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Introduction

Let β ∈ R. We consider the third order autonomous nonlinear differential equation

f + f f + βf (f -1) = 0. (1) 
In fluid mechanics, in the study of mixed convection boundary-layer flows over a vertical surface embedded in a porous medium, such an equation can be derived from the governing partial differential equations in some situations where simplifying assumptions have been made. Any solution of (1) provides a similarity solution of the initial problem.

A similarity solution is a particular type of solution that reflects the invariance properties of the equation. These solutions are obtained, specifically, by using these properties. Most of the time, the similarity solutions have a particular physical significance.

In the case of mixed convection boundary-layer flows in a porous medium, under some assumptions, the partial differential equation to solve is of the form

∂ 3 ψ ∂y 3 + ∂ψ ∂x ∂ 2 ψ ∂y 2 - ∂ψ ∂y ∂ 2 ψ ∂x∂y -µx µ-1 = 0, (2) 
where µ ∈ R is some constant ; see [START_REF] Aly | Mixed convection boundary-layer flows over a vertical surface embedded in a porous medium[END_REF]. It is easy to check that, for any = 0, the transformation (x, y, ψ) -→ (x/ α , y/ , ψ/ γ ) with α = 2 1-µ and γ = µ+1 µ-1 is a symmetry transformation of equation [START_REF] Aïboudi | On the solutions of a boundary value problem arising in free convection with prescribed heat flux[END_REF]. Then it is quite straighforward to verify that any function ψ of the form ψ(x, y) = κ x µ+1 2 f (t) where t = κ -1 x µ-1 2 y, with an appropriate constant κ, is a solution of (2) if and only if f is a solution of the ordinary differential equation [START_REF] Ackerberg | Boundary layer separation at a free stream-line[END_REF] for some value of β depending on µ. Such a ψ is a so-called similarity solution of (2), and the variable t is called the similarity variable.

Equation ( 1) is a particular case of the more general equation

f + f f + g(f ) = 0. (3) 
The most famous equation of this type is certainly the Blasius equation (see [START_REF] Blasius | Grenzschichten in Flüssigkeiten mit kleiner Reibung[END_REF]), which corresponds to g = 0, and which has been extensively studied over the last hundred years ; see for example [START_REF] Brighi | On the Blasius problem[END_REF] and the references therein.

For g(x) = β(x 2 -1), this is the Falkner-Skan equation, introduced in 1931 for studying the boundary layer flow past a semi-infinite wedge, see the original paper [START_REF] Falkner | Solutions of the boundary layer equations[END_REF] and [START_REF] Hartman | Ordinary Differential Equations[END_REF] for a overview of mathematical results.

For g(x) = βx 2 , this corresponds to free convection problems, see for example [START_REF] Cheng | Free-convection about a vertical flat plate embedded in a porous medium with application to heat transfer from a dike[END_REF] for the derivation of the model, and [START_REF] Aïboudi | On the solutions of a boundary value problem arising in free convection with prescribed heat flux[END_REF], [START_REF] Belhachmi | On a family of differential equations for boundary layer approximations in porous media[END_REF], [START_REF] Brighi | On a similarity boundary layer equation[END_REF], [START_REF] Brighi | Sur un problème aux limites associé à l'équation différentielle f + f f + 2f 2 = 0[END_REF], [START_REF] Brighi | On similarity solutions for boundary layer flows with prescribed heat flux[END_REF], [START_REF] Brighi | Blowing-up coordinates for a similarity boundary layer equation[END_REF], [START_REF] Brighi | Similarity solutions arising from a model in high frequency excitation of liquid metal with an antisymmetric magnetic field[END_REF], [START_REF] Guedda | Similarity solutions of differential equations for boundary layer approximations in porous media[END_REF], [START_REF] Paullet | An uncountable number of solutions for a BVP governing Marangoni convection[END_REF], [START_REF] Tsai | A note on similarity solutions for boundary layer flows with prescribed heat flux[END_REF] for different approaches of the mathematical analysis.

The case where g(x) = β(x 2 + 1) is for the study of the boundary layer separation at a free stream-line, see [START_REF] Ackerberg | Boundary layer separation at a free stream-line[END_REF] and [START_REF] Mcleod | The existence and uniqueness of a similarity solution arising from separation at a free stream line[END_REF].

Most of the time, these similarity equations are studied on the half line [0, +∞) and are associated to boundary conditions as f (0) = a, f (0) = b (or f (0) = c) and a condition at infinity. This condition at infinity can be, either f (t) → λ as t → +∞, or f (t) ∼ A t ν as t → +∞, where A and ν are some positive constants, or also |f | is of polynomial growth at infinity. For more details, we refer to the introduction of [START_REF] Brighi | The equation f +f f +g(f ) = 0 and the associated boundary value problems[END_REF] and to the references therein.

The boundary value problems associated to the general equation (3), with the condition that f tends to λ at infinity have been studied in [START_REF] Brighi | On a general similarity boundary layer equation[END_REF] and in [START_REF] Brighi | The equation f +f f +g(f ) = 0 and the associated boundary value problems[END_REF]. Let us notice that, if g(λ) = 0, then these boundary value problems do not have any solutions, and thus we must assume that g(λ) = 0 to have solutions. For example, in the case of mixed convection, i.e. g(x) = βx(x -1), the only relevant conditions are f (t) → 0 or f (t) → 1 as t → +∞. Results about existence, uniqueness and asymptotic behavior of concave or convex solutions to these boundary value problems are obtained, according to the sign of g between b and λ. Without further assumptions on g, it is hopeless to have more precise results. Nevertheless, the results of [START_REF] Brighi | The equation f +f f +g(f ) = 0 and the associated boundary value problems[END_REF] generalize the ones of [START_REF] Brighi | On the concave and convex solutions of mixed convection boundary layer approximation in a porous medium[END_REF] and some of [START_REF] Guedda | Multiple solutions of mixed convection boundary-layer approximations in a porous medium[END_REF] about mixed convection problems.

Let a, b ∈ R and λ ∈ {0, 1}. We associate to equation (1) the boundary value problem

           f + f f + βf (f -1) = 0 on [0, +∞) f (0) = a f (0) = b f (t) → λ as t → +∞ (P β;a,b,λ )
Usually, the method to investigate such a boundary value problem is the shooting method, which consists of finding the values of a parameter c for which the solution of (1) satisfying the initial conditions f (0) = a, f (0) = b and f (0) = c, exists up to infinity and is such that f (t) → λ as t → +∞. This approach is used in [START_REF] Brighi | On the concave and convex solutions of mixed convection boundary layer approximation in a porous medium[END_REF] and [START_REF] Guedda | Multiple solutions of mixed convection boundary-layer approximations in a porous medium[END_REF]. In [START_REF] Brighi | On the concave and convex solutions of mixed convection boundary layer approximation in a porous medium[END_REF], the problem (P β;a,b,1 ) is considered for β < 0 and its is shown that this problem has a unique convex solution if 0 < b < 1, and has a unique concave solution if b > 1. In [START_REF] Guedda | Multiple solutions of mixed convection boundary-layer approximations in a porous medium[END_REF], for β ∈ (0, 1), a = 0 and b ∈ (0, 3 2 ), it is proven that the boundary value problem (P β;a,b,1 ) has infinitely many solutions.

In [START_REF] Kang | Existence and uniqueness of concave and convex solutions of mixed convection equation[END_REF], [START_REF] Yang | An extension result of the opposing mixed convection problem arising in boundary layer theory[END_REF] and [START_REF] Yang | Existence and nonexistence of solutions on opposing mixed convection problems in boundary layer theory[END_REF], some results about the problem (P β;a,b,1 ) are proven by introducing a singular integral equation obtained from (1) by a Crocco-type transformation.

In the following, we will study the boundary value problems (P β;a,b,0 ) and (P β;a,b,1 ) for β > 0, a 0 and b 0. In the case where 0 < β 1, we are able to get complete results (and so we improve the results of [START_REF] Guedda | Multiple solutions of mixed convection boundary-layer approximations in a porous medium[END_REF]), while we only have partial results for β > 1. On several occasions, we will use the results of [START_REF] Brighi | The equation f +f f +g(f ) = 0 and the associated boundary value problems[END_REF], that sometimes we re-demonstrate, in our particular case, for the convenience of the reader.

The paper is organized as follows. In Section 2, general results about the solution of equation ( 1) are given. Section 3 is devoted to the case where b 1 and to the proofs of results that do not depend on whether β ∈ (0, 1] or β > 1. Section 4 discusses in detail the case β ∈ (0, 1] and b 1. Section 5 considers the case β ∈ (0, 1] and 0 b < 1, presents the results and how to prove them. In Section 6, some results in the case β > 1 are proven.

Preliminary results

To any f solution of (1) on some interval I, we associate the function H f : I → R defined by

H f = f + f (f -1). (4) 
Then, we have

H f = (1 -β)f (f -1).
The following lemmas, concerning the solutions of the equation (1), will be useful in the next sections. The proofs of some of them can be found in [START_REF] Brighi | The equation f +f f +g(f ) = 0 and the associated boundary value problems[END_REF]. Lemma 2.1 . -Let f be a solution of (1) on some maximal interval I. If there exists t 0 ∈ I such that f (t 0 ) ∈ {0, 1} and f (t 0 ) = 0, then I = R and f (t) = 0 for all t ∈ R.

Proof -This follows immediatly from the uniqueness of solutions of initial value problem. Cf. [START_REF] Brighi | The equation f +f f +g(f ) = 0 and the associated boundary value problems[END_REF], Proposition 3.1, item 3. Lemma 2.2 . -Let β > 0 and f be a solution of equation (1) on some interval I, such that f is not constant.

1. If there exists s < r ∈ I such that f (s) 0 and f (f -1) > 0 on (s, r) then f (t) < 0 for all t ∈ (s, r].

2. If there exists s < r ∈ I such that f (s) 0 and f (f -1) < 0 on (s, r) then f (t) > 0 for all t ∈ (s, r].

3. If there exists s < r ∈ I such that f < 0 on (s, r) and f (r) = 0, then f (r)(f (r)-1) < 0.

4. If there exists s < r ∈ I such that f > 0 on (s, r) and f (r) = 0, then f (r)(f (r)-1) > 0.

Proof -Let F denote any primitive function of f . From (1) we deduce the relation

(f exp F ) = -βf (f -1) exp F.
All the assertions 1-4 follow easily from this relation and from Lemma 2.1. Let us verify the first and the third of these assertions. For the first one, since ψ = f exp F is decreasing on [s, r], we have f (t) < f (s) exp(F (s) -F (t)) 0 for all t ∈ (s, r]. For the third one, since ψ < 0 on (s, r) and ψ(r) = 0, one has ψ (r) 0. This and Lemma 2.1 imply that f (r)(f (r) -1) < 0.

Lemma 2.3 . -Let f be a solution of (1) on some maximal interval (T -, T + ). If T + is finite, then f and f are unbounded in any neighborhood of T + .

Proof -Cf. [START_REF] Brighi | The equation f +f f +g(f ) = 0 and the associated boundary value problems[END_REF], Proposition 3.1, item 6.

Lemma 2.4 . -Let β = 0. If f is a solution of (1) on some interval (τ, +∞) such that f (t) → λ as t → +∞, then λ ∈ {0, 1}. Moreover, if f is of constant sign at infinity, then f (t) → 0 as t → +∞.

Proof -Cf. [START_REF] Brighi | The equation f +f f +g(f ) = 0 and the associated boundary value problems[END_REF], Proposition 3.1, item 5 and 4. Let us notice that if λ = 1, then f is necessarily positive at infinity. Lemma 2.5 . -Let β = 0. If f is a solution of (1) on some interval (τ, +∞) such that f (t) → 0 as t → +∞, then f (t) does not tend to plus or minus infinity as t → +∞.

Proof -Assume for contradiction that f (t) → +∞ as t → +∞. Let H = H f be defined by [START_REF] Belhachmi | On a family of differential equations for boundary layer approximations in porous media[END_REF]. Since f (t) → 0 as t → +∞, we deduce from the second assertion of Lemma 2.4 that H(t) ∼ -f (t) as t → +∞. This leads to a contradiction if β = 1. If β = 1, then we have H (t) ∼ (β -1)f (t) as t → +∞, and hence H(t) ∼ (β -1)f (t) as t → +∞. This is a contradiction, since β = 0. The proof is the same if we assume that f (t) → -∞ as t → +∞.

Lemma 2.6 . -Let β > 0 and f be a solution of equation (1) on some right maximal interval I = [τ, T + ). If f 0 and f 0 on I, then T + = +∞ and f is bounded on I.

Proof -Let L = L f be the function defined on I by

L(t) = 3f (t) 2 + β(2f (t) -3)f (t) 2 . (5) 
Easily, using (1), we obtain that L (t) = -6f (t)f (t) 2 for all t ∈ I, and since f 0 on I, this implies that L is nonincreasing. Hence

∀t ∈ I, β(2f (t) -3)f (t) 2 L(t) L(τ ).
It follows that f is bounded on I and, thanks to Lemma 2.3, that T + = +∞.

Lemma 2.7 . -Let β > 0 and f be a solution of equation (1) on some right maximal interval

I = [τ, T + ). If f (τ ) 0, f (τ ) 1 and f (τ ) > 0, then there exists t 0 ∈ (τ, T + ) such that f > 0 on [τ, t 0 ) and f (t 0 ) = 0.
Proof -Assume for contradiction that f > 0 on I. Then, f (t) 1 and f (t) 0 for all t ∈ I. We then have

f = -f f -βf (f -1) 0. (6) 
It follows that 0 < f (t) c for all t ∈ I and hence, by Lemma 2.3, we have T + = +∞. Next, let s > τ and ε = βf (s)(f (s) -1). One has ε > 0 and, coming back to [START_REF] Blasius | Grenzschichten in Flüssigkeiten mit kleiner Reibung[END_REF], we obtain f -ε on [s, +∞). After integration, we get

∀t s, f (t) -f (s) -ε(t -s)
and a contradiction with the fact that f > 0. Consequently, there exists t 0 ∈ (τ, T + ) such that f > 0 on [τ, t 0 ) and f (t 0 ) = 0.

The last two lemmas give key results in the case where β ∈ (0, 1]. The proofs can be found in [START_REF] Brighi | The equation f +f f +g(f ) = 0 and the associated boundary value problems[END_REF] (see Lemma 5.16 and Lemma A.11). However, for convenience, we give here proofs corresponding to the particular case that we consider. Lemma 2.8 . -Let β ∈ (0, 1] and f be a solution of equation (1) on some maximal interval

I = (T -, T + ). If there exists t 0 ∈ I such that 0 < f (t 0 ) < 1 and 0 f (t 0 ) f (t 0 )(1 -f (t 0 )), then T + = +∞ and f (t) → 1 as t → +∞. Moreover, f > 0 on [t 0 , +∞).
Proof -Let τ = sup A(t 0 ) where

A(t 0 ) = {t ∈ [t 0 , T + ) ; f (t 0 ) < f < 1 and f > 0 on (t 0 , t)} .
The set A(t 0 ) is not empty. This is clear if f (t 0 ) > 0, and if f (t 0 ) = 0 it follows from the fact that f (t 0 ) = -βf (t 0 )(f (t 0 )-1) > 0. We claim that τ = T + . Assume for contradiction that τ < T + . From Lemma 2.2, item 2, we get that f (τ ) > 0, which implies, by definition of τ , that f (τ ) = 1. Therefore, since the function H f defined by ( 4) is nonincreasing on [t 0 , τ ], we obtain

f (τ ) = H f (τ ) H f (t 0 ) = f (t 0 ) + f (t 0 )(f (t 0 ) -1) 0,
a contradiction. Thus, we have τ = T + . From Lemma 2.3, it follows that T + = +∞. Since f > 0 on [t 0 , +∞), by virtue of Lemma 2.4, we get that f (t) → 1 as t → +∞.

Remark 2.9 .

-If f (t 0 ) > 0 and f (t 0 ) = 0, then f (t) -t → -∞ as t → +∞ (cf. [9], Theorem 6.4, item 2.a).
Lemma 2.10 . -Let β ∈ (0, 1] and f be a solution of (1) on some maximal interval I = (T -, T + ). If there exists t 0 ∈ I such that

f (t 0 ) > 1 and f (t 0 )(1 -f (t 0 )) f (t 0 ) 0, then T + = +∞ and f (t) → 1 as t → +∞. Moreover, f < 0 on [t 0 , +∞).
Proof -If we set τ = sup B(t 0 ) where

B(t 0 ) = {t ∈ [t 0 , T + ) ; 1 < f < f (t 0 ) and f < 0 on (t 0 , t)} ,
the conclusion will follow by proceeding in the same way as in the previous proof.

Remark 2.11 . -If f (t 0 ) > 0 and f (t 0 ) = 0, then f (t) -t → +∞ as t → +∞ (cf. [START_REF] Brighi | The equation f +f f +g(f ) = 0 and the associated boundary value problems[END_REF], Theorem 5.19, item 2.a).

3 Description of our approach when b 1

Let β > 0, a 0 and b 1. As said in the introduction, the method we will use to obtain solutions of the boundary value problems (P β;a,b,0 ) and (P β;a,b,1 ) is the shooting technique. Specifically, for c ∈ R, let us denote by f c the solution of equation ( 1) satisfying the initial conditions

f c (0) = a, f c (0) = b and f c (0) = c (7) 
and let [0, T c ) be the right maximal interval of existence of f c . Hence, finding a solution of one of the problems (P β;a,b,0 ) or (P β;a,b,1 ) amounts to finding a value of c such that T c = +∞ and f c (t) → 0 or 1 as t → +∞.

To this end, let us partition R into the four sets C 0 , . . . , C 3 (or less if some of them are empty) defined as follows. Let C 0 = (0, +∞) and, according to the notations used in [START_REF] Brighi | The equation f +f f +g(f ) = 0 and the associated boundary value problems[END_REF], let us set

C 1 = c 0 ; 1 f c b and f c 0 on [0, T c ) C 2 = c 0 ; ∃ t c ∈ [0, T c ), ∃ c > 0 s. t. f c > 1 on (0, t c ), f c < 1 on (t c , t c + c ) and f c < 0 on (0, t c + c ) C 3 = c 0 ; ∃ r c ∈ [0, T c ), ∃ η c > 0 s. t. f c < 0 on (0, r c ), f c > 0 on (r c , r c + η c ) and f c > 1 on (0, r c + η c ) .
This is obvious that C 0 , . . . , C 3 are disjoint sets and that their union is the whole line of real numbers.

Thanks to Lemmas 2.3 and 2.4, if c ∈ C 1 then T c = +∞ and f c (t) → 1 as t → +∞. In fact, C 1 is the set of values of c for which f c is a concave solution of (P β;a,b,1 ).

Since β > 0, the study done in [START_REF] Brighi | The equation f +f f +g(f ) = 0 and the associated boundary value problems[END_REF] (especially in Section 5.2) says, on the one hand, that C 3 = ∅ (which can easily be deduced from Lemma 2.2, item 1) and, on the other hand, that either C 1 = ∅ and C 2 = (-∞, 0], or there exists c * 0 such that C 1 = [c * , 0] and C 2 = (-∞, c * ). In addition, if β ∈ (0, 1] then we are in the second case and c * -a(b -1). If β > 1 and a = 0 then C 1 = ∅, but, for a > 0, we do not know if C 1 is empty or not.

In the next sections we will distinguish between the cases β ∈ (0, 1] and β > 1. In the first case, we can give a complete description of the solutions (see Theorem 4.12), whereas in the second one, we have only partial answers.

We will also consider the case where b ∈ [0, 1), for which we will have to partition R in a slightly different way.

Before that, and in order to complete the study, let us divide the set C 2 into the following two subsets

C 2,1 = {c ∈ C 2 ; f c > 0 on [0, T c )} C 2,2 = {c ∈ C 2 ; ∃ s c ∈ (0, T c ) s. t. f c > 0 on [0, s c ) and f c (s c ) = 0}
and let us give properties of each of them that hold for all β > 0.

Lemma 3.1 . -If c ∈ R is such that f c > 0 on [0, T c ), then T c = +∞ and f c is bounded. Moreover, if c 0, then f c max{b ; 3 2 } on [0, +∞). Proof -Let c ∈ R be such that f c > 0 on [0, T c ).
Then f c a 0 on [0, T c ), and thanks to Lemma 2.6, it follows that T c = +∞ and that f c is bounded. It remains to show that f c max{b ; 3 2 } in the case where c 0. As in (5), let us define the function L c on [0, +∞) by

L c (t) = 3f c (t) 2 + β(2f c (t) -3)f c (t) 2 . ( 8 
)
We have L c (t) = -6f c (t)f c (t) 2 and, since f c 0, it implies that L c is nonincreasing. If f c 0 on (0, +∞), then f c b. Otherwise, there exists t 0 such that f c < 0 on (0, t 0 ) and f c (t 0 ) = 0 (which can occur only when c < 0, or c = 0 and b > 1). By Lemma 2.2, item 3, it follows that f c (t 0 ) < 1, and thus L c (t 0 ) < 0. Then, L c < 0 on (t 0 , +∞) which implies that f c 3 2 on (t 0 , +∞). Since f c b on (0, t 0 ), the proof is complete.

Proposition 3.2 . -Let c * = inf (C 1 ∪ C 2,1 ). Then c * is finite. Proof -Let c ∈ C 1 ∪ C 2,1
. By the definition of C 1 and C 2,1 , and thanks to Lemma 3.1, we have T c = +∞ and 0 < f c d on (0, +∞) where d = max{b ; 3 2 }.

Since (f c + f c f c ) = -βf c (f c -1) + f c 2 βf c + f c 2 d(β + d), by integrating, we then have ∀t 0, f c (t) + f c (t)f c (t) c + ab + d(β + d)t.
Integrating once again, we get

∀t 0, 0 < f c (t) f c (t) + 1 2 f c (t) 2 b + 1 2 a 2 + (c + ab)t + 1 2 d(β + d)t 2 which implies that c -ab -(2b + a 2 )(β + d)d. Remark 3.3 . -As we have seen above, if C 1 = ∅, then C 1 = [c * , 0] and thus C 2,1 ⊂ [c * , c * ). Proposition 3.4 . -We have (-∞, c * ) ⊂ C 2,2 . Moreover, if c ∈ C 2,2 then T c < +∞ and f c < 0 on (0, T c ).
Proof -The fact that (-∞, c * ) ⊂ C 2,2 follows immediately from Proposition 3.2. Let c ∈ C 2,2 . Then, there exists s c ∈ (0, T c ) such that f c > 0 on [0, s c ) and f c (s c ) = 0. Consider the function L c defined by [START_REF] Brighi | Sur un problème aux limites associé à l'équation différentielle f + f f + 2f 2 = 0[END_REF]. Since f c 0 on [0, s c ], then L c is nonincreasing on [0, s c ]. Suppose first that c < 0. Assume for contradiction that there exists t 0 ∈ [0, s c ) such that f c < 0 on [0, t 0 ) and f c (t 0 ) = 0, then 0 < f c (t 0 ) < 1 (see Lemma 2.2, item 3), and hence L c (t 0 ) < 0. Since L c is nonincreasing on [0, s c ], this contradicts the fact that

L c (s c ) = 3f c (s c ) 2 0. Therefore, f c < 0 on [0, s c ].
If c = 0, which can only happen if b > 1, then f c (0) = -βb(b -1) < 0. Hence there exists η ∈ (0, s c ) such that f c < 0 and f c > 1 on (0, η]. The arguments above applied to the function t → f c (t + η) give that f c < 0 on [η, s c ] and thus on (0, s c ].

To get that f c < 0 on (0, T c ), it remains to notice that f c cannot vanish on (s c , T c ), by virtue of Lemma 2.2, item 3.

Finally, the fact that T c < +∞ follows from Proposition 2.11 of [START_REF] Brighi | The equation f +f f +g(f ) = 0 and the associated boundary value problems[END_REF], which says that, for any τ ∈ R, there is no negative (strictly) concave function f such that f + f f 0 on [τ, +∞). Proof -Let c 0 ∈ C 2,2 . There exists τ ∈ (0, T c 0 ) such that f c 0 (τ ) < 0. Let us set ε = -1 2 f c 0 (τ ). By continuity of the function c → f c (τ ), there exists α > 0 such that, for all c ∈ (-∞, 0], one has

|c -c 0 | < α =⇒ f c (τ ) < f c 0 (τ ) + ε.
Therefore, f c (τ ) < 0 and c ∈ C 2,2 .

4 The case β ∈ (0, 1] and b 1

In this section, we assume that β ∈ (0, 1], a 0 and b 1.

Proposition 4.1 . -If c ∈ C 0 , then T c = +∞ and f c (t) → 1 as t → +∞.
Proof -From Lemma 2.7, there exists t 0 ∈ (0, T c ) such that f c > 0 on [0, t 0 ) and f c (t 0 ) = 0. Since f c (t 0 ) > 0 and f c (t 0 ) > b > 1, the conclusion follows from Lemma 2.10.

Remark 4.2 . -Thanks to the previous proposition, we see that f c is a convex-concave of (P β;a,b,1 ) for all c > 0. Moreover, we have that f c (t)-t → +∞ as t → +∞ (cf. Remark 2.11).

Proposition 4.3 . -There exists c * -a(b -1) such that C 1 = [c * , 0]. Proof -If b = 1 then C 1 = {0}. If b > 1,
as we already said in the previous section, this result is proven in [START_REF] Brighi | The equation f +f f +g(f ) = 0 and the associated boundary value problems[END_REF] (see Corollary 5.13 and Lemma 5.16). For convenience, let us recall briefly the main arguments which were used to get it. On the one hand, from Lemma 2.10 with t 0 = 0 (or Lemma 5.16 of [START_REF] Brighi | The equation f +f f +g(f ) = 0 and the associated boundary value problems[END_REF]), it follows that [-a(b -1), 0] ⊂ C 1 . On the other hand, Lemma 5.12 of [START_REF] Brighi | The equation f +f f +g(f ) = 0 and the associated boundary value problems[END_REF] implies that C 2 is an interval of the type (-∞, c * ). This completes the proof since

C 1 = (-∞, 0] \ C 2 .
Remark 4.4 . -From the previous proposition, we have that 0 / ∈ C 2,2 . Hence, Proposition 3.6 implies that C 2,2 is an open set. Proof -Let c ∈ C 2,1 . By Proposition 4.3, we have c < 0. Thanks to Lemma 3.1, we know that T c = +∞. Assume first that f c < 0 on (0, +∞). Then f c is positive and decreasing, and thus f c has a finite limit λ 0 at infinity. Moreover, f c takes the value 1 at some point, hence λ ∈ [0, 1) and, by Lemma 2.4, we finally get that λ = 0.

Assume now that f c vanishes on (0, +∞). Let t 0 be the first point where f c vanishes. Thanks to Lemma 2.2, item 3, we have 0 < f c (t 0 ) < 1, and the conclusion follows from Lemma 2.8. Remark 4.6 . -If c ∈ C 2,1 then either f c is a concave solution of (P β;a,b,0 ) or f c is a concave-convex solution of (P β;a,b,1 ). In the first case, there exists l > a such that f c (t) → l as t → +∞ (cf. Lemma 2.5) and, in the second one, we have that f c (t) -t → -∞ as t → +∞ (cf. Remark 2.9).

Proposition 4.7 . -Let c ∈ C 2,2 . For all t ∈ [0, T c ), one has f c (t) √ a 2 + 2b.
Proof -Let c ∈ C 2,2 and s c be as in the definition of C 2,2 , i.e. such that f c > 0 on [0, s c ) and f c (s c ) = 0. For all t ∈ [0, s c ], we have

tf c (t) -f c (t) + tf c (t)f c (t) = tf c (t) + tf c (t)f c (t) + tf c (t) 2 + f c (t)f c (t) = (1 -β)tf c (t) 2 + βtf c (t) + f c (t)f c (t) f c (t)f c (t). ( 9 
)
Integrating between 0 and s c yields

f c (s c ) 2 a 2 + 2 s c f c (s c ) + b a 2 + 2b
and f c (s c ) √ a 2 + 2b. The conclusion follows from the fact that, for all t ∈ [0, T c ), we have f c (t) f c (s c ), as we noticed in Remark 3.5. 0 such that T n t for all n n 0 . Since f n (t) → f c (t) as n → +∞, we deduce from Proposition 4.7 that f c is bounded. Therefore, f c cannot tend to 1 at infinity and thus, necessarily, we have c ∈ C 2,1 and f c (t) → 0 as t → +∞. Moreover, f c is concave (cf. Remark 4.6). Proposition 4.9 . -There exists at most one c such that f c (t) → 0 as t → +∞.

Proof -From Proposition 4.3, Proposition 4.5 and Lemma 2.5, we see that if c is such that f c (t) → 0 as t → +∞, then c < 0, f c < 0 and f c is bounded. For such a c, as done in [START_REF] Brighi | The equation f +f f +g(f ) = 0 and the associated boundary value problems[END_REF], Section 4, we can define a function

v : (0, b 2 ] → R such that ∀t 0, v(f c (t) 2 ) = f c (t). ( 10 
)
By setting y = f c (t) 2 , we get

f c (t) = v(y), f c (t) = √ y, f c (t) = 1 2v (y)
and f c (t) = -v (y) √ y 2v (y) 3 and using (1) we obtain

∀y ∈ (0, b 2 ], v (y) = v(y) v (y) 2 √ y + 2β( √ y -1) v (y) 3 . (11) 
From ( 7), we deduce that v(b 2 ) = a and v (b 2 ) = 1 2c . Moreover, since f c is bounded, it is so for v.

Assume that there exists c 1 > c 2 such that f c 1 (t) → 0 and f c 2 (t) → 0 as t → +∞, and denote by v 1 and v 2 the functions associated to f c 1 and f c 2 by [START_REF] Brighi | On the Blasius problem[END_REF]. If we set w = v 1 -v 2 then w(b 2 ) = 0 and w (b 2 ) < 0. We claim that w < 0 on (0, b 2 ]. For contradiction, assume there exists x ∈ (0, b 2 ) such that w < 0 on (0, x) and w (x) = 0. Hence we have w (x) 0 and w(x) > 0. But, thanks to [START_REF] Brighi | On the Blasius problem[END_REF], we have

w (x) = w(x) √ x v 1 (x) 2
and a contradiction. Now, let us set

V i = 1/v i for i = 1, 2 and W = V 1 -V 2 . Then W (b 2 ) = 2(c 1 -c 2 )
> 0 and W (y) → 0 as y → 0. In the other hand, thanks to [START_REF] Brighi | On similarity solutions for boundary layer flows with prescribed heat flux[END_REF], we have

∀y ∈ (0, b 2 ], W (y) = - w(y) √ y -2β( √ y -1) w (y).
Therefore, we have

W (b 2 ) = b 2 0 W (y) dy = - b 2 0 w(y) √ y + 2β( √ y -1) w (y) dy = -2 √ y w(y) b 2 0 + 2 b 2 0 (1 -β) √ y + β w (y) dy = 2 b 2 0 (1 -β) √ y + β w (y) dy, (12) 
the last equality following from the fact that w(y) tends to a finite limit as y → 0. Since w < 0, we finally obtain W (b 2 ) < 0 and a contradiction.

Remark 4.10 . -The change of variable [START_REF] Brighi | On the Blasius problem[END_REF] is particularly efficient to obtain some uniqueness results. In [START_REF] Brighi | The equation f +f f +g(f ) = 0 and the associated boundary value problems[END_REF], it is used for the general equation f + f f + g(f ) = 0 (cf. Section 4, Lemma 5.4 and Lemma 5.17). The case we examined in Proposition 4.9 is part of Lemma 5.17 of [START_REF] Brighi | The equation f +f f +g(f ) = 0 and the associated boundary value problems[END_REF] with λ = 0. In this lemma, it is assumed that 0 < g(x)

x 2 for x ∈ (0, b] to ensure uniqueness. Here, in Proposition 4.9, we have g(x) = βx(x -1) with β ∈ (0, 1] and hence βx(x -1) x 2 for x ∈ (0, b], but βx(x -1) 0 for x ∈ (0, 1]. However, the assumption about the positivity of g is not relevant because not used in the proof of Lemma 5.17 of [START_REF] Brighi | The equation f +f f +g(f ) = 0 and the associated boundary value problems[END_REF]. In addition, the inequality βx(x -1) x 2 is still true on (0, b], if β > 1 and 1 b β β-1 . Finally, let us notice that, in the latter case, the integral in ( 12) is still negative, and the contradiction occurs there too. Theorem 4.12 . -Let β ∈ (0, 1], a 0 and b 1. There exists c * < 0 such that :

f c is not defined on the whole interval [0, +∞) if c < c * ;
f c * is a concave solution of (P β;a,b,0 ) ; f c is a solution of (P β;a,b,1 ) for all c ∈ (c * , +∞).

Moreover, there exists c * ∈ (c * , -a(b -1)] such : f c is a convex-concave solution of (P β;a,b,1 ) for all c ∈ (0, +∞) ; f c is a concave solution of (P β;a,b,1 ) for all c ∈ [c * , 0] ; f c is a concave-convex solution of (P β;a,b,1 ) for all c ∈ (c * , c * ). Remark 4.13 . -The previous theorem says that problem (P β;a,b,0 ) has one and only one solution, whereas problem (P β;a,b,1 ) has infinite number of solutions.

Remark 4.14 . -We know that f c * has a finite limit at infinity, denoted by l. By slightly modifying the proof of Proposition 7.2 of [START_REF] Brighi | The equation f +f f +g(f ) = 0 and the associated boundary value problems[END_REF], one can prove that there exists a positive constant A such that, for all > 0, the following hold

f c * (t) = -l 2 Ae -lt 1 + o e -(l-)t , f c * (t) = lAe -lt 1 + o e -(l-)t
f c * (t) = l -Ae -lt 1 + o e -(l-)t as t → +∞.

Remark 4.15 . -Among the concave solutions of (P β;a,b,1 ), only f c * has a slant asymptote, i.e. there exists l > a such that f c * (t) -t → l as t → +∞. In addition, Proposition 7.5 of [START_REF] Brighi | The equation f +f f +g(f ) = 0 and the associated boundary value problems[END_REF] implies that, as t → +∞, we have

f c * (t) = -e -t 2 2 -lt+O(ln t) , f c * (t) = 1 + e -t 2 2 -lt+O(ln t)
and f c * (t) = t + l -e -t 2 2 -lt+O(ln t) .

If c * < 0, then the function t → f c (t) -t is unbounded, for any c ∈ (c * , 0]. It is possible to do better and to precise what is the term O(ln t). By a method used for the Falkner-Skan equation in [START_REF] Hartman | Ordinary Differential Equations[END_REF], Chapter XIV, Theorem 9.1, one can show that there exists a constant A > 0 such that

f c * (t) -1 ∼ At β-1 e -t 2 2 -lt as t → +∞.
Other asymptotic results for f c (concave, convex-concave or concave-convex) such that the function t → f c (t) -t is unbounded, should also be obtained by applying the ideas of [START_REF] Hartman | Ordinary Differential Equations[END_REF], Chapter XIV, Theorem 9.1 and 9.2. See also [START_REF] Singh | On the asymptotic behaviours of solutions of third order non-linear differential equation governing the MHD flow[END_REF]. Remark 4.16 . -The main ingredients used in this section are, one the one hand, Lemmas 2.8 and 2.10 that precise the behavior of f c after a point where f c vanishes and, on the other hand, the fact that the set C 2,2 has at most one point on its boundary, implying that it is an interval. 5 The case β ∈ (0, 1] and 0 b < 1 Let β ∈ (0, 1], a 0 and 0 < b < 1. In this situation, it is easy to see that R can be partitioned into the four sets C 0,1 , C 0,2 , C 1 and C 2 where

C 0,1 = {c < 0 ; f c > 0 on [0, T c )} C 0,2 = {c < 0 ; ∃ s c ∈ (0, T c ) s. t. f c > 0 on [0, s c ) and f c (s c ) = 0} C 1 = c 0 ; b f c 1 and f c 0 on [0, T c ) C 2 = c 0 ; ∃ t c ∈ [0, T c ), ∃ c > 0 s. t. f c < 1 on (0, t c ), f c > 1 on (t c , t c + c ) and f c > 0 on (0, t c + c ) .
The fact that any c 0 belongs to C 1 ∪ C 2 is due inter alia to Lemma 2.2, item 4, which implies that f c remains positive as long as f c 1.

The arguments used in the previous section, and evoked in Remark 4.16, can be applied here. Some results, as Propositions 4.7 and 4.8, are still true. On the other hand, as we will see below, some other results are obtained more easily. For example, the existence and the uniqueness of a concave solution of (P β;a,b,0 ) are already known, and so it is not necessary to argue as in the previous section (cf. Propositions 4.8 and 4.9).

Since βx(x -1) < 0 for x ∈ (0, b], it follows from Theorem 5.5 of [START_REF] Brighi | The equation f +f f +g(f ) = 0 and the associated boundary value problems[END_REF] that there exists a unique c * such that f c * is a concave solution of (P β;a,b,0 ). Moreover, we have c * < 0. As in the previous section, this implies that C 0,2 = (-∞, c * ). Hence C 0,1 = [c * , 0), and if c ∈ (c * , 0), then f c vanishes at a first point where f c < 1.

Next, in the same way as in the proof of Proposition 3.2, we can prove that c * = sup C 1 is finite, and hence that C 1 = [0, c * ] and C 2 = (c * , +∞). Moreover, from Lemma 2.8, we have c * a(1 -b). On the other hand, it follows from Lemma 2.7 that, if c ∈ C 2 , then f c vanishes at a first point where f c > 1.

All this, combined with an appropriate use of Lemmas 2.8 and 2.10, allows to state the following theorem. For more details, we refer to [5]. For c = 0, we have f 0 (t) = a.

There exists c * a such that f c is a convex solution of (P β;a,b,1 ) for all c ∈ (0, c * ] and f c is a convex-concave solution of (P β;a,b,1 ) for all c > c * .

6 About the case β > 1

In this section, we will assume that β > 1, a 0 and b > 0. The main difference with the case β ∈ (0, 1], is that Lemmas 2.8 and 2.10 do not necessarily hold anymore. In fact, it is the case if f (t 0 ) = 0, and in particular this implies that, if a = 0 and b > 1, then we have C 1 = ∅ (see [START_REF] Brighi | The equation f +f f +g(f ) = 0 and the associated boundary value problems[END_REF], Theorem 5.19, item 2.b), and if a = 0 and 0 < b < 1, then C 1 = ∅ (see [START_REF] Brighi | The equation f +f f +g(f ) = 0 and the associated boundary value problems[END_REF], Theorem 6.4, item 2.b).

Another consequence is that, on the contrary to what happens in the case β ∈ (0, 1], where for any c the function f c vanishes at most once in [0, T c ), this is not necessarily true if β > 1, and numerical experimentations indicate that it is so. Furthermore, nothing indicates whether both problems (P β;a,b,0 ) and (P β;a,b,1 ) have solutions or not.

Nevertheless, some results are still true. We start with a result about the problem (P β;a,b,0 ). Next, we prove that, if f c remains positive, then f c tends to 0 or 1 at infinity. Finally, we point some situations for which the problem (P β;a,b,1 ) has solutions. union. On the one hand, since P (ϕ(t)) → 0 as t → +∞, for all n 1, there exists t n such that ϕ([t n , +∞[ ) ⊂ P -1 ([- 

K c (t) = 2f c (t)f c (t) -f c (t) 2 + (2f c (t) -β)f c (t) 2 .
From (1), we easily get K c (t) = 2(2 -β)f c (t)f c (t) 2 . Assume now that f c vanishes, and let s c be the first point such that f c (s c ) = 0. Then f c and f c are positive on [0, s c ), and hence K c is nondecreasing on [0, s c ]. Since f (s c ) 0, we have K c (s c ) = 2f c (t)f c (t) -βf c (t) 2 < 0. This implies that K c (0) < 0.

Consequently, if K c (0) 0, then f c > 0 on [0, T c ). From Proposition 6.2, it follows that T c = +∞ and f c tends to 0 or 1 at infinity. But, if f c (t) → 0 as t → +∞, then we obtain a contradiction as above, since K c (t) → -β l 2 as t → +∞, where l is the limit of f c at infinity (see Lemmas 2.4 and 2.5). The proof is complete, since K c (0) = 2ac -b 2 + (2b -β)a 2 . Corollary 6.6 . -If β ∈ (1, 2], a > 0 and b > 0, then the problem (P β;a,b,1 ) has infinitely many solutions.

Proof -This follows immediately from Proposition 6.5.

Remark 3 . 5 .

 35 -If c ∈ C 2,2 then f c is strictly concave on [0, T c ), has a global maximum at s c and f c (t) → -∞ as t → T c . In addition, f c (t) and f c (t) tend to -∞ as t → T c . Proposition 3.6 . -The set C 2,2 is an open set of (-∞, 0] (for its induced topology).

Proposition 4 . 5 .

 45 -If c ∈ C 2,1 then T c = +∞ and f c has a finite limit at infinity, equal either to 0 or to 1.

Proposition 4 . 8 .

 48 -Let c be a point of the boundary of C 2,2 . Then, c ∈ C 2,1 and f c (t) → 0 as t → +∞. Moreover, f c is bounded and concave. Proof -Let c be a point of the boundary of C 2,2 and (c n ) n 0 be a sequence of C 2,2 such that c n → c as n → +∞. For all n 0, let us set T n = T cn and f n = f cn . Since C 2,2 is an open set, then c ∈ C 1 ∪ C 2,1 and hence T c = +∞. Let t 0 be fixed. From the lower semicontinuity of the function d → T d , we get that there exists n 0

Corollary 4 .

 4 11 . -One has C 2,2 = (-∞, c * ) and C 2,1 = [c * , c * ). Proof -From Remark 4.4, Propositions 3.4, 4.8 and 4.9, we see that C 2,2 is open, contains (-∞, c * ) and its boundary is reduced to a single point. Therefore, since c * = sup (C 1 ∪ C 2,1 ), we necessarily have C 2,2 = (-∞, c * ) and C 2,1 = [c * , c * ). To finish this section, let us express the results of Proposition 4.1, Proposition 4.3 and Corollary 4.11 in terms of the boundary problems (P β;a,b,0 ) and (P β;a,b,1 ).

Theorem 5 . 1 .

 51 -Let β ∈ (0, 1], a 0 and b ∈ (0, 1). There exist c * < 0 and c * a(1 -b) such that :f c is not defined on the whole interval [0, +∞) if c < c * ;f c * is a concave solution of (P β;a,b,0 ) ; f c is a concave-convex solution of (P β;a,b,1 ) for all c ∈ (c * , 0) ; f c is a convex solution of (P β;a,b,1 ) for all c ∈ [0, c * ] ; f c is a convex-concave solution of (P β;a,b,1 ) for all c ∈ (c * , +∞).Remark 5.2 . -[ The case b = 0 ] We can show similar results if b = 0. For details of the proof, we refer to[5].If c < 0, then T c < +∞.

Proposition 6 . 1 .

 61 -If b ∈ (0, β β-1 ], then there exists c * < 0 such that f c * is a solution of the problem (P β;a,b,0 ). Moreover, f c * is concave and is the unique solution of (P β;a,b,0 ).Proof -If b ∈ (0, 1), as in the previous section, this follows from[START_REF] Brighi | The equation f +f f +g(f ) = 0 and the associated boundary value problems[END_REF], Theorem 5.5. If b ∈ [1, β β-1 ], on the one hand, we remark that inequality (9) still holds, and hence it is so for the conclusions of Propositions 4.7 and 4.8. Thus, the problem (P β;a,b,0 ) has a solution. On the other hand, as we point out in Remark 4.10, the uniqueness of the solution of (P β;a,b,0 ) holds true forb ∈ [1, β β-1 ]. Proposition 6.2 . -If c ∈ R is such that f c > 0 on (0, T c), then T c = +∞ and f c has a finite limit at infinity, equal either to 0 or to 1.

Remark 6 . 4 .

 64 -In the proof of Proposition 6.2, we only use the positivity of β. Thus Proposition 6.2 implies Proposition 4.5, but the proof of this latter proposition is simpler and shorter, and says more, i.e. that f c vanishes at most once. Proposition 6.5 . -If β ∈ (1, 2] and a > 0, then for any c such that 2ac b 2 -(2b-β)a 2 , we have T c = +∞ and f c (t) → 1 as t → +∞. Proof -Let c ∈ R and denote by K c the function defined on [0, T c ) by

  1 n ,1 n ]). On the other hand, since -1 ({0}) = {a 1 , . . . , a s }, by a compactness argument, there exists n ε such thatP -1 ([-1 nε , 1 nε ]) ⊂ A ε . Set t ε = t nε , one has ϕ([t ε , +∞[ ) ⊂ A ε .Due to the continuity of ϕ the set ϕ([t ε , +∞[ ) is an interval, and hence there exists k ∈ {1, . . . , s} such that ϕ([t ε , +∞[ ) ⊂ A k,ε . In other words, for t t ε we have |ϕ(t) -a k | < ε. Finally, ϕ(t) → a k as t → +∞.

	P -1 -1 n , 1
	n 1

n = P
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Proof -Let c ∈ R be such that f c > 0 on (0, T c ). From Lemma 2.6, we know that T c = +∞ and that f c is bounded.

If there exists a point τ 0 such that f c does not change of sign on (τ, +∞), then f c is monotone on this interval. Hence, f c has a finite limit at infinity and, by virtue of Lemma 2.4, this limit is equal to 0 or 1.

If we are not in the previous situation, then there exists an increasing sequence (τ n ) n 0 tending to +∞ such that f c (τ n ) = 0 and f c (τ n ) > 0, for all n 0 (notice that Lemma 2.1 implies that we cannot have f c (τ n ) = 0).

Let L c be the function defined on [0, +∞) by [START_REF] Brighi | Sur un problème aux limites associé à l'équation différentielle f + f f + 2f 2 = 0[END_REF], i.e.

We know that L c is decreasing and takes negative value at each τ n since, by virtue of Lemma 2.2, item 3, we have f c (τ n ) < 1. Therefore, we have L c (t) < 0 for t τ 0 . Moreover, since 2x 3 -3x 2 -1 for x 0, then L c (t) -β for all t 0. Hence L c (t) tends to some α < 0 as t → +∞.

Inspired by an idea developed in [START_REF] Guedda | Multiple solutions of mixed convection boundary-layer approximations in a porous medium[END_REF] we will show that f c (t) → +∞ and f c (t) → 0 as t → +∞.

First, let us prove that f c (t) → +∞ as t → +∞. If it is not the case, then f c has a finite limit l at infinity (recall that f c is increasing) and there exists a sequence (s n ) n 0 in [τ 0 , +∞) such that s n → +∞ and f c (s n ) → 0 as n → +∞.

By passing to the limit as n → +∞ in the inequalities

we get a contradiction. Therefore f c (t) → +∞ as t → +∞.

Next, let us prove that f c (t) → 0 as t → +∞. Let x n be a point of the interval (τ n , τ n+1 ) such that |f c (t)| |f c (x n )| for all t ∈ [τ n , τ n+1 ]. We have f c (x n ) = 0 and thus, from equation ( 1), one has

Thus, since f c is bounded and that f c (x n ) → +∞ as n → +∞, we obtain that f c (x n ) → 0 as n → +∞, and hence f c (t) → 0 as t → +∞. Now we are able to conclude. Since f c (t) → 0 and L c (t) → α as t → +∞, we have that 2βf 3 c (t)-3βf 2 c (t) → α as t → +∞. Therefore f c has a finite limit λ at infinity, that is a root of the polynomial P (x) = 2βx 3 -3βx 2 -α (see Remark 6.3 below). Since P (0) = -α = 0, by Lemma 2.4, we get λ = 1. Remark 6.3 . -In the previous proof, we used the fact that for any real polynomial P with real roots a 1 , . . . , a s and any continuous function ϕ : [0, +∞) → R such that P (ϕ(t)) → 0 as t → +∞, then ϕ(t) tends to a root of P as t → +∞. To prove this, note first that, for every ε small enough, the intervals A j,ε =]a j -ε, a j + ε[ are disjoint. Denote by A ε their