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Abstract 

Background:  Sleep is important for healthy functioning in children. Numerous genetic and environmental factors, 
from conception onwards, may influence this phenotype. Epigenetic mechanisms such as DNA methylation have 
been proposed to underlie variation in sleep or may be an early-life marker of sleep disturbances. We examined if 
DNA methylation at birth or in school age is associated with parent-reported and actigraphy-estimated sleep out‑
comes in children.

Methods:  We meta-analysed epigenome-wide association study results. DNA methylation was measured from cord 
blood at birth in 11 cohorts and from peripheral blood in children (4–13 years) in 8 cohorts. Outcomes included 
parent-reported sleep duration, sleep initiation and fragmentation problems, and actigraphy-estimated sleep dura‑
tion, sleep onset latency and wake-after-sleep-onset duration.

Results:  We found no associations between DNA methylation at birth and parent-reported sleep duration (n = 3658), 
initiation problems (n = 2504), or fragmentation (n = 1681) (p values above cut-off 4.0 × 10–8). Lower methylation at 
cg24815001 and cg02753354 at birth was associated with longer actigraphy-estimated sleep duration (p = 3.31 × 10–8, 
n = 577) and sleep onset latency (p = 8.8 × 10–9, n = 580), respectively. DNA methylation in childhood was not cross-
sectionally associated with any sleep outcomes (n = 716–2539).
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Introduction
Sleep is a key aspect of healthy functioning; disruptions 
in sleep as early as during childhood have been linked to 
a wide range of mental and physical health problems [1]. 
Sleep is a complex, multifactorial phenotype, reflecting 
the influence of both genetic and environmental factors, 
beginning in utero. For example, prenatal exposure to 
maternal smoking [2], alcohol use [3] and depression [4, 
5] during pregnancy have been linked to disrupted sleep 
in children. However, the biological factors underlying 
sleep development in childhood remain unclear.

Epigenetic processes have received much attention as 
a biological mechanism that may underlie differences in 
child development and mediate the effects of foetal or 
early-life exposures on later health. The most widely stud-
ied of epigenetic processes, DNA methylation (DNAm) 
of cytosine nucleotides followed by guanine (CpGs), has 
been linked to a variety of mental and physical health 
outcomes [6, 7], and to foetal exposures such as maternal 
smoking [8]. It has been proposed that DNAm may also 
serve as a mechanism by which genetic and environmen-
tal exposures influence sleep [9]. DNAm is also showing 
promise as a biological marker for disease prediction, 
early detection and risk stratification. This application is 
especially well suited for use in peripheral tissues, which 
are more readily available in humans but may not be 
causal for the phenotype of interest. For example, it is 
already possible to estimate a range of exposures, traits 
and health outcomes based on peripheral DNAm pat-
terns alone (e.g. age, smoking, BMI) [10].

While associations between epigenetic changes and 
sleep have been previously assessed, these have mainly 
been investigated within the context of experimental 
studies of sleep deprivation or sleep disruption experi-
enced during shift work [11–13]. Studies on DNAm in 
relation to sleep characteristics among children or ado-
lescents are scarce. One epigenome-wide study utilizing 
a network-based approach identified a module of inter-
correlated CpG sites in peripheral blood associated with 
actigraphy-estimated sleep duration among 10-year-
olds (n = 188) [14]. Another epigenome-wide pilot 
study reported an association between blood DNAm 
and diary-based sleep duration among 18- to 19-year-
olds (n = 26) [15], and a third epigenome-wide study 
reported differences in buccal cell DNAm between 18- 
and 19-year-old monozygotic twins who were discordant 

for diurnal preference (n = 30) [16]. One candidate 
region study reported an association between DNAm 
of long interspersed nuclear elements and metabolism-
related genes in leukocytes, and actigraphy-estimated 
sleep duration and fragmentation among 14-year-olds 
(n = 351) [17]. These prior studies, while encouraging as 
proof-of-concept, are limited due to small sample size 
and cross-sectional design, and vulnerable to chance 
findings due to single-cohort design.

Since in utero exposures and genetic factors are known 
to influence sleep outcomes later in life, we posit that 
DNAm at birth may be an early-life marker of sleep dis-
turbances [18]. Our primary aim was to investigate if 
DNAm (at birth) is prospectively associated with parent-
reported sleep duration in children. As secondary aims, 
we investigated two other parent-reported sleep-related 
phenotypes (sleep fragmentation or initiation problems) 
and three actigraphy-estimated sleep measures (duration, 
sleep onset latency and wake-after-sleep-onset dura-
tion). In further analyses, we also investigated associa-
tions between childhood (4–13 years) DNAm and sleep 
characteristics. For the current meta-analysis, a total of 
14 cohorts in the Pregnancy And Childhood Epigenetics 
(PACE) consortium conducted one or multiple epige-
nome-wide association study (EWAS) analyses to address 
the primary and secondary aims of our study (n = 3658 
participants in primary analysis).

Methods
Participating studies
Fourteen North American and European cohorts, all 
members of the Pregnancy and Childhood Epigenet-
ics Consortium (PACE) [19], participated in this meta-
analysis. Eleven cohorts had data on newborn cord blood 
DNAm at birth and child sleep (Table  1): of these, ten 
cohorts had data on parent-reported sleep outcomes and 
three had data on actigraphy-estimated sleep outcomes. 
Eight cohorts had data on DNAm in peripheral blood in 
childhood and child sleep (Additional file  1: Table  S1). 
Overlap within each cohort was large across data sets, 
i.e. same individuals formed the majority of the analyti-
cal sample in different cohort-level analyses of, for exam-
ple, DNAm at birth and DNAm in childhood (within the 
same cohort): in total, five cohorts had data on DNAm 
both in cord blood and in peripheral blood in childhood 

Conclusion:  DNA methylation, at birth or in childhood, was not associated with parent-reported sleep. Associa‑
tions observed with objectively measured sleep outcomes could be studied further if additional data sets become 
available.

Keywords:  Sleep, Methylation, Epigenomics, Actigraphy, Child, Meta-analysis, Longitudinal studies
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(Additional file  1: Table  S2). Individual cohorts are 
described in more detail in Additional file 2: Methods.

Measures
Exposure: DNA methylation at birth and in childhood
Cohorts collected samples of newborn blood from 
umbilical cord blood at birth (Table  1) and child blood 
using venepuncture at 4–13  years of age (Additional 
file 1: Table S1). DNAm was assessed with the Illumina® 
HumanMethylation450 (450 k) or the HumanMethylatio-
nEPIC (EPIC) BeadChip assay at Illumina or cohort-spe-
cific laboratories. Cohorts performed sample processing, 
quality control and normalization as described in Addi-
tional file 2: Methods.

We used normalized, untransformed DNAm beta 
values, ranging from 0 (completely unmethylated) to 1 
(completely methylated), after trimming extreme outliers 
(3 × interquartile range from the quartile limit). Certain 
individuals were removed due to trimming of extreme 
values, resulting in different sample sizes across probes 
and cohorts. We excluded probes mapped to X or Y chro-
mosomes, polymorphic CpGs which overlap with known 
single-nucleotide polymorphisms, probes with cohort-
level call rate < 90%, control probes and cross-reactive 
probes (targeting repetitive sequences/co-hybridizing to 
alternate sequences) [20, 21].

Outcomes: parent‑reported and actigraphy‑estimated sleep 
measures
Parent-reported sleep duration was chosen as the primary 
outcome because of known associations with genetic and 
early-life environmental factors, comparability across 
studies, and large sample size (n = 3658, for other phe-
notypes n ≤ 2504) [1]. Sleep duration was the parent-
reported number of hours the child slept per night (e.g. 
"How many hours of sleep does your child get on most 
nights?") or the calculated difference between reported 
average time of falling asleep and waking up. This pri-
mary outcome was standardized within each cohort 
(mean = 0, SD = 1).

We also included parent-reported sleep initiation 
problems (e.g. "The child has difficulty getting to sleep at 
night") and sleep fragmentation problems (e.g. "The child 
wakes up more than twice per night") to consider multiple 
dimensions of sleep [22, 23]. These were used as second-
ary, binary outcomes.

Actigraphy-estimated sleep outcomes were chosen to 
objectively assess determined sleep characteristics. Sleep 
duration (total sleep time), sleep onset latency (time 
between lying down in bed and falling asleep) and wake-
after-sleep-onset duration (time awake between falling 
asleep and final awakening) were recorded using accel-
erometery and averaged across the measurement period 

of 3–9 days. These outcomes were all standardized within 
each sample (mean = 0, SD = 1). Four cohorts used wrist-
worn actigraphs to measure sleep (GENEActiv in Gen-
eration R and INMA; Actigraph GT3X in PROGRESS; 
Actiwatch AW7 in GLAKU). One cohort (CHOP) used 
armband accelerometers (SenseWear Armband): this 
cohort only had childhood DNAm, not newborn DNAm 
data, and thus only contributed to sensitivity analyses 
(see “Statistical analyses”).

Mean child age at parental assessment ranged between 
4 and 12 years between studies. Mean age at actigraphy 
was 11–12  years in four cohorts and 4.7  years in one 
cohort (PROGRESS). Please see Table  1 and Additional 
file  1: Table  S1 for cohort-level descriptives and Addi-
tional file 2: Methods for further details.

Covariates
We adjusted for maternal smoking, maternal age, mater-
nal education, child sex, child age at sleep assessment, 
cell counts, and surrogate variables for batch adjustment. 
Maternal smoking and education were coded and catego-
rized according to data availability as explained in Addi-
tional file 2: Methods. Cell counts were estimated using 
the Houseman method [24] with the Bakulski reference 
panel [25] (cord blood samples) and Reinius reference 
panel [26] (childhood samples). In cord blood DNAm 
analyses, we additionally adjusted for gestational age at 
birth, and in childhood DNAm analyses, we adjusted for 
child age at venepuncture, if different from age at sleep 
assessment (Table  S1). Covariates were chosen based 
on the previous literature to increase precision and to 
address potential confounders such as maternal smok-
ing and socio-economic status [2, 8, 27, 28]. Cohort-level 
analysts were advised to adjust for ethnic differences 
in any multi-ethnic cohort by choosing the appropri-
ate approach based on cohort characteristics and data 
availability: these cohort-specific covariates were coun-
try of birth (CHOP), self-reported ethnicity (Healthy 
Start, Viva), or principal components from genome-wide 
sequencing data (GLAKU, PREDO) (Additional file  2: 
Methods).

Statistical analyses
Cohort‑level EWAS
Each cohort-level EWAS was performed according to 
a predefined analysis plan. We used multivariate linear 
and logistic regression, for continuous (sleep duration 
and actigraphy-estimated outcomes) and binary (parent-
reported sleep initiation and fragmentation) outcomes, 
respectively. All p values were two-sided. We excluded 
participants with missing data and siblings (one sibling 
per sibling pair, chosen at random). For more cohort-
level information, please see Additional file 2: Methods.
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Primary meta‑analysis: newborn DNAm and parent‑reported 
sleep duration
We examined associations between newborn cord 
blood DNAm and parent-reported sleep duration at 
364,672 loci across 10 cohorts (max n = 3658). We 
combined 450 k and EPIC data, only including sites that 
are available on the 450 k array [29]. We performed an 
inverse variance-weighted fixed-effects meta-analysis 
using R-3.6.1 (https://​www.r-​proje​ct.​org) and METAL 
(release 2018–08-28) [30]. To assess epigenome-wide 
statistical inflation, we calculated cohort- and meta-
analysis-level genomic inflation factor lambdas (λ) and 
examined quantile–quantile plots (see Results).

Cohort-level results were meta-analysed at Erasmus 
MC. We verified the findings in shadow meta-analyses 
conducted independently at ISGlobal, using the meta-
analytical tool GWAMA instead of METAL [31].

Sensitivity analyses
We reran the primary meta-analysis when including 
only (1) cohorts based in Europe, and (2) cohorts where 
sleep was assessed on school-aged children (i.e. mean 
age ≥ 7  years, corresponding to the highest primary 
school entrance age in the studied populations, http://​
uis.​unesco.​org/​sites/​defau​lt/​files/​docum​ents/​indic​ator-​
efa-​offic​ial-​entra​nce-​age-​to-​prima​ry-​educa​tion.​xlsx, 
accessed 2021/06/09), to increase precision at the cost 
of sample size.

Individual variations in cord and peripheral blood 
DNAm are only partly stable from birth to school age 
[32]. To check if the timing of the DNAm measurement 
changed the findings, cohorts with available data (re-)
ran the EWAS using DNAm data from blood samples 
collected at school age, and we then reran the meta-
analysis on these cohort-level results.

As a final sensitivity analysis, we repeated the pri-
mary meta-analysis using a sample-size-weighted 
meta-analytical approach (also in METAL), which 
does not expect effect magnitude to be similar across 
cohorts, to complement the primary inverse variance-
weighted approach.

U-shaped or other nonlinear associations were not 
tested for lack of a strong hypothesis.

Meta‑analyses of secondary phenotypes
We ran five secondary meta-analyses that were otherwise 
similar to the primary meta-analysis but utilized alterna-
tive outcomes: parent-reported (1) sleep initiation and 
(2) fragmentation problems, and actigraphy-estimated 
(3) sleep duration, (4) sleep-onset latency, and (5) wake-
after-sleep-onset duration.

Multiple testing correction and subthreshold findings
The DNAm of nearby sites is correlated, and a cut-off of 
2.4 × 10–7 for multiple testing correction on 450 k-based 
EWASes has been recommended [33]. In the current 
study, we conducted one primary and five secondary 
meta-analyses on six separate outcomes: the cut-off of 
epigenome-level hit was thus (2.4 × 10–7)/6 = 4.0 × 10–8. 
To confirm independence among the outcomes, we 
extracted eigenvalues from individual-level matrix of 
phenotype data using the meff function from poolr (Addi-
tional file 1: Figure S1).

Statistical significance cut-offs are inescapably some-
what arbitrary, and particularly in the case of border-
line-significant findings, more information on effect 
magnitude and consistency across studies may be needed 
to balance type I and II error. We used a suggestive cut-
off of p < 5.0 × 10−5 to select the top 25 subthreshold 
findings that came closest to statistical significance in 
our primary meta-analysis: this cut-off was selected in 
line with a recent meta-analysis on maternal anxiety and 
DNAm at birth [34]. In supplementary tables, we report 
the site-level results of the primary meta-analysis and 
sensitivity analyses (as described above) for these sites.

Annotation and description of CpGs
Probes were annotated using meffil (hg19/b37) [35]. 
Previously reported EWAS-based associations between 
CpGs of interest and child/adult phenotypes were 
derived from the EWAS catalogue (http://​ewasc​atalog.​
org/ accessed 2021/06/09) [36]. Function-related infor-
mation was derived from Gene-Cards (https://​www.​
genec​ards.​org accessed 2021/06/09) and GWAS Cata-
log (https://​www.​ebi.​ac.​uk/​gwas accessed 2021/06/09). 
For look-up analyses, single-nucleotide polymorphisms 
related to sleep duration in previous genome-wide-asso-
ciation studies [37–41] were identified using the Sleep 
Disorder Knowledge Portal (https://​sleep.​hugea​mp.​org, 
accessed 2021/06/23).

We then follow up the hits (none in the primary meta-
analysis, two hits in the secondary meta-analyses) to 
report cross-tissue correspondence at these loci between 
DNAm in blood vs in the brain, the most relevant organ 
for sleep phenotype. We used previously published data 
on DNAm correlations across blood and brain tissue 
(http://​epige​netics.​essex.​ac.​uk/​blood​brain/ accessed 
2021/06/09) [42] and circadian expression of genes of 
interest in human and mouse tissues (http://​circa​db.​
hogen​eschl​ab.​org/​human, accessed 2021/06/21).

Gene ontology
To test for functional enrichment of annotated genes, 
we performed gene ontology (GO) pathway analyses 

https://www.r-project.org
http://uis.unesco.org/sites/default/files/documents/indicator-efa-official-entrance-age-to-primary-education.xlsx
http://uis.unesco.org/sites/default/files/documents/indicator-efa-official-entrance-age-to-primary-education.xlsx
http://uis.unesco.org/sites/default/files/documents/indicator-efa-official-entrance-age-to-primary-education.xlsx
http://ewascatalog.org/
http://ewascatalog.org/
https://www.genecards.org
https://www.genecards.org
https://www.ebi.ac.uk/gwas
https://sleep.hugeamp.org
http://epigenetics.essex.ac.uk/bloodbrain/
http://circadb.hogeneschlab.org/human
http://circadb.hogeneschlab.org/human
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on genes annotated to CpGs with the lowest p values 
(p < 1.0 × 10–4) for each model separately (1 primary + 5 
secondary meta-analyses), using missMethyl in R [43]. 
The number of CpGs in these analyses was 44, 62, 51, 
60, 43 and 85, for analyses on DNAm at birth and par-
ent-rated sleep duration (primary meta-analysis), initia-
tion problems, fragmentation, actigraphy-estimated sleep 
duration, sleep onset latency and wake-after-sleep-onset 
duration, respectively. Analyses were adjusted for the 
number of pathways tested based on the false discovery 
rate (FDR) [44].

DMR analyses
We used the output of the primary and secondary meta-
analyses to identify DMRs in newborn cord blood associ-
ated with parent-reported child sleep duration, initiation 
and fragmentation, actigraphy-estimated sleep duration, 
sleep-onset latency and wake-after-sleep-onset duration.

DMRs were analysed using two alternative approaches: 
DMRcate [45] and ipDMR [46]. Briefly, DMRcate applies 
Gaussian kernel smoothing for t-statistics using a band-
width lambda, and p values for regions are calculated 
based on the Satterthwaite method and corrected with 
FDR [45]. On the other hand, ipDMR calculates p values 
for intervals bordered by two adjacent CpGs, performs 
the Benjamini–Hochberg (BH) procedure on the inter-
val p values to select those significant intervals at a user-
specified FDR threshold (seed threshold), joins all nearby 
significant intervals and CpGs, recalculates p values for 
each combined region using the original p values for all 
CpGs and then obtains FDR-adjusted p values for these 
regions [46]. In DMRcate, alpha level for FDR as calcu-
lated on individual CpGs was 0.05; in ipDMR, FDR alpha 
level for initial selection of regions (seed) was also set at 
0.05 [46], DMRcate lambda = 500 and C = 5 were set as 
previously recommended [47], otherwise default param-
eters for both approaches were applied.

Results
Study characteristics
Associations between newborn DNAm and child sleep 
were assessed in 11 cohorts, whose participants are 
described in Table  1. Of these 11 cohorts, 10 had data 
on parent-reported sleep outcomes and 3 had data on 
actigraphy-estimated outcomes. Two of these cohorts 
(Generation R, INMA) had both parent-reported and 
actigraphy-estimated sleep data: correlations across all 
different sleep outcomes within these cohorts are shown 
in Additional file 1: Figure S1.

Associations between childhood DNAm and child sleep 
were assessed in 8 cohorts, described in Additional file 1: 
Table S1. Five of these cohorts had DNAm data available 

among both newborns and in childhood and thus con-
tributed to both analyses.

DNAm and parent‑reported sleep duration
We did not observe associations between newborn 
DNAm and parent-reported child sleep duration in our 
primary meta-analysis among 3,658 children and a total 
of 364,672 CpGs, when correcting for multiple testing 
(cut-off p < 4.0 × 10–8) (Fig.  1A). We found no evidence 
of genomic inflation (λ = 1.01, quantile–quantile plot in 
Fig. 1B).

In sensitivity analyses, we repeated the primary meta-
analysis among (1) European cohorts only, and (2) among 
cohorts with a mean age at sleep assessment ≥ 7  years 
(i.e. school-aged children), to harmonize the phenotype 
and reduce noise. We also repeated the analyses (3) with 
DNAm measured in childhood, rather than at birth, as 
our exposure variable, and reran the primary meta-analy-
sis using (4) a sample-size-weighted, p value-based meta-
analysis approach (that does not assume effect magnitude 
to be similar across cohorts) as an alternative to inverse 
variance-weighted fixed-effects meta-analysis. In line 
with the primary meta-analysis, none of these sensitiv-
ity analyses suggested any associations between DNAm 
and parent-reported sleep duration (Additional file  1: 
Table S3).

In Additional file  1: Table  S3, we describe the sub-
threshold findings that came closest to statistical sig-
nificance (i.e. the 25 CpG sites with a p value below the 
suggestive threshold of p < 5 × 10–5). For these subthresh-
old findings, we show the site-level results from the 
primary meta-analysis (of newborn DNAm and parent-
reported sleep duration), and from analyses where we 
excluded non-European cohorts, excluded cohorts with 
child mean age < 7  years, used child (rather than new-
born) DNAm as the exposure, or used actigraphy-esti-
mated (rather than parent-reported) sleep duration as 
the outcome. Briefly, for only 5 out of 25 sites, all cohorts 
reported a consistent direction of effects in the primary 
meta-analysis: lower methylation of cg14340131 [anno-
tated to HRAS] and higher methylation of cg01532396 
[not annotated to any genes], cg04384689 [not anno-
tated to any genes], cg10143030 [WDR43;SNORD92] 
and cg17853707 [ZNF91]. One of these sites, cg01532396 
was the CpG that came closest to statistical significance 
in the meta-analysis (p = 2.22 × 10–6). We also inves-
tigated if any of these 25 subthreshold findings were 
located nearby (< 1Mbase) 172 single-nucleotide poly-
morphisms (SNP) that have previously been associated 
with sleep duration (https://​sleep.​hugea​mp.​org, accessed 
2021/06/23). Only one CpG, cg24769432, was located 
within a 1Mbase region of a sleep-related SNP, rs4538155 
(LINC01876 gene located in 2q24.1). Cohort-level results 

https://sleep.hugeamp.org
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showed inconsistent directions of effect for associations 
between DNAm at this CpG and sleep duration. Further, 
none of the 25 subthreshold findings from the primary 
meta-analysis overlapped with any subthreshold findings 
(p < 5 × 10–5) from our other (secondary) meta-analyses 
of newborn DNAm and parent-reported sleep initiation 
or fragmentation problems.

DNAm and parent‑reported sleep initiation 
and fragmentation problems
We observed no associations between newborn DNAm 
and parent-reported child sleep initiation (Additional 
file  1: Figure S2) or fragmentation (Additional file  1: 
Figure S3) problems among 2,504 and 1,681 children, 
respectively. We repeated the analyses using DNAm 
measured at childhood, rather than at birth: again, no 
associations were observed (Additional file  1: Figure 
S2–S3).

DNAm and actigraphy‑estimated sleep outcomes
Newborn DNAm and actigraphy-estimated sleep data 
were available among 582 school-aged children from 
3 cohorts. Additional file  1: Figure S4, S5 and S6 show 
meta-analytic associations between newborn DNAm and 
actigraphy-estimated sleep duration, sleep onset latency 
(time between lying down in bed and falling asleep) and 
wake-after-sleep-onset duration (time awake between 
falling asleep and final awakening), respectively.

We identified two statistically differentiated CpGs 
(p < 4.0 × 10–8) in analyses of newborn DNAm and child 
sleep, and none in the analyses of DNAm in childhood 
and child sleep. These two hits are described briefly 
below: for details, see Additional file  1: Table  S4. First, 
lower cord blood DNAm at cg24815001 was associated 
with longer actigraphy-estimated sleep duration among 
577 children (p = 3.31 × 10–8). The cohort-level direc-
tion of effects was negative in all three cohorts with data, 
and the meta-analytic effect estimate corresponded to 
a 0.69-SD-unit reduction in sleep duration z-scores per 
10% increase in methylation (i.e. effect estimate −  6.9 
per change from completely non-methylated (0) to com-
pletely methylated (1), standard error 1.2, I2 = 0). In our 
study, childhood DNAm at cg24815001 was not associ-
ated with actigraphy-based sleep duration (p = 0.84), nor 
was newborn cord blood DNAm at cg24815001 asso-
ciated with parent-reported sleep duration (p = 0.96). 
We are not aware of previous EWAS studies linking 
cg24815001, an open-sea CpG in chromosome 7 with 
child (or adult) phenotypes (http://​www.​ewasc​atalog.​
org/?​cpg=​cg248​15001, accessed 2021/06/09), nor is it 
annotated to any genes [35]. At cg24815001, blood cell 
DNAm is only weakly correlated with DNAm in brain 
tissues (r < 0.06) (https://​epige​netics.​essex.​ac.​uk/​blood​
brain/?​probe​nameg=​cg248​15001, accessed 2021/06/09).

Second, lower cord blood DNAm at cg02753354 was 
associated with longer actigraphy-estimated sleep onset 
latency among 580 children (p = 8.8 × 10–9). However, 

Fig. 1  Newborn DNAm at birth and parent-reported child sleep duration among 3658 school-aged children. A Manhattan plota. B Quantile–
quantile plot (λ = 1.01)b. aPanel A is a Manhattan plot: the x-axis shows the location of the CpG site in the genome, and the y-axis shows the 
− log10(p) of the observed meta-analytical association between DNAm at this CpG at birth and parent-rated sleep duration in childhood. The red 
line corresponds to the cut-off of statistical significance after multiple testing correction (4.0 × 10–8). bPanel B is a quantile–quantile plot that shows 
the distribution of observed p values, compared to the distribution expected by chance

http://www.ewascatalog.org/?cpg=cg24815001
http://www.ewascatalog.org/?cpg=cg24815001
https://epigenetics.essex.ac.uk/bloodbrain/?probenameg=cg24815001
https://epigenetics.essex.ac.uk/bloodbrain/?probenameg=cg24815001
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heterogeneity between our three cohorts was consider-
able (I2 = 74.1). The results were driven by one cohort 
(Generation R): negative effect estimates were observed 
in Generation R (beta = − 11.9, p = 3.37 × 10–9, n = 257) 
and PROGRESS (beta = −  4.7, p = 0.16, n = 242), while 
INMA reported a positive effect estimate (beta = 7.7, 
p = 0.37, n = 81). Further, childhood DNAm of 
cg02753354 was not associated with sleep onset latency 
(p = 0.85, n = 712). Newborn DNAm of cg02753354 was 
not associated with parent-reported sleep initiation prob-
lems (p = 0.77, n = 1,712). This CpG in chromosome 19 
is annotated to the ARHGAP45 gene, which has a circa-
dian expression profile (http://​circa​db.​hogen​eschl​ab.​org/​
human, last accessed 2021/06/22). ARHGAP45 codes for 
a precursor of the histocompatibility antigen HA-1 and 
a GTPase activator for the Rho-type GTPases (https://​
www.​genec​ards.​org/​cgi-​bin/​cardd​isp.​pl?​gene=​ARHGA​
P45&​keywo​rds=​hmha1, last accessed 2021/06/09) and 
has been linked to endothelial integrity and immune cell 
maturation [48, 49]. In a previous study investigating 
the associations between DNA co-methylation modules 
and sleep in one of the cohorts included in this meta-
analysis, namely Generation R, authors reported that 
a module containing a CpG located at ARHGAP27 was 
associated with actigraphy-assessed sleep duration [14]. 
Additionally, a genome-wide association study based on 
UK Biobank and 23andMe data indicated that variants 
in ARHGAP27 were associated with self-reported sleep 
traits, including sleep duration [50]. In previous epige-
netic studies, lower cord blood DNAm at cg02753354 
has been linked to higher birth weight [51] and gesta-
tional age at birth [52, 53], and a cross-sectional adult 
study suggested an association with ischaemic stroke 
[54]. However, correlations between cg02753354 DNAm 
in blood vs another (perhaps more relevant) target tissue, 
the brain, are weak (r < 0.11) [42].

Gene ontology (GO) enrichment
We performed gene ontology (GO) pathway analyses 
on genes annotated to CpGs with the lowest p values 
(p < 1.0 × 10–4) (see Methods for details). GO term enrich-
ment analyses did not suggest any GO terms to be over- 
or underrepresented within the gene set of interest in the 
primary or secondary meta-analyses.

Differentially methylated region (DMR) analyses
We used two alternative approaches (DMRcate and 
ipDMR) to identify DMRs in cord blood, with all six child 
sleep phenotypes. The results are shown in Additional 
file  1: Table  S5. Neither approach identified any DMRs 
associated with parent-reported child sleep duration, ini-
tiation, or fragmentation.

DMRcate yielded 1 DMR including 6 CpGs (chromo-
some 11: start–end 2,292,890–2,293,048 [annotated to 
ASCL2]) associated with actigraphy-estimated sleep onset 
latency. On the other hand, ipDMR yielded 8 regions 
associated with actigraphy-estimated sleep pheno-
types, 6 of which included at least two CpGs: sleep onset 
latency was associated with 3 DMRs (chr19:1,074,425–
1,074,927 [ARHGAP45]; chr6:56,819,612–56,819,616 
[BEND6;DST]; and chr17:46,669,566–46,669,645 
[LOC404266;HOXB5]), and wake-after-sleep-onset 
duration with 3 DMRs (chr19:48,894,694–48,894,716 
[KDELR1]; chr4:187,422,114–187,422,120 [not annotated 
to genes]; and chr6:33,048,254–33,048,287 [HLA-DPB1]). 
None of these DMRs identified using two alternative 
tools (DMRcate, ipDMR) showed any overlap.

Discussion
This meta-analysis did not identify associations between 
DNAm at birth and parent-reported sleep duration 
among 3,658 children. Similarly, we found no associa-
tions between DNAm at birth and parent-reported sleep 
initiation or fragmentation problems.

Actigraphy can provide a more objective and poten-
tially more sensitive measure of child sleep duration 
compared to parental reports [55, 56]. Actigraphy can 
also be used to measure sleep onset latency, an indicator 
of sleep initiation problems, and wake-after-sleep-onset 
duration, which can increase when the number of sleep 
fragments or the average time spent awake between frag-
ments (or both) increases. However, collecting actigra-
phy data is often relatively cumbersome, compared to 
questionnaire-based data. The current meta-analysis 
brought together three cohorts that have both DNAm 
at birth and actigraphy-estimated child sleep data. Their 
results showed that lower DNAm at cg24815001 and 
cg02753354 at birth was associated with longer actig-
raphy-estimated sleep duration (n = 577) and longer 
actigraphy-estimated sleep onset latency (n = 580) in 
childhood, respectively. It is possible that actigraphy-esti-
mated sleep assessments were more sensitive to picking 
up differences in child sleep that relate to DNAm than 
parental reports. However, due to the small number of 
participants and, in the case of cg02753354, heterogene-
ity between cohorts, we advise caution in accepting these 
findings as proof of underlying epigenetic signatures or 
mechanisms without further studies. Further, we identi-
fied some potentially differentially methylated regions in 
relation to actigraphy-estimated sleep onset latency and 
wake-after-sleep-onset duration, yet the small number 
of cohorts and the failure to replicate the findings using 
two alternative tools raise some doubt on whether these 
reflect meaningful differences in DNAm. Both individual 
CpG and region-level findings should be further studied 

http://circadb.hogeneschlab.org/human
http://circadb.hogeneschlab.org/human
https://www.genecards.org/cgi-bin/carddisp.pl?gene=ARHGAP45&keywords=hmha1
https://www.genecards.org/cgi-bin/carddisp.pl?gene=ARHGAP45&keywords=hmha1
https://www.genecards.org/cgi-bin/carddisp.pl?gene=ARHGAP45&keywords=hmha1
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in larger paediatric cohorts, should such large-scale data 
become available.

Our results do not provide consistent evidence that 
DNAm from blood at birth or in childhood would explain 
differences in child sleep, neither from parent-reported 
outcomes, nor actigraphy-based data. Alternative mecha-
nisms that can affect inter-individual differences in child 
sleep characteristics include, for example, family bedtime 
practices, socio-economic disparities and genetic make-
up [57]. While the results of this large meta-analysis may 
be less vulnerable to false positives than the limited num-
ber of prior smaller, single-sample studies, it is also pos-
sible that discrepancies between our and previous studies 
reflect true biological phenomena. Most importantly, our 
study focussed on prospective associations with child 
sleep, while previous studies have mostly studied DNAm 
and sleep among adults (e.g. [11–13]). In a cross-sec-
tional design, DNAm could reflect a biomarker of poor 
sleep, rather than a causal factor underlying variation in 
sleep. Further, sleep could be differentially restricted by 
external factors during childhood compared to adult-
hood, which in turn could affect the extent of observable 
epigenetically driven variance. It would be interesting to 
see if large-scale epigenome-wide studies that span to 
adolescence and adulthood could establish differences 
that emerge at this later stage.

DNAm at nearby sites is correlated, and there is disa-
greement over the optimal method of genome-wide 
correction. In the current study, however, the findings 
of the primary meta-analysis would have remained the 
same (in this case, null) if we had ignored the additional 
tests introduced by the secondary meta-analyses com-
pletely and only applied the more lenient Safari cut-off 
(2.4 × 10–7), [33] or if we had used the Bonferroni cut-off 
that assumes total independence of exposures and out-
comes (0.05/364,672/6 = 2.3 × 10–8).

The current study has several strengths. This meta-
analysis of previously unpublished EWAS results from a 
total of 14 cohorts is the largest epigenetic study on child 
sleep to date. It is extensive in terms of both sample size 
and the scope of the epigenome-wide rather than candi-
date site approach. The harmonized, predefined analysis 
plan increases comparability across studies, while the col-
laboration between many independent studies improves 
reliability and generalizability of the results. The variety 
of sleep outcomes provide a window into several impor-
tant aspects of child sleep, both objective and subjective. 
Finally, the inclusion of DNAm data at both birth and in 
childhood accounts for the partial instability of DNAm 
across childhood [32] and can elucidate temporal rela-
tions beyond the scope of cross-sectional designs.

Our study also has limitations. First, while this 
is the largest study so far, it is possible we are still 

underpowered to identify subtle associations between 
DNAm and sleep. Further, differences between cohorts, 
relating for example to age at assessment and cultural 
and genetic differences between populations, can 
obscure associations that are specific to certain sub-
groups, and differences in how sleep was measured 
(e.g. phrasing of questionnaires) could introduce noise. 
Second, we combined the 450  k and EPIC array data 
sets, which could also introduce some noise; however, 
correlations between these arrays are high for DNAm 
in blood [29]. Third, we used parent-reported sleep 
measures as primary outcomes because of compara-
bility across studies, large sample size, and previously 
reported associations with genetic and early-life envi-
ronmental factors. However, these measurements are 
prone to misclassification and may have contributed 
measurement error to our analyses [55]. We attempted 
to overcome this limitation by investigating actigraphy-
estimated sleep measures as more objective measures, 
when available. Fourth, we measured DNAm in periph-
eral blood and not in the brain. Beyond a potential 
mechanism, blood DNAm could be interpreted as an 
early-life marker of causal genetic, biological or envi-
ronmental influences on sleep, thus potentially lend-
ing new insights into factors shaping sleep outcomes, 
rather than biological mechanism. Future research, 
including advanced causal inference tools and molecu-
lar research, would be necessary to establish whether 
identified hits in blood DNAm are the causal mediator 
or a proxy of other causal drivers.

Even though we found no consistent evidence of dif-
ferential methylation related to child sleep, we encour-
age future research into sleep phenotypes that were 
beyond the scope of the current study. For example, 
clinical studies could identify epigenetic patterns asso-
ciated with clinically diagnosed sleep disorders, which 
population-based studies may not capture. Future 
studies should also consider longitudinal associations 
between DNAm and child sleep. Repeated methylation 
assessment with concurrent sleep assessments would 
give insight into trajectories of changes in DNA meth-
ylation over time and their long-term effects on sleep. 
Further, epigenetic mechanisms such as histone modi-
fications or effects limited to specific target tissues (e.g. 
neuroendocrine tissues) could be of interest, if large-
scale analyses of these mechanisms become possible in 
the future.

In conclusion, we found no consistent evidence of an 
association between cord blood or peripheral blood 
DNAm and sleep among children. Larger studies or stud-
ies that focus to overcome some of our limitations could 
reveal subtle associations or confirm associations limited 
to objectively measured sleep outcomes.
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