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Stabilization of conservation laws for G-solutions with

application to traffic flow.

Thibault Liard ∗ Swann Marx † Vincent Perrollaz ‡

Abstract

We address a problem of stabilization of a scalar conservation laws with fixed flux pointwise
constraints. The PDE models the impact of two toll gates on the traffic flow and the feedback
laws is designed to limit the number of cars passing through the two toll gates. The existence
of solutions is proved using a Schauder’s fixed point theorem, together with a coupled PDE-
ODE. To prove stabilization results, we study the structure of the solutions using an extension
of backward generalized characteristics.

Keywords: Conservation Laws; non-classical shock; G-solutions; Stabilization;

AMS classification:

1 Introduction

1.1 Presentation of the Problem

Let L > 0. We consider the following scalar conservation laws with local lateral constraints
ut(t, x) + ∂xf(u(t, x)) = 0, t ∈ R+, x ∈ R,
u(0, x) = u0(x), x ∈ R,
f(u(t, 0)) ≤ F1(t, u), t ∈ R+,
f(u(t, L)) ≤ F2(t, u), t ∈ R+.

(1)

We assume that f ∈ C2 ([0, 1]; [0,+∞)) is a strictly concave function such that f(0) = f(1) = 0.
The problem (1) models two toll gates along highway or road lights (see [3]). Since the flux point-
wise constraints at x = 0 and x = L (the two toll gates) generate shocks that does not verify Oleinik
condition, the notion of weak-entropy solutions cannot be used anymore. Thus, we consider here
the notion of G-solution (see [1] or Definition 1.2). We introduce the target function w defined by

w(x) =

{
wL, if 0 ≤ x < x0,
wR, if x0 < x ≤ L, (2)

where x0 ∈ (0, L) and wL, wR ∈ (0, 1) satisfy wL < wR and f(wL) = f(wR) < f(ū) with ū =
argmaxu∈[0,1]f(u). Our goal is to find two feedback controllers F1 and F2 that stabilizes (1) over
(0, L) around the target function w, i.e for any initial data u0, the G-solutions u(t, ·) of (1) converges
to w(·) in L1(0, L) as t→∞. We consider a continuous function g : R→ R such that

g(0) = 0 and ∀x ∈ R∗, xg(x) > 0 (3)
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and the following ODE {
ṁ(t) = −g(m(t)),
m(0) = m0,

(4)

admits a unique solution over [0,∞). In this paper, the feedback controllers F1 and F2 have the
following forms

F1(t, u) = max(min(f(wL)− g(m(t)), f(u)− ε), 0) and F2(t, u) = f(wR) (5)

where ε > 0 is chosen such that f(u)− f(wL)− ε > 0 and

m(t) :=

∫ L

0

(u(t, x)− w(x))dx. (6)

Remark 1 • Since g is a continuous function, from Peano’s Theorem, there exists at least
one solution of (4). If there exists t0 > 0 such that m(t0) = 0 then, from (3), any solution
m(·) of (4) satisfies for any t ≥ t0, d

dtm
2(t) < 0. Therefore, for any t ≥ t0, m(t) = 0.

• We have the following maximum and minimum principle

m0 ≥ 0 =⇒ ∀t ≥ 0, m(t) ≥ 0 and m0 ≤ 0 =⇒ ∀t ≥ 0, m(t) ≤ 0.

• The EDO (4) is asymptotically stable around the equilibrium point 0 using (3) and the can-

didate Lyapunov function V : x→ x2

2 (see[6]).

• The uniqueness of the EDO (4) is used to prove the existence of solutions of (1). More
precisely, from a certain time, the unique solution of the coupled PDE-ODE (13) is a solution
of (1).

In [2, 7, 9], stabilization results are obtained in the context of weak-entropy solutions. More
precisely, in [2], the authors consider solutions with a finite number of shocks to find the derivative
of a Lyapunov function candidate. In [9], they assume that the solutions is only determined by the
boundaries and use the Hamilton-Jacobi formulation. In [7], a saturated proportional controller is
provided to stabilize asymptotically the weak-entropy solution of LWR around a stationary shocks
using the notion of generalized characteristics. To our best knowledge, there are no stabilization
results in the context of G-solutions.

1.2 Definitions and notations

Let Π = [0,∞)× R. Throughout the paper,

φ : (u, k) ∈ R× R 7→ sgn(u− k)(f(u)− f(k))

denotes the entropy flux associated with the Kruzhkov entropy (u, k) 7→ |u− k| (see [5]).

Definition 1.1 (Admissibility germ G(F ),[1]) Let F ∈ [0, f(u)]. The admissibility germ G(F )
for the conservation law (1) is the subset of [0, 1]2 defined as the union G(F ) = G1(F ) ∪ G2(F ) ∪
G3(F ), where

• G1(F ) := {(cl, cr) ∈ [0, 1]2; cl > cr, f(cl) = f(cr) = F},

• G2(F ) := {(c, c) ∈ [0, 1]2; f(c) ≤ F},
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• G3(F ) := {(cl, cr) ∈ [0, 1]2; cl < cr, f(cl) = f(cr) ≤ F}.

Definition 1.2 ([1]) Let u0 ∈ L∞(R, [0, 1]). We say that u ∈ L∞(Π; [0, 1]) is a G-entropy solution
of (1) if

1. u is a Kruzhkov entropy solution for x ∈ R\{0, L}, i.e, for all nonnegative test functions
ϕ ∈ C∞c (Π\{0, L}) and all k ∈ [0, 1],∫ +∞

0

∫
R
(|u(t, x)− k|∂t + φ(u(t, x), k)∂x)ϕ(t, x)dxdt+

∫
R
|u0(x)− k|ϕ(0, x)dx ≥ 0; (7)

2. in addition, for a.e t > 0,

((γl0u)(t), (γr0u)(t)) ∈ G(F1) and ((γlLu)(t), (γrLu)(t)) ∈ G(F2). (8)

where γl,r0 and γl,rL denote the operators of left- and right-side strong traces on {x = 0} and {x = L}
and F1 and F2 are defined in (5).

2 Main results

Theorem 2.1 (Existence) Let ε > 0 satisfy f(u) − f(wL) − ε > 0. For any u0 ∈ L∞(R; [0, 1]),
there exists at least one G-entropy solution u of (1) where F1 and F2 are defined in (5).

Theorem 2.2 (Asymptotic stability) Let ε > 0 satisfy f(u) − f(wL) − ε > 0. Let v0 ∈
L∞([0, L]; [0, 1]), we consider the initia data u0 defined by

u0(x; v0) =

 1, if x < 0,
v0(x), if 0 < 0 < L,
0, if L < x.

(9)

For any v0 ∈ L∞([0, L]; [0, 1]), any G-solution u(t, ·) of (1) with initial datum u0 converges to w(·)
in L1(0, L) as t→∞.

Corollary 2.1 (Exponential stability) Let ε > 0 satisfy f(u)−f(wL)−ε > 0 and g : x 7→ K0x
with K0 > 0. For any v0 ∈ L∞([0, L]; [0, 1]), any G-solution u(t, ·) of (1) with initial datum u0

converges exponentially to w(·) in L1(0, L) as t → ∞, i.e there exists C > 0 such that for any
t ≥ 0,

‖u(t, ·)− w(·)‖L1(0,L) ≤ Ce−K0t
(
‖u0(·)− w(·)‖L1(0,L) + C

)
.

Corollary 2.2 (Finite time stability) Let ε > 0 satisfy f(u) − f(wL) − ε > 0 and g satisfied
(3) and for any α ∈ R∗,

∫ α
0

dy
g(y) > −∞. For any v0 ∈ L∞([0, L]; [0, 1]), the G-solution u(t, ·) of

(1) with initial datum u0 converges in finite time to w(·) in L1(0, L), i.e there exists a time T̄ > 0
such that for any t ≥ T̄ , for a.e x ∈ (0, L),

u(t, x) = w(x).
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3 Simulations

To construct an approximate solution of (1), we use a finite volume scheme described in [1]. The
code is available at https://github.com/Thibault-liard/Regulation-Godunov-LWR-fixed.

In Figure 1, Figure 2, Figure 3, F1 is a saturated proportional controller, i.e g in (5) is defined
by, for any x ∈ R, g(x) = K0x where K0 > 0 is the gain of the controller. Any G-solution of
the PDE (1) with the controller F1 is asymptotically stable around the stationary solution w(·)
(see Corollary 2.2). In Figure 4, Figure 5, Figure 6, F1 is a saturated sliding mode controller, i.e

g : x→ K0|x|
1
2 sign(x) where K0 > 0 is the gain of the controller. Any G-solution of the PDE (1)

with the controller F1 converges in finite time to the stationary solution w(·) (see Corollary 2.1).

Figure 1: Plottings of the initial data v0

(−), the target function w (−−) and the G-
solution of (1) (−) over (0, 1) at time t = 20
with L = 1 and for any x ∈ R, g(x) = K0x
with K0 = 0.4.

Figure 2: Plotting of the G-solution of (1)
(−) over (−15, 20) at time t = 20 with L = 1
and for any x ∈ R, g(x) = K0x with K0 =
0.4.

Figure 3: Plotting of the saturated P-
controller F1(·) with respect to time t.
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Figure 4: Plottings of the initial data v0

(−), the target function w (−−) and the
G-solution of (1) (−) over (0, 1) at time
t = 20 with L = 1 and for any x ∈ R,
g(x) = K0|x|

1
2 sign(x) with K0 = 0.4.

Figure 5: Plotting of the G-solution of (1)
(−) over (−15, 20) at time t = 20 with L = 1

and for any x ∈ R, g(x) = K0|x|
1
2 sign(x)

with K0 = 0.4.

Figure 6: Plotting of the saturated SMC-
controller F1(·) with respect to time t.

4 Proofs

4.1 Proof of Theorem 2.1

We consider the following scalar conservation laws with local ilateral constraints
ut(t, x) + ∂xf(u(t, x)) = 0, t ∈ R+, x ∈ R,
u(0, x) = u0(x), x ∈ R,
f(u(t, 0)) ≤ Q1(t), t ∈ R+,
f(u(t, L)) ≤ Q2(t), t ∈ R+.

(10)

A G-solution u of (10) is understood in the sense of Definition 1.2 replacing F1 and F2 by Q1 and
Q2 respectively. Note that, contrary to (1), Q1 and Q2 in (10) does not depend on the G-solution
u.
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Proposition 4.1 ([1]) Assume that Q1
1, Q

2
1, Q

1
2, Q

1
2 ∈ L∞(R+, [0, f(u)]) and u0, v0 ∈ L∞(R, [0, 1])

such that (u0 − v0) ∈ L1(R). The G-entropy solutions u and v of
ut(t, x) + ∂xf(u(t, x)) = 0,
u(0, x) = u0(x),
f(u(t, 0)) ≤ Q1

1(t),
f(u(t, L)) ≤ Q1

2(t),

and


vt(t, x) + ∂xf(v(t, x)) = 0,
v(0, x) = v0(x),
f(v(t, 0)) ≤ Q2

1(t),
f(v(t, L)) ≤ Q2

2(t),

satisfy, for a.e T > 0,∫
R
|u− v|(T, x)dx ≤ 2

∫ T

0

|Q1
1 −Q2

1|(t)dt+ 2

∫ T

0

|Q1
2 −Q2

2|(t)dt+

∫
R
|u0 − v0|(x)dx (11)

Definition 4.1 Let us fix T > 0. We introduce the operator F : W 1,∞([0, T ]) → W 1,∞([0, T ])
defined by

∀t ∈ [0, T ], F(z)(t) :=

∫ L

0

(u(t, x)− w(x)) dx,

where u ∈ L∞([0, T ]× R; [0, 1]) is a G-entropy solution of (10) with Q1 and Q2 defined by

Q1(t) = max(min(f(wL)− g(z(t)), f(u)− ε), 0) and Q2(t) = f(wR).

Proposition 4.2 Let us fix T > 0. F has a unique fixed point in W 1,∞([0, T ]).

Proof. We apply Schauder’s fixed point theorem [8], i.e suppose K is a compact set in a Fréchet
space X and F : X → K is continuous then F has a fixed point in K. Here, X := C([0, T ]; [0, 1]) is
a Banach space equipped with the norm ‖ ·‖L∞(0,T ) and K := F(C([0, T ]; [0, 1])) ⊂ C([0, T ]; [0, 1]).

• Let us fix y ∈ C([0, T ]; [0, 1]) and (yn)n∈N be a sequence that converges uniformly to y. We
denote by u and un the G-entropy solutions involved in the definition of F(y) and F(yn)
respectively. Using Proposition 4.1, for any t ∈ [0, T ],

|F(yn)(t)−F(y)(t)| ≤ 2
∫ t

0
|max(min(f(wL)− g(yn(t)), f(ū)− ε)), 0)
−max(min(f(wL)− g(y(t)), f(ū)− ε))), 0)|dt,

≤ 2
∫ t

0
|g(yn(t))− g(y(t))|dt,

(12)

From Heine’s Theorem, g : [0, 1] → R is uniformly continuous and for any t ∈ [0, T ], y(t) ∈
[0, 1] and z(t) ∈ [0, 1]. Thus, (g(yn))n∈N converges uniformly to g(y). Therefore, together
with (12), we conclude that F is continuous on C([0, T ]; [0, 1]) with respect to norm ‖ ·
‖L∞(0,T ).

• We introduce the set A = F(C([0, T ]; [0, 1])) ⊂ C([0, T ]; [0, 1]). Let us fix z ∈ C([0, T ]; [0, 1]),
we denote by u the G-entropy solutions involved in the definition of F(z). Since for any
(t, x) ∈ R+× (0, L), 0 ≤ u(t, x) ≤ 1 then for any t ∈ [0, T ], |F(z)(t)| ≤ L then A is a bounded
subset of C([0, T ]; [0, 1]). Let 0 ≤ t < t′ ≤ T , from Lemma A.1 with γ1(·) = 0, γ2(·) = L,
t1 = t et t2 = t′,∫ L

0

u(t, x)dx+

∫ t′

t

f(u(t, 0))dt =

∫ L

0

u(t′, x)dx+

∫ t′

t

f(u(t, L))dt.

Thus, together with (8), we have

|F(z)(t′)−F(z)(t)| ≤ f(u)(t′ − t).

As a consequence, A is equicontinuous. From Arzelà–Ascoli theorem, A := F(C([0, T ]; [0, 1]))
is a compact set.
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From Schauder’s fixed point theorem [8], F has a fixed point in F(C([0, T ]; [0, 1])). Since F(C([0, T ]; [0, 1])) ⊂
W 1,∞([0, T ]), we conclude the proof of Proposition 4.2. 2

Proof of Theorem 2.1. Let ε > 0 and T5 := T4 + ε where T4 is defined in Proposition
4.6. From Proposition 4.2, for any u0 ∈ L∞(R; [0, 1]), there exists at least one G-entropy solution,
denoted by u, of (1) over [0, T5] where F1 and F2 are defined in (5). We consider the following
coupled PDE-ODE 

vt(t, x) + ∂xf(v(t, x)) = 0, t ∈ (T4,∞), x ∈ R,
v(T4, x) = u(T4, x), x ∈ R,
f(v(t, 0)) ≤ f(wL)− g(γ(t)), t ∈ (T4,∞),
f(v(t, L)) ≤ f(wR), t ∈ (T4,∞).
γ̇(t) = −g(γ(t)), t ∈ (T4,∞).

γ(T4) =
∫ L

0
(u(T4, x)− w(x))dx.

(13)

From Remark 1 and [1, Theorem 2.11], the coupled PDE-ODE admits a unique G-entropy solution,

denoted by v, over [T4,∞). From (80), we have m(T4) :=
∫ L

0
(u(T4, x) − w(x))dx ∈ [0, f(ū) − ε].

From (3) and γ(T4) = m(T4), we deduce that, for any t ≥ T4, f(wL) − g(γ(t)) ∈ [0, f(ū) − ε].
Thus, since T4 does not depend on the initial data u0, Proposition 4.6 holds replacing F1(t, u) by

f(wL)− g(γ(t)). Thus, the function σ : t→
∫ L

0
(v(t, x)− w(x))dx satisfied, for any t ≥ T4,{

σ̇(t) = f(wL)− g(γ(t))− f(wR),
σ(T4) = m(T4)

From (13), we deduce that σ(t) = γ(t) for any t ≥ T4. Therefore, v is a G-entropy solution of
(1) over [T4,∞). By uniqueness of (13) and from Proposition 4.6, for any t ∈ [T4, T5], u = v.
We conclude that w, defined by w = u over [0, T4+T5

2 ] × R and w = v over (T4+T5

2 ,∞) × R, is a
G-entropy solution of (1).

4.2 Proof of Theorem 2.2

Let f̄ ∈ [0, f(ū)]. We denote by ǔf̄ and ûf̄ the two solutions of f(u) = f̄ with ǔf̄ < ûf̄ (these
solutions exist because f is concave). Let u be a G-entropy solution of (1).

Lemma 4.1 There exist T1 > 0 (independent of the initial data u0) and two functions β1, β2 :
[T1,+∞)→ (0, L) such that, for any (t̄, x̄) ∈ [T1,+∞)× (0, L), we have β1 ≤ β2 and

0 < x̄ < β1(t̄) =⇒ u(t̄, x̄±) ∈ [0, ǔf(ū)−ε) (14)

β1(t̄) < x̄ < β2(t̄) =⇒ f(u(t̄, x̄±)) ≥ f(ū)− ε

2
, (15)

β2(t̄) < x̄ < L =⇒ u(t̄, x̄±) ∈ [wR, 1] (16)

Proof. Let (t̄, x̄) ∈ (0,+∞) × (0, L). From the point 1. of Definition 1.2 and [4, Theorem
11.1.3] , there exists a minimal backward generalized characteristic, denoted by ξ−, associated to
u emanating from (t̄, x̄) defined on an interval [a, t̄] with a ≥ 0 such that for any t ∈ (a, t̄)

u(t, ξ−(t)−) = u(t̄, x̄−) = u(t, ξ−(t)+). (17)

In particular, ξ− is a genuine characteristic (also called shock-free, see [4, Definition 10.2.4]). We
have three different possibilities.
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Case 1: ξ−(a) = 0 and a > 0. From Proposition B.1 with ξ = ξ−, a = a and b = t̄, there
exists a constant v ∈ [0, 1] such that, for any t ∈ [a, t̄], ξ̇−(t) = f ′(v) and, for any t ∈ (a, t̄),
u(t, ξ−(t)) = v and f(v) ≤ f(ū)− ε. From (17), we deduce that

u(t̄, x̄−) = v and f(v) ≤ f(ū)− ε.

Therefore, using the definition of ǔf(ū)−ε and ûf(ū)−ε and the concavity of f , we have
u(t̄, x̄−) ∈ [0, ǔf(ū)−ε) ∪ (ûf(ū)−ε, 1]. Moreover, since ξ−(a) = 0 and a > 0 then f ′(v) > 0.
The concavity of f implies that v ∈ [0, ū). Thus, u(t̄, x̄−) ∈ [0, ǔf(ū)−ε).

Case 2: a = 0. From Proposition B.1 with ξ = ξ−, a = 0 and b = t̄, there exists a constant
v ∈ [0, 1] such that, for any t ∈ [0, t̄], ξ̇−(t) = f ′(v) and, for any t ∈ (0, t̄), u(t, ξ−(t)) = v.
From (17), we deduce that, for any t ∈ [0, t̄],

ξ̇−(t) = f ′(u(t̄, x̄−)).

Thus, ξ−(t̄)− ξ−(0) = f ′(u(t̄, x̄−))t̄. Using that ξ−(t̄) = x̄, we deduce that

f ′(u(t̄, x̄−)) =
x̄− ξ−(0)

t̄
.

Since 0 ≤ ξ−(0) ≤ L, we get
x̄− L
t̄
≤ f ′(u(t̄, x̄−)) ≤ x̄

L

which implies that

−L
t̄
≤ f ′(u(t̄, x̄−)) ≤ L

t̄
.

Using that f is strictly concave and ū := argmaxu∈[0,R]f(u), we deduce that there exists
T1 > 0 such that for any t̄ ≥ T1, (15) holds.

Case 3: ξ−(a) = L and a > 0. From Proposition B.1 with ξ = ξ−, a = a and b = t̄, there
exists a constant v ∈ [0, 1] such that, for any t ∈ [a, t̄], ξ̇−(t) = f ′(v) and, for any t ∈ (a, t̄),
u(t, ξ−(t)) = v and f(v) ≤ f(wR). From (17), we deduce that

u(t̄, x̄−) = v and f(v) ≤ f(wR)

Therefore, using the definition of w and the concavity of f , we deduce that u(t̄, x̄−) ∈
[0, wL] ∪ [wR, 1]. Moreover, since ξ−(a) = L and a > 0 then f ′(v) < 0. The concavity of f
implies that v ∈ (ū, 1]. Thus, u(t̄, x̄−) ∈ [wR, 1].

We know that genuine characteristics do not cross over (0,+∞) × (0, L). Therefore, given t̄, the
set of x̄ for which we are in first case, second case or third case are connected and they form a
partition of [0, L]. From a geometrical viewpoint it is obvious that from the left to the right we
have points from the first case, points from the second case and points from the last case. At this
point we have indeed constructed two functions β1 and β2 such that β1 ≤ β2 and (14), (15) and
(16) hold for x−. Using that u(t̄, x̄+) = limε→0+ u(t̄, (x̄+ ε)−) and applying (14), (15) and (16) for
x− to the right hand of the latter equality, we deduce that (14), (15) and (16) also hold for x+.
An illustration of the proof is given in Figure 7. 2

Proposition 4.3 There exists T2 > 0 (independent of the initial data u0) and a Lipschitz function
β : [T2,+∞]→ [0, L] satisfying, for any (t̄, x̄) ∈ [T2,+∞)× (0, L),{

0 < x̄ < β(t̄) =⇒ u(t̄, x̄±) ∈ [0, ǔf(ū)−ε)
β(t̄) < x̄ < L =⇒ u(t̄, x̄±) ∈ [wR, 1]

(18)
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x

t

0 L

t̄

ξ0(·)

a

×
(t̄, β1(t̄))

ξ1(·)

×
(t̄, β2(t̄))

ξ2(·)

b

Figure 7: Construction of β1(·) and β2(·); the minimal backward generalized characteristic ξ0
emanating from (t̄, x̄) ∈ [T1,∞) × (0, β1(t̄)) touches the left boundary x = 0 at time t = a > 0.
The minimal backward generalized characteristic ξ1 emanating from (t̄, x̄) ∈ [T1,∞)×(β1(t̄), β2(t̄))
touches the initial boundary t = 0. The minimal backward generalized characteristic ξ2 emanating
from (t̄, x̄) ∈ [T1,∞)× (β2(t̄), L) touches the right boundary x = L at time t = b > 0.

Proof. We assume that β1(T1) < β2(T1) and (8) holds at time t = T1. We now prove that
β1(T1) > 0 and β2(T1) < L by contradiction. We assume that β1(T1) = 0. From (15) and using
that u(T1, 0̄

+) = limx→0
x>0

u(T1, x
−), we have

f(u(T1, 0̄
+)) ≥ f(ū)− ε

2
.

Since (8) holds at time t = T1, we get

f(u(T1, 0̄
+)) ≤ f(ū)− ε.

This leads to a contradiction. Thus, we have β1(T1) > 0. The same argument works for β2. From
[4, 11.1.4 Theorem] and (T1, β1(T1)) ∈ (0,+∞)×(0, L), there exists a unique forward characteristics
γ1(·), issues from (T1, β1(T1)), defined on a certain interval [T1, c1) where c1 > T1 is chosen such
that for any t ∈ [T1, c1), γ1(t) ∈ (0, L), γ1 is a Lipschitz function over [T1, c1). We will now prove
that β1 = γ1. To that end, let us fix t ∈ (T1, c1).

• Let x ∈ (0, γ1(t)). We denote by ξ−, the minimal backward characteristic emanating from
(t, x), defined maximally on an interval [b, t]. By uniqueness of forward characteristics, we
have

∀s ∈ [max(T1, b), t], ξ−(s) < γ1(s).

We have two alternatives.

– If b > T1, we have ξ−(b) = 0 and b > 0. Thus, by definition of β1, x < β1(t).

– If b ≤ T1, then ξ−(T1) < γ1(T1) = β1(T1). Therefore, by definition of β1, ξ− is the
minimal backward characteristic emanating from (T1, ξ−(T1)), defined maximally on an
interval [b, T1] and ξ−(b) = 0 with b > 0.

We conclude that, for any x ∈ (0, γ1(t)), x < β1(t). Thus, we have

γ1(t) ≤ β1(t). (19)
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• Let x ∈ (γ1(t), L). We denote by ξ−, the minimal backward characteristic emanating from
(t, x), defined maximally on an interval [b, t]. By uniqueness of forward characteristics, we
have

∀s ∈ [max(T1, b), t], γ1(s) < ξ−(s).

We have two alternatives.

– If b > T1, we have ξ−(b) = L and b > 0. Thus, by definition of β1 and β2, β1(t) ≤
β2(t) < x.

– If b ≤ T1, then γ1(T1) = β1(T1) < ξ−(T1). Then, by definition of β1 and β2, ξ− is the
minimal backward characteristic emanating from (T1, ξ−(T1)), defined maximally on an
interval [b, T1] and either b = 0 or ξ−(b) = L with b > 0. For both cases, β1(t) < x.

We conclude that, for any x ∈ (γ1(t), L), β1(t) < x. Thus, we have

β1(t) ≤ γ1(t). (20)

From (19) and (20), we deduce that for any t ∈ [T1, c1), β1(t) = γ1(t). The same argument works for
β2. More precisely, β2 coincides with the unique forward characteristic γ2, issues from (T1, β2(T1)),
defined on a certain interval [T1, c2) where c2 > T1 is chosen such that for any t ∈ [T1, c2),
γ2(t) ∈ (0, L). As a consequence, β1 and β2 are two Lipschitz functions over (T1,min(c1, c2)) and
for a.e t ∈ (T1,min(c1, c2)),

β̇i(t) =
f(u(t, βi(t)

−))− f(u(t, βi(t)
+))

u(t, βi(t)−)− u(t, βi(t)+)
, i ∈ {1, 2}. (21)

From Lemma 4.1, β1(T1) < β2(T1), (21) and the concavity of f , we deduce that, for a.e t ∈
(T1,min(c1, c2))

β̇1(t) ≥ (f(ū)− ε)− (f(ū)− ε
2 )

ǔf(ū)−ε − ûf(ū)− ε2
:= d1 > 0, (22)

β̇2(t) ≤ (f(ū)− ε)− (f(ū)− ε
2 )

ûf(ū)−ε − ǔf(ū)− ε2
:= d2 < 0, (23)

and there exists T ∈ (T1,min(c1, c2)) such that for any t ∈ [T1, T ), 0 < β1(t) < β2(t) < L and
β1(T ) = β2(T ). Moreover, we have

d1(T − T1) ≤ β1(T ) = β2(T ) ≤ L+ d2(T − T1).

This implies that T ≤ T2 := L+ T1

d1+d2
and for any t ≥ [T,min(c1, c2)),

β(t) := β1(t) = β2(t).

By definition of β1 and β2, (18) holds over [T,min(c1, c2)). As a consequence, we have for a.e
t ∈ [T,min(c1, c2))

−f(ū) + ε

1− ǔf(ū)−ε
≤ β̇(t) =

f(u(t, β(t)−))− f(u(t, β(t)+))

u(t, β(t)−)− u(t, β(t)+)
≤ f(wR)

wR
. (24)

Thus, c := c1 = c2 and β is a Lipschitz function over [T, c). By definition of c1 and c2, c is the first
time when β(c) = 0 or β(c) = L (by convention, c = +∞ if β(t) ∈ (0, L) for any t ≥ T2).

• If c = +∞ then β is a Lipschitz function over [T2,+∞) and by definition of β1 and β2, (18)
holds over [T2,∞).
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• If c < +∞ then β is a Lipschitz function over [T2, c) and there exists a final time c̄ ≥ c such
that for any t ∈ [c, c̄] either β(t) = L or β(t) = 0 (by convention c̄ = +∞ if for any t ≥ c,
either β(t) = L or β(t) = 0). If c 6= +∞, there exists c̄1 > 0 such that for any t ∈ (c̄, c̄1),
β(t) ∈ (0, L) using the continuity of β. To simplify the proof, we only consider the case, for
any t ∈ [c, c̄], β(t) = 0 (the same arguments work with the case β(t) = L).

– If c̄ = +∞, then β is a Lipschitz function over [T2, c) with Lipschitz constant denoted
by K and β(t) = 0 for any t ≥ c. Thus, β is continuous over [T2,+∞). Moreover, for
any t1 ∈ [T2, c) and t2 ∈ [c,∞) we have

|β(t1)− β(t2)| ≤ |β(t1)− β(tn)|+ |β(tn)− β(c)|+ |β(c)− β(t2)|
≤ K|t1 − tn|+ |β(tn)− β(c)| (25)

where (tn)n∈N a sequence such that for any n ∈ N, tn < c and limn→∞ tn = c. Passing
to the limit as n tends to +∞ in (25), we deduce that β is a Lipschitz function over
[T2,+∞). By definition of β1 and β2, (18) holds over [T2,+∞).

– If c̄ < +∞, then as in the case c̄ = +∞, β is a Lipschitz function over [T2, c̄] and by
definition of β1 and β2, (18) holds over [T2, c̄]. Moreover, for any t̄ ∈ (c̄, c̄1), β coincides
with the unique forward characteristic γ, issues from (t̄, β(t̄)), defined on [t̄, c̄1). Thus,
for any t̄ ∈ (c̄, c̄1), β is a Lipschitz function over [t̄, c̄1] with Lipschitz constant denoted by
K. By definition of β1 and β2, (18) holds over [t̄, c̄1). As a consequence, β is continuous
over [T2, c̄1). Let the sequence (tn)n∈N be defined by tn = t̄+ 1

n for any n ∈ N. For any
t1 ∈ [c, c̄) and t2 ∈ (c̄, c̄1), we have

|β(t1)− β(t2)| ≤ |β(t1)− β(tn)|+ |β(tn)− β(c̄)|+ |β(c̄)− β(t2)|
≤ K|t1 − tn|+ |β(tn)− β(c̄)| (26)

Passing to the limit as n tends to +∞ in (26), we deduce that β is a Lipschitz function
over [T2, c̄1). By iteration, we deduce that β is a Lipschitz function over [T2,+∞) and
(18) holds over [T2,+∞).

Note that (8) holds at time t = T1 can be removed since β1 and β2 are two continuous func-
tions and (8) holds almost everywhere. Moreover, if β1(T1) = β2(T1) then for any t ∈ [T1,∞),
β(t) := β1(t) = β2(t) and (18) holds. Moreover, if β(t) > 0 with t ∈ [T1,∞), we prove as above
that β(·) coincides with the unique forward characteristic γ1(·) emanating from (t, β(t)), over [t, c1)
where c1 > t is chosen such that for any t ∈ [t, c1), β(t) = γ1(t) ∈ (0, L). So β is a Lipschitz func-
tion over [T1,+∞) 2

Proposition 4.4 Let t̄ ≥ T2 such that (8) holds at time t = t̄

β(t̄) > 0 =⇒ f(u(t̄, 0+)) = F1(t̄, u) and u(t̄, 0+) ≤ ū (27)

β(t̄) < L =⇒ f(u(t̄, L−)) = F2(t̄, u) and u(t̄, L−) ≥ ū (28)

Proof. Let t̄ ≥ T2 such that (8) holds at time t = t̄ and β(t̄) > 0. From (18), u(t̄, 0+) =
limx→0

x>0
u(t̄, x+) ∈ [0, ǔf(ū)−ε]. Let us fix x̄ ∈ (−∞, 0). From the point 1. of Definition 1.2 and

[4, Theorem 11.1.3] and (17), there exists a minimal generalized characteristic ξ− emanating from
(t̄, x̄), defined maximally on an interval [a, t̄]. Moreover, for any t ∈ [a, t̄], ξ̇−(t) = f ′(v) and, for
any t ∈ (a, t̄], we have u(t, ξ−(t)−) = v. We have two alternatives.
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Case 1: a = 0 and ξ−(0) < 0. From [4, Theorem 11.1.3] , we have u0(ξ−(0)+) ≤ u(t̄, x̄−) ≤
u0(ξ−(0)−). By definition of u0 in (9), we have u0(ξ−(0)+) = u0(ξ−(0)−) = 1. Then, we
deduce that u(t̄, x̄−) = 1.

Case 2: a > 0 or (a = 0 and ξ−(0) = 0). Since ξ− is a straight line, ξ−(t̄) = x̄ < 0 and
ξ−(a) = 0, we have for any t ∈ [a, t̄], ξ̇−(t) = f ′(v) < 0. By concavity of f , we deduce that
u(t̄, x̄−) ∈ (ū, 1].

Thus, for any x̄ ∈ (−∞, 0), u(t̄, x̄−) ∈ (ū, 1]. As a consequence, u(t̄, 0−) = limx̄<0
x̄→0

u(t̄, x̄−) ∈ [ū, 1]

and u(t̄, 0+) ∈ [0, ǔf(ū)−ε) with ǔf(ū)−ε < ū. Since (8) holds at time t = t̄, we conclude that

((γl0u)(t̄), (γr0u)(t̄)) ∈ G1(F1),

with (γl0u)(t̄) = u(t̄, 0−) and (γr0u)(t̄) = u(t̄, 0+) and G1 defined in Definition 1.1. Thus, (27) holds.
The same argument works for β(t) < L. 2

We will state some preliminary lemmas. Let (t, x) ∈ (0,+∞) × [0, L], we introduce τ−(t, x) ∈
(0,+∞) and τ+(t, x) ∈ (0,+∞) defined by

τ+(t, x) =
x

f ′(u(t, x−))
and τ−(t, x) =

x− L
f ′(u(t, x−))

(29)

with u the G-entropy solution of (1).

Proposition 4.5 Let t̄ ≥ T̃2 := T2 + τmax with τmax = max
(
− L
f ′(wR) ,

L
f ′(ǔf(ū)−ε)

)
such that (8)

holds at time t = t̄.

β(t̄) > 0 =⇒ ∀x ∈ (0, β(t̄)), f(u(t̄, x±)) = F1(t̄− τ+(t̄, x), u) and u(t̄, x±) ∈ [0, ū), (30)

β(t̄) < L =⇒ ∀x ∈ (β(t̄), L), u(t̄, x±) = wR. (31)

Proof. Let t̄ ≥ T̃2 := T2+τmax with τmax = max
(
− L
f ′(wR) ,

L
f ′(ǔf(ū)−ε)

)
such that (8) holds at time

t = t̄ and x ∈ (0, β(t̄)). From the point 1. of Definition 1.2, [4, Theorem 11.1.3] and the definition
of β, there exists a minimal backward generalized characteristic, denoted by ξ−, associated to u
emanating from (t̄, x) defined on an interval [a, t̄] with a > 0 and ξ−(a) = 0 such that for any
t ∈ (a, t̄)

u(t, ξ−(t)−) = u(t̄, x−) = u(t, ξ−(t)+). (32)

In particular, ξ− is a genuine characteristic (also called shock-free, see [4, Definition 10.2.4]). From
Proposition B.1 with ξ = ξ−, a = a and b = t̄, there exists a constant v ∈ [0, 1] such that, for
any t ∈ [a, t̄], ξ̇−(t) = f ′(v) > 0 and, for any t ∈ (a, t̄), u(t, ξ−(t)−) = v and f(v) ≤ f(ū) − ε. In
particular, we have a = t̄− τ+(t̄, x) = t̄− x

f ′(u(t̄,x−)) ≥ T̃2− L
f ′(ǔf(ū)−ε)

≥ T2. From (32), we deduce

that for any t ∈ (a, t̄]
u(t, ξ−(t)−) = v and f(v) ≤ f(ū)− ε.

• We assume that there exists a time t0 ∈ (a, t̄) such that ξ−(t0) = β(t0) ∈ (0, L). Then
ξ− interacts with any maximal backward generalized characteristic emanating from (t, β(t))
with t ∈ (t0, t̄). This leads to a contradiction since from [4, 1.1.2 Corollary], two genuine
characteristics cannot interact. Thus, we have for any t ∈ (a, t̄],

ξ−(t) < β(t). (33)
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• We assume that β(a) = ξ−(a) (see Figure 8). Since β(a) = 0, from Proposition 4.3, for any
y ∈ (0, L),

u(a, y±) ∈ [wR, 1]. (34)

Let δ > 0 such that x+ δ ∈ (0, β(t̄)). From Lemma A.1 with γ1(·) = ξ−(·), γ2(·) = ξ−(·) + δ,
t1 = a et t2 = t̄, we have∫ δ

0
u(a, z)dz +

∫ t̄
a
(f(v)− f ′(v)v)dt

=
∫ x+δ

x
u(t̄, z)dz +

∫ t̄
a
(f(u(t, (ξ−(t) + δ)−))− ξ̇−(t)u(t, (ξ(t) + δ)−))dt

(35)
Using that t ∈ [a, t̄], ξ̇−(t) = f ′(v) and the concavity of f , we deduce that

f(u(t, (ξ−(t) + δ)−))− f(v)− f ′(v)(u(t, (ξ(t)+δ)
−)− v) ≤ 0 (36)

From (35) and (36), we have ∫ δ

0

u(a, z)dz ≤
∫ x+δ

x

u(t̄, z)dz. (37)

Since for any z ∈ (x, x+δ), 0 < z < x+δ < β(t̄), from Proposition 4.3, u(t̄, z±) ∈ [0, ǔf(ū)−ε).
Therefore, together with (34), we have∫ x+δ

x

u(t̄, z)dz < δǔf(ū)−ε ≤ δwR ≤
∫ δ

0

u(a, z)dz

This leads to a contradiction using (37). Thus, we have

ξ−(a) < β(a). (38)

x

t

0 L

a− δ
f ′(v)

a

t̄
x x+ δ β(t̄)

ξ−(·) β(·)

Figure 8: Case β(a) = ξ−(a) where ξ− is a minimal backward generalized characteristic associated
to u emanating from (t̄, x) defined on an interval [a, t̄] with a > 0 and ξ−(a) = 0. Moreover, for any
t ∈ [a, t̄], ξ̇−(t) = f ′(v) and, for any t ∈ (a, t̄], u(t, ξ−(t)−) = v and f(v) ≤ f(ū)− ε with v ∈ [0, 1].

Using that for any t ∈ [a, t̄], ξ−(t) < β(t), ξ−(a) = 0 and β is a Lipschitz function (see
Proposition 4.3), there exists δ̄ > 0 such that for any t ∈ [a− δ̄, a+ δ̄], β(t) > 0. Therefore, from
Proposition 4.4, we have for a.e t ∈ [a− δ̄, a+ δ̄],

f(u(t, 0+)) = F1(t, u) and u(t, 0+) ≤ ū

13



From Proposition B.1 with ξ = ξ−, a = a, b = t̄, c = a − δ̄, d = a + δ̄, g = mint∈[a−δ̄,a+δ̄] F1(t, u)
and G = maxt∈[a−δ̄,a+δ̄] F1(t, u), we deduce that for any t ∈ (b, t̄),

min
t∈[a−δ̄,a+δ̄]

F1(t, u) ≤ f(u(t̄, x−)) ≤ max
t∈[a−δ̄,a+δ̄]

F1(t, u). (39)

Note that the minimum and the maximum of F1(t, u) makes sense since using (5), t 7→ F1(t, u) is
a continuous function and [a− δ̄, a+ δ̄] is a compact set. Passing to the limit in (39) as δ̄ → 0, we
conclude that

f(u(t̄, x−)) = F1(a, u) with a = t̄− τ+(t̄, x). (40)

Using that u(t̄, x+) = limε→0+ u(t̄, (x+ ε)−), we deduce that (40) also hold for x+.

Let t̄ ≥ T̃2 := T2 + τmax with τmax = max
(
− L
f ′(wR) ,

L
f ′(ǔf(ū)−ε)

)
such that (8) holds at time

t = t̄ and x ∈ (β(t̄), L). From the point 1. of Definition 1.2, [4, Theorem 11.1.3] and the definition
of β, there exists a minimal backward generalized characteristic, denoted by ξ−, associated to u
emanating from (t̄, x) defined on an interval [a, t̄] with a > 0 and ξ−(a) = L such that for any
t ∈ (a, t̄), (32) holds. In particular, ξ− is a genuine characteristic (also called shock-free, see [4,
Definition 10.2.4]). From Proposition B.1 with ξ = ξ−, a = a and b = t̄, there exists a constant
v ∈ [0, 1] such that, for any t ∈ [a, t̄], ξ̇−(t) = f ′(v) < 0 and, for any t ∈ (a, t̄), u(t, ξ−(t)−) = v and
f(v) ≤ f(wR). In particular, we have a = t̄− τ−(t̄, x) = t̄− x−L

f ′(u(t̄,x−)) ≥ T̃2 − L
f ′(wR) ≥ T2. From

(32), we deduce that for any t ∈ (a, t̄]

u(t, ξ−(t)−) = v and f(v) ≤ f(wR).

• We assume that there exists a time t0 ∈ (a, t̄) such that ξ−(t0) = β(t0) ∈ (0, L). Then
ξ− interacts with any maximal backward generalized characteristic emanating from (t, β(t))
with t ∈ (t0, t̄). This leads to a contradiction since from [4, 1.1.2 Corollary], two genuine
characteristics cannot interact. Thus, we have for any t ∈ (a, t̄],

β(t) < ξ−(t). (41)

• We assume that β(a) = ξ−(a). Since β(a) = L, from Proposition 4.3, for any y ∈ (0, L),

u(a, y±) ∈ [0, ǔf(ū)−ε). (42)

Let δ > 0 such that x− δ ∈ (β(t̄), L). From Lemma A.1 with γ1(·) = ξ−(·)− δ, γ2(·) = ξ−(·),
t1 = t̄ et t2 = a, we have∫ L

L−δ u(a, x)dx+
∫ t̄
a
(f(u(t, (ξ−(t)− δ)+))− ξ̇−(t)u(t, (ξ(t)− δ)−))dt

=
∫ x̄
x̄−δ u(t̄, x)dx+

∫ t̄
a
(f(v)− f ′(v)v)dt

(43)

Using that t ∈ [a, t̄], ξ̇−(t) = f ′(v) and the concavity of f , we deduce that

f(u(t, (ξ−(t)− δ)+))− f(v)− f ′(v)(u(t, (ξ(t)− δ)−)− v) ≤ 0 (44)

From (43) and (44), we have ∫ x̄

x̄−δ
u(t̄, x)dx ≤

∫ L

L−δ
u(a, x)dx. (45)
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Since, for any z ∈ (x− δ, x), β(t̄) < x− δ < z < L, from Proposition 4.3, u(t̄, z±) ∈ [wR, 1].
Therefore, together with (42), we have∫ L

L−δ
u(a, x)dx ≤ δǔf(ū)−ε < δwR ≤

∫ x̄

x̄−δ
u(t̄, x)dx

This leads to a contradiction using (45). Thus, we have

β(a) < ξ−(a). (46)

Using that for any t ∈ [a, t̄], β(t) < ξ−(t), ξ−(a) = L and β is a Lipschitz function (see
Proposition 4.3), there exists δ > 0 such that for any t ∈ [a− δ, a+ δ], β(t) < L. Therefore, from
Proposition 4.4, we have for a.e t ∈ [a− δ, a+ δ],

f(u(t, L−)) = f(wR) and ū < u(t, L−)

From Proposition B.1 with ξ = ξ−, a = a, b = t̄, c = a− δ, d = a+ δ, g = f(wR) = G, we deduce
that for any t ∈ (b, t̄),

u(t̄, x−) = wR with a = τ−(t̄, x) (47)

Using that u(t̄, x+) = limε→0+ u(t̄, (x+ ε)−), we deduce that (47) also hold for x+.
2

Lemma 4.2 For a.e t ≥ T̃2 := T2 + 2τmax with τmax = max
(
− L
f ′(wR) ,

L
f ′(ǔf(ū)−ε)

)
. ṁ(t) = 0 if β(t) = 0,

ṁ(t) = F1(t, u)− F2(t, u) if 0 < β(t) < L,
ṁ(t) ≥ F1(t, u)− F2(t, u) if β(t) = L,

(48)

where F1(t, u) and F2(t, u) are defined in (5).

Proof. From Lemma A.1 with γ1 = 0, γ2 = L, t1 = 0 et t2 = t and the definition of m in (6), we
have for a.e t > 0,

ṁ(t) = f(u(t, 0+))− f(u(t, L−)), (49)

where (49) in understood in the sense of Carathéodory solutions. More precisely, Caratheodory
solutions are absolutely continuous curves that satisfy the integral version of the differential equa-
tion (49), that is,

m(t) = m(0) +

∫ t

0

(f(u(s, 0+))− f(u(s, L−))) ds.

Let us fix t̄ ≥ T̃2 such that (8), (27), (28) and (49) hold. We have three alternatives.

Case 1: β(t̄) = 0. From Proposition 4.5, for any x ∈ (0, L), u(t̄, x±) = wR. Using that
u(t̄, 0+) = limx→0

x>0
u(t̄, x+) and u(t̄, L−) = limx→0

x<L
u(t̄, x−), we conclude that u(t̄, 0+) =

u(t̄, L−) = wR. Thus, from (49), for a.e t ≥ T̃2 such that β(t) = 0, we have ṁ(t) = 0.

Case 2: 0 < β(t̄) < L. From (27), (28) and (49), we have

ṁ(t̄) = F1(t̄, u)− F2(t̄, u).
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Case 3 : β(t̄) = L. From (8) and (27), f(u(t̄, 0+)) = F1(t̄, u) and f(u(t̄, L−)) ≤ f(wR) =
F2(t̄, u). Therefore, using (49),

ṁ(t) = f(u(t, 0+))− f(u(t, L−)) ≥ F1(t, u)− F2(t, u).

2

Lemma 4.3 We assume that there exist t1 > 0 and t2 > 0 such that T2 + L
f ′(ǔf(ū)−ε)

< t1 < t2

and for any t ∈ [t1, t2], β(t) = L. Then, we have

t2 − t1 <
L

f ′(ǔf(ū)−ε)
.

x

t

0 L

a

t2 − δ
f ′(v)

a− δ
f ′(v)

t2
ξ−(·)

δ

Figure 9: Plotting of the minimal backward generalized characteristic ξ−, emanating from (t2, L),
defined maximally over [a, t2] with a > 0 and ξ−(a) = 0.

Proof. We assume that t2 ≥ L
f ′(ǔf(ū)−ε)

+ t1. Let (xn)n∈N be a sequence such that for any n ∈ N,

xn ∈ (0, L) and xn → L as n→∞. Since f ∈ C2([0, 1]), we have

lim
n→∞

t2 − τ+(t2, xn) = lim
n→∞

t2 −
xn

f ′(u(t2, x
−
n ))

= t2 − τ+(t2, L). (50)

From the point 1. of Definition 1.2, [4, Theorem 11.1.3] and the definition of β, there exists
a minimal backward generalized characteristic, denoted by ξn−, associated to u emanating from
(t2, xn) defined on an interval [an, t2] with an := t2 − τ+(t2, xn) > 0 and ξn−(an) = 0 such that for
any t ∈ (an, t2)

u(t, ξn−(t)−) = u(t2, x
−
n ) = u(t, ξn−(t)+). (51)

From [4, Section 10.2], (50) and (51), (ξn−)n∈N converges to the minimal generalized characteristic
ξ(·) emanating from (t2, L) defined on an interval [a, t2] with a := t2− τ+(t2, L) > 0 and ξ−(a) = 0
such that, for any t ∈ (a, t2],

u(t, ξ−(t)−) = u(t2, L
−) = u(t, ξ−(t)+). (52)

In particular, ξ− is a genuine characteristic (see [4, Definition 10.2.4]). From Proposition B.1
with ξ = ξ−, a = a and b = t2, there exists a constant v ∈ [0, 1] such that, for any t ∈ [a, t2],
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ξ̇−(t) = f ′(v) > 0 and, for any t ∈ (a, t2), u(t, ξ−(t)−) = v and f(v) ≤ f(ū)− ε. In particular, we
have

a = t2 − τ+(t̄, L) = t2 −
L

f ′(u(t2, L−))
> t2 −

L

f ′(ǔf(ū)−ε)
≥ t1. (53)

From (52), we deduce that for any t ∈ (a, t2]

u(t, ξ−(t)−) = v and f(v) ≤ f(ū)− ε. (54)

Let us fix δ > 0 such that a − δ
f ′(v) ≥ t1. From Lemma A.1 with γ1(·) = 0, γ2(·) = ξ−(·) + δ,

t1 = a− δ
f ′(v) and t2 = a (see Figure 9), we have∫ a

a− δ
f′(v)

f(u(t, 0+))dt+0 =

∫ δ

0

u (a, x) dx+

∫ a

a− δ
f′(v)

(f(u(t, (ξ−(t)+δ)−))−ξ̇−(t)u(t, (ξ−(t)+δ)−))dt

Using that f is concave and for any t ∈ [a, t2], ξ̇−(t) = f ′(v), we have for any t ∈ [a− δ
f ′(v) , a]

f(u(t, (ξ−(t) + δ)−))− f(v)− f ′(v)(u(t, (ξ−(t) + δ)−)− v) ≤ 0.

Therefore, ∫ a

a− δ
f′(v)

f(u(t, 0+))dt+ 0 ≤
∫ δ

0

u (a, x) dx+
δ

f ′(v)
(f(v)− f ′(v)v) (55)

From Lemma A.1 with γ1(·) = ξ−(·), γ2(·) = ξ−(·) + δ, t1 = a and t2 = t2 − δ
f ′(v) (see Figure 9),

we have that∫ δ
0
u(a, x)dx+

∫ t2− δ
f′(v)

a
(f(v)− f ′(v)v)dt

=
∫ L
L−δ u(t2 − δ

f ′(v) , x)dx+
∫ t2− δ

f′(v)
a

(f(u(t, (ξ−(t) + δ)−))− ξ̇−(t)u(t, (ξ−(t) + δ)−))dt

Using that f is concave and for any t ∈ [a, t2], ξ̇−(t) = f ′(v), we have for any t ∈ [a, t2 − δ
f ′(v) ]

f(u(t, (ξ−(t) + δ)−))− f(v)− f ′(v)(u(t, (ξ−(t) + δ)−)− v) ≤ 0.

Thus, we have ∫ δ

0

u(a, x)dx ≤
∫ L

L−δ
u

(
t2 −

δ

f ′(v)
, x

)
dx (56)

From Lemma A.1 with γ1(·) = ξ−(·), γ2(·) = L, t1 = t2 − δ
f ′(v) and t2 = t2 (see Figure 9), we have∫ L

L−δ
u(t2 −

δ

f ′(v)
, x)dx+

δ

f ′(v)
(f(v)− f ′(v)v) =

∫ t2

t2− δ
f′(v)

f(u(t, L−))dt (57)

From (55), (56) and (57), we have∫ a

a− δ
f′(v)

f(u(t, 0+))dt ≤
∫ t2

t2− δ
f′(v)

f(u(t, L−))dt. (58)

Since (8) holds almost everywhere, we have for a.e t ∈ [t1, t2]

f(u(t, L−)) ≤ f(wR). (59)
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From Lemma A.1 with γ1(·) = ξ−(·), γ2(·) = L, t1 = a and t2 = t2, we have∫ L

0

u(a, x) dx+

∫ t2

a

(f(v)− f ′(v)v) dt = 0 +

∫ t2

a

f(u(t, L−)) dt (60)

From (59) and f(wR) = f(wL), we have∫ L

0

u(a, x) dx ≤ (t2 − a)(f(wL)− f(v) + f ′(v)v) (61)

Since f is a concave function, we have

f(wL)− f(v)− f ′(v)(v − wL) ≤ 0. (62)

From (29), a := t2 − τ+(t2, L) ≥ t1 > 0 and (54),

t2 − a =
L

f ′(u(t2, L−))
=

L

f ′(v)
. (63)

Combining (61) with (62) and (63), we deduce that∫ L

0

u(a, x) dx ≤ L

f ′(v)
f ′(v)wL = LwL.

Therefore, together with (2) and (6), we have

m(a) =

∫ L

0

(u(a, x)− w(x))dx ≤ LwL −
∫ L

0

w(x)dx < 0.

Using that m is a continuous function and (53), we deduce that there exists δ̄ > 0 such that for
any t ∈ [a − δ̄, a] ⊂ [t1, t2], m(t) < 0. Therefore, together with Proposition 4.4, (5) and for any
t ∈ [t1, t2], β(t) = L, we have for a.e t ∈ [a− δ̄, a],

f(u(t, 0+)) = F1(t, u) > f(wL) (64)

From (58) with δ = f ′(v)δ̄, (59) and (64), we deduce that

δ̄f(wL) <

∫ a

a−δ̄
f(u(t, 0+))dt ≤

∫ t2

t2−δ̄
f(u(t, L−))dt ≤ δ̄f(wR)

This leads to a contradiction since f(wL) = f(wR). 2

Proposition 4.6 There exists T4 > 0 (independent of the initial data u0) such that for any t ≥ T4,
β(t) ∈ (0, L) and

ṁ(t) = −g(m(t)) (65)

Proof. Let us fix τmax = max
(
− L
f ′(wR) ,

L
f ′(ǔf(ū)−ε)

)
. We will prove that for a.e t > T̃2 + 2τmax,

β(t) ∈ (0, L).
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Case 1 : there exists t0 ∈ [T̃2 + τmax, T̃2 + 2τmax] such that m(t0) > 0. Using (5), Remark
1 and Lemma 4.2, for any t ≥ t0, m(t) ≥ 0. Since m(·) is a continuous function, without
loss of generality, we can additionally assume that (8) holds at time t = t0. Moreover,

t − τ+(t, β(t)) = t − β(t)
f ′(u(t,β(t)−)) > t0 − τmax ≥ T̃2. We assume that β(t0) = 0. From

Proposition 4.5, for any x ∈ (0, L), u(t0, x
±) = wR. In particular, we have f(u(t0, 0

+)) =
f(wR). Moreover, using (8), (5) and m(t0) > 0, we have f(u(t0, 0

+)) ≤ F1(t0, u) < f(wL).
This leads to a contradiction since f(wR) = f(wL). Thus, we have

β(t0) > 0.

Since β is a continuous function and β(t0) > 0, there exists tb ∈ R∪ {+∞} such that for any
t ∈ [t0, tb), β(t) ∈ (0, L) and β(tb) ∈ {0, L}. From Proposition 4.5, for a.e t ∈ [t0, tb), for any
x ∈ (0, β(t)), f(u(t, x)) = F1(t − τ+(t, x), u) and for any x ∈ (β(t), L), u(t, x±) = wR. In
particular, we have for a.e t ∈ [t0, tb),

f(u(t, β(t)−)) = F1(t− τ+(t, β(t)), u) and u(t, β(t)+) = wR

Therefore, together with (5) and for any t ∈ [t0, tb), m(t) ≥ 0, we have

u(t, β(t)−) ∈ [0, wL] and u(t, β(t)+) = wR (66)

From (24), (66), f(wL) = f(wR) and the concavity of f , we deduce that, for a.e t ∈ [t0, tb),

β̇(t) =
f(u(t, β(t)−))− f(u(t, β(t)+))

u(t, β(t)−)− u(t, β(t)+)
≥ 0. (67)

As a consequence, for any t ∈ [t0, tb), β(t) ≥ β(t0) > 0 and β(tb) 6= 0. We now assume
that β(tb) = L. Since for a.e t ≥ t0 (67) holds as soon as β(t) ∈ (0, L), we have for any
t ≥ tb, β(t) = L. This leads to a contradiction using Lemma 4.3. We conclude that for any
t ≥ T̃2 + 2τmax ≥ t0,

β(t) ∈ (0, L).

Case 2 : for any t ∈ [T̃2 + τmax, T̃2 + 2τmax], m(t) ≤ 0. For a.e t ∈ [T̃2 + τmax, T̃2 + 2τmax]
such that β(t) ∈ (0, L), we have

f(u(t, β(t)−)) = F1(t− τ+(t, β(t)), u) and u(t, β(t)+) = wR.

Therefore, together with (5) and for any t ∈ [T̃2 + τmax, T̃2 + 2τmax], m(t) ≤ 0, we have

u(t, β(t)−) ∈ [wL, ǔf(ū)−ε] and u(t, β(t)+) = wR. (68)

From (24), (68), f(wL) = f(wR) and the concavity of f , we deduce that, for a.e t ∈ [T̃2 +
τmax, T̃2 + 2τmax] such that β(t) ∈ (0, L),

β̇(t) =
f(u(t, β(t)−))− f(u(t, β(t)+))

u(t, β(t)−)− u(t, β(t)+)
≤ 0. (69)

If β(T̃2 + τmax) ∈ [0, L) then from (69), for any t ∈ [T̃2 + τmax, T̃2 + 2τmax], β(t) < L and so
β(T̃2 + 2τmax) < L. If β(T̃2 + τmax) = L then from Lemma 4.3 and (69), β(T̃2 + 2τmax) < L.
We conclude that

β(T̃2 + 2τmax) < L. (70)
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Let δ = x0(wR−wL)
2wR

, we assume that there exists t̄ ∈ [T̃2 +τmax, T̃2 +2τmax] such that (8) holds

at time t = t̄ and β(t̄) ∈ [0, δ]. From Proposition 4.5, for any x ∈ (β(t̄), L), u(t, x±) = wR.
Then, from (2), (6) and (68),

m(t̄) =
∫ L

0
u(t̄, x)dx− (L− x0)wR − x0wL

≥ (L− β(t̄))wR − (L− x0)wR − x0wL
≥ (L− δ)wR − (L− x0)wR − x0wL
> 0

(71)

This leads to a contradiction since m(t̄) ≤ 0 and so β(t̄) > δ. Thus, using that β is a
continuous function, for any t ∈ [T̃2 + τmax, T̃2 + 2τmax], we have β(t) ∈ [δ, L]. In particular,

β(T̃2 + 2τmax) ≥ δ. (72)

From (70) and (72), we have
δ ≤ β(T̃2 + 2τmax) < L. (73)

From (73) and using that β is a continuous function, there exists tb > T̃2 + 2τmax such that
β(tb) = 0 or β(L) = 0 and for any t ∈ [T̃2 + 2τmax, tb), β(t) ∈ (0, L) (by convention tb = +∞
if ∀t ≥ T̃2 + 2τmax, β(t) ∈ (0, L)). From Lemma 4.2, for a.e t ∈ (T̃2 + 2τmax, tb),

ṁ(t) = F1(t, u)− f(wR).

Therefore, together with (5), Remark 1 and the continuity of m, for any t ∈ (T̃2 + 2τmax, tb),

m(t) ≤ 0. (74)

From Proposition 4.5, for a.e t ∈ [T̃2 + 2τmax, tb), for any x ∈ (0, β(t)), f(u(t, x)) = F1(t −
τ+(t, x), u) and for any x ∈ (β(t), L), u(t, x±) = wR. In particular, we have for a.e t ∈
[T̃2 + 2τmax, tb),

f(u(t, β(t)−)) = F1(t− τ+(t, β(t)), u) and u(t, β(t)+) = wR

Therefore, together with (5) and (74), we have

u(t, β(t)−) ∈ [wL, ǔf(ū)−ε) and u(t, β(t)+) = wR (75)

From (24), (75), f(wL) = f(wR) and the concavity of f , we deduce that, for a.e t ∈ [T̃2 +
2τmax, tb),

β̇(t) =
f(u(t, β(t)−))− f(u(t, β(t)+))

u(t, β(t)−)− u(t, β(t)+)
≤ 0. (76)

As a consequence, together with (73), for any t ∈ [T̃2 + 2τmax, tb), β(t) ≤ β(T̃2 + 2τmax) < L.
We assume that there exists t̄ ∈ [T̃2 + 2τmax, tb] such that (8) holds at time t = t̄ and

β(t̄) ∈ [0, δ] with δ = x0(wR−wL)
2wR

. From Proposition 4.5, for any x ∈ (β(t̄), L), u(t, x±) = wR.
Then, from (2), (6) and (75),

m(t̄) =
∫ L

0
u(t̄, x)dx− (L− x0)wR − x0wL

≥ (L− β(t̄))wR − (L− x0)wR − x0wL
≥ (L− δ)wR − (L− x0)wR − x0wL
> 0

(77)

From (74), this leads to a contradiction and so β(t̄) > δ. Since β is continuous, for any
t ∈ [T̃2 + 2τmax, tb), 0 < δ ≤ β(t). We deduce that for any t ≥ T̃2 + 2τmax,

β(t) ∈ (0, L).
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We conclude that for a.e t ≥ T3 := T̃2 + 2τmax, β(t) ∈ (0, L). From Proposition 4.2, for a.e
t ≥ T3 := T̃2 + 2τmax,

ṁ(t) = F1(t, u)− F2(t, u). (78)

Using that for any (t, x) ∈ R+ × (0, L), u(t, x) ∈ [0, 1], (2) and (6), we have for any t ≥ 0,

− x0wL − (L− x0)wR ≤ m(t) ≤ L− x0wL − (L− x0)wR (79)

From (5), Remark 4, g is a continuous function, (78) and (79), there exists a finite time T4 > 0
such that for any t ≥ T4,

f(wL)− g(m(t)) ∈ [0, f(ū)− ε]. (80)

Thus, from (5) and (78), we deduce that for a.e t ≥ T4,

ṁ(t) = −g(m(t)).

2

Proof of Theorem 2.2. From Proposition 4.6, for a.e t ≥ T4,

β(t) ∈ (0, L) and ṁ(t) = −g(m(t)), (81)

with m(t) :=
∫ L

0
(u(t, x)− w(x))dx. Therefore, from Remark 4,

lim
t→∞

m(t) = 0. (82)

From (81) and Proposition 4.5, for a.e t ≥ T4,

∀x ∈ (0, β(t)), f(u(t, x±)) = F1(t− τ+(t, x), u) and u(t, x±) ∈ [0, ū) (83)

and
∀x ∈ (β(t), L), u(t, x±) = wR. (84)

Using that f ∈ C2([0, 1]) is strictly concave and ū = argmaxu∈[0,1]f(u), then f : [0, ū] → [0, f(ū)]

is bijective and we denote by f−1
+ its inverse function. Since for any x ∈ (0, ū), f ′(x) > 0 then,

using the Inverse function theorem, f−1
+ ∈ C2([0, f(ū)]). From (80), (83) and (84), we have, for a.e

t ≥ T4,

m(t) +
∫ T

0
w(x)dx =

∫ T
0
u(t, x)dx

=
∫ β(t)

0
f−1

+ (f(wL)− g(m(t− τ+(t, x)))) dx+
∫ L
β(t)

wR dx
(85)

From (29) and (83), for any x ∈ [0, L],

t− L

f ′(ǔf(ū)−ε)
≤ t− τ+(t, x) ≤ t. (86)

We introduce two functions a(·) and b(·) defined by, for any t ≥ T4

a(t) := min
s∈[t− L

f′(ǔf(ū)−ε)
,t]
g(m(s)) and b(t) := max

s∈[t− L
f′(ǔf(ū)−ε)

,t]
g(m(s)). (87)

From (85) and using that f−1
+ is an increasing function,
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m(t) +
∫ T

0
w(x)dx− LwR

f−1
+ (f(wL)− b(t)))− wR

≤ β(t) ≤ m(t) +
∫ T

0
w(x)dx− LwR

f−1
+ (f(wL)− a(t)))− wR

(88)

We introduce two functions αa and αb defined by, for any t ≥ T4 + τmax,

αa(t) = f−1
+ (f(wL)−K0a(t)))− wL and αb(t) = f−1

+ (f(wL)−K0b(t)))− wL. (89)

From (2), (86), (88) and (89), for any t ≥ T4,

m(t)− αb(t)
wL − wR + αb(t)

≤ β(t)− x0 ≤
m(t)− αa(t)

wL − wR + αa(t)
(90)

From (82), (87) and (88), we have,

lim
t→∞

max(αa(t), αb(t)) = 0 (91)

From (82), (90) and (91), we deduce that

lim
t→∞

β(t) = x0. (92)

For any t ≥ T4 + τmax,

‖u(t, ·)− w(·)‖L1(0,L) =
∫min(β(t),x0)

0
|u(t, x)− w(x)|dx+

∫max(β(t),x0)

min(β(t),x0)
|u(t, x)− w(x)|dx

+
∫ L

max(β(t),x0)
|u(t, x)− w(x)|dx

From (5), (86), (87), (91), we have for any t ≥ T4 + τmax,∫min(β(t),x0)

0
|u(t, x)− w(x)|dx =

∫min(β(t),x0)

0
|F1(t− τ+(t, x))− wL|dx,

=
∫min(β(t),x0)

0
|f−1

+ (f(wL)− g(m(t− τ+(t, x))))− wL|,
≤ min(β(t), x0) max(|αa(t)|, |αb(t)|).

Thus, from (91) and (92),

lim
t→∞

∫ min(β(t),x0)

0

|u(t, x)− w(x)|dx = 0.

Moreover, ∫ L

max(β(t),x0)

|u(t, x)− w(x)|dx =

∫ L

max(β(t),x0)

|wR − wR|dx = 0,

We have ∫max(β(t),x0)

min(β(t),x0)
|u(t, x)− w(x)|dx ≤ (max(β(t), x0)−min(β(t), x0)),

≤ |β(t)− x0|.
Thus, from (92),

lim
t→∞

∫ max(β(t),x0)

min(β(t),x0)

|u(t, x)− w(x)|dx = 0.

We conclude that
lim
t→∞

‖u(t, ·)− w(·)‖L1(0,L) = 0 (93)
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4.3 Proofs of Corollary 2.1 and Corollary 2.2

Proof of Corollary 2.1. From Proposition 4.6, for a.e t ≥ T4,

β(t) ∈ (0, L) and f(wL)− g(m(t)) ∈ [0, f(ū)− ε] and ṁ(t) = −K0m(t), (94)

with m(t) :=
∫ L

0
(u(t, x)− w(x))dx and

T4 := max

(
L− x0wL − (L− x0)wR − f(wL)

K0

f(wL)
,
−x0wL − (L− x0)wR + f(wL)−f(ū)+ε

K0

f(ū)− ε− f(wL)

)
+ T3.

Therefore, for any T ≥ T4

m(t) = m(T4)e−K0(t−T4). (95)

From (94) and Proposition 4.5, for a.e t ≥ T4,

∀x ∈ (0, β(t)), f(u(t, x±)) = F1(t− τ+(t, x), u) and u(t, x±) ∈ [0, ū) (96)

and
∀x ∈ (β(t), L), u(t, x±) = wR. (97)

Using that f ∈ C2([0, 1]) is strictly concave and ū = argmaxu∈[0,1]f(u), then f : [0, ū]→ [0, f(ū)] is

bijective and we denote by f−1
+ its inverse function. Since for any x ∈ (0, ū), f ′(x) > 0 then, using

the Inverse function theorem, f−1
+ ∈ C2([0, f(ū)]). From (96) and (97), we have, for a.e t ≥ T4,

m(t) +
∫ T

0
w(x)dx =

∫ T
0
u(t, x)dx

=
∫ β(t)

0
f−1

+ (f(wL)−K0m(t− τ+(t, x))) dx+
∫ L
β(t)

wR dx
(98)

From (29) and (96), for any x ∈ [0, L],

t− L

f ′(ǔf(ū)−ε)
≤ t− τ+(t, x) ≤ t. (99)

We introduce two functions a(·) and b(·) defined by, for any t ≥ T4

a(t) = min
s∈[t− L

f′(ǔf(ū)−ε)
,t]
m(s) and b(t) = max

s∈[t− L
f′(ǔf(ū)−ε)

,t]
m(s). (100)

From (98) and using that f−1
+ is an increasing function,

m(t) +
∫ T

0
w(x)dx− LwR

f−1
+ (f(wL)−K0b(t)))− wR

≤ β(t) ≤ m(t) +
∫ T

0
w(x)dx− LwR

f−1
+ (f(wL)−K0a(t)))− wR

(101)

We introduce two functions αa and αb defined by, for any t ≥ T4 + τmax,

αa(t) = f−1
+ (f(wL)−K0a(t)))− wL and αb(t) = f−1

+ (f(wL)−K0b(t)))− wL. (102)

From (2), (99), (101) and (102), for any t ≥ T4,

m(t)− αb(t)
wL − wR + αb(t)

≤ β(t)− x0 ≤
m(t)− αa(t)

wL − wR + αa(t)
(103)

From (95), (100) and (101), we have, for any t ≥ T4 + τmax,

max(|αa(t)|, |αb(t)|)| ≤ max
x∈[0,L]

[(f−1)′(x)]K0|m(T4)|e−K0

(
t− L

f′(ǔf(ū)−ε)
−T4

)
(104)
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From (103) and (104), we deduce that there exists C > 0 such that, for any t ≥ T4 + τmax,

|β(t)− x0| ≤ Ce−K0(t−τmax−T4)|m(T4)|. (105)

For any t ≥ T4 + τmax,

‖u(t, ·)− w(·)‖L1(0,L) =
∫min(β(t),x0)

0
|u(t, x)− w(x)|dx+

∫max(β(t),x0)

min(β(t),x0)
|u(t, x)− w(x)|dx

+
∫ L

max(β(t),x0)
|u(t, x)− w(x)|dx

From (5), (99), (100), (104), we have for any t ≥ T4 + τmax,∫min(β(t),x0)

0
|u(t, x)− w(x)|dx =

∫min(β(t),x0)

0
|F1(t− τ+(t, x))− wL|dx,

=
∫min(β(t),x0)

0
|f−1

+ (f(wL)−K0m(t− τ+(t, x)))− wL|,
≤ min(β(t), x0) max(|αa(t)|, |αb(t)|),

≤ x0 maxx∈[0,L][(f
−1)′(x)]K0|m(T4)|e−K0

(
t− L

f′(ǔf(ū)−ε)
−T4

)
,

and ∫ L

max(β(t),x0)

|u(t, x)− w(x)|dx =

∫ L

max(β(t),x0)

|wR − wR|dx = 0,

and from (105), there exists C > 0 such that∫max(β(t),x0)

min(β(t),x0)
|u(t, x)− w(x)|dx ≤ (max(β(t), x0)−min(β(t), x0)),

≤ |β(t)− x0|,
≤ Ce−K0(t−τmax−T4)|m(T4)|.

Therefore, together with (95) at time t = T5 := T4 + τmax, there exists C > 0 such that for any
t ≥ T5,

‖u(t, ·)− w(·)‖L1(0,L) ≤ Ce−K0(t−T5)‖u(T5, ·)− w(·)‖L1(0,L). (106)

Adapting the proof of [1, Proposition 2.10] and using (5),∫ L

0

|u(T5, x)− w(x)|dx ≤ 2

∫ T5

0

|f(ū)− ε− f(wL)|dt+

∫
R
|u0(x)− w(x)|dx (107)

From (106) and (107), there exists C > 0 such that for any t ≥ 0,

‖u(t, ·)− w(·)‖L1(0,L) ≤ Ce−K0t
(
‖u0(·)− w(·)‖L1(0,L) + C

)
.

Proof of Corollary 2.2. From Proposition 4.6, for a.e t ≥ T4,

β(t) ∈ (0, L) and f(wL)− g(m(t)) ∈ [0, f(ū)− ε] and ṁ(t) = −g(m(t)), (108)

with m(t) :=
∫ L

0
(u(t, x) − w(x))dx. From Proposition [6, Proposition 1], there exists a time

T5 := T4 +
∫ 1

0
dy
g(y) such that for any t ≥ T5,

m(t) = 0. (109)

From (108) and Proposition 4.5, for a.e t ≥ T4,

∀x ∈ (0, β(t)), f(u(t, x±)) = F1(t− τ+(t, x), u) and u(t, x±) ∈ [0, ū) (110)
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and
∀x ∈ (β(t), L), u(t, x±) = wR. (111)

From (29) and (110), for any x ∈ [0, L],

t− L

f ′(ǔf(ū)−ε)
≤ t− τ+(t, x) ≤ t. (112)

From (5), (109), (110), (111) and (112), for any t ≥ T4 + τmax,

∀x ∈ (0, β(t)), u(t, x±) = wL and ∀x ∈ (β(t), L), u(t, x±) = wR and m(t) = 0.

Therefore, together with (2) and (6), for a.e x ∈ (0, L), we have u(t, x) = w(x).

A Conservation of mass

Lemma A.1 Let t1 < t2 and let (γ1, γ2) ∈ C0,1([t1, t2]; [0, L])2 satisfy γ1(t) < γ2(t) for any
t ∈ (t1, t2). We have ∫ γ2(t1)

γ1(t1)
u(t1, x) dx+

∫ t2
t1
F (u(t, γ1(t)+)) dt

=
∫ γ2(t2)

γ1(t2)
u(t2, x) dx+

∫ t2
t1
F (u(t, γ2(t)−)) dt

(113)

with u the G-entropy solution of (1) and for every t ∈ R+, for every γ ∈ C0,1([0, T ]; R),

F (u(t, γ(t)±)) = f(u(t, γ(t)±)− γ̇(t)u(t, γ(t)±).

Proof. It directly follows from the point 1. of Definition 1.2 and [7, Lemma 1]. 2

B Notion of generalized backward characteristics with G-
entropy boundary conditions

Proposition B.1 Let u be the unique G-entropy solution of (1) and we assume that there exist
c, d > 0 such that c < d and for a.e t ∈ [c, d]

g ≤ f(u(t, 0+)) ≤ G and l ≤ f(u(t, L−)) ≤ L (114)

where g, G, l, L are given constants. We consider ξ a genuine characteristic on an interval [a, b]
such that

∀t ∈ (a, b], ξ(t) ∈ (0, L).

Then there exists a constant v ∈ [0, 1] such that, for any t ∈ [a, b], ξ̇(t) = f ′(v) and, for any
t ∈ (a, b), u(t, ξ(t)) = v. Moreover,

ξ(a) = 0 and a > 0 implies f ′(v) > 0 and

{
g ≤ f(v) ≤ G if a ∈ (c, d),
0 ≤ f(v) ≤ f(ū)− ε otherwise,

(115)

a = 0 implies u(a, ξ(a)+) ≤ v ≤ u(a, ξ(a)−), (116)

ξ(a) = L and a > 0 implies f ′(v) < 0 and

{
l ≤ f(v) ≤ L if a ∈ (c, d),
0 ≤ f(v) ≤ f(wR) otherwise.

(117)
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Remark 2 Note that if the inequality in (114) is strict then the inequalities in (115), (116) and
(117) are also strict. For instance, if g ≤ f(u(t, 0+)) < G then (115) is replaced by g ≤ f(v) < G.

Proof. From Definition 1.2, the unique G-entropy is a Kruzhkov entropy solution over R+×(0, L).
Thus, From [4, Theorem 10.2.3 and Theorem 11.1.1], there exists a constant v ∈ [0, 1] such that,
for any t ∈ [a, b], ξ̇(t) = f ′(v) and, for any t ∈ (a, b), u(t, ξ(t)) = v. We have three different
possibilities :

Case 1: ξ(a) = 0 and a > 0). We immediately have f ′(v) > 0. Let us fix δ > 0, from Lemma
A.1 with t1 = a, t2 = a+ δ

f ′(v) , γ1(·) = 0 and γ2(·) = ξ(·) (see Figure 10a), we have∫ a+ δ
f′(v)

a

f(u(t, 0+))dt+ 0 =

∫ δ

0

u

(
a+

δ

f ′(v)
, x

)
dx+

∫ a+ δ
f′(v)

a

(f(v)− f ′(v)v)dt. (118)

From (8), for a.e t > 0, f(u(t, 0)) ≤ F1(t, u) ≤ f(u)− ε. Thus, we have∫ δ

0

u

(
a+

δ

f ′(v)
, x

)
dx+

∫ a+ δ
f′(v)

a

(f(v)− f ′(v)v)dt ≤ δ

f ′(v)
(f(ū)− ε). (119)

Let c̄ ∈ (a, b). From Lemma A.1 with t1 = a+ δ
f ′(v) , t2 = c̄, γ1(·) = ξ(·)− δ and γ2(·) = ξ(·)

(see Figure 10a), we have∫ δ
0
u
(
a+ δ

f ′(v) , x
)
dx+

∫ c̄
a+ δ

f′(v)

(f(u(t, (ξ(t)− δ)+))− ξ̇(t)u(t, (ξ(t)− δ)+))dt

=
∫ ξ(c̄)
ξ(c̄)−δ u(c̄, x)dx+

∫ c̄
a+ δ

f′(v)

(f(v)− f ′(v)v)dt

Using that f is concave and for any t ∈ [a, b], ξ̇(t) = f ′(v), we have for any t ∈ [a+ δ
f ′(v) , c̄]

f(u(t, (ξ(t)− δ)+))− f(v)− f ′(v)(u(t, (ξ(t)− δ)+)− v) ≤ 0.

Thus, we have ∫ δ

0

u

(
a+

δ

f ′(v)
, x

)
dx ≥

∫ ξ(c̄)

ξ(c̄)−δ
u(c̄, x)dx. (120)

From (119) and (120),∫ ξ(c̄)

ξ(c̄)−δ
u(c̄, x)dx+

δ

f ′(v)
(f(v)− f ′(v)v) ≤ δ

f ′(v)
(f(ū)− ε).

Dividing by δ and taking δ → 0+ and using that u(c̄, ξ(c̄)) = v, we deduce that

f(v) ≤ f(ū)− ε.

If a ∈ (c, d) then we choose δ > 0 such that [a− δ
f ′(v) , a+ δ

f ′(v) ] ∈ (c, d). From (114), we have

for a.e t ∈ [a− δ
f ′(v) , a+ δ

f ′(v) ], g ≤ f(u(t, 0+)) ≤ G. Thus, using (118), we get∫ δ

0

u

(
a+

δ

f ′(v)
, x

)
dx+

∫ a+ δ
f′(v)

a

(f(v)− f ′(v)v)dt ≤ δ

f ′(v)
G.

Moreover, (120) holds. Thus, we deduce that∫ ξ(c̄)

ξ(c̄)−δ
u(c̄, x)dx+

δ

f ′(v)
(f(v)− f ′(v)v) ≤ δ

f ′(v)
G.
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Dividing by δ and taking δ → 0+ and using that u(c̄, ξ(c̄)) = v, we deduce that

f(v) ≤ G.

From Lemma A.1 with t1 = a− δ
f ′(v) , t2 = a, γ1(·) = 0 and γ2(·) = ξ(·) + δ (see Figure 10b),

we have∫ a

a− δ
f′(v)

f(u(t, 0+))dt+0 =

∫ δ

0

u (a, x) dx+

∫ a

a− δ
f′(v)

(f(u(t, (ξ(t)+δ)−))−ξ̇(t)u(t, (ξ(t)+δ)−))dt

(121)
Using that f is concave and for any t ∈ [a, b], ξ̇(t) = f ′(v), we have for any t ∈ [a− δ

f ′(v) , a]

f(u(t, (ξ(t) + δ)−))− f(v)− f ′(v)(u(t, (ξ(t) + δ)−)− v) ≤ 0.

Therefore, ∫ a

a− δ
f′(v)

f(u(t, 0+))dt+ 0 ≤
∫ δ

0

u (a, x) dx+
δ

f ′(v)
(f(v)− f ′(v)v).

From (114) and [a− δ
f ′(v) , a+ δ

f ′(v) ] ∈ (c, d), we deduce that

δ

f ′(v)
g ≤

∫ δ

0

u (a, x) dx+
δ

f ′(v)
(f(v)− f ′(v)v). (122)

Let c̄ ∈ (a, b). From Lemma A.1 with t1 = a, t2 = c̄, γ1(·) = ξ(·) and γ2(·) = ξ(·) + δ, we
have ∫ δ

0
u(a, x)dx+

∫ c̄
a

(f(v)− f ′(v)v)dt

=
∫ ξ(c̄)+δ
ξ(c̄)

u(c̄, x)dx+
∫ c̄
a

(f(u(t, (ξ(t) + δ)−))− ξ̇(t)u(t, (ξ(t) + δ)−))dt

Using that f is concave and for any t ∈ [a, b] ξ̇(t) = f ′(v), we have for any t ∈ [a, c̄]

f(u(t, (ξ(t) + δ)−))− f(v)− f ′(v)(u(t, (ξ(t) + δ)−)− v) ≤ 0.

Thus, we have ∫ δ

0

u(a, x)dx ≤
∫ ξ(c̄)−δ

ξ(c̄)

u(c̄, x)dx (123)

From (122) and (123),

δ

f ′(v)
g − δ

f ′(v)
(f(v)− f ′(v)v) ≤

∫ ξ(c̄)−δ

ξ(c̄)

u(c, x)dx

Dividing by δ and taking δ → 0+ and using that u(c̄, ξ(c̄)) = v, we deduce that

g ≤ f(v).

Case 2: a = 0. From the point 1. of Definition 1.2 and from [4, Theorem 11.1.1], (116) holds.
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Figure 10: Plotting of a genuine characteristic ξ on an interval [a, b] with a < b such that ξ(a) = 0
with a > 0 and ξ̇(t) = f ′(v) > 0 with v ∈ [0, ǔf(ū)−ε].

Case 3: ξ(a) = L and a > 0. We immediately have f ′(v) < 0. Let us fix δ > 0, from Lemma
A.1 with t1 = a, t2 = a− δ

f ′(v) , γ1(·) = ξ(·) and γ2(·) = L (see Figure 11a), we have

∫ a− δ
f′(v)

a

(f(v)− f ′(v)v)dt+ 0 =

∫ a− δ
f′(v)

a

f(u(t, L−))dt+

∫ L

L−δ
u

(
a− δ

f ′(v)
, x

)
dx. (124)

From (8), for a.e t > 0, f(u(t, L)) ≤ F2(t, u) = f(wR). Thus, we have∫ a− δ
f′(v)

a

(f(v)− f ′(v)v)dt−
∫ L

L−δ
u

(
a− δ

f ′(v)
, x

)
dx ≤ −δ

f ′(v)
f(wR). (125)

Let c̄ ∈ (a, b). Using Lemma A.1 with t1 = a− δ
f ′(v) , t2 = c̄, γ1(·) = ξ(·) and γ2(·) = ξ(·) + δ

(see Figure 11a), we deduce that∫ c̄
a− δ

f′(v)

(f(v)− f ′(v)v)dt+
∫ L
L−δ u(a− δ

f ′(v) , x)dx

=
∫ ξ(c̄)+δ
ξ(c̄)

u(c̄, x)dx+
∫ c̄
a− δ

f′(v)

(f(u(t, (ξ(t) + δ)−))− ξ̇(t)u(t, (ξ(t) + δ)−))dt.

Using that f is concave and for any t ∈ [a − δ
f ′(v) , c̄], ξ̇(t) = f ′(v), we have for any t ∈

[a− δ
f ′(v) , c̄]

f(u(t, (ξ(t) + δ)−))− f(v)− f ′(v)(u(t, (ξ(t) + δ)−)− v) ≤ 0.

Thus, we have ∫ L

L−δ
u

(
a− δ

f ′(v)
, x

)
dx ≤

∫ ξ(c̄)+δ

ξ(c̄)

u(c̄, x)dx. (126)

From (125) and (126),

−δ
f ′(v)

(f(v)− f ′(v)v)−
∫ ξ(c̄)+δ

ξ(c̄)

u(c̄, x)dx ≤ −δ
f ′(v)

f(wR).

28



Dividing by δ and taking δ → 0+, using that u(c̄, ξ(c̄)) = v, we deduce that

f(v) ≤ f(wR).

If a ∈ (c, d) then we choose δ > 0 such that [a+ δ
f ′(v) , a− δ

f ′(v) ] ∈ (c, d). From (114), we have

for a.e t ∈ [a+ δ
f ′(v) , a− δ

f ′(v) ], l ≤ f(u(t, L−)) ≤ L. Thus, using (124), we get∫ a− δ
f′(v)

a

(f(v)− f ′(v)v)dt−
∫ L

L−δ
u

(
a− δ

f ′(v)
, x

)
dx ≤ −δ

f ′(v)
L.

Moreover, (126) holds. Thus, we deduce that

−δ
f ′(v)

(f(v)− f ′(v)v)−
∫ ξ(c̄)+δ

ξ(c̄)

u(c̄, x)dx ≤ −δ
f ′(v)

L.

Dividing by δ and taking δ → 0+ and using that u(c̄, ξ(c̄)) = v, we deduce that

f(v) ≤ L.

From Lemma A.1 with t1 = a+ δ
f ′(v) , t2 = a, γ1(·) = ξ(·)− δ and γ2(·) = L (see Figure 11b),

we have∫ a

a+ δ
f′(v)

(f(u(t, (ξ(t)−δ)+))−ξ̇(t)u(t, (ξ(t)−δ)+))dt =

∫ L

L−δ
u (a, x) dx+

∫ a

a+ δ
f′(v)

f(u(t, L−))dt.

(127)
Using that f is concave and for any t ∈ [a, b], ξ̇(t) = f ′(v), we have for any t ∈ [a+ δ

f ′(v) , a]

f(u(t, (ξ(t)− δ)+))− f(v)− f ′(v)(u(t, (ξ(t)− δ)+)− v) ≤ 0.

Therefore, ∫ a

a+ δ
f′(v)

f(u(t, L−))dt ≤ − δ

f ′(v)
(f(v)− f ′(v)v)−

∫ L

L−δ
u (a, x) dx.

From (114) and [a+ δ
f ′(v) , a− δ

f ′(v) ] ∈ (c, d), we deduce that

− δ

f ′(v)
l ≤ − δ

f ′(v)
(f(v)− f ′(v)v)−

∫ L

L−δ
u (a, x) dx. (128)

Let c̄ ∈ (a, b). From Lemma A.1 with t1 = a, t2 = c̄, γ1(·) = ξ(·) − δ and γ2(·) = ξ(·), we
have ∫ L

L−δ u(a, x)dx+
∫ c̄
a

(f(u(t, (ξ(t)− δ)+))− ξ̇(t)u(t, (ξ(t)− δ)+))dt

=
∫ ξ(c̄)
ξ(c̄)−δ u(c̄, x)dx+

∫ c̄
a

(f(v)− f ′(v)v)dt.

Using that f is concave and for any t ∈ [a, b] ξ̇(t) = f ′(v), we have for any t ∈ [a, c̄]

f(u(t, (ξ(t)− δ)+))− f(v)− f ′(v)(u(t, (ξ(t)− δ)+)− v) ≤ 0.

Thus, we have ∫ ξ(c̄)−δ

ξ(c̄)

u(c̄, x)dx ≤
∫ L

L−δ
u(a, x)dx. (129)
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From (128) and (129),

− δ

f ′(v)
l ≤ − δ

f ′(v)
(f(v)− f ′(v)v)−

∫ ξ(c̄)

ξ(c̄)−δ
u(c̄, x)dx.

Dividing by δ and taking δ → 0+ and using that u(c̄, ξ(c̄)) = v, we deduce that

l ≤ f(v).

x

t

0 L

a

a− δ
f ′(v)

a+ δ
f ′(v)

b

c̄
ξ(·)

δ

(a)

x

t

0 L

a

a− δ
f ′(v)

a+ δ
f ′(v)

b

c̄
ξ(·)

δ

(b)

Figure 11: Plotting of a genuine characteristic ξ on an interval [a, b] with a < b such that ξ(a) = L
with a > 0 and ξ̇(t) = f ′(v) < 0 with v ∈ [wR, 1].
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