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Stabilization of conservation laws for G-solutions with
application to traffic flow.

Thibault Liard * Swann Marx T Vincent Perrollaz *

Abstract

We address a problem of stabilization of a scalar conservation laws with fixed flux pointwise
constraints. The PDE models the impact of two toll gates on the traffic flow and the feedback
laws is designed to limit the number of cars passing through the two toll gates. The existence
of solutions is proved using a Schauder’s fixed point theorem, together with a coupled PDE-
ODE. To prove stabilization results, we study the structure of the solutions using an extension
of backward generalized characteristics.

Keywords: Conservation Laws; non-classical shock; G-solutions; Stabilization;

AMS classification:

1 Introduction

1.1 Presentation of the Problem

Let L > 0. We consider the following scalar conservation laws with local lateral constraints

u(t, ) + 0 f(u(t,x)) =0, t€R4,z€R,

(0, 2) = up(x), x €R, (1)
f(u(t70))§F1(t,u), t€R+v

f(u(t, L)) < Fy(t, u), teRy.

We assume that f € C?([0,1]; [0, +00)) is a strictly concave function such that f(0) = f(1) = 0.
The problem (1) models two toll gates along highway or road lights (see [3]). Since the flux point-
wise constraints at z = 0 and z = L (the two toll gates) generate shocks that does not verify Oleinik
condition, the notion of weak-entropy solutions cannot be used anymore. Thus, we consider here
the notion of G-solution (see [1] or Definition 1.2). We introduce the target function w defined by

| owg, if0<x <,
w(x)—{ wg, fxg<z<L, (2)

where 29 € (0,L) and wr,wgr € (0,1) satisfy wy, < wg and f(wy) = f(wgr) < f(u) with @ =
argmax, (o 11f(u). Our goal is to find two feedback controllers Fy and F; that stabilizes (1) over
(0, L) around the target function w, i.e for any initial data ug, the G-solutions u(t, -) of (1) converges
to w(-) in L*(0, L) as t — co. We consider a continuous function g : R — R such that

g(0) =0 and Vz € R*, zg(z) >0 (3)
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and the following ODE '
{ i(t) = —g(m(1)), @

m(0) = my,

admits a unique solution over [0,00). In this paper, the feedback controllers F} and F5 have the
following forms

Fi(t,u) = max(min(f(wr) — g(m(t)), f(w) —€),0) and Fa(t, u) = f(wr) (5)

where € > 0 is chosen such that f(u) — f(wy) —e >0 and

m(t) ::/0 (u(t, ) —w(x))dz. (6)

Remark 1 e Since g is a continuous function, from Peano’s Theorem, there exists at least
one solution of (4). If there exists to > 0 such that m(tg) = 0 then, from (3), any solution
m(-) of (4) satisfies for any t > to, Sm?3(t) < 0. Therefore, for any t > to, m(t) = 0.

e We have the following maximum and minimum principle

mog >0 = Vt>0,m(t) >0 and mg <0 = Vt >0, m(t) <O0.

e The EDO (4) is asymptotically stable around the equilibrium point 0 using (3) and the can-
didate Lyapunov function V : x — %(866[6]).

e The uniqueness of the EDO (4) is used to prove the existence of solutions of (1). More
precisely, from a certain time, the unique solution of the coupled PDE-ODE (13) is a solution

of (1).

In [2, 7, 9], stabilization results are obtained in the context of weak-entropy solutions. More
precisely, in [2], the authors consider solutions with a finite number of shocks to find the derivative
of a Lyapunov function candidate. In [9], they assume that the solutions is only determined by the
boundaries and use the Hamilton-Jacobi formulation. In [7], a saturated proportional controller is
provided to stabilize asymptotically the weak-entropy solution of LWR around a stationary shocks
using the notion of generalized characteristics. To our best knowledge, there are no stabilization
results in the context of G-solutions.

1.2 Definitions and notations

Let II = [0, 00) X R. Throughout the paper,

¢ (u,k) € RxR—sgn(u—k)(f(u) = f(K))
denotes the entropy flux associated with the Kruzhkov entropy (u, k) — |u — k| (see [5]).

Definition 1.1 (Admissibility germ G(F),[1]) Let F € [0, f(u)]. The admissibility germ G(F)
for the conservation law (1) is the subset of [0,1]? defined as the union G(F) = G1(F) U Ga(F) U
G3(F), where

e Gi(F) = {(ci,c,) €10,1%¢1 > ¢, fe)) = flcr) = F},
L4 g2(F) = {<C’ C) € [07 1]2§f(c) < F}’



o G3(F) =={(c,cr) € [0, 1500 < er, f(er) = fler) < F}

Definition 1.2 ([1]) Let ug € L*(R,[0,1]). We say that u € L*>°(I; [0, 1]) is a G-entropy solution
of (1) if

1. w is a Kruzhkov entropy solution for x € R\{0,L}, i.e, for all nonnegative test functions
p € CX(I\{0,L}) and all k € [0,1],

+oo
/ / (Jult, z) — k|s + d(ult, z), k)0, )p(t, ) dadt + / o () — klp(0, 2)dz > 05 (7)
0 R R

2. in addition, for a.et >0,
(o) (1), (Wu)(t) € G(F1) and ((vpu)(1), (vpu)(1)) € G(Fa). (8)

where 7(1)’7" and 727« denote the operators of left- and right-side strong traces on {x = 0} and {x = L}
and Fy and Fy are defined in (5).

2 Main results

Theorem 2.1 (Existence) Let ¢ > 0 satisfy f(u) — f(wr) —e > 0. For any up € L*(R;[0,1]),
there exists at least one G-entropy solution u of (1) where Fy and Fy are defined in (5).

Theorem 2.2 (Asymptotic stability) Let ¢ > 0 satisfy f(u) — f(wr) —e > 0. Let vy €
L*>([0, L]; [0,1]), we consider the initia data ug defined by

1, if x <0,
uo(x;v0) =< vo(z), f0<0<L, (9)
0, if L < x.

For any vo € L*([0, L]; [0, 1]), any G-solution u(t,-) of (1) with initial datum uy converges to w(-)
in L'(0,L) as t — oc.

Corollary 2.1 (Exponential stability) Lete > 0 satisfy f(u)— f(wg)—e >0 and g : x — Kox
with Ko > 0. For any vy € L*([0, L];[0,1]), any G-solution u(t,-) of (1) with initial datum ug
converges exponentially to w(-) in L*(0,L) as t — oo, i.e there exists C > 0 such that for any
t>0,

lu(t, ) —w()zio,r) < Ce Kot (||Uo() —w(-)|zro,r) + C’) .

Corollary 2.2 (Finite time stability) Let ¢ > 0 satisfy f(u) — f(wr) —e > 0 and g satisfied
(3) and for any o € R*, [} % > —oo. For any vg € L*([0, L];[0,1]), the G-solution u(t,-) of
(1) with initial datum ug converges in finite time to w(-) in L*(0, L), i.e there exists a time T > 0

such that for any t > T, for a.e x € (0, L),

u(t,x) = w(x).



3 Simulations

To construct an approximate solution of (1), we use a finite volume scheme described in [1]. The
code is available at https://github.com/Thibault-liard /Regulation-Godunov-LWR-fixed.

In Figure 1, Figure 2, Figure 3, F} is a saturated proportional controller, i.e g in (5) is defined
by, for any « € R, g(z) = Kox where Ky > 0 is the gain of the controller. Any G-solution of
the PDE (1) with the controller Fj is asymptotically stable around the stationary solution w(-)
(see Corollary 2.2). In Figure 4, Figure 5, Figure 6, F; is a saturated sliding mode controller, i.e
gz — Ko|z|2sign(z) where Ko > 0 is the gain of the controller. Any G-solution of the PDE (1)
with the controller F} converges in finite time to the stationary solution w(-) (see Corollary 2.1).
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Figure 1: Plottings of the initial data wvg Figure 2: Plotting of the G-solution of (1)

(—), the target function w (——) and the G- (—) over (—15,20) at time ¢ = 20 with L =1

solution of (1) (—) over (0,1) at time ¢ = 20 and for any x € R, g(z) = Koz with Ky =

with L = 1 and for any = € R, g(z) = Koz 0.4.

with Ko = 0.4.

Figure 3: Plotting of the saturated P-
controller Fi(-) with respect to time ¢.


https://github.com/Thibault-liard/Regulation-Godunov-LWR-fixed
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Figure 4: Plottings of the initial data wg Figure 5: Plotting of the G-solution of (1)
(=), the target function w (——) and the (—) over (—15,20) at timet =20 with L =1
G-solution of (1) (—) over (0,1) at time and for any = € R, g(z) = Ko|z|zsign(z)
t = 20 with L = 1 and for any z € R, with Ko = 0.4.

g(z) = Kolz|2sign(z) with Ko = 0.4.

Figure 6: Plotting of the saturated SMC-
controller Fi(-) with respect to time ¢.

4 Proofs
4.1 Proof of Theorem 2.1

We consider the following scalar conservation laws with local ilateral constraints

ug(t, ) + 0 f(u(t,x)) =0, t€R;,z€R,

u(0,7) = u ), iy "
Fu(t,0) < Qr ), feR.
Flult, L)) < Qa(t), ey

A G-solution u of (10) is understood in the sense of Definition 1.2 replacing F; and Fy by Q; and
Q2 respectively. Note that, contrary to (1), @1 and Q2 in (10) does not depend on the G-solution
u.



Proposition 4.1 ([1]) Assume that Q1,Q%,Q3, Q3 € L>®(R*,[0, f(@)]) and ug,vo € L*=(R,[0,1])

such that (ug —vg) € LY(R). The G-entropy solutions u and v of
ui(t, ) + 0 f(u(t, z)) = 0, vi(t, 2) + 0. f(v(t, ) = 0,
u(0, ) = uo(x), ) 002 = ()
f(u(t,0) < Qi(t), f(u(t, ))SQ?()
flu(t, L) < Q3(t), Flo(t, L)) < Q5(1),

satisfy, for a.e T > 0,

T T
[he—viToz <2 101 - @tiwdr+2 [ 103~ QGltde+ [ fuo— i)z (11)
R 0 0 R

Definition 4.1 Let us fix T > 0. We introduce the operator F : W>°([0,T]) — W>(]0,T])
defined by

Ve [0,T], F(2)(#) = / " lu(t. 2) — w(z) d,
where u € L([0,T] x R; [0, 1]) is a G-entropy solution of (10) with Q1 and Qs defined by
Q1(t) = max(min(f(wr) — g(2(t)), f(w) —€),0) and Q2(t) = f(wr).
Proposition 4.2 Let us fix T > 0. F has a unique fized point in W>([0,T]).

PRrOOF. We apply Schauder’s fixed point theorem [8], i.e suppose K is a compact set in a Fréchet
space X and F : X — K is continuous then F has a fixed point in K. Here, X := C([0,T]; [0,1]) is
a Banach space equipped with the norm || - || o 0,7y and K := F(C([0,T];[0,1])) € C([0,77; [0, 1]).

e Let us fix y € C([0,77;[0,1]) and (yn)nen be a sequence that converges uniformly to y. We
denote by w and wu,, the G-entropy solutions involved in the definition of F(y) and F(y,)
respectively. Using Proposition 4.1, for any ¢ € [0, T,

[F(yn) (t) = Fy)(0)] < 2 5 | max(min(f (wr) - g(yn (1)), f(;? —€)),0)
g

- max(min( f(wr,) —
<2 [y lg(yn () — g(y(2))|dt,

From Heine’s Theorem, ¢ : [0,1] — R is uniformly continuous and for any ¢t € [0,7], y(t) €
[0,1] and z(t) € [0,1]. Thus, (9(yn))nen converges uniformly to g(y). Therefore, together
with (12), we conclude that F is continuous on C([0,T];[0,1]) with respect to norm | -

Lo (0,7)-

e We introduce the set A = F(C([0,T1];[0,1])) € C(]0,T];[0,1]). Let us fix z € C([0,T]; [0, 1]),
we denote by u the G-entropy solutions involved in the definition of F(z). Since for any
(t,x) € Ry x(0,L), 0 < w(t,z) <1 then for any ¢t € [0,T], | F(z)(t)| < L then A is a bounded
subset of C([0,77;[0,1]). Let 0 < ¢t < ¢ < T, from Lemma A.1 with v1(:) =0, %(-) = L,
tl :tettgzt/,

/OL u(t, x)dx + /tt/ flu(t,0))dt = /OL w(t', z)dr + /tt/ f(u(t, L))dt

Thus, together with (8), we have

IF()(t) = F)O)] < f@) —1).

As a consequence, A is equicontinuous. From Arzela—Ascoli theorem, A := F(C([0,T]; [0, 1]))
is a compact set.




From Schauder’s fixed point theorem [8], F has a fixed point in F(C([0,T]; [0, 1])). Since F(C([0,T7];[0,1])) C
W1°([0,T)), we conclude the proof of Proposition 4.2. a

Proof of Theorem 2.1. Let ¢ > 0 and Ty := T4 + € where T} is defined in Proposition
4.6. From Proposition 4.2, for any ug € L*°(R; [0, 1]), there exists at least one G-entropy solution,
denoted by w, of (1) over [0,T5] where F} and F» are defined in (5). We consider the following
coupled PDE-ODE

ve(t, ) + 0 f(v(t,x)) =0, t € (Ty,0),z €R,

v(Ty, ) = u(Ty, x), x €R,

f(o(t,0)) < flwr) — g(v(1)), t € (Ty, 00), (13)
f(t, L)) < flwg), t € (Ty, 0).

y(t) = *gLV(t))’ t € (T, 00).

V(T) = [y (u(Ty,2) — w(z))dz

From Remark 1 and [1, Theorem 2.11], the coupled PDE-ODE admits a unique G-entropy solution,
denoted by v, over [Ty, 00). From (80), we have m(Ty) : fo w(Ty,z) — w(x))dz € [0, f(a) — €.
From (3) and v(Ty) = m(Ty), we deduce that, for any ¢t > Ty, f(w ) —g(v(t)) € [0, f(@) — €.
Thus, since T does not depend on the initial data ug, Proposition 4.6 holds replacing F; (¢, u) by
f(wr) — g(y(¢)). Thus, the function o : t — fo v(t,x) — w(x))dx satisfied, for any t > Ty,

{ a(t) = flwr) — g(v(t)) — f(wr),
o(Ty) = m(Ty)

From (13), we deduce that o(t) = ~(¢) for any ¢ > Ty. Therefore, v is a G-entropy solution of
(1) over [Ty,00). By uniqueness of (13) and from Proposition 4.6, for any t € [Ty, T3], u = v.
We conclude that w, defined by w = u over [0, Z4%5] x R and w = v over (455 o0) X R, is a
G-entropy solution of (1).

4.2 Proof of Theorem 2.2

Let f € [0, f()]. We denote by #if and df the two solutions of f(u) = f with @i < df (these
solutions exist because f is concave). Let u be a G-entropy solution of (1).

Lemma 4.1 There exist Ty > 0 (independent of the initial data ug) and two functions By, B2 :
[Ty, 4+00) — (0, L) such that, for any (t,z) € [T1,+00) X (0, L), we have 81 < B2 and

0<z< ﬂl(g) = U(ﬂ ji) € [O’af(ﬂ)—e) (14)
Bil) <7 < Bo(l) = f(u(t, 7)) > f(u) - 2 (15)
Bo(f) <7 < L = u(t,zF) € [wg, 1] (16)

ProoF. Let (t,z) € (0,+00) x (0,L). From the point 1. of Definition 1.2 and [4, Theorem
11.1.3] , there exists a minimal backward generalized characteristic, denoted by £_, associated to
u emanating from (¢, Z) defined on an interval [a, ] with @ > 0 such that for any ¢ € (a, 1)

u(t,€~()7) = u(t,77) = u(t, & (1)) (17)

In particular, £_ is a genuine characteristic (also called shock-free, see [4, Definition 10.2.4]). We
have three different possibilities.



Case 1: ¢ (a) = 0 and a > 0. From Proposition B.1 with { = {_, a = a and b = ¢, there
exists a constant v € [0, 1] such that, for any ¢ € [a,?], £-(t) = f'(v) and, for any ¢ € (a,1),
u(t,6_(t)) = v and f(v) < f(@) —e. From (17), we deduce that

w(t,z7) =vand f(v) < f(a) —e.

Therefore, using the definition of ). and 4y —. and the concavity of f, we have
u(t,z7) € [0,dfm)—c) U (lfm)—e, 1]. Moreover, since {_(a) = 0 and a > 0 then f'(v) > 0.
The concavity of f implies that v € [0,4). Thus, u(t,Z7) € [0, %f@)—c)-

Case 2: a = 0. From Proposition B.1 with { =¢_, a =0 and b = t, there exists a constant
v € [0,1] such that, for any ¢t € [0,¢], £&—(¢t) = f'(v) and, for any t € (0,1), u(t,&-(t)) = v.
From (17), we deduce that, for any t € [0, 7],

E-(t) = f'(ult, 7)),
Thus, £_(t) — £-(0) = f'(u(t,z7))t. Using that £_(f) = Z, we deduce that
_T-&(0)

Flultam) = =
Since 0 < £_(0) < L, we get
—— ) -
< futa) < 7
which implies that
L - L
—= < flu(t,z7)) < —.
t t
Using that f is strictly concave and @ := argmax,c( p)f(u), we deduce that there exists

Ty > 0 such that for any ¢ > T3, (15) holds.

Case 3: £ (a) = L and a > 0. From Proposition B.1 with § =¢_,a=aand b= t, there
exists a constant v € [0, 1] such that, for any ¢ € [a,], £~ (t) = f'(v) and, for any ¢ € (a,1),
u(t,€_(t)) = v and f(v) < f(wg). From (17), we deduce that

w(t,z7) =wv and f(v) < f(wg)

Therefore, using the definition of w and the concavity of f, we deduce that u(f,z—) €
[0,wr] U [wg, 1]. Moreover, since {_(a) = L and a > 0 then f/(v) < 0. The concavity of f
implies that v € (u,1]. Thus, u(t,z7) € [wg, 1].

We know that genuine characteristics do not cross over (0, +00) x (0, L). Therefore, given ¢, the
set of T for which we are in first case, second case or third case are connected and they form a
partition of [0, L]. From a geometrical viewpoint it is obvious that from the left to the right we
have points from the first case, points from the second case and points from the last case. At this
point we have indeed constructed two functions #; and B2 such that f; < 82 and (14), (15) and
(16) hold for z~. Using that u(t,z7) = lim._,o+ u(%, (T +¢€)™) and applying (14), (15) and (16) for
x~ to the right hand of the latter equality, we deduce that (14), (15) and (16) also hold for z™.
An illustration of the proof is given in Figure 7. a

Proposition 4.3 There exists To > 0 (independent of the initial data ug) and a Lipschitz function
B : [Ty, +00] — [0, L] satisfying, for any (t,) € [Tz, +00) x (0, L),

(18)

0<z< 5(%) =5 u(f, i’i) € [Ovﬂf(a)—s)
B(t) <z <L = u(t,z%) € [wg, 1]



&(1)

0 L

Figure 7: Construction of 81(-) and S2(-); the minimal backward generalized characteristic &g
emanating from (¢,z) € [T1,00) x (0, 1(f)) touches the left boundary z = 0 at time ¢t = a > 0.
The minimal backward generalized characteristic £; emanating from (¢, Z) € [T1,00) X (81 (%), B2(%))
touches the initial boundary ¢ = 0. The minimal backward generalized characteristic {5 emanating
from (f,z) € [Ty, 0) x (B2(t), L) touches the right boundary z = L at time ¢t = b > 0.

PROOF. We assume that 51(T1) < B2(T1) and (8) holds at time ¢ = Ty. We now prove that
B1(T1) > 0 and B2(T1) < L by contradiction. We assume that 5 (77) = 0. From (15) and using
that u(7T1,0") = limg o u(T1, 27 ), we have
x>0
€

F(T3,00) > f(@) - 5.

Since (8) holds at time ¢t = T}, we get
fu(T1,01)) < f(a) e

This leads to a contradiction. Thus, we have 81(77) > 0. The same argument works for 8s. From
[4,11.1.4 Theorem] and (T4, $1(T1)) € (0,400) x (0, L), there exists a unique forward characteristics
~1(+), issues from (771, 51(T1)), defined on a certain interval [T3, 1) where ¢; > T} is chosen such
that for any ¢ € [T1,c1), 71(¢) € (0,L), 71 is a Lipschitz function over [17,c¢;1). We will now prove
that 81 = 1. To that end, let us fix t € (11, ¢1).

e Let € (0,71(t)). We denote by £_, the minimal backward characteristic emanating from
(t,x), defined maximally on an interval [b,t]. By uniqueness of forward characteristics, we
have

Vs € [max(T1,b),t], £_(s) <7i(s).

We have two alternatives.

— If b > Ty, we have {_(b) =0 and b > 0. Thus, by definition of 81, x < B1(t).

— If b < T, then £_(T1) < 71(Th) = B1(T1). Therefore, by definition of S, £_ is the
minimal backward characteristic emanating from (77, £_(71)), defined maximally on an
interval [b,T1] and £_(b) = 0 with b > 0.

We conclude that, for any = € (0,71(t)), < p1(£). Thus, we have
mn(t) < Bi(d). (19)



o Let x € (y1(¢),L). We denote by £_, the minimal backward characteristic emanating from
(t,z), defined maximally on an interval [b,¢]. By uniqueness of forward characteristics, we
have

Vs € [max(T1,b),t], ~1(s) < &_(s).

We have two alternatives.

— If b > Ty, we have {_(b) = L and b > 0. Thus, by definition of 5 and Sa, B1(t) <
ﬂg(t) <.

— If b < T, then v1(Ty) = 51(Th) < £&-(T1). Then, by definition of 5 and fq, {_ is the
minimal backward characteristic emanating from (77,£_(71)), defined maximally on an
interval [b, T1] and either b =0 or {_(b) = L with b > 0. For both cases, 51 (t) < x.

We conclude that, for any « € (y1(t), L), £1(t) < x. Thus, we have
Pr(t) < n(t). (20)

From (19) and (20), we deduce that for any ¢t € [Ty, ¢1), 51(t) = 71 (¢). The same argument works for
B2. More precisely, 2 coincides with the unique forward characteristic o, issues from (71, 82(71)),
defined on a certain interval [T}, cs) where ¢o > T is chosen such that for any ¢t € [T, ¢2),
~v2(t) € (0,L). As a consequence, 51 and (5 are two Lipschitz functions over (77, min(cq,c2)) and
for a.e t € (T, min(cq, ¢2)),

f(ult, Bi() 7)) = flult, Bi(H)F))
u(t, Bi(t)7) —u(t, Bi()*)

From Lemma 4.1, $1(T1) < B2(T1), (21) and the concavity of f, we deduce that, for a.e t €
(T, min(cy, ¢2))

Bilt) =

ie{1,2}. (21)

iy > YW= -U@ =5 _, o, (22)
lf () —e = Uy(a) -5
Up(ay—c = Uj(a)-5

and there exists T' € (71, min(cy, ¢2)) such that for any ¢ € [T1,T), 0 < S1(t) < B2(t) < L and
B1(T) = B2(T). Moreover, we have

This implies that T < Ty := L + dljjrldg and for any t > [T, min(cq, ¢2)),

B(t) == Pu(t) = Ba(t)-

By definition of #; and Bz, (18) holds over [T, min(cy,c2)). As a consequence, we have for a.e
te [T, min(cl, CQ))
—f@+e _ s fult,B(6)7) = fut,B(H)7) _ flwr)
e Y PR B

Thus, ¢ := ¢; = ¢ and f is a Lipschitz function over [T, ¢). By definition of ¢; and ca, ¢ is the first
time when £(c) = 0 or §(c) = L (by convention, ¢ = 400 if 5(t) € (0, L) for any t > T5).

(24)

e If ¢ = 400 then f is a Lipschitz function over [T, 4+00) and by definition of 81 and fSa, (18)
holds over [T, c0).
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e If ¢ < 400 then § is a Lipschitz function over [Ts, ¢) and there exists a final time ¢ > ¢ such
that for any ¢ € [c, ¢] either 8(t) = L or 5(t) = 0 (by convention ¢ = +oo0 if for any ¢ > c,
either B(t) = L or 5(t) = 0). If ¢ # 400, there exists ¢; > 0 such that for any ¢ € (¢,¢1),
B(t) € (0, L) using the continuity of 5. To simplify the proof, we only consider the case, for
any t € [c,¢], B(t) =0 (the same arguments work with the case 8(t) = L).

— If ¢ = +oo, then 8 is a Lipschitz function over [T5,¢) with Lipschitz constant denoted
by K and §(t) = 0 for any ¢t > ¢. Thus, 8 is continuous over [Ty, +00). Moreover, for
any ¢, € [T, c) and t3 € [¢,00) we have

1B(t1) = Bt2)] < |B(t1) — B(En)| + 18(tn) — B(e) + [B(c) — B(t2) (25)
< Kty = to| + |B(ta) — Ble)|

where (t,)nen a sequence such that for any n € N, ¢,, < ¢ and lim,,_, ¢, = ¢. Passing
to the limit as n tends to +oo in (25), we deduce that S is a Lipschitz function over
[Tz, +00). By definition of 5, and S5, (18) holds over [T%, +00).

— If ¢ < +o0, then as in the case ¢ = 400, 8 is a Lipschitz function over [T5,¢| and by
definition of 8; and B2, (18) holds over [T, ¢]. Moreover, for any ¢ € (¢, ¢;), 8 coincides
with the unique forward characteristic v, issues from (%, 3(¢)), defined on [¢,&;). Thus,
for any t € (¢, ), 8 is a Lipschitz function over [¢, ¢;| with Lipschitz constant denoted by
K. By definition of 3 and 2, (18) holds over [t,¢;). As a consequence, 3 is continuous
over [Ty,¢1). Let the sequence (t,)nen be defined by ¢, = ¢+ % for any n € N. For any
t1 € [¢,€) and ty € (G, &), we have

B(t1) — Bt2)l < |B(t1) = B(tn)| + [B(tn) — B()] +1B(c) — B(t2)] (26)
< K|t1 _tn| + |5(tn) - B(E)l

Passing to the limit as n tends to +o00 in (26), we deduce that 3 is a Lipschitz function

over [Ty,¢1). By iteration, we deduce that S is a Lipschitz function over [Ty, +00) and
(18) holds over [Ty, 4+00).

Note that (8) holds at time ¢ = T} can be removed since $; and (2 are two continuous func-
tions and (8) holds almost everywhere. Moreover, if 51(T1) = B2(T1) then for any ¢t € [T3,00),
B(t) := B1(t) = B2(t) and (18) holds. Moreover, if §(t) > 0 with ¢ € [T}, 00), we prove as above
that 5(-) coincides with the unique forward characteristic v (-) emanating from (¢, 5(¢)), over [t, c1)
where ¢; >t is chosen such that for any ¢ € [¢,¢1), B(t) = 71(t) € (0,L). So S is a Lipschitz func-
tion over [T}, +00) O

Proposition 4.4 Let t > Ty such that (8) holds at time t =1
B(t) >0 = f(u(t,07)) = Fi(t,u) and u(t,07) < u (27)
B) <L = f(u(t,L7)) = F(t,u) and w(t,L™) > @ (28)

PROOF. Let ¢ > Ty such that (8) holds at time ¢ = ¢ and S(¢f) > 0. From (18), u(f,0%) =
lim, o u(t,zt) € [0,4s)—c]. Let us fix Z € (—00,0). From the point 1. of Definition 1.2 and
x>0

[4, Theorem 11.1.3] and (17), there exists a minimal generalized characteristic {_ emanating from
(t,7), defined maximally on an interval [a,t]. Moreover, for any t € [a,t], {_(¢t) = f/(v) and, for
any t € (a,t], we have u(t,£_(t)7) = v. We have two alternatives.
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Case 1: a =0 and £_(0) < 0. From [4, Theorem 11.1.3] , we have ug(¢—(0)"
up(£-(0)7). By definition of uy in (9), we have ug(£-(0)1) = up(£-(0)7)
deduce that u(t,z7) = 1.

H\_,

<wu(t,z7) <
1. Then, we

Case 2: @ > 0or (a =0and {£_(0) = ) Since £_ is a straight line, £ () = Z < 0 and
£_(a) = 0, we have for any ¢ € [a,#], £_(t) = f'(v) < 0. By concavity of f, we deduce that
u(t,z7) € (u,1].

Thus, for any Z € (—0,0), u(t,z7) € (4,1]. As a consequence, u(t,07) = limz<ou(t,z7) € [4, 1]
z—0
and u(t,07) € [0, @ f(z)—) With Gsg)—. < @. Since (8) holds at time ¢ =, we conclude that
(0w (@), (o)D) € Gi(Fr),
with (74u)(#) = u(t,07) and (qgu)(f) = u(f,07) and G; defined in Definition 1.1. Thus, (27) holds.

The same argument works for 5(t) < L. ad

We will state some preliminary lemmas. Let (¢,2) € (0,+00) x [0, L], we introduce 7_ (¢, z) €
(0,400) and 74 (¢, z) € (0,+00) defined by

Tt x) = m and 7_(t,x) = #ﬂf_)) (29)
with u the G-entropy solution of (1).
Proposition 4.5 Let t 5 = T5 4+ Tiax With Tmax = max( 77 (LR), f’(ﬂfl(li)—e)) such that (8)
holds at time t = t.
B(t) >0 = Vz € (0,8(%)), f(u(t,2*)) = Fi(t — 74 (£, z),u) and u(t,z™) € [0,a), (30)
B(F) < L — ¥a € (D), L), uf,*) = wp. (31)

PROOF. Let £ > Ty := T+ Tuax With Timax = max (_f/(fUR)’ f/('afl(/ﬂ)—e)) such that (8) holds at time
t =+t and z € (0,5(f)). From the point 1. of Definition 1.2, [4, Theorem 11.1.3] and the definition
of 3, there exists a minimal backward generalized characteristic, denoted by &_, associated to u
emanating from (¢,z) defined on an interval [a,?] with @ > 0 and £_(a) = 0 such that for any
t € (a,t)

u(t,6-(t)7) = u(t,z”) = u(t,£-(1)"). (32)
In particular, £_ is a genuine characteristic (also called shock-free, see [4, Definition 10.2.4]). From
Proposition B.1 With € =¢_,a=aandb =1, there exists a constant v € [0, 1] such that, for
any t € [a,t], {_(t) = f'(v )>0and foranyte af) u(t, _(t)_)—vandf(v)gf(a)—e. In
particular, we have a=t—T1.(t,x) =1t— Tty = > Ty — L > T5. From (32), we deduce

that for any t € (a, ]

F(Gp@y—c) =

u(t, & (t)7) = v and f(v) < f(a) -

e We assume that there exists a time ¢y € (a,t) such that §_(to) = B(to) € (0,L). Then
&_ interacts with any maximal backward generalized characteristic emanating from (¢, 8(t))
with ¢ € (tg,t). This leads to a contradiction since from [4, 1.1.2 Corollary], two genuine
characteristics cannot interact. Thus, we have for any t € (a, ],

£-(t) < B(). (33)
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We assume that 5(a) = £_(a) (see Figure 8). Since 5(a) = 0, from Proposition 4.3, for any
y € (0, L),
u(a,y*) € [wg, 1]. (34)

Let § > 0 such that z +§ € (0, 8(f)). From Lemma A.1 with v1(-) = £_(-), v2(-) = &_(-) + 4,
t1 = a et ty = t, we have

I u(a, 2)dz + [1(f(v) - flwpde |
= [ ult, 2)dz + [ (f (ult, (€ (8) +0)7)) — £ (B)ult, (5(t) + 5)7))(?5)
Using that t € [a,], £_(t) = f'(v) and the concavity of f, we deduce that

fult, (§-() +0)7)) = f(v) = f'(v)(u(t, (€(t)+0)7) —v) <0 (36)
From (35) and (36), we have

/0 " (o, 2)dz < / " uF o). (37)

Since for any z € (z,240),0 < z < 2+8 < B(f), from Proposition 4.3, u(f, z*) € [0, Up(q)—c)-
Therefore, together with (34), we have

) )
/ u(t, z)dz < 0lp(g)—e < dwg < / u(a, z)dz
T 0

This leads to a contradiction using (37). Thus, we have

§-(a) < B(a). (38)

0 L T

Figure 8: Case f(a) = £_(a) where {_ is a minimal backward generalized characteristic associated
to u emanating from (Z, z) defined on an interval [a,?] with @ > 0 and _(a) = 0. Moreover, for any
t € [a,t], E&(t) = f'(v) and, for any t € (a, ], u(t,{—(t)") = v and f(v) < f(a) — e with v € [0, 1].

Using that for any t € [a,t], £ (t) < B(t), {-(a) = 0 and § is a Lipschitz function (see

Proposition 4.3), there exists 0 > 0 such that for any ¢ € [a — 8,a 4+ 6], B(t) > 0. Therefore, from
Proposition 4.4, we have for a.e t € [a — §,a + 9],

flu(t,0%)) = Fy(t,u) and u(t,07) < @
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From Proposition B.1 with é = ¢ ,a=a,b=%t, c=a—0,d=a+6, g= MiNyery_5,q15 F1(t; v)
and G = maX,¢[,_5 45 F1(t,u), we deduce that for any t € (b, 1),
min _ Fi(t,u) < f(u(t,z7)) <  max _ Fi(t,u). (39)

tela—0d,a+9) tela—3d,a+9)

Note that the minimum and the maximum of Fj (¢, u) makes sense since using (5), t — Fy(¢,u) is
a continuous function and [a — &, a + §] is a compact set. Passing to the limit in (39) as § — 0, we
conclude that

fu(t,z7)) = Fi(a,u) with a =t — 74 (¢, ). (40)

Using that u(¢, 27) = lim. o+ u(t, (z 4+ €)7), we deduce that (40) also hold for z .

Let £ > Ty := Ty + Tiax With Tiax = max <_f’(fUR)’ f’(afl(/ﬂ)—e)) such that (8) holds at time
t =t and z € (8(t), L). From the point 1. of Definition 1.2, [4, Theorem 11.1.3] and the definition
of B, there exists a minimal backward generalized characteristic, denoted by £_, associated to u
emanating from (f,z) defined on an interval [a,?] with ¢ > 0 and £_(a) = L such that for any
t € (a,t), (32) holds. In particular, {_ is a genuine characteristic (also called shock-free, see [4,
Definition 10.2.4]). From Proposition B.1 with £ = £_, a = a and b = t, there exists a constant
v € [0, 1] such that, for any t € [a,#], £_(t) = f'(v) < 0 and, for any t € (a, ), u(t,é_(t)~) = v and
f(v) < f(wg). In particular, we have a =t —7_(t,2) =t — Wﬁ,)) > T — % > Ty. From
(32), we deduce that for any ¢ € (a, {]

u(t. & (1)) = v and f(v) < f(wp).

e We assume that there exists a time ¢ty € (a,t) such that £_(t9) = B(tp) € (0,L). Then
¢_ interacts with any maximal backward generalized characteristic emanating from (¢, 5(t))
with ¢ € (tg,t). This leads to a contradiction since from [4, 1.1.2 Corollary], two genuine
characteristics cannot interact. Thus, we have for any ¢ € (a, ],

pt) < &-(1). (41)
o We assume that §(a) = ¢_(a). Since S(a) = L, from Proposition 4.3, for any y € (0, L),

w(a,y*) € [0, (a)—c)- (42)

Let § > 0 such that z —§ € (8(¢), L). From Lemma A.1 with v1(-) = &_(-) = 4, 72(-) = &-(-),
t1 =t et ty = a, we have

Jisuta)do + [1(F(ult, (€-(2) = 0))) = € (@ult, (€2) - 9)))dt )

— 7 ulfz)de + [L(f(v) = f'(v)v)dt
Using that ¢ € [a,], £_(t) = f'(v) and the concavity of f, we deduce that

Flu(t, (6=(t) = 0)™)) = f(v) = F'(v)(ult, (§(t) = 6) ) —v) <0 (44)
From (43) and (44), we have

/j :u(t,x)da;g / ' u(a, z)dz. (45)
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Since, for any z € (z — §,z), B(f) < —§ < z < L, from Proposition 4.3, u(t, 2%) € [wg, 1].
Therefore, together with (42), we have

L z
/ u(a, v)dr < dlgg)—e < Swg < / u(t, z)dz
L-¢ z—6

This leads to a contradiction using (45). Thus, we have
pla) <& (a). (46)

Using that for any t € [a,t], B(t) < £_-(t), £&-(a) = L and B is a Lipschitz function (see
Proposition 4.3), there exists 6 > 0 such that for any t € [a — d,a + §], 8(t) < L. Therefore, from
Proposition 4.4, we have for a.e ¢t € [a — §,a + d],

f(u(taLi)) = f(wR) and u < u(taLi)

From Proposition B.1 withé =¢_,a=a,b=t,c=a—06,d=a+ 6, g = f(wr) = G, we deduce
that for any ¢ € (b,1),

u(t,xz”) = wg with a = 7_({, z) (47)
Using that u(t, %) = lim,_,o+ u(f, (x + €)~), we deduce that (47) also hold for z™.
O
Lemma 4.2 For a.e t > Ty := Ty + 2Tumax With Tmax = max (— f,(fUR), f’(afﬁ)_ )).
(t) =0 if B(1) = 0,
i(t) = By (t,u) — Fo(tou) 10 < B(t) < L, (48)

where Fy(t,u) and Fy(t,u) are defined in (5).

PROOF. From Lemma A.1 with vq3 =0, 72 = L, t; = 0 et ¢t = ¢ and the definition of m in (6), we
have for a.e t > 0,

m(t) = f(u(t,07)) — f(u(t,L7)), (49)

where (49) in understood in the sense of Carathéodory solutions. More precisely, Caratheodory
solutions are absolutely continuous curves that satisfy the integral version of the differential equa-
tion (49), that is,

t
m(t) = m(0) +/ (f(u(s,0%)) = f(u(s,L7))) ds.
0
Let us fix £ > T such that (8), (27), (28) and (49) hold. We have three alternatives.

Case 1: 3(f) = 0. From Proposition 4.5, for any = € (0,L), u(f,#¥) = wg. Using that
w(t,07) = lim, ou(t,zt) and u(t,L™) = lim,_ou(t,z~), we conclude that u(¢,0") =
x>0 <L

u(t, L~) = wg. Thus, from (49), for a.e t > T, such that G(t) = 0, we have 7n(t) = 0.
Case 2: 0 < 8(t) < L. From (27), (28) and (49), we have

m(f) = Fl(f, u) — FQ(E, u)
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Case 3 : B(f) = L. From (8) and (27), f(u(t,07)) = Fi(t,u) and f(u(t,L7)) < f(wgr) =
F5(t,u). Therefore, using (49),

m(t) = f(u(t,07) = f(u(t,L7)) > Fi(t,u) — Fa(t,u).

Lemma 4.3 We assume that there exist t1 > 0 and ty > 0 such that Ty + W <t < to
and for any t € [t1,t2], B(t) = L. Then, we have

t 1 < L
2 — U1 YV
J/ (g a)—c)

5
&= T

0 L x

Figure 9: Plotting of the minimal backward generalized characteristic £_, emanating from (o, L),
defined maximally over [a, to] with @ > 0 and £_(a) = 0.

Proor. We assume that t, > W +t1. Let (z,)nen be a sequence such that for any n € N,
xn € (0,L) and x, — L as n — oo. Since f € C?%([0,1]), we have
Tn
lim to — 74 (t2,2,) = lim to — ———— =t3 — 74 (t2, L). 50
n—yoo 2 +( 2 ) nooo 2 f’(u(tQ,l‘;)) 2 +( 2 ) ( )

From the point 1. of Definition 1.2, [4, Theorem 11.1.3] and the definition of 3, there exists
a minimal backward generalized characteristic, denoted by £™, associated to u emanating from
(t2,x,) defined on an interval [a,, ta] with a,, :=to — 74 (t2,x,) > 0 and £"(a,) = 0 such that for
any t € (an, t2)

u(t,€2(t)7) = ulte, xy) = u(t, €2()"). (51)
From [4, Section 10.2], (50) and (51), (£"),en converges to the minimal generalized characteristic
&(-) emanating from (f2, L) defined on an interval [a, t3] with @ := to — 74 (t2, L) > 0 and £_(a) =0
such that, for any ¢ € (a, t2],

U(t, g—(t)i) - u(tQa Li) - U(t, g— (t)+) (52)

In particular, £&_ is a genuine characteristic (see [4, Definition 10.2.4]). From Proposition B.1
with € = £_, a = a and b = to, there exists a constant v € [0,1] such that, for any ¢ € [a,ts],
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&_(t) = f'(v) > 0 and, for any t € (a,t2), u(t,{_(t)") = v and f(v) < f(@) — . In particular, we
have

ty— ro(EL) =t Lo L 5, (53)
a=to—714(t, L) =ty — ———— - > 1.
o PPt L) T Pl T
From (52), we deduce that for any t € (a, t2]
u(t,§-(t)7) = v and f(v) < f(u) —e. (54)
Let us fix § > 0 such that a — % > t;. From Lemma A.1 with v (-) =0, y2() = &-(-) + 4,

t1=a— % and t2 = a (see Figure 9), we have

a 6 a
| stonydeo = [Cu@arder [C 0 (fule 6 0+0) )€ Ot (6 () s

_5 _5
£/ () 7 (v)

Using that f is concave and for any t € [a,ts], £_(t) = f'(v), we have for any t € [a — f,((;v) ,al

Fult, (6=(t) +0)7)) = fv) = f/(0)(u(t, (€~ (t) +6)7) —v) < 0.

Therefore,

a N 5 (5 /
/_() Flut0)de+0 < [ uea) o+ () = £ (0)0) (55)

From Lemma A.1 with y1(-) = £-(), 72(:) =&-(:) + J, t1 = a and t3 =t — % (see Figure 9),
we have that

Jy wla,@)da + [ 70 (f@) = flopyd |
= 1 yults — oy @)de + 2770 (flult, (- (1) + 8)7)) — - (ult, (- (1) + 6)7))dt

Using that f is concave and for any t € [a,t2], £_(t) = f'(v), we have for any t € [a,ts — %]

Fult, (6-(t) +0)7)) = fv) = f/(0)(u(t, (€~ (t) +6)7) —v) < 0.

/06 u(a, z)dr < /LL_éu (t2 — f’((sv)’x) dx (56)

From Lemma A.1 with v1(:) =&_(), %2(:) = L, t1 = t2 — % and ty = to (see Figure 9), we have

Thus, we have

L 5 S , _ to y B
| utts = S e+ s (10 = 1)) = /f( (L Na (57
From (55), (56) and (57), we have
/a 5 f(u(t,o+))dtg/2 (. L)), (58)
R o) b7y

Since (8) holds almost everywhere, we have for a.e t € [tq, ta]

flut, L7)) < f(wr). (59)
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From Lemma A.1 with v1(-) = &_(-), 72(-) = L, t1 = a and t5 = {2, we have

L to to
A Mmmdx+L U&O—f@MﬁR=O+L Flu(t, L)) dt (60)

From (59) and f(wgr) = f(wr), we have

L
/O u(a, z)dr < (t2 — a)(f(wr) = f(v) + f'(v)v) (61)
Since f is a concave function, we have

flwr) = f(v) = f'(v)(v —wr) < 0. (62)
From (29), a 1=ty — 74 (t2, L) > t1 > 0 and (54),

tyoa—-—— b L (63)
20T Fluts, L) f(v)

Combining (61) with (62) and (63), we deduce that

L
/ u(a, z) dx <
0

Therefore, together with (2) and (6), we have

L L
m(a) = /0 (u(a,z) — w(z))dr < Lwp, — /o w(z)dxr < 0.

Using that m is a continuous function and (53), we deduce that there exists § > 0 such that for
any t € [a — 0,a] C [t1,t2], m(t) < 0. Therefore, together with Proposition 4.4, (5) and for any
t € [t1,t2], B(t) = L, we have for a.e t € [a — 0, al,

Fu(t,0%)) = Fi(t,u) > f(wr) (64)

From (58) with § = f/(v)é, (59) and (64), we deduce that

) < [ futt0inar< [ flute L) < 55 wn)

This leads to a contradiction since f(wr) = f(wg). O

Proposition 4.6 There exists Ty > 0 (independent of the initial data ug) such that for anyt > Ty,
B(t) € (0,L) and
m(t) = —g(m(t)) (65)

PROOF. Let us fix Tax = max (— f,(fUR)’ f’(ﬁfiz)_e))' We will prove that for a.e t > Ty + 2Tmaxs

A(t) € (0, L).
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Case 1 : there exists tg € [Tg + Tonax, To + 2Tmax) such that m(tg) > 0. Using (5), Remark
1 and Lemma 4.2, for any t > to, m(t) > 0. Since m(-) is a continuous function, without

loss of generality, we can additionally assume that (8) holds at time ¢ = t;. Moreover,
t— 7o (tB() =t — priestgy; > to — Twax > To. We assume that B(ty) = 0. From
Proposition 4.5, for any = € (0, L), u(tg,2*) = wg. In particular, we have f(u(to,0")) =
f(wgr). Moreover, using (8), (5) and m(ty) > 0, we have f(u(to,0")) < Fi(to,u) < f(wg).

This leads to a contradiction since f(wg) = f(wg). Thus, we have

B(to) > 0.

Since § is a continuous function and 5(tg) > 0, there exists ¢, € RU {400} such that for any
t € [to,tp), B(t) € (0, L) and B(tp) € {0, L}. From Proposition 4.5, for a.e t € [to, tp), for any
S (Ovﬂ(t))’ f(u(t,x)) = Fl(t - T+(t,£t),u) and for any r € (ﬂ(t)aL)v U(t,l’i) = wg. In
particular, we have for a.e t € [to, tp),

flu(t, B(t)7)) = Fi(t — 74(t, B(t)),u) and u(t, B(t)") = wr
Therefore, together with (5) and for any ¢ € [to, ), m(t) > 0, we have
u(t,B(t)”) € [0,wr] and u(t, B(t)") = wg (66)
From (24), (66), f(wz) = f(wg) and the concavity of f, we deduce that, for a.e t € [to,tp),

flu(t, B(t)7)) — f(u(t, B(H)*))
u(t, B(t)~) —ult, B(t)*) > 0. (67)

As a consequence, for any ¢ € [to,t), B(¢t) > B(to) > 0 and B(ty) # 0. We now assume
that 8(tp) = L. Since for a.e t > to (67) holds as soon as (t) € (0,L), we have for any
t > tp, B(t) = L. This leads to a contradiction using Lemma 4.3. We conclude that for any
t > Ts + 2Tmax > to,

B(t) =

B(t) € (0, L).

Case 2 : for any t € [Tg + Tonaxs To + 2Tmax), m(t) < 0. For aet € [TQ + Toax, To + 2Tmax)
such that 8(t) € (0, L), we have

Flu(t, B(t)7)) = Fi(t — 7o (t, B(t)),u) and u(t, B(t)T) = wg.
Therefore, together with (5) and for any ¢ € [TQ + Tmax, Ty + 2Tmax], m(t) <0, we have

u(t, B(t)7) € [wr, dp(a)-] and u(t, B(t)") = wr. (68)

From (24), (68), f(wr) = f(wg) and the concavity of f, we deduce that, for a.e t € [Th +

Tmax> 12 + 2Tmax] such that 5(¢) € (0, L),

Rl B)7) — fult, B0
8O = s —u By = (@)

If Q(TQ + Tmax) € [0, L) then from (69), for any t € [Tg + Tmax, To + 2Tmax), B(t) < L and so

B(To + 2Tmax) < L. If ﬁ(fg + Tmax) = L then from Lemma 4.3 and (69), 8(T2 + 27max) < L.
We conclude that

B(Ty + 2Tmax) < L. (70)
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Let § = 20(WR=WL) o assume that there exists £ € [T + Timax, T2 +27Tmax] such that (8) holds

ZwR
at time ¢t = ¢ and S(%) € [0,d]. From Proposition 4.5, for any x € (8(f), L), u(t,z*) = wg.
Then, from (2), (6) and (68),

m(t) = fOL u(t,r)dx — (L — zo)wr — Towy,
> (L= B(t))wr — (L — xo)wr — zowy, (71)
> (L —d)wg — (L — x0)wr — xowr,
>0

This leads to a contradiction since m(t) < 0 and so 8(f) > 6. Thus, using that § is a
continuous function, for any ¢ € [T5 + Tmax, 12 + 27max], we have B(t) € [d, L]. In particular,

B(Ty + 2Tmax) > 0. (72)

From (70) and (72), we have }
0 < B(Ta + 2Tmax) < L. (73)

From (73) and using that § is a continuous function, there exists t, > Ty + 2Tynax such that
B(ty) = 0 or B(L) = 0 and for any t € [Tz + 2Tmax, tp), B(t) € (0, L) (by convention t;, = +oc0
if YVt > T 4 2Tmax, B(t) € (0,L)). From Lemma 4.2, for a.e t € (T5 + 27Tmax, tb),

m(t) = Fi(t,u) — f(wr).
Therefore, together with (5), Remark 1 and the continuity of m, for any ¢ € (fg + 2Tmax, ty),
m(t) < 0. (74)

From Proposition 4.5, for a.e t € [T 4 27max, ts), for any z € (0, 3(t)), f(u(t,z)) = Fy(t —
74 (t,z),u) and for any = € (B(t), L), u(t,z*) = wg. In particular, we have for a.e t €
[TQ + 2Tmax7 tb)a

fu(t, B(t)7)) = Fi(t — 74.(t, B(t)),u) and u(t, B(t)") = wr
Therefore, together with (5) and (74), we have
u(t, B(t)7) € [wr, Upm)—c) and u(t, B(t)T) = wr (75)
From (24), (75), f(wr) = f(wg) and the concavity of f, we deduce that, for a.e t € [Ty +
27—maxa tb)v
F(ult, B0 ) — Flult, S _ -

0= TG B — e a0

As a consequence, together with (73), for any ¢ € [To 4 2Tmax, ), B(t) < B(Ta + 2Tmax) < L.
We assume that there exists ¢ € [Ty + 2Tmax, ts] such that (8) holds at time ¢ = ¢ and
B(t) € [0,6] with § = zo(Wr=wi) Fyom Proposition 4.5, for any z € (B(D), L), u(t,z*) = wg.

Then, from (2), (6) and (2;513,
m(t) = fOL u(t,z)dx — (L — zo)wr — Towy,
> (L - B(t))wg — (L — 20)wr — Towy, (77)
> (L—96)wr — (L —x0)wr — zowy,
>0

From (74), this leads to a contradiction and so B(t) > 6. Since 8 is continuous, for any
t € [T + 2Tmax, t), 0 < 0 < B(t). We deduce that for any ¢ > Th + 27ax,

pAt) € (0,L).
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We conclude that for a.e t > T3 := Ty 4 2Tmax, B(t) € (0,L). From Proposition 4.2, for a.e
t Z T3 = TQ -+ 27—max,
m(t) = Fi(t,u) — Fa(t, u). (78)

Using that for any (¢,z) € Ry x (0, L), u(t,z) € [0,1], (2) and (6), we have for any ¢ > 0,
—zowr — (L —zo)wr <m(t) < L —xowr — (L — xo)wr (79)

From (5), Remark 4, g is a continuous function, (78) and (79), there exists a finite time Ty > 0
such that for any ¢t > Ty,

flwr) = g(m(t)) €10, f(a) — €. (80)
Thus, from (5) and (78), we deduce that for a.e t > Ty,

O
Proof of Theorem 2.2. From Proposition 4.6, for a.e t > Ty,
B(t) € (0,L) and rm(t) = —g(m(t)), (81)
with m(t) := fOL(u(t, x) —w(x))dz. Therefore, from Remark 4,
Az, m(t) = 0. (82)
From (81) and Proposition 4.5, for a.e t > Ty,
Vo € (0,8(t), flu(t,z®)) = Fi(t — 74 (t,x),u) and u(t,zF) € [0, q) (83)
and
Ve e (B(t),L), wu(t,z®)=wg. (84)

Using that f € C*([0,1]) is strictly concave and @ = argmax, (o 1;f(u), then f : [0,a] — [0, f(a)]
is bijective and we denote by f;l its inverse function. Since for any = € (0,a), f'(z) > 0 then,

using the Inverse function theorem, f;' € C%([0, f(@)]). From (80), (83) and (84), we have, for a.e
t> T47

m(t) + fOT w(z)dr = fOT u(t, r)dx

85
= PO S (f(wr) — gt — 7o () de + [y wpde D)
From (29) and (83), for any x € [0, L],
t L <t (t,x) <t (86)
- <t-—74(t,x) <t
f(tg@y-c) i

We introduce two functions a(-) and b(-) defined by, for any ¢ > Ty

a(t) == min g(m(s)) and b(t) := max g(m(s)). (87)
Se[t_if/(ﬂffﬁ)fe)’t] se[t—if,(ﬂffﬁ)ﬂ),t]

From (85) and using that f;l is an increasing function,
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m(t) + foT w(r)dz — Lwg B(t) < m(t) + fOT w(z)dr — Lwg
ft (flwe) =b(8) —wr — T (fwr) = a(t) — wr

We introduce two functions «, and «y defined by, for any ¢t > T4 + Tmax,

aq(t) = f (f(wr) = Koa(t))) — w and ay(t) = f (f(wr) — Kob(t))) — wr.

From (2), (86), (88) and (89), for any ¢t > Ty,

m(t) — a(t)
wr, —wr + ap(t)

m(t) — aq(t)
wr, — wWg + ag(t)

<B(t) —xo <

From (82), (87) and (88), we have,

lim max(aq(t), ap(t)) =0

t—o00

From (82), (90) and (91), we deduce that

tlggoﬂ(t) - o
For any t > T4 + Tmax,
min(5(t),z max(B(t),z
lut,) = wOllony = [0 ut 2) — wix)lde + [R50 ot 2) — w(a)|de

L
+ Ja((6),20) [0t ) — w(z)|d
From (5), (86), (87), (91), we have for any ¢t > T4 + Tmax,

SO (4, ) —w(a)|de = [FPOTNF (- (@) — w|de,

= [0 p U (fwp) — g(m(t — 74 (8,2)))) — wil,

< min(5(t), o) max(|aqa(t)], |as(t)]).
Thus, from (91) and (92),

min(B(t),z0)

tlggo ; lu(t, z) — w(z)|dx = 0.
Moreover,
L L
/ |u(t, x) —w(x)\dxz/ |lwr — wg|dx =0,
max(S(t),z0) max(B(t),zo)
We have

max(3(t), ro) — min(5(t), zo)),

Jm GO (¢, 7) — w(a)|de < (
|B(t) — o).

min(3(t), <
<

Thus, from (92),
max(3(t),zo)
lim / lu(t, z) — w(z)|dx = 0.

t—oo min(B(t),zo)
We conclude that
Jim u(t, ) = w20,y = 0

22

(91)

(92)



4.3 Proofs of Corollary 2.1 and Corollary 2.2
Proof of Corollary 2.1. From Proposition 4.6, for a.e ¢t > Ty,

B(t) € (0,L) and f(wr) — g(m(t)) € [0, f(u) — ¢] and r(t) = —Kom(2), (94)
with m(t) := fOL(u(t, r) — w(z))dr and

L — zowy, — (L — x9)wg — % —xowL—(L—xo)wR—F%
T4 (= max u s — s +T3
f(wr) f(a) —e— f(wr)

Therefore, for any T' > T}

m(t) = m(Ty)e Kot=To), (95)
From (94) and Proposition 4.5, for a.e t > Ty,
Ve e (0,8(), flu(t,a®)) = Fy(t — 74 (t,2),u) and u(t,z*) € [0, ) (96)
and
Vr € (B(t), L), wu(t,zt)=wg. (97)

Using that f € C([0,1]) is strictly concave and @ = argmax, ¢ (o 11 f(u), then f : [0,a] — [0, f(a@)] is
bijective and we denote by f;l its inverse function. Since for any x € (0, @), f'(x) > 0 then, using
the Inverse function theorem, f;' € C?([0, f(@)]). From (96) and (97), we have, for a.e t > Ty,

m(t) —I—fOTw(x)dac = fOT u(t, r)dx

_ L (98
= O £ () - Kot - ) de 4 [y wede
From (29) and (96), for any x € [0, L],
fm o <t—r1y(tx) <L (99)
Frtgm-c) '
We introduce two functions a(-) and b(-) defined by, for any ¢ > Ty
a(t) = min m(s) and b(t) = max m(s). (100)
se[t—if,(ﬁf(m_g),t] se[t—if,(ﬂf(ﬂ)_‘),t]
From (98) and using that f;l is an increasing function,
m(t) + fOT w(z)dx — Lwg Bit) < m(t) + fOT w(z)dr — Lwg (101)
Fit (flwr) = Kob(®)) —wr = 7 7 i (f(wr) — Koa(t))) —wr
We introduce two functions «, and «y defined by, for any ¢t > Ty + Tmax,
aq(t) = ' (f(we) — Koa(t))) — wy and ap(t) = £ (f(wr) — Kob(t))) — wr. (102)
From (2), (99), (101) and (102), for any t > Ty,
m(t) — ab(t) < ,B(t) — 10 < m(t) — aﬂ(t) (103)
wr, — wg + ap(t) wr, — W + ag(t)
From (95), (100) and (101), we have, for any ¢ > Ty + Tmax,
1y —Ko (t—ﬁ—ﬂo
max(|aq(t)], lap(t)])] < max [(f7) (2)]Ko|m(Ty)|e A (104)

z€[0,L]
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From (103) and (104), we deduce that there exists C' > 0 such that, for any ¢ > Ty 4+ Timax,

() — wo| < Cem Kol =mas =T (7). (105)
For any t > T4 + Tmax,
min T max(3(t),z
Jult,) —wO)llzon = [ fult,2) —w(@)lde + [5500) fu(t, 2) — w(a)|da

L
+fmax(,3(t),zo) |U;(t,]}) ’LU(J?)|dJ3
From (5), (99), (100), (104), we have for any ¢ > T + Tmax,

fomin(ﬁ(t),zo) u(t, z) — w(z)|ds = Ornln(ﬁ (), \F1 (t — 74 (t,x)) — wr|de,
min(B(t),z
= o PO | 2 () — Kom(t = 74(t,2))) — we |

< min(S(t), zo) max(|aq(t)], lan()]),

—Ko( t— 72— —T.
< womaxae(o,) (/1) () Ko|m(T4)le (-7t )

L L
/ |u(t, z) —w(m)\dﬂc:/ |lwr — wgr|dx =0,

max(5(t),zo) nax(B(t),xo0)
and from (105), there exists C' > 0 such that

and

fn?i)((é((;)’mo) lu(t, z) —w(z)|dz < (max(B(t), zo) — min(B(t), o)),
§ |B(t) - :L'O|7

S Ce_KD(t_Tmax_T4) |m(T4)|.

Therefore, together with (95) at time ¢ = T5 := T4 + Tmax, there exists C > 0 such that for any
4 2 T5a
lu(t,-) = w(-) Lo,y < Ce 0T |u(Ts, ) = w(-)| L1(0,1)- (106)

Adapting the proof of [1, Proposition 2.10] and using (5),
L Ty
/ |u(Ts, z) — w(z)|de < 2/ |f(a) — e — f(wg)|dt +/ lup(z) — w(z)|dx (107)
0 0 R
From (106) and (107), there exists C' > 0 such that for any ¢ > 0,

lu(t, ) = w10,y < Ce™™" (luo(-) = w()llLr0,2) + C) -

Proof of Corollary 2.2. From Proposition 4.6, for a.e t > Ty,

Bt) € (0 L) and f(wr) — g(m(t)) € [0, f(u) — €] and 7(t) = —g(m(t)), (108)
with m(t) = fo — w(z))dz. From Proposition [6, Proposition 1], there exists a time
Ts =T, + fo o) such that for any t > T,

m(t) = 0. (109)
From (108) and Proposition 4.5, for a.e t > Ty,

Vo € (0,8(t), f(u(t,z®)) = Fi(t — 74 (t,x),u) and u(t,zF) € [0,a) (110)
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and
Ve e (B(t),L), wu(t,z®)=wg. (111)

From (29) and (110), for any z € [0, L],

L
t— 2 <t—r (tx) <t 112
f/(uf(ﬁ)fe) +( ) ( )

From (5), (109), (110), (111) and (112), for any ¢ > Ty + Tmax,
vz € (0,8(t)), u(t,z®) = wy, and Vx € (B(t), L), u(t,2*) = wr and m(t) = 0.

Therefore, together with (2) and (6), for a.e z € (0, L), we have u(t, z) = w(x).

A Conservation of mass

Lemma A.1 Let t; < ty and let (y1,72) € C%([t1,t2];[0,L))? satisfy v1(t) < 72(t) for any
t € (t1,t2). We have

S o, @) do 4 [t ()" )) at w3
t
= 720 tQ, Ydz + [* F(u(t, 5 (t)7)) dt
with u the G-entropy solution of (1) and for every t € RY, for every v € C%1([0,T];R),
F(u(t,y(8)*)) = fult,y(£)%) = 4(t)ult, y(£)F).
PROOF. It directly follows from the point 1. of Definition 1.2 and [7, Lemma 1]. ad

B Notion of generalized backward characteristics with G-
entropy boundary conditions

Proposition B.1 Let u be the unique G-entropy solution of (1) and we assume that there exist
¢, d > 0 such that ¢ < d and for a.e t € [c,d]

g < flu(t,0M) <G andl < f(u(t,L7)) < L (114)

where g, G, 1, L are given constants. We consider £ a genuine characteristic on an interval [a, ]
such that
vte (], &) € (0,L).

Then there exists a constant v € [0,1] such that, for any t € [a,b], f(t) = f'(v) and, for any
€ (a,b), u(t,&(t)) = v. Moreover,

&(a) =0 and a > 0 implies f'(v) > 0 and { (g) 2 ;E:) i ?(a) . ZfZefw(zi’ed)’ (115)
a =0 implies u(a,£(a)+) < v <u(a,§(a)-), (116)
&(a) = L and a > 0 implies f'(v) <0 and { éi‘it(&))iﬁt(wm io];}(jeijics’ec.l), (117)
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Remark 2 Note that if the inequality in (114) is strict then the inequalities in (115), (116) and
(117) are also strict. For instance, if g < f(u(t,0%)) < G then (115) is replaced by g < f(v) < G

PrOOF. From Definition 1.2, the unique G-entropy is a Kruzhkov entropy solution over Ry x (0, L).
Thus, From [4, Theorem 10.2.3 and Theorem 11.1.1], there exists a constant v € [0, 1] such that,
for any t € [a,b], £(t) = f'(v) and, for any ¢ € (a,b), u(t,£(t)) = v. We have three different
possibilities :

Case 1: £(a) =0 and a > 0). We immediately have f'(v) > 0. Let us fix > 0, from Lemma
Alwitht) =a,ta =a+ %, 7 (-) =0 and v2(-) = £(-) (see Figure 10a), we have

/:+f “ Flu(t,0%))dt +0 = /06 u (a + f/((sv)x) dz + /:+f Y (Fw) = 0wt (118)

From (8), for a.e t > 0, f(u(t,0)) < Fi(t,u) < f(u) —e. Thus, we have

/(+ff))d+ /:ﬂ(v)(f(v)—f’(v)v)dtﬁ U@-o.  (9)

Let ¢ € (a,b). From Lemma A.1 with t; = a + %, to =¢, (-
(see Figure 10a), we have ‘
Jou(a+ g w) det 7, o (FQult, (60 = )%) — E@Bpult, (€(1) — 6)*))at

fﬁ(f)) su(e)de+ [7 s (f(0) = ['(w)v)dt

Using that f is concave and for any t € [a, b], §(t) = f'(v), we have for any t € [a + %, c|

Flu(t, (€(t) = 0)T)) — f(v) = f'(v)(u(t, (£(t) = 6)T) —v) < 0.

Thus, we have

s s )
/0 u (a + M,x) dx > /g(c)—é u(é, r)dx. (120)
From (119) and (120),
£ 5 5
o e+ s (1) = o) < s (7 o)
Dividing by ¢ and taking 6 — 0% and using that u(¢, £(¢)) = v, we deduce that
flv) < f(a) -

If a € (¢,d) then we choose 6 > 0 such that [a — %, a+ %] € (¢,d). From (114), we have
for a.et € [a — %,a + %], g < f(u(t,0"7)) < G. Thus, using (118), we get

/Oéu <a + f,((sv),x> dzr + /aa+f ) (f(v) = f'(v)v)dt < f’((sv)G'

Moreover, (120) holds. Thus, we deduce that

£(@) p 5 5 o
w(e, x)dr + ——(f(v) — f'(v)v) < —G.
[ e+ (@) = o) <
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Dividing by ¢ and taking § — 07 and using that u(c, £(¢)) = v, we deduce that

flv) <G.

From Lemma A.1 with ¢t; = a — %, to = a,y1(-) =0 and v(-) = £(+) + ¢ (see Figure 10b),
we have

a 5 a
[ fomao= [Cuader [ (e €00 -0t ¢0+5) s
GTT @ 0 GTF @ (

Using that f is concave and for any ¢ € [a,b], £(t) = f'(v), we have for any ¢ € [a — f’(gv) ,al

flult, (€(t) +0)7)) = f(v) = f'(v)(ult, (£(t) +6)7) —v) < 0.
Therefore,

)
f'w)

a )
/ Flult,0%))dt +0 < / w(a,z)dz + ——(f(v) - f'(w)v).
a— 0

s
£ (v)

From (114) and [a — %, a+ %U)] € (¢,d), we deduce that

5
fr(w)

5
9 < [ wlaa)det (0= P00, (122)

Let ¢ € (a,b). From Lemma A.1 with t; = a, ta = ¢, v1(-) = &(-) and 1(-) = &(-) + 6§, we
have

12 u(a, )dx + ff([(vg— fwy)dt .
= [EO u(ew)de + [7(F(ult, (€(0) +6)7)) — Eyult, (1) +8)7))dt

Using that f is concave and for any t € [a,b] £(t) = f'(v), we have for any t € [,
flult, (§(t) +0)7)) = f(v) = f/(v)(ult, (§(t) +6)7) —v) < 0.
Thus, we have
5
/0 w(a, z)dz < /E (e, z)dz (123)

From (122) and (123),

5 5 &(e)—o
- V) — /UU uc,xdaﬁ
A0~ T f())SL (c.)

Dividing by ¢ and taking § — 07 and using that u(c, £(¢)) = v, we deduce that

g < fv).

Case 2: a = 0. From the point 1. of Definition 1.2 and from [4, Theorem 11.1.1], (116) holds.
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(a) (b)

Figure 10: Plotting of a genuine characteristic { on an interval [a, b] with a < b such that {(a) =0
with a > 0 and £(t) = f'(v) > 0 with v € [0, @ f(g)_].

Case 3: £(a) = L and a > 0. We immediately have f'(v) < 0. Let us fix 6 > 0, from Lemma
Alwitht) =a,to=a— %, y1(-) = &(-) and ¥2(-) = L (see Figure 11a), we have

[ o= remao= [T s [ o (o g as 020

From (8), for a.e t > 0, f(u(t,L)) < Fo(t,u) = f(wgr). Thus, we have

/:_m(f(v)—f’(“)”)dt_ (o gtaye) s gm0

L—-¢6

Let ¢ € (a,b). Using Lemma A.1 with t; =a — %, to =2 1()=&() and v () =&()+ 0

(see Figure 11a), we deduce that

fE
a— ,6

s (J(0) = f@)wydt + [y ula — 5, 2)da

= [ uleadn + [ (F(ult, (6(0) +6))) = E@Dult, (€(1) + ) ).

Using that f is concave and for any ¢t € [a — %,E], £(t) = f'(v), we have for any ¢ €

o= 7t

fult, (€(8) +0)7)) = f(v) = f/(0)(ult, (§(t) +6)7) —v) < 0.

L 5 £(2)+6
/L_é u (a - f’(v)’x> dx < /5() u(e, z)dx. (126)

From (125) and (126),

Thus, we have

0 ' - w(e, z)de < ——
Ty U@ = £ = [ e <
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Dividing by § and taking § — 07, using that u(¢, £(¢)) = v, we deduce that
f(v) < f(wr).

If a € (c,d) then we choose § > 0 such that [a + 5 (U),a (U)] € (¢,d). From (114), we have
fora.et € [a +f(v), f(v)] 1< f(u(t,L™)) < L. Thus using (124), we get

/aa_m(f(v) — f(v)v)dt — /LL_(SU (a — f’((sv)’x) dx < f’_(f))L

Moreover, (126) holds. Thus, we deduce that

-5 , £(e)+6 - -5
) = 1)) - /{(C) u(e.)de < Fs L

Dividing by ¢ and taking § — 07 and using that u(c, £(¢)) = v, we deduce that

fo) < L.
From Lemma A.1 with t; = a+ (v)7 =a, v1(-) =&(-) — 0 and 2(-) = L (see Figure 11b),
we have
a . L a
[ Gttt e@-0m) -t €0-0 it = [ u@aydes [ )
a-‘rm L—6 a+m

_ (127)
Using that f is concave and for any t € [a,b], £(t) = f/(v), we have for any ¢ € [a + %, al

Flu(t, (€(t) = 0)T)) = f(v) = f'(v)(u(t, (&(t) = 6)T) —v) < 0.

Therefore,
a 6 I
7L_ d - — 7 _ , d
/a+f/‘év> flu(t, L7))dt < 70 (f(v) = f'(v)v) /L_éu(a ) da
From (114) and | f’?v)’a — f,(gv)] (c,d), we deduce that
P S PV - o - /LL5“<a,x> o, (128)

Let ¢ € (a,b). From Lemma A.1 with t; = a, ta = ¢, v1(-) = &(-) — ¢ and y2(-) = &(+), we

have
Jisula,x dz*f (t, (§(t) —0)* )) f(f)U(f, (£(t) — 6)™))dt
= fg(c u(e, x)dx + f — f(v)v)dt.
Using that f is concave and for any ¢ € [a,b] £(t) = f'(v), we have for any t € [a, ¢
Flu(t, (€(t) = 0)T)) = f(v) = f'(v)(u(t, (&(t) = 6)T) —v) < 0.

Thus, we have

(&)—6 L
/ u(e, z)dx < / u(a, z)dx. (129)
(@) L—s
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From (128) and (129),
_0 1< - 0
frlo) = ()
Dividing by ¢ and taking § — 07 and using that u(c, £(¢)) = v, we deduce that
1< fw).

(a) (b)

Figure 11: Plotting of a genuine characteristic £ on an interval [a, b] with a < b such that {(a) = L
with a > 0 and £(¢) = f'(v) < 0 with v € [wg, 1].
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