial crack direction,

as depicted in Fig. 2a. Experimental observations show that the facet network is almost periodic [42].

Therefore, it can be modeled by periodically repeating a representative volume element containing a

single facet (Fig. 2d). Straight crack propagation or facet nucleation is assessed based on the matched

asymptotic (MA) approach of the CC [9,10,11,12,31]. It consists in considering a two-scale 3D problem
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Fig. 2: a) Illustration of crack front segmentation into a periodic array of inclined facets, b) illustration
of the initial crack front configuration under mode I+III+T-stress and representative volume element of
crack propagation configuration c) along the initial front direction or d) by crack front segmentation into
a facet network.

to solve under linear elasticity and small deformations assumption. The first problem is written at the

specimen scale. The displacement field U ℓ (the superscript ℓ refers to the presence of a crack extension

ℓ along (Ox1) direction) is solution of the following set of equations:
−∇ · σ(U ℓ) = 0,

σ(U ℓ) = C : ∇sU ℓ,

σ(U ℓ) · n = 0 along the crack faces, n is the normal to the crack face,

(1)

where σ and C respectively are the stress and stiffness tensors. It is assumed that the unknown crack

extension ℓ at initiation is relatively small compared to the specimen dimensions, this assumption has to

be checked afterwards to ensure the validity of the MA approach. Therefore, the actual solution can be

approximated by:

U ℓ(x1, x2, x3) = U 0(x1, x2, x3) + small correction, (2)

where U 0(x1, x2, x3) is the solution to a problem without crack extension (ℓ = 0) and the small correction

is actually determined by solving the second problem, close to the crack tip. This approximation is

valid except near the initial crack tip, it is called the outer field. The asymptotic displacement field

corresponding to an initial sharp crack under mode I+III+T-stress loading can be written as:

U 0(x1, x2, x3) = U 0(0, 0, 0) +KI

√
ru I(θ) +KIII

√
ru III(θ) + T3rt(θ) + ..., (3)

where KI and KIII are mode I and III stress intensity factors, T3 is the T-stress magnitude, uI, uIII and

t are the corresponding angular functions, r and θ are spherical coordinates. For the sake of simplicity,
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we will omit the dependency to the second angle in spherical coordinates since mode II is not considered

in this work. The previous equation can be rewritten:

U 0(x1, x2, x3) = U 0(0, 0, 0) +KI

√
r(u I(θ) +mu III(θ) +mT (r)t(θ) + ...), (4)

where the mode mixities m and mT are defined so that m = KIII/KI, and mT (r) =
√
rT3/KI. The

corresponding expansion of the stress field is obtained using Hooke’s law:

σ0(x1, x2, x3) =
KI√
r
(sI(θ) +msIII(θ) +mT (r)τ(θ) + ...). (5)

To have a detailed form of the actual solution U ℓ, the initial domain is rescaled by 1/ℓ. We define the

new dimensionless space variables as yi = xi/ℓ. As ℓ tends towards 0, the corresponding domain becomes

unbounded. The crack extension along (Ox1) direction is thus 1 in the dilated domain, which is called

the inner domain. The inner domains in the two possible initiation configurations (crack extension in

the initial direction of crack front segmentation) are depicted in Fig. 2. The actual solution (with crack

extension) is assumed to expand in the following way:

U ℓ(x1, x2, x3) = U ℓ(ℓy1, ℓy2, ℓy3) = F0(ℓ)V
0(y1, y2, y3)

+ F1(ℓ)V
1(y1, y2, y3)

+ F2(ℓ)V
2(y1, y2, y3)

+ ...,

(6)

with

lim
ℓ→0

Fi+1(ℓ)

Fi(ℓ)
= 0. (7)

The V i form the inner field, they are solutions to problems with prescribed behavior at infinity. They

fulfil the usual balance equation, boundary conditions and the linear elastic constitutive law derived from

the original problem. They must match at infinity with the behavior of the far field. Therefore, there

exists an area, far from the free edge in the inner expansion and close to it in the outer expansion where

both expansions given in Eq. (2) and Eq. (6) hold true. Matching the terms in Eq. (3) and Eq. (6) leads

to : 

F0(ℓ) = 1,

V 0(y1, y2, y3) = U 0(0, 0, 0),

F1(ℓ) = KI

√
ℓ,

V 1(y1, y2, y3) ≈
√
ρ(uI(θ) +mu III(θ)),

F2(ℓ) = T3ℓ,

V 2(y1, y2, y3) ≈ ρt(θ),

(8)
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where ρ = r/ℓ. The symbol ≈ means ”behaves like at infinity”, the V i can thus be written as:V 1(y1, y2, y3) =
√
ρ(uI(θ) +muIII(θ)) + V̂

1
(y1, y2, y3),

V 2(y1, y2, y3) = ρt(θ) + V̂
2
(y1, y2, y3).

(9)

We have to prove the existence of V̂
i
(y1, y2, y3) and to verify the equilibrium equations. By combining

Eqs. (6) and (8) into Eq. (1), V̂
i
is solution to the following problem:

−∇y · σ̂i = 0 where ∇y = 1
ℓ∇x,

σ̂i = C : ∇s
yV̂

i
,

σ̂1 · n = −( 1√
ρsI(θ) +

m√
ρsIII(θ)) · n along the crack faces,

σ̂2 · n = −τ(θ) · n along the crack faces,

V̂
i
vanishes at infinity.

(10)

The system of equations has a unique solution with a finite energy [33] (extension of Lax-Milgram theorem

to unbounded domains). As a consequence of the finite energy, the solution decreases to 0 at infinity. The

expansion finally writes:

U ℓ(x1, x2, x3) = U ℓ(ℓy1, ℓy2, ℓy3) = U 0(0, 0, 0) +KI

√
ℓ[
√
ρuI(θ) +m

√
ρuIII(θ) + V̂

1
(y1, y2, y3)]

+ T3ℓ[ρt(θ) + V̂
3
(y1, y2, y3)]

+ ...

(11)

The Incremental Energy Release Rate (IERR) is defined as Ginc = −δWp/S, where Wp = 1
2

∫
V
σ : εdV is

the elastic strain energy and S the crack surface. The elastic strain energy variation due to crack initiation

thus writes:

−δWp(ℓ) = a11(φ)K
2
I + a13(φ)KIKIII + a33(φ)K

2
III

+ b1(φ)KIT3
√
ℓ+ b2(φ)KIIIT3

√
ℓ

+ c(φ)T 2
3 ℓ,

(12)

where aij , bj and c are coefficients depending on the facet shape and angle. The crack surface can be

written as S = αℓ2, with α a scaling coefficient depending on the facet shape. As a consequence, the

IERR writes:

Ginc(ℓ) = −δWp(ℓ)/S =
1

E
(A11(φ)K

2
I +A13(φ)KIKIII +A33(φ)K

2
III

+B1(φ)KIT3
√
ℓ+B2(φ)KIIIT3

√
ℓ

+ C(φ)T 2
3 ℓ),

(13)
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involving the material Young’s modulus E and the dimensionless coefficients Aij = Eaij/(αℓ
2), Bi =

Ebi/(αℓ
2) and C = Ec/(αℓ2). Introducing the mode mixities m and mT , the IERR also rewrites:

Ginc(ℓ) =
K2

I

E
[A11(φ) +mA13(φ) +m2A33(φ)

+mT (ℓ)B1(φ) +mmT (ℓ)B2(φ)

+mT (ℓ)
2C(φ)].

(14)

We define the dimensionless IERR χ = EGinc/K
2
I so that:

χ(φ,m,mT (ℓ)) = A11(φ) +mA13(φ) +m2A33(φ)

+mT (ℓ)B1(φ) +mmT (ℓ)B2(φ)

+mT (ℓ)
2C(φ).

(15)

The dimensionless IERR only depends on the Poisson’s ratio of the material and on the facet shape.

2.2 Numerical determination of Aij , Bi and C

The functions Aij , Bi and C can be computed in the inner domain as a function of the crack orientation φ.

They are obtained by calculating the potential energy difference between configurations with or without

crack extensions. It is done by FE calculations (Abaqus quasi-static implicit solver) in the inner domain

that is artificially bounded at a distance large with respect to the crack extension (which is 1 in the

inner domain). FE calculations are performed under linear elasticity and assuming small deformation in

order to calculate the stress and the potential energy release due to crack initiation. The calculations are

made in the inner domain including a crack lying in a plane forming an angle φ with the initial crack

front. The domain faces in the x3-direction are inclined with an angle corresponding to the crack angle,

which enables modeling an overlap between cracks as proposed in [9]. Elliptical crack shapes forming unit

radius circular projections in (Oy1y2) are considered. Periodic boundary conditions along (Oy3) direction

are imposed on the inner domain lateral faces to represent an infinite network of cracks. The inner

domain width thus corresponds to the distance between two facets along (Oy3) direction. A methodology

allowing the determination of the initiation minimum crack spacing was previously proposed [9,34]. Since

we mainly focus on the initiation SIF, the distance between facets is set to 200 times the facet extension

along (Ox1), which is verified to be large enough so that there is no interactions between two facets. If

the inter-distance facet is large enough, the IERR does not depends on the facet spacing. However, a

smaller IERR is obtained for a facet network with smaller inter-facet spacing so that facet nucleation

occurs for a larger imposed loading [9]. The inner domain is artificially bounded at a large distance (200

times the crack extension along (Oy1) direction) so that a larger domain size results in differences smaller
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Fig. 3: Variation of the normalized IERR coefficients as a function of the crack orientation obtained for
ν = 0.36.

than 2 % on the IERR and thus on the loading at crack initiation. Dirichlet boundary conditions based

on mode I, mode III and T-stress asymptotic displacement fields corresponding to an initial crack are

imposed on the inner domain boundary. The mesh, consisting of linear 8-nodes elements, is refined near

the facet and typically contains around 1.3 M degrees of freedom. The minimum mesh size near the facet

is chosen so that differences in Ginc smaller than 1% are obtained for a finer mesh. For a given facet

angle, three calculations are performed, respectively with prescribed displacements fields corresponding

to mode I, mode III and T-stress loading. For each calculation, two steps are performed to obtain the

elastic strain energy with and without facet opening, and thus the elastic strain energy variation and

IERR. These three calculations enable determining the coefficients A11(φ), A33(φ) and C(φ) (Eq. (15)).

Then, the IERR corresponding to a combination of several modes is obtained by linear combinations of

these three calculations, which enables determining the coefficients A13(φ), B1(φ) and B2(φ) (Eq. (15)).

The functions Aij , Bi, C are finally computed for different values of φ (Fig. 3). They only depend on

the material Poisson’s ratio and facet geometry. In the sequel, a ν = 0.36 Poisson’s ratio is used for the

calculations. The functions are given for other values of Poisson’s ratio in the Appendix.

3 The coupled criterion

3.1 Mode-independent properties

The CC states that crack initiation occurs provided two conditions are fulfilled [31]:

– stress condition: the tensile stress must be larger than the material tensile strength σc along the crack

path before initiation: σnn(x) ⩾ σc, ∀ x ∈ Γ (where Γ represents the new crack, i.e the facet). For

the sake of simplicity, in the sequel the stress criterion will be written as σnn(ℓ) ⩾ σc, where ℓ is the

facet extension along (Oy1).
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– energy condition: the potential energy released by crack opening must be larger than the energy

required for crack nucleation: GcS, where Gc is the material’s critical energy release rate (ERR).

The second condition can be written using the IERR defined in Section 2.1: Ginc = −δWp/S ⩾ Gc, which

can be calculated using Eq. (14). For a fixed facet orientation with respect to the initial crack φ, applying

the CC, Ginc ≥ Gc and σnn ≥ σc all along the crack path prior to initiation, reverts to determining the

facet nucleation SIF KI(φ) and the corresponding crack extension ℓc(φ). They are obtained by solving

the following equation system:
K2

I

E χ(φ,m,mT (ℓc)) ⩾ Gc,

KI√
ℓ
(sInn(φ) +msIIInn(φ) +mT (ℓ)τnn(φ)) ⩾ σc.

(16)

For each value of φ, combining both equations finally yields the equation that must be solved to determine

the initiation crack length ℓc:

χ(φ,m,mT (ℓc))

(sInn(φ) +msIIInn(φ) +mT (ℓc)τnn(φ))2
=

1

ℓc

EGc

σ2
c

(17)

Introducing the material characteristic length ℓmat =
EGc

σ2
c
, it can be deduced from Eq. (17) that the same

initiation length ℓc is obtained for different material properties resulting in a similar ℓmat. Eq. (17) can

be solved using Newton’s method to determine ℓc(φ). The SIF to initiate a facet oriented with an angle

φ is then obtained as:

KI(φ) =

√
EGc

χ(φ,m,mT (ℓc(φ)))
, (18)

or equivalently by:

KI(φ) =
σc
√
ℓc(φ)

sInn(φ) +msIIInn(φ) +mT (ℓc(φ)))τnn(φ)
. (19)

In the sequel, we refer to KI(φ) as facet nucleation SIF. The first facet to initiate corresponds to the one

oriented with an angle φc that requires the smallest facet nucleation SIF, facet initiation thus occurs for

a facet nucleation apparent SIF Kapp
I :


Kapp

I = min
φ

(KI(φ)),

φc = argmin
φ

(KI(φ)).
(20)

For a given mode mixity β = KIII/(KI+|KIII|), the corresponding mode III apparent SIF can be obtained

as KIII = (β/(1 − β))KI. In the case of pure mode III loading, β = 1 (KI = 0) and the same reasoning

as previously can be employed by replacing KI by KIII.
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3.2 Mode-dependent properties

We now consider opening and shear mixed mode crack initiation. It consists in introducing the material

shear strength (τc) and critical ERR (GIIIc) in the stress and energy conditions respectively. These param-

eters are generally not used for isotropic homogeneous material since even under shear loading, the crack

takes an orientation so that it is loaded under opening mode. They are more usually encountered when

dealing with interface failure, where they are defined as the strength and critical ERR corresponding to

straight crack propagation along the interface under remote pure antiplane shear. The same definition

can be kept in the case of isotropic homogeneous material. The parameters τc and GIIIc are thus defined

as the theoretical strength and critical ERR that would correspond to a straight crack propagation under

remote pure antiplane shear. Of course, this configuration is not achieved in experiments. However, it

can be encountered numerically using models such as the CC in which the crack path is a priori defined,

thus possibly experiencing both opening and shear.

It is expected that if the loading is not pure opening, not only the tensile strength σc and critical

ERR GIc are involved but also τc and rate GIIIc. It is thus possible to rewrite the stress and the energy

criteria in a very general way that accounts for the stress mixity in the fracture mechanism. The mixed

mode CC formulation was established in 2D to study crack initiation under mode I+II+T-stress loading

[32]. We extend this formulation to 3D for mode I+III+T-stress loading. We start rewriting the stress

criterion to account for the stress mixity, which writes:σnn(r, θ) =
KI√
r
(sInn(θ) +msIIInn(θ) +mT (r)τnn(θ) + ...),

σnt(r, θ) =
KI√
r
(sInt(θ) +msIIInt (θ) +mT (r)τnt(θ) + ...),

(21)

where σnn and σnt respectively hold for the tensile and out-of-plane shear components of the stress tensor,

m and mT are the previously defined mixity parameters. The functions sinn, s
i
nt and τ int are calculated

analytically and shown in Fig. 4 for ν = 0.36. We define a mixity parameter µ based on the shear and

tensile stress components:

µ =
|σnt|
σnn

, (22)

which varies between 0 (pure opening mode) and ∞ (pure shear mode). The stress mixity ψ = tan−1(µ)

may also be used, which thus varies between 0 (pure opening mode) and π/2 (pure shear mode). The

energy criterion is written based on Hutchinson’s and Suo’s condition [22] so that the critical ERR is

defined as a function of opening (GIc) and shear (GIIIc) critical ERR and stress mixity:Gc(ψ) = GIc(1 + tan2 ξψ)),

with ξ = 2
π tan−1(

√
GIIIc

GIc
− 1).

(23)
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Fig. 4: Variation of the normalized (a) tensile and (b) shear stress components as a function of the crack
orientation.

For pure opening mode, ψ = 0 and Gc = GIc whereas for pure shear mode, ψ = π/2 and Gc = GIIIc.

The local shear and tensile stress components may not be uniform over the whole crack surface before

initiation, which results in varying stress mixity and thus varying Gc over the whole crack surface before

initiation. As a consequence, we define Gc as the average critical ERR over the crack surface before

initiation, which writes:

Gc(ℓ) =
1

S

∫
Γ

Gc(ψ)dS, (24)

where Γ represents the crack and S represents the crack surface (area S = αℓ2). The variable Gc thus

depends on the crack extension along (Ox1) direction, ℓ. The energy condition of the CC considering

mode-dependent fracture properties writes:

Ginc(ℓ) ⩾ Gc(ℓ) (25)

The stress criterion, which must be fulfilled over Γ , is written as a power ellipse surface in the tensile-shear

stress space (in the following, we consider q = 2):

(
σnn(ℓ)

σc

)q

+

(
σnt(ℓ)

τc

)q

⩾ 1, (26)

which rewrites in the following form:

σnn(ℓ) ⩾
σcτc

(τ qc + µ(ℓ)qσq
c )1/q

. (27)
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Combining both energy and stress conditions finally leads to the following system of equations to be

solved: 
K2

I

E χ(φ,m,mT (ℓ)) ⩾ Gc(ℓ),

KI√
ℓ
(sInn(φ) +msIIInn(φ) +mT (ℓ)τnn(φ)) ⩾

σcτc
(τq

c +µ(ℓ)qσq
c )1/q

,
(28)

which leads to the implicit equation that must be solved for a fixed φ to determine the initiation crack

extension ℓc(φ) :

χ(φ,m,mT (ℓc))

(sInn(φ) +msIIInn(φ) +mT (ℓc)τnn(φ))2
=

1

ℓc

EGc(ℓc)(τ
q
c + µ(ℓc)

qσq
c )

2/q

σ2
cτ

2
c

. (29)

The facet nucleation SIF, i.e. the SIF corresponding to the initiation of a facet with angle φ finally writes:

KI(φ) =

√
EGc(ℓc(φ))

χ(φ,m,mT (ℓc(φ)))
. (30)

Finally, the initiation angle φc and facet nucleation apparent SIF Kapp
I are obtained by minimization of

KI(φ). 
Kapp

I = min
φ

(KI(φ)),

φc = argmin
φ

(KI(φ)).
(31)

4 Results for mode-independent properties

We recall that an objective of this work is to evaluate conditions for which facet nucleation may occur

instead of straight crack propagation for different values of the mode mixity β. Facet nucleation is likely

to occur provided the facet nucleation apparent SIF is smaller than straight crack propagation apparent

SIF. In this section, we thus assess straight crack propagation and facet nucleation under mode I+III in

presence or not of T-stress, considering mode-independent fracture properties.

4.1 Straight crack propagation

In the case of straight crack propagation under mode I and III loading, the crack propagates when

G = K2
I (1−ν2)/E+K2

III(1+ν)/E = Gc. Therefore, the apparent SIF K
app
I at which the crack propagates

writes as a function of the mode mixity β:

Kapp
I =

√
EGc

1− ν2 + ( β
1−β )

2(1 + ν)
(32)

Kapp
I is equal to the material’s critical SIF (KIc =

√
EGIc/(1− ν2)) for a straight crack propagating

under pure mode I loading. Facet nucleation occurs provided the facet nucleation apparent SIF is smaller

than straight crack propagation apparent SIF.
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4.2 Mode I+III

The CC is applied to study facet nucleation under mode I+III in absence of T-stress (T3/σc = 0). Fig. 5

shows normalized facet nucleation SIF (Eq. (18)) variation as a function of the facet angle for different

mode mixities increasing from pure mode I (top) to pure mode III (bottom). Whatever the mode mixity,
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Fig. 5: a) Normalized facet nucleation SIF as a function of the facet angle for several mode mixities
(circles represent the facet nucleation apparent SIF, i.e. the minimum SIF for a given mixity) and b)
Initiation facet angle (minimizing normalized facet nucleation SIF) as a function of the mode mixity.

χ (and thus Kapp
I , see Eq. 18) does not depend on ℓ under mode I+III if T3/σc = 0 (Eq. (15)). As

a consequence, facet nucleation apparent SIF only depends on the energy criterion. Fig. 5b shows facet

nucleation angle (Eq. 20) as a function of the mode mixity. For sufficiently small (close to mode I, β ⩽ 0.1)

or sufficiently large (close to mode III, β ⩾ 0.8) mode mixities, the most favorable crack propagation

angle is zero, i.e. in the initial crack direction. This is due to A11 and A33 exhibiting a maximum for

φ = 0 deg. (Fig. 3). For intermediate mixities (0.1 ⩽ β ⩽ 0.8), the most favorable facet angle lies between

0 deg. and 28 deg. (maximum attained for β ≈ 0.6). Fig. 6 shows normalized facet extension along

(Ox1) direction obtained from Eq. (17) and facet nucleation apparent SIF (Eq. (20)) as a function of

the mode mixity. Whatever the mode mixity, facet nucleation apparent SIF is larger than straight crack

propagation apparent SIF (Eq. (32)). It means that facet nucleation is less favorable than straight crack

propagation. Therefore, supplementary ingredients are needed to explain why crack front segmentation

is observed experimentally.

4.3 Mode I+III+T-stress

We now consider the influence of a T-stress component parallel to the initial crack front on facet nucleation

for several values of the mode mixity β. Fig. 7a shows the normalized facet nucleation SIF (Eq. (18)) as
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Fig. 6: Normalized a) initiation facet extension along (Ox1) direction and b) apparent SIF corresponding
either to facet nucleation (dashed line) or straight crack propagation (plain line) as a function of the
mode mixity.

a function of the facet angle for β = 0 mode mixity (i.e. mode I+T-stress loading) and different T-stress

magnitudes. For sufficiently small T-stress magnitudes, the facet nucleation apparent SIF (indicated as a
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Fig. 7: Normalized a) facet nucleation SIF variation as a function of facet angle (circles correspond to
the minimum SIF for a given T-stress), b) initiation facet angle and c) facet nucleation apparent SIF as
a function of normalized T-stress for β = 0. Filled circles in b) and c) correspond to configurations for
which facet initiation is more favorable than straight crack propagation.

circle for a given T-stress magnitude on Fig. 7a) is obtained for φ = 0 deg. facet angle corresponding to

a propagation in the initial crack direction. However, for normalized T-stress magnitudes T3/σc > 0.02,

facets initiate with a φ = 90 deg. angle which actually corresponds to failure being induced by T-

stress (Fig. 7b). Fig 7c shows the normalized facet nucleation apparent SIF (Eq. (20)) as a function of

the normalized T-stress. It highlights that facet nucleation becomes more favorable than straight crack

propagation for sufficiently large T-stress magnitudes.

Fig. 8a shows the normalized facet nucleation SIF (Eq. (18)) as a function of the facet angle for β = 0.5

mode mixity and different T-stress magnitudes. Whatever the T-stress magnitude, the SIF variation as a
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Fig. 8: Normalized a) facet nucleation SIF variation as a function of facet angle (circles correspond to
the minimum SIF for a given T-stress), b) initiation facet angle and c) facet nucleation apparent SIF as
a function of normalized T-stress for β = 0.5. Filled circles in b) and c) correspond to configurations for
which facet initiation is more favorable than straight crack propagation.

function of the facet angle exhibits a minimum corresponding to the facet initiation angle varying between

26 deg. and 90 deg. when increasing the T-stress magnitude (Fig. 8b). For T3/σc larger than 0.1, facet

nucleation becomes more favorable than straight crack propagation since facet nucleation apparent SIF

becomes smaller than straight crack propagation apparent SIF.

Therefore, a first ingredient that has an influence on the facet nucleation apparent SIF and angle is the

non-singular T-stress acting parallel to the crack front direction. A sufficiently large T-stress magnitude

actually promotes facet initiation rather than straight crack propagation. Nevertheless, the resulting facet

angles are large compared to those measured experimentally [3,4,13,41,42].

5 Results for mode-dependent properties

In this section, we study the influence of considering mode-dependent fracture properties on both straight

crack propagation and facet nucleation in the absence of T-stress.

5.1 Straight crack propagation

The straight crack propagation apparent SIF considering mode-dependent properties is obtained by re-

placing Gc by Gc into Eq. (32):

Kapp
I =

√√√√ EGc

1− ν2 + ( β
1−β )

2(1 + ν)
(33)

Mode-dependent properties are thus considered by varying the critical ERR between the pure opening

(GIc) and shear (GIIIc) values depending on the local stress mixity µ = |σnt|
σnn

(Eq. (23)). In the case

of straight crack propagation, the stress mixity is µ = |KIII|
KI

= β
1−β (or equivalently ψ = tan−1(µ) =
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tan−1( β
1−β )). It yields, using Eq. (23):

Gc = GIc{1 + tan2{ξ tan−1( β
1−β )}},

ξ = 2
π tan−1(

√
GIIIc

GIc
− 1).

(34)

Fig. 9a shows the normalized average critical ERR (Eq. (24)) variations as a function of the mode mixity

for different GIIIc values (Eq. (34)). The stress mixity increases when increasing the mode mixity, which
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Fig. 9: Normalized a) average critical ERR as a function of the mode mixity and b) straight crack
propagation apparent SIF for several shear critical ERR.

also increases the average critical ERR. As a consequence, a larger straight crack propagation apparent

SIF (Eq. (33)) is obtained considering mode-dependent fracture properties (Fig. 9b). Considering mode-

dependent fracture properties induces only a small increase in straight crack propagation apparent SIF

for small mode mixities since the stress mixity results in a moderate increase in Gc, not sufficient to

make facet nucleation favorable (Fig. 6b). However, for larger mode mixities, the larger stress mixity

induces a larger increase in Gc and thus in straight crack propagation apparent SIF. As a consequence,

facet nucleation may become possible provided the straight crack propagation apparent SIF overcomes

the facet nucleation apparent SIF, which is assessed in the sequel.

5.2 Mode I+III

Fig. 10a and 10b show normalized facet nucleation SIF (Eq. (30)) as a function of facet angle under

mode I+III considering mode-dependent properties for GIIIc/GIc = 1.3 or 10. For each value of β, the

face nucleation apparent SIF, obtained for a facet angle minimizing the facet nucleation SIF (Eq. (31))

is depicted by a circle. For GIIIc/GIc smaller than 1.5 (Fig. 10a), for sufficiently small (close to mode I,

β ⩽ 0.1) or sufficiently large mode mixities, the most favorable crack propagation angle is close to zero,
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Fig. 10: Normalized facet nucleation SIF as a function of facet angle for a) GIIIc/GIc = 1.3 and b)
GIIIc/GIc = 10 for several mode mixities.

i.e. in the initial crack direction. This is due to A11 and A33 exhibiting a maximum for φ = 0 deg. (Fig.

3). For intermediate mixities (0.1 ⩽ β ⩽ 0.8), the most favorable facet angle lies between 0 deg. and

a maximum value depending on GIIIc/GIc. For GIIIc/GIc larger than 1.5 (Fig. 10b), the facet nucleation

angle varies monotonically with increasing mode mixity. The facet nucleation angle and apparent SIF are

shown in Fig. 11 as a function of the mode mixity for several values of GIIIc/GIc. For β ⩽ 0.2, increasing

0.0 0.2 0.4 0.6 0.8 1.0

0

10

20

30

40

50

60

GIIIc

GIc
↗

β

φ
c
(d
eg
.)

(a)

0.0 0.2 0.4 0.6 0.8 1.0

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

GIIIc

GIc
↗

β

K
a
p
p

I
/K

Ic

(b)

Fig. 11: a) Facet nucleation angle and b) normalized facet nucleation apparent SIF variation as a function
of the mode mixity for shear to opening critical ERR ratios between 0 and 15.

GIIIc does not influence facet nucleation apparent initiation angle. However, for larger β, it tends to shift

the SIF minimum to larger facet angles so that for GIIIc/GIc larger than 1.5, facet nucleation angle varies

monotonously as a function of β between 0 deg. (pure mode I) and ≈ 45 to 60 deg. (pure mode III).
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Nevertheless, the facet nucleation apparent SIF is only slightly modified by considering larger GIIIc except

for large mode mixity values (Fig. 11b).

5.3 Comparison between straight crack propagation and facet nucleation

Facet nucleation (Eq. (31)) and straight crack propagation (Eq. (33)) apparent SIF are finally compared

as function of the mode mixity for several GIIIc/GIc ratios, considering mode-dependent properties in ab-

sence of T-stress (T3/σc = 0), in Fig. 12a. Whatever GIIIc/GIc, straight crack propagation remains more
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Fig. 12: Normalized a) facet nucleation and straight propagation apparent SIF for several shear to opening
critical ERR ratios and b) shear to opening critical ERR ratio as a function of the mode mixity highlighting
configurations for which facet nucleation is more favorable than straight crack propagation.

favorable than facet nucleation for mode mixities smaller than β ≈ 0.63 (or equivalently |KIII|/KI > 1.7).

For larger mode mixities, facet nucleation may become more favorable than straight crack propagation

provided GIIIc/GIc is large enough. The configurations for which facet nucleation is more favorable are de-

picted in Fig. 12b as a function of GIIIc/GIc and β. For a fixed GIIIc/GIc, it enables determining a |KIII|/KI

threshold above which facet nucleation becomes favorable. Therefore, considering mode-dependent prop-

erties provides an explanation for facet nucleation being more favorable than straight crack propagation.

However, it is not sufficient to explain all the experimental observations since it is limited to large enough

mode mixities (β > 0.63 or equivalently KIII/KI > 1.7).

6 Results considering both T-stress and mode-dependent properties

We finally analyze the combined influence of both mode-dependent properties and T-stress on facet

nucleation. Fig. 13 shows the normalized average critical ERR (Eq. (24)) as a function of facet angle

obtained for several T-stress magnitudes, mode mixities and GIIIc. The variable Gc varies between GIc if
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Fig. 13: Normalized average critical ERR as a function of facet angle obtained for GIIIc/GIc ratios between
1 and 50, a-c) T3/σc = 0.014, d-f) T3/σc = 0.028 and a-c) T3/σc = 0.069 normalized T-stress magnitudes
and a,d,g) β = 0, b,e,h) β = 0.4 or c,f,i) β = 0.8 mode mixities.

the crack is loaded under pure opening and GIIIc if the crack is loaded under pure antiplane shear. For

instance, in absence of mode III contribution (Fig. 13a,d,g), Gc = GIc for φ = 0 deg. or φ = 90 deg. and

slightly increases for intermediate angles, the maximum value depending on the magnitude of T-stress

inducing antiplane shear depending on the facet angle. Mode III contributes to increase antiplane shear

especially for facet angles close to 0 deg. and 90 deg, which thus increases the corresponding Gc (Fig.

13b,e,h and c,f,i). Increasing the T-stress magnitude tends to shift the angle for which the facet is mainly

loaded under opening mode, i.e. for which Gc is minimum.

Fig. 14 shows normalized facet nucleation SIF (Eq. (30)) variation as a function of facet angle consid-

ering different T-stress magnitudes, mode mixities and mode-dependent properties. For mode I loading

(Fig. 14a,d,g), facet nucleation SIF is almost not influenced by mode-dependent fracture properties. In-

creasing the T-stress magnitude induces a SIF minimum switch from 0 deg. to 90 deg., i.e. from crack
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Fig. 14: Normalized facet nucleation SIF variation as a function of facet angle obtained for GIIIc/GIc ratios
between 1 and 50, for a-c) T3/σc = 0.014, d-f) T3/σc = 0.028 and a-c) T3/σc = 0.069 normalized T-stress
magnitudes and a,d,g) β = 0, b,e,h) β = 0.4 or c,f,i) β = 0.8 mode mixities.

propagation in the initial crack direction to facet nucleation perpendicularly to the initial crack front.

For mode I+III loading (Fig. 14b,e,h and c,f,i), mode-dependent properties induce a change in facet

nucleation SIF variation so that the facet nucleation SIF increases for facet angles for which the crack

experiences shear (corresponding to larger average critical ERR, see Fig. 13). The larger the mode mixity,

the larger the change in facet nucleation SIF due to mode-dependent fracture properties, which induces

a moderate change in the facet nucleation SIF minimum (i.e. the facet nucleation apparent SIF) and

corresponding angle for intermediate mode mixities (β = 0.4, Fig. 14b,e,h) and significant changes for

larger mode mixities (β = 0.8, Fig. 14c,f,i). Increasing the T-stress magnitudes tends to increase the facet

nucleation angle.

Fig. 15 shows the facet nucleation angle (Eq. (31)) and normalized facet extension along (Ox1) direc-

tion variations as a function of the mode mixity obtained for different T-stress magnitudes and GIIIc/GIc
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ratios. For small mode mixities, failure either occurs by crack propagation in the direction of the initial
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Fig. 15: a-b) Facet nucleation angle and c) normalized initiation length as a function of the mode mixity
for different T-stress magnitudes for a) GIIIc/GIc = 1, and b-c) GIIIc/GIc = 10.

crack (φ = 0 deg.) or by facet nucleation due to T-stress (φ = 90 deg.). For increasing mode mixities, the

range of facet nucleation angles obtained for several T-stress magnitudes decreases (Fig. 15a and 15b).

Similarly, the normalized initiation crack length range decreases with increasing mode mixity and takes

different values depending on failure being triggered by crack propagation (ℓc/ℓmat ≈ 0.55) in the initial

direction of facet nucleation due to T-stress (ℓc/ℓmat ≈ 1.5) (Fig. 15c).

Configurations for which facet nucleation occurs can be determined by comparing facet nucleation SIF

to straight crack propagation SIF for different mode mixities, T-stress magnitudes and GIIIc/GIc ratios,

see Fig. 16. Straight crack propagation remains more favorable than facet nucleation whatever the mode

mixity provided both T-stress magnitude and shear to opening critical ERR ratio are sufficiently small

(Fig. 16ia,b,d,e). On one hand, increasing the T-stress magnitude decreases facet nucleation apparent SIF

while not influencing straight crack propagation apparent SIF (see for instance Fig. 16a,d,g). Therefore,

facet nucleation becomes more likely for sufficiently large T-stress magnitudes for mode mixities up

to a certain value that increases with increasing T-stress magnitude. On the other hand, increasing

GIIIc/GIc increases the straight crack propagation apparent SIF while not influencing much facet nucleation

apparent SIF (see for instance Fig. 16d,e,f). Therefore, facet nucleation becomes more likely for sufficiently

large GIIIc/GIc especially for mode mixities larger than a certain value that decreases with increasing

GIIIc/GIc.

Configurations for which facet nucleation is more favorable than straight crack propagation are finally

summarized in Fig. 17. Increasing GIIIc/GIc ratio mainly tends to increase straight crack propagation

SIF, this increase being more pronounced for larger mode mixities. As a consequence, it tends to make

facet nucleation more favorable than straight crack propagation for mode mixities larger than a given

value depending on GIIIc/GIc. The determination of the configurations for which facet nucleaction is more

favorable than straight crack propagation indicates that this phenomenon does not depend on a threshold
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Fig. 16: Normalized facet nucleation (dashed line) and straight crack propagation (plain line) apparent
SIF as a function of the mode mixity obtained for a-c) T3/σc = 0.014 d-f) T3/σc = 0.055 and g-i)
T3/σc = 0.111 and a,d,g) GIIIc/GIc = 2, b,e,h) GIIIc/GIc = 10 and c,f,i) GIIIc/GIc = 50.

in terms of KIII/KI for GIIIc/GIc < 10 (Fig. 17a,b) or normalized T-stress magnitude T3/σc > 0.075 (Fig.

17c,d). It means that facet nucleation actually depends on the material through the ratio between shear

and opening critical ERR and on the loading, not only in terms of mode mixity but also in terms of

T-stress magnitude. The influence of the Poisson’s ratio is finally shown on Fig. 17d, a similar influence

of the Poisson’s ratio being obtained for other GIIIc/GIc ratios. The same reasoning as previously is

followed except that ν varies, which results in a variation in the dimensionless IERR (see functions given

in the Appendix for several Poisson’s ratio) and stress fields. The Poisson’s ratio has an influence on

the boundary of the domain corresponding to facet nucleation being more favorable than straight crack

propagation. For β smaller than ≈ 0.6, increasing the Poisson’s ratio results in a decrease in the required

T-stress magnitude for facet initiation. For T/σc smaller than 0.05, increasing the Poisson’s ratio results

in increasing the minimum mode mixity for which facet nucleation occurs.
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Fig. 17: Domains in the normalized T-stress as a function of the mode mixity space corresponding to
facet nucleation or straight crack propagation for a) GIIIc/GIc = 2, b) GIIIc/GIc = 8 ,c) GIIIc/GIc = 10 and
d) GIIIc/GIc = 50.

7 Conclusion

Considering that crack segmentation in mode I+III results from the nucleation and then propagation

of facets, it is essential to explain why the apparition of facets is favored energetically in comparison to

straight propagation. Using the CC, we show that:

i) in absence of T-stress and mode dependent fracture toughness GIIIc/GIc, straight propagation should

occur whatever the mode mixity KIII/KI;

ii) it is necessary to take into account jointly the contribution of T-stress and mode dependent fracture

properties to be in line with experimental observations.

More precise outputs of the CC are that facet nucleation:

i) cannot occur for too small T-stress magnitude and GIIIc/GIc levels;

ii) becomes more favorable than straight crack propagation either for sufficiently large T-stress magnitude

and small mode mixities or for sufficiently large GIIIc/GIc and large mode mixities.
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The physical ingredients behind these results are twofold. First, increasing the T-stress magnitude de-

creases the load needed for facet nucleation that makes them more keen to appear. Second, a significant

amount of shear critical energy release rate GIIIc increases the load required for straight crack propagation

especially for sufficiently large mode mixities, tending to disadvantage straight propagation. A perspec-

tive of this work will be to design specific experiments to evaluate these results, as well as evidencing the

proposed theory and its possible limitations based on existing experiments in the literature. For instance,

the complex wedge and compressive loading proposed in [42] is expected to induce a local combined

mode I+III and T-stress ahead of the primary crack. Nevertheless, in other works, facet nucleation is also

observed under almost pure mode I configurations [35,47], in which the T-stress level might be negligible.

In such configurations, it will be necessary to evaluate if the proposed scenario is sufficient to explain

facet nucleation.

8 Appendix

The functions Aij , Bi, C are given in Fig. 18 as a function of φ in complement of Fig. 3 for different

Poisson’s ratio between ν = 0 and ν = 0.48.
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