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We address a problem of stabilization of a scalar conservation laws with fixed flux pointwise constraints. The PDE models the impact of two toll gates on the traffic flow and the feedback laws is designed to limit the number of cars passing through the two toll gates. The existence of solutions is proved using a Schauder's fixed point theorem, together with a coupled PDE-ODE. To prove stabilization results, we study the structure of the solutions using an extension of backward generalized characteristics.

Introduction 1.Presentation of the Problem

Let L > 0. We consider the following scalar conservation laws with local lateral constraints

       u t (t, x) + ∂ x f (u(t, x)) = 0, t ∈ R + , x ∈ R, u(0, x) = u 0 (x),
x ∈ R, f (u(t, 0)) ≤ F 1 (t, u), t ∈ R + , f (u(t, L)) ≤ F 2 (t, u), t ∈ R + .

(

) 1 
We assume that f ∈ C 2 ([0, 1]; [0, +∞)) is a strictly concave function such that f (0) = f (1) = 0. The problem (1) models two toll gates along highway or road lights (see [START_REF] Colombo | A well posed conservation law with a variable unilateral constraint[END_REF]). Since the flux pointwise constraints at x = 0 and x = L (the two toll gates) generate shocks that does not verify Oleinik condition, the notion of weak-entropy solutions cannot be used anymore. Thus, we consider here the notion of G-solution (see [START_REF] Andreianov | Finite volume schemes for locally constrained conservation laws[END_REF] or Definition 1.2). We introduce the target function w defined by

w(x) = w L , if 0 ≤ x < x 0 , w R , if x 0 < x ≤ L, (2) 
where x 0 ∈ (0, L) and w L , w R ∈ (0, 1) satisfy w L < w R and f (w L ) = f (w R ) < f (ū) with ū = argmax u∈[0,1] f (u). Our goal is to find two feedback controllers F 1 and F 2 that stabilizes (1) over (0, L) around the target function w, i.e for any initial data u 0 , the G-solutions u(t, •) of (1) converges to w(•) in L 1 (0, L) as t → ∞. We consider a continuous function g : R → R such that g(0) = 0 and ∀x ∈ R * , xg(x) > 0 [START_REF] Colombo | A well posed conservation law with a variable unilateral constraint[END_REF] and the following ODE ṁ(t) = -g(m(t)), m(0) = m 0 ,

admits a unique solution over [0, ∞). In this paper, the feedback controllers F 1 and F 2 have the following forms F 1 (t, u) = max(min(f (w L )g(m(t)), f (u)ε), 0) and F 2 (t, u) = f (w R ) [START_REF] Stanislav | First order quasilinear equations in several independent variables[END_REF] where ε > 0 is chosen such that f (u)f (w L )ε > 0 and

m(t) := L 0 (u(t, x) -w(x))dx. (6) 
Remark 1

• Since g is a continuous function, from Peano's Theorem, there exists at least one solution of (4). If there exists t 0 > 0 such that m(t 0 ) = 0 then, from (3), any solution m(•) of (4) satisfies for any t ≥ t 0 , d dt m 2 (t) < 0. Therefore, for any t ≥ t 0 , m(t) = 0. • We have the following maximum and minimum principle m 0 ≥ 0 =⇒ ∀t ≥ 0, m(t) ≥ 0 and m 0 ≤ 0 =⇒ ∀t ≥ 0, m(t) ≤ 0.

• The EDO (4) is asymptotically stable around the equilibrium point 0 using (3) and the candidate Lyapunov function V : x → x 2 2 (see [START_REF] Moulay | Finite time stability of nonlinear systems[END_REF]). • The uniqueness of the EDO (4) is used to prove the existence of solutions of (1). More precisely, from a certain time, the unique solution of the coupled PDE-ODE (13) is a solution of (1).

In [START_REF] Blandin | Regularity and lyapunov stabilization of weak entropy solutions to scalar conservation laws[END_REF][START_REF] Perrollaz | Asymptotic stabilization of stationnary shock waves using a boundary feedback law[END_REF][START_REF] Tumash | Boundary control design for traffic with nonlinear dynamics[END_REF], stabilization results are obtained in the context of weak-entropy solutions. More precisely, in [START_REF] Blandin | Regularity and lyapunov stabilization of weak entropy solutions to scalar conservation laws[END_REF], the authors consider solutions with a finite number of shocks to find the derivative of a Lyapunov function candidate. In [START_REF] Tumash | Boundary control design for traffic with nonlinear dynamics[END_REF], they assume that the solutions is only determined by the boundaries and use the Hamilton-Jacobi formulation. In [START_REF] Perrollaz | Asymptotic stabilization of stationnary shock waves using a boundary feedback law[END_REF], a saturated proportional controller is provided to stabilize asymptotically the weak-entropy solution of LWR around a stationary shocks using the notion of generalized characteristics. To our best knowledge, there are no stabilization results in the context of G-solutions.

Definitions and notations

Let Π = [0, ∞) × R. Throughout the paper,

φ : (u, k) ∈ R × R → sgn(u -k)(f (u) -f (k))
denotes the entropy flux associated with the Kruzhkov entropy (u, k) → |u -k| (see [START_REF] Stanislav | First order quasilinear equations in several independent variables[END_REF]). Definition 1.1 (Admissibility germ G(F ), [START_REF] Andreianov | Finite volume schemes for locally constrained conservation laws[END_REF]) Let F ∈ [0, f (u)]. The admissibility germ G(F ) for the conservation law (1) is the subset of [0, 1] 2 defined as the union G(F ) = G 1 (F ) ∪ G 2 (F ) ∪ G 3 (F ), where [0,[START_REF] Andreianov | Finite volume schemes for locally constrained conservation laws[END_REF]). We say that u ∈ L ∞ (Π; [0, 1]) is a G-entropy solution of (1) if 1. u is a Kruzhkov entropy solution for x ∈ R\{0, L}, i.e, for all nonnegative test functions ϕ ∈ C ∞ c (Π\{0, L}) and all k ∈ [0, 1], +∞ 0 R (|u(t, x) -k|∂ t + φ(u(t, x), k)∂ x )ϕ(t, x)dxdt + R |u 0 (x) -k|ϕ(0, x)dx ≥ 0; [START_REF] Perrollaz | Asymptotic stabilization of stationnary shock waves using a boundary feedback law[END_REF] 2. in addition, for a.e t > 0, ((γ l 0 u)(t), (γ r 0 u)(t)) ∈ G(F 1 ) and

• G 1 (F ) := {(c l , c r ) ∈ [0, 1] 2 ; c l > c r , f (c l ) = f (c r ) = F }, • G 2 (F ) := {(c, c) ∈ [0, 1] 2 ; f (c) ≤ F }, • G 3 (F ) := {(c l , c r ) ∈ [0, 1] 2 ; c l < c r , f (c l ) = f (c r ) ≤ F }. Definition 1.2 ([1]) Let u 0 ∈ L ∞ (R,
((γ l L u)(t), (γ r L u)(t)) ∈ G(F 2 ). ( 8 
)
where γ l,r 0 and γ l,r L denote the operators of left-and right-side strong traces on {x = 0} and {x = L} and F 1 and F 2 are defined in [START_REF] Stanislav | First order quasilinear equations in several independent variables[END_REF].

Main results

Theorem 2.1 (Existence) Let ε > 0 satisfy f (u)f (w L )ε > 0. For any u 0 ∈ L ∞ (R; [0, 1]), there exists at least one G-entropy solution u of (1) where F 1 and F 2 are defined in [START_REF] Stanislav | First order quasilinear equations in several independent variables[END_REF].

Theorem 2.2 (Asymptotic stability) Let ε > 0 satisfy f (u) -f (w L ) -ε > 0. Let v 0 ∈ L ∞ ([0, L]; [0, 1]
), we consider the initia data u 0 defined by

u 0 (x; v 0 ) =    1, if x < 0, v 0 (x), if 0 < 0 < L, 0, if L < x. (9) 
For any v 0 ∈ L ∞ ([0, L]; [0, 1]), any G-solution u(t, •) of (1) with initial datum u 0 converges to w(•) in L 1 (0, L) as t → ∞.

Corollary 2.1 (Exponential stability) Let ε > 0 satisfy f (u) -f (w L ) -ε > 0 and g : x → K 0 x with K 0 > 0. For any v 0 ∈ L ∞ ([0, L]; [0, 1]
), any G-solution u(t, •) of (1) with initial datum u 0 converges exponentially to w(•) in L 1 (0, L) as t → ∞, i.e there exists C > 0 such that for any

t ≥ 0, u(t, •) -w(•) L 1 (0,L) ≤ Ce -K0t u 0 (•) -w(•) L 1 (0,L) + C . Corollary 2.2 (Finite time stability) Let ε > 0 satisfy f (u) -f (w L ) -ε > 0 and g satisfied (3) and for any α ∈ R * , α 0 dy g(y) > -∞. For any v 0 ∈ L ∞ ([0, L]; [0, 1]
), the G-solution u(t, •) of (1) with initial datum u 0 converges in finite time to w(•) in L 1 (0, L), i.e there exists a time T > 0 such that for any t ≥ T , for a.e x ∈ (0, L), u(t, x) = w(x).

Simulations

To construct an approximate solution of (1), we use a finite volume scheme described in [START_REF] Andreianov | Finite volume schemes for locally constrained conservation laws[END_REF]. The code is available at https://github.com/Thibault-liard/Regulation-Godunov-LWR-fixed.

In Figure 1, Figure 2, Figure 3, F 1 is a saturated proportional controller, i.e g in ( 5) is defined by, for any x ∈ R, g(x) = K 0 x where K 0 > 0 is the gain of the controller. Any G-solution of the PDE (1) with the controller F 1 is asymptotically stable around the stationary solution w(•) (see Corollary 2.2). In Figure 4, Figure 5, Figure 6, F 1 is a saturated sliding mode controller, i.e g : x → K 0 |x| We consider the following scalar conservation laws with local ilateral constraints

       u t (t, x) + ∂ x f (u(t, x)) = 0, t ∈ R + , x ∈ R, u(0, x) = u 0 (x), x ∈ R, f (u(t, 0)) ≤ Q 1 (t), t ∈ R + , f (u(t, L)) ≤ Q 2 (t), t ∈ R + . (10) 
A G-solution u of (10) is understood in the sense of Definition 1.2 replacing F 1 and F 2 by Q 1 and Q 2 respectively. Note that, contrary to (1), Q 1 and Q 2 in (10) does not depend on the G-solution u.

Proposition 4.1 ([1]) Assume that Q 1 1 , Q 2 1 , Q 1 2 , Q 1 2 ∈ L ∞ (R + , [0, f (u)]) and u 0 , v 0 ∈ L ∞ (R, [0, 1]) such that (u 0 -v 0 ) ∈ L 1 (R). The G-entropy solutions u and v of        u t (t, x) + ∂ x f (u(t, x)) = 0, u(0, x) = u 0 (x), f (u(t, 0)) ≤ Q 1 1 (t), f (u(t, L)) ≤ Q 1 2 (t),
and

       v t (t, x) + ∂ x f (v(t, x)) = 0, v(0, x) = v 0 (x), f (v(t, 0)) ≤ Q 2 1 (t), f (v(t, L)) ≤ Q 2 2 (t), satisfy, for a.e T > 0, R |u -v|(T, x)dx ≤ 2 T 0 |Q 1 1 -Q 2 1 |(t)dt + 2 T 0 |Q 1 2 -Q 2 2 |(t)dt + R |u 0 -v 0 |(x)dx (11) 
Definition 4.1 Let us fix T > 0. We introduce the operator

F : W 1,∞ ([0, T ]) → W 1,∞ ([0, T ]) defined by ∀t ∈ [0, T ], F(z)(t) := L 0 (u(t, x) -w(x)) dx, where u ∈ L ∞ ([0, T ] × R; [0, 1]
) is a G-entropy solution of (10) with Q 1 and Q 2 defined by

Q 1 (t) = max(min(f (w L ) -g(z(t)), f (u) -ε), 0) and Q 2 (t) = f (w R ). Proposition 4.2 Let us fix T > 0. F has a unique fixed point in W 1,∞ ([0, T ]).
Proof. We apply Schauder's fixed point theorem [START_REF] Rudin | Functional analysis[END_REF], i.e suppose K is a compact set in a Fréchet space X and F : X → K is continuous then F has a fixed point in K. Here,

X := C([0, T ]; [0, 1]) is a Banach space equipped with the norm • L ∞ (0,T ) and K := F(C([0, T ]; [0, 1])) ⊂ C([0, T ]; [0, 1]). • Let us fix y ∈ C([0, T ]; [0, 1]
) and (y n ) n∈N be a sequence that converges uniformly to y. We denote by u and u n the G-entropy solutions involved in the definition of F(y) and F(y n ) respectively. Using Proposition 4.1, for any t ∈ [0, T ],

|F(y n )(t) -F(y)(t)| ≤ 2 t 0 | max(min(f (w L ) -g(y n (t)), f (ū) -)), 0) -max(min(f (w L ) -g(y(t)), f (ū) -))), 0)|dt, ≤ 2 t 0 |g(y n (t)) -g(y(t))|dt, (12) 
From Heine's Theorem, g : [0, 1] → R is uniformly continuous and for any t ∈ [0, T ], y(t) ∈ [0, 1] and z(t) ∈ [0, 1]. Thus, (g(y n )) n∈N converges uniformly to g(y). Therefore, together with (12), we conclude that F is continuous on C([0, T ]; [0, 1]) with respect to norm

• L ∞ (0,T ) . • We introduce the set A = F(C([0, T ]; [0, 1])) ⊂ C([0, T ]; [0, 1]). Let us fix z ∈ C([0, T ]; [0, 1]),
we denote by u the G-entropy solutions involved in the definition of F(z). Since for any (t,

x) ∈ R + × (0, L), 0 ≤ u(t, x) ≤ 1 then for any t ∈ [0, T ], |F(z)(t)| ≤ L then A is a bounded subset of C([0, T ]; [0, 1]). Let 0 ≤ t < t ≤ T , from Lemma A.1 with γ 1 (•) = 0, γ 2 (•) = L, t 1 = t et t 2 = t , L 0 u(t, x)dx + t t f (u(t, 0))dt = L 0 u(t , x)dx + t t f (u(t, L))dt.
Thus, together with (8), we have

|F(z)(t ) -F(z)(t)| ≤ f (u)(t -t).
As a consequence, A is equicontinuous. From Arzelà-Ascoli theorem,

A := F(C([0, T ]; [0, 1])) is a compact set.
From Schauder's fixed point theorem [START_REF] Rudin | Functional analysis[END_REF], F has a fixed point in

F(C([0, T ]; [0, 1])). Since F(C([0, T ]; [0, 1])) ⊂ W 1,∞ ([0, T ]), we conclude the proof of Proposition 4.2. 2
Proof of Theorem 2.1. Let > 0 and T 5 := T 4 + where T 4 is defined in Proposition 4.6. From Proposition 4.2, for any u 0 ∈ L ∞ (R; [0, 1]), there exists at least one G-entropy solution, denoted by u, of (1) over [0, T 5 ] where F 1 and F 2 are defined in [START_REF] Stanislav | First order quasilinear equations in several independent variables[END_REF]. We consider the following coupled PDE-ODE

               v t (t, x) + ∂ x f (v(t, x)) = 0, t ∈ (T 4 , ∞), x ∈ R, v(T 4 , x) = u(T 4 , x), x ∈ R, f (v(t, 0)) ≤ f (w L ) -g(γ(t)), t ∈ (T 4 , ∞), f (v(t, L)) ≤ f (w R ), t ∈ (T 4 , ∞). γ(t) = -g(γ(t)), t ∈ (T 4 , ∞). γ(T 4 ) = L 0 (u(T 4 , x) -w(x))dx. ( 13 
)
From Remark 1 and [1, Theorem 2.11], the coupled PDE-ODE admits a unique G-entropy solution, denoted by v, over [T 4 , ∞). From (80), we have m(T 4 ) :

= L 0 (u(T 4 , x) -w(x))dx ∈ [0, f (ū) -].
From (3) and γ(T 4 ) = m(T 4 ), we deduce that, for any

t ≥ T 4 , f (w L ) -g(γ(t)) ∈ [0, f (ū) -].
Thus, since T 4 does not depend on the initial data u 0 , Proposition 4.6 holds replacing F 1 (t, u) by f (w L )g(γ(t)). Thus, the function

σ : t → L 0 (v(t, x) -w(x))dx satisfied, for any t ≥ T 4 , σ(t) = f (w L ) -g(γ(t)) -f (w R ), σ(T 4 ) = m(T 4 )
From (13), we deduce that σ(t) = γ(t) for any t ≥ T 4 . Therefore, v is a G-entropy solution of (1) over [T 4 , ∞). By uniqueness of (13) and from Proposition 4.6, for any t ∈ [T 4 , T 5 ], u = v. We conclude that w, defined by w = u over [0, T4+T5 2 ] × R and w = v over ( T4+T5 2 , ∞) × R, is a G-entropy solution of (1).

Proof of Theorem 2.2

Let f ∈ [0, f (ū)]. We denote by ǔ f and û f the two solutions of f (u) = f with ǔ f < û f (these solutions exist because f is concave). Let u be a G-entropy solution of (1). Lemma 4.1 There exist T 1 > 0 (independent of the initial data u 0 ) and two functions β 1 , β 2 : [T 1 , +∞) → (0, L) such that, for any ( t, x) ∈ [T 1 , +∞) × (0, L), we have β 1 ≤ β 2 and

0 < x < β 1 ( t) =⇒ u( t, x± ) ∈ [0, ǔf(ū)-) (14) β 1 ( t) < x < β 2 ( t) =⇒ f (u( t, x± )) ≥ f (ū) - ε 2 , ( 15 
)
β 2 ( t) < x < L =⇒ u( t, x± ) ∈ [w R , 1] (16) 
Proof. Let ( t, x) ∈ (0, +∞) × (0, L). From the point 1. of Definition 1.2 and [4, Theorem 11.1.3] , there exists a minimal backward generalized characteristic, denoted by ξ -, associated to u emanating from ( t, x) defined on an interval [a, t] with a ≥ 0 such that for any t ∈ (a, t)

u(t, ξ -(t) -) = u( t, x-) = u(t, ξ -(t) + ). ( 17 
)
In particular, ξ -is a genuine characteristic (also called shock-free, see [START_REF] Constantine M Dafermos | Hyperbolic conservation laws in continuum physics, volume 325 of grundlehren der mathematischen wissenschaften[END_REF]Definition 10.2.4]). We have three different possibilities.

Case 1: ξ -(a) = 0 and a > 0. From Proposition B.1 with ξ = ξ -, a = a and b = t, there exists a constant v ∈ [0, 1] such that, for any t ∈ [a, t], ξ-(t) = f (v) and, for any t ∈ (a, t), u(t, ξ -(t)) = v and f (v) ≤ f (ū)ε. From (17), we deduce that

u( t, x-) = v and f (v) ≤ f (ū) -ε.
Therefore, using the definition of ǔf(ū)-ε and ûf(ū)-ε and the concavity of f , we have

u( t, x-) ∈ [0, ǔf(ū)-ε ) ∪ (û f (ū)-ε , 1]. Moreover, since ξ -(a) = 0 and a > 0 then f (v) > 0.
The concavity of f implies that v ∈ [0, ū). Thus, u( t, x-) ∈ [0, ǔf(ū)-).

Case 2: a = 0. From Proposition B.1 with ξ = ξ -, a = 0 and b = t, there exists a constant v ∈ [0, 1] such that, for any t ∈ [0, t], ξ-(t) = f (v) and, for any t ∈ (0, t), u(t, ξ -(t)) = v. From (17), we deduce that, for any t ∈ [0, t],

ξ-(t) = f (u( t, x-)).

Thus, ξ -( t) -ξ -(0) = f (u( t, x-)) t. Using that ξ -( t) = x, we deduce that f (u( t, x-)) = x -ξ -(0) t . Since 0 ≤ ξ -(0) ≤ L, we get x -L t ≤ f (u( t, x-)) ≤ x L which implies that - L t ≤ f (u( t, x-)) ≤ L t .
Using that f is strictly concave and ū := argmax u∈[0,R] f (u), we deduce that there exists T 1 > 0 such that for any t ≥ T 1 , (15) holds.

Case 3: ξ -(a) = L and a > 0. From Proposition B.1 with ξ = ξ -, a = a and b = t, there exists a constant v ∈ [0, 1] such that, for any t ∈ [a, t], ξ-(t) = f (v) and, for any t ∈ (a, t), u(t, ξ -(t)) = v and f (v) ≤ f (w R ). From (17), we deduce that

u( t, x-) = v and f (v) ≤ f (w R )
Therefore, using the definition of w and the concavity of f , we deduce that u

( t, x-) ∈ [0, w L ] ∪ [w R , 1]. Moreover, since ξ -(a) = L and a > 0 then f (v) < 0. The concavity of f implies that v ∈ (ū, 1]. Thus, u( t, x-) ∈ [w R , 1].
We know that genuine characteristics do not cross over (0, +∞) × (0, L). Therefore, given t, the set of x for which we are in first case, second case or third case are connected and they form a partition of [0, L]. From a geometrical viewpoint it is obvious that from the left to the right we have points from the first case, points from the second case and points from the last case. At this point we have indeed constructed two functions β 1 and β 2 such that β 1 ≤ β 2 and ( 14), ( 15) and ( 16) hold for x -. Using that u( t, x+ ) = lim →0 + u( t, (x + ) -) and applying ( 14), ( 15) and ( 16) for x -to the right hand of the latter equality, we deduce that ( 14), ( 15) and ( 16) also hold for x + . An illustration of the proof is given in Figure 7.

2 Proposition 4.3 There exists T 2 > 0 (independent of the initial data u 0 ) and a Lipschitz function

β : [T 2 , +∞] → [0, L] satisfying, for any ( t, x) ∈ [T 2 , +∞) × (0, L), 0 < x < β( t) =⇒ u( t, x± ) ∈ [0, ǔf(ū)-) β( t) < x < L =⇒ u( t, x± ) ∈ [w R , 1] (18) x t 0 L t ξ 0 (•) a × ( t, β1( t)) ξ 1 (•) × ( t, β2( t)) ξ 2 (•) b Figure 7: Construction of β 1 (•) and β 2 (•); the minimal backward generalized characteristic ξ 0 emanating from ( t, x) ∈ [T 1 , ∞) × (0, β 1 ( t)) touches the left boundary x = 0 at time t = a > 0. The minimal backward generalized characteristic ξ 1 emanating from ( t, x) ∈ [T 1 , ∞)×(β 1 ( t), β 2 ( t)) touches the initial boundary t = 0. The minimal backward generalized characteristic ξ 2 emanating from ( t, x) ∈ [T 1 , ∞) × (β 2 ( t), L) touches the right boundary x = L at time t = b > 0.
Proof. We assume that β 1 (T 1 ) < β 2 (T 1 ) and ( 8) holds at time t = T 1 . We now prove that β 1 (T 1 ) > 0 and β 2 (T 1 ) < L by contradiction. We assume that β 1 (T 1 ) = 0. From (15) and using that u(T

1 , 0+ ) = lim x→0 x>0 u(T 1 , x -), we have f (u(T 1 , 0+ )) ≥ f (ū) - ε 2 .
Since (8) holds at time t = T 1 , we get

f (u(T 1 , 0+ )) ≤ f (ū) -.
This leads to a contradiction. Thus, we have β 1 (T 1 ) > 0. The same argument works for β 2 . From [4, 11.1.4 Theorem] and (T 1 , β 1 (T 1 )) ∈ (0, +∞)×(0, L), there exists a unique forward characteristics

γ 1 (•), issues from (T 1 , β 1 (T 1 )), defined on a certain interval [T 1 , c 1 ) where c 1 > T 1 is chosen such that for any t ∈ [T 1 , c 1 ), γ 1 (t) ∈ (0, L), γ 1 is a Lipschitz function over [T 1 , c 1
). We will now prove that β 1 = γ 1 . To that end, let us fix t ∈ (T 1 , c 1 ).

• Let x ∈ (0, γ 1 (t)). We denote by ξ -, the minimal backward characteristic emanating from (t, x), defined maximally on an interval [b, t]. By uniqueness of forward characteristics, we

have ∀s ∈ [max(T 1 , b), t], ξ -(s) < γ 1 (s).
We have two alternatives.

-

If b > T 1 , we have ξ -(b) = 0 and b > 0. Thus, by definition of β 1 , x < β 1 (t). -If b ≤ T 1 , then ξ -(T 1 ) < γ 1 (T 1 ) = β 1 (T 1 )
. Therefore, by definition of β 1 , ξ -is the minimal backward characteristic emanating from (T 1 , ξ -(T 1 )), defined maximally on an interval [b, T 1 ] and ξ -(b) = 0 with b > 0.

We conclude that, for any x ∈ (0, γ 1 (t)), x < β 1 (t). Thus, we have

γ 1 (t) ≤ β 1 (t). ( 19 
)
• Let x ∈ (γ 1 (t), L). We denote by ξ -, the minimal backward characteristic emanating from (t, x), defined maximally on an interval [b, t]. By uniqueness of forward characteristics, we have ∀s ∈

[max(T 1 , b), t], γ 1 (s) < ξ -(s).
We have two alternatives.

-

If b > T 1 , we have ξ -(b) = L and b > 0. Thus, by definition of β 1 and β 2 , β 1 (t) ≤ β 2 (t) < x.
-

If b ≤ T 1 , then γ 1 (T 1 ) = β 1 (T 1 ) < ξ -(T 1 )
. Then, by definition of β 1 and β 2 , ξ -is the minimal backward characteristic emanating from (T 1 , ξ -(T 1 )), defined maximally on an interval [b,

T 1 ] and either b = 0 or ξ -(b) = L with b > 0. For both cases, β 1 (t) < x.
We conclude that, for any x ∈ (γ 1 (t), L), β 1 (t) < x. Thus, we have

β 1 (t) ≤ γ 1 (t). ( 20 
)
From ( 19) and (20), we deduce that for any t ∈ [T 1 , c 1 ), β 1 (t) = γ 1 (t). The same argument works for β 2 . More precisely, β 2 coincides with the unique forward characteristic γ 2 , issues from (

T 1 , β 2 (T 1 )), defined on a certain interval [T 1 , c 2 ) where c 2 > T 1 is chosen such that for any t ∈ [T 1 , c 2 ), γ 2 (t) ∈ (0, L). As a consequence, β 1 and β 2 are two Lipschitz functions over (T 1 , min(c 1 , c 2 )) and for a.e t ∈ (T 1 , min(c 1 , c 2 )), βi (t) = f (u(t, β i (t) -)) -f (u(t, β i (t) + )) u(t, β i (t) -) -u(t, β i (t) + ) , i ∈ {1, 2}. (21) 
From Lemma 4.1, β 1 (T 1 ) < β 2 (T 1 ), ( 21) and the concavity of f , we deduce that, for a.e t ∈ (T

1 , min(c 1 , c 2 )) β1 (t) ≥ (f (ū) -) -(f (ū) -2 ) ǔf(ū)--ûf(ū)-2 := d 1 > 0, ( 22 
) β2 (t) ≤ (f (ū) -) -(f (ū) -2 ) ûf(ū)--ǔf(ū)-2 := d 2 < 0, (23) 
and there exists T ∈ (T 1 , min(c 1 , c 2 )) such that for any t ∈ [T 1 , T ), 0 < β 1 (t) < β 2 (t) < L and β 1 (T ) = β 2 (T ). Moreover, we have

d 1 (T -T 1 ) ≤ β 1 (T ) = β 2 (T ) ≤ L + d 2 (T -T 1 ).
This implies that T ≤ T 2 := L + T1 d1+d2 and for any t ≥ [T, min(c 1 , c 2 )),

β(t) := β 1 (t) = β 2 (t).
By definition of β 1 and β 2 , (18) holds over [T, min(c 1 , c 2 )). As a consequence, we have for a.e t ∈ [T, min(c 1 , c 2 )) -If c = +∞, then β is a Lipschitz function over [T 2 , c) with Lipschitz constant denoted by K and β(t) = 0 for any t ≥ c. Thus, β is continuous over [T 2 , +∞). Moreover, for any 

-f (ū) + 1 -ǔf(ū)- ≤ β(t) = f (u(t, β(t) -)) -f (u(t, β(t) + )) u(t, β(t) -) -u(t, β(t) + ) ≤ f (w R ) w R . ( 24 
t 1 ∈ [T 2 , c) and t 2 ∈ [c, ∞) we have |β(t 1 ) -β(t 2 )| ≤ |β(t 1 ) -β(t n )| + |β(t n ) -β(c)| + |β(c) -β(t 2 )| ≤ K|t 1 -t n | + |β(t n ) -β(c)| (25 
|β(t 1 ) -β(t 2 )| ≤ |β(t 1 ) -β(t n )| + |β(t n ) -β(c)| + |β(c) -β(t 2 )| ≤ K|t 1 -t n | + |β(t n ) -β(c)| (26) 
β(t) = γ 1 (t) ∈ (0, L). So β is a Lipschitz func- tion over [T 1 , +∞) 2 Proposition 4.4 Let t ≥ T 2 such that (8) holds at time t = t β( t) > 0 =⇒ f (u( t, 0 + )) = F 1 ( t, u) and u( t, 0 + ) ≤ ū (27) β( t) < L =⇒ f (u( t, L -)) = F 2 ( t, u) and u( t, L -) ≥ ū (28)
Proof. Let t ≥ T 2 such that (8) holds at time t = t and β( t) > 0. From (18), u( t, 0 

+ ) = lim x→0 x>0 u( t, x + ) ∈ [0, ǔf(ū)-]. Let us fix x ∈ (-∞, 0). From
(ξ -(0) + ) ≤ u( t, x-) ≤ u 0 (ξ -(0) -). By definition of u 0 in (9), we have u 0 (ξ -(0) + ) = u 0 (ξ -(0) -) = 1. Then, we deduce that u( t, x-) = 1.
Case 2: a > 0 or (a = 0 and ξ -(0) = 0). Since ξ -is a straight line, ξ -( t) = x < 0 and ξ -(a) = 0, we have for any t ∈ [a, t], ξ-(t) = f (v) < 0. By concavity of f , we deduce that u( t, x-) ∈ (ū, 1].

Thus, for any x ∈ (-∞, 0), u( t, x-)

∈ (ū, 1]. As a consequence, u( t, 0 -) = lim x<0 x→0 u( t, x-) ∈ [ū, 1]
and u( t, 0 + ) ∈ [0, ǔf(ū)-) with ǔf(ū)-< ū. Since (8) holds at time t = t, we conclude that

((γ l 0 u)( t), (γ r 0 u)( t)) ∈ G 1 (F 1 ), with (γ l 0 u)( t) = u( t, 0 -) and (γ r 0 u)( t) = u( t, 0 +
) and G 1 defined in Definition 1.1. Thus, (27) holds. The same argument works for β(t) < L.

2

We will state some preliminary lemmas. Let (t, x) ∈ (0, +∞) × [0, L], we introduce τ -(t, x) ∈ (0, +∞) and τ + (t, x) ∈ (0, +∞) defined by

τ + (t, x) = x f (u(t, x -)) and τ -(t, x) = x -L f (u(t, x -)) (29) 
with u the G-entropy solution of (1).

Proposition 4.5 Let t ≥ T2 := T 2 + τ max with τ max = max -L f (w R ) , L f (ǔ f ( ū)-)
such that [START_REF] Rudin | Functional analysis[END_REF] holds at time t = t.

β( t) > 0 =⇒ ∀x ∈ (0, β( t)), f (u( t, x ± )) = F 1 ( t -τ + ( t, x), u) and u( t, x ± ) ∈ [0, ū), (30) 
β( t) < L =⇒ ∀x ∈ (β( t), L), u( t, x ± ) = w R . (31) 
Proof. Let t ≥ T2 := T 2 +τ max with

τ max = max -L f (w R ) , L f (ǔ f ( ū)-
) such that (8) holds at time t = t and x ∈ (0, β( t)). From the point 1. of Definition 1.2, [4, Theorem 11.1.3] and the definition of β, there exists a minimal backward generalized characteristic, denoted by ξ -, associated to u emanating from ( t, x) defined on an interval [a, t] with a > 0 and ξ -(a) = 0 such that for any t ∈ (a, t)

u(t, ξ -(t) -) = u( t, x -) = u(t, ξ -(t) + ). (32) 
In particular, ξ -is a genuine characteristic (also called shock-free, see [4, Definition 10.2.4]). From Proposition B.1 with ξ = ξ -, a = a and b = t, there exists a constant v ∈ [0, 1] such that, for

any t ∈ [a, t], ξ-(t) = f (v) > 0 and, for any t ∈ (a, t), u(t, ξ -(t) -) = v and f (v) ≤ f (ū) -ε. In particular, we have a = t -τ + ( t, x) = t - x f (u( t,x -)) ≥ T2 - L f (ǔ f ( ū)-) ≥ T 2 .
From (32), we deduce that for any t ∈ (a, t]

u(t, ξ -(t) -) = v and f (v) ≤ f (ū) -ε.
• We assume that there exists a time t 0 ∈ (a, t) such that ξ -(t 0 ) = β(t 0 ) ∈ (0, L). Then ξ -interacts with any maximal backward generalized characteristic emanating from (t, β(t)) with t ∈ (t 0 , t). This leads to a contradiction since from [4, 1.1.2 Corollary], two genuine characteristics cannot interact. Thus, we have for any t ∈ (a, t],

ξ -(t) < β(t). (33) 
• We assume that β(a) = ξ -(a) (see Figure 8). Since β(a) = 0, from Proposition 4.3, for any y ∈ (0, L), u(a, y

± ) ∈ [w R , 1]. ( 34 
) Let δ > 0 such that x + δ ∈ (0, β( t)). From Lemma A.1 with γ 1 (•) = ξ -(•), γ 2 (•) = ξ -(•) + δ, t 1 = a et t 2 = t, we have δ 0 u(a, z)dz + t a (f (v) -f (v)v)dt = x+δ x u( t, z)dz + t a (f (u(t, (ξ -(t) + δ) -)) -ξ-(t)u(t, (ξ(t) + δ) -))dt (35) Using that t ∈ [a, t], ξ-(t) = f (v)
and the concavity of f , we deduce that

f (u(t, (ξ -(t) + δ) -)) -f (v) -f (v)(u(t, (ξ(t) + δ) -) -v) ≤ 0 (36)
From ( 35) and (36), we have

δ 0 u(a, z)dz ≤ x+δ x u( t, z)dz. ( 37 
)
Since for any z ∈ (x, x+δ),

0 < z < x+δ < β( t), from Proposition 4.3, u( t, z ± ) ∈ [0, ǔf(ū)-).
Therefore, together with (34), we have

x+δ x u( t, z)dz < δ ǔf(ū)-≤ δw R ≤ δ 0 u(a, z)dz
This leads to a contradiction using (37). Thus, we have 

ξ -(a) < β(a). ( 38 
) x t 0 L a -δ f (v) a t x x + δ β( t) ξ-(•) β(•)
t ∈ [a, t], ξ-(t) = f (v) and, for any t ∈ (a, t], u(t, ξ -(t) -) = v and f (v) ≤ f (ū) -ε with v ∈ [0, 1].
Using that for any t ∈ [a, t], ξ -(t) < β(t), ξ -(a) = 0 and β is a Lipschitz function (see Proposition 4.3), there exists δ > 0 such that for any t ∈ [a -δ, a + δ], β(t) > 0. Therefore, from Proposition 4.4, we have for a.e t ∈ [a -δ, a + δ],

f (u(t, 0 + )) = F 1 (t, u) and u(t, 0 + ) ≤ ū From Proposition B.1 with ξ = ξ -, a = a, b = t, c = a -δ, d = a + δ, g = min t∈[a-δ,a+ δ] F 1 (t, u)
and G = max t∈[a-δ,a+ δ] F 1 (t, u), we deduce that for any t ∈ (b, t),

min t∈[a-δ,a+ δ] F 1 (t, u) ≤ f (u( t, x -)) ≤ max t∈[a-δ,a+ δ] F 1 (t, u). (39) 
Note that the minimum and the maximum of F 1 (t, u) makes sense since using (5), t → F 1 (t, u) is a continuous function and [a -δ, a + δ] is a compact set. Passing to the limit in (39) as δ → 0, we conclude that

f (u( t, x -)) = F 1 (a, u) with a = t -τ + ( t, x). (40) 
Using that u( t, x + ) = lim →0 + u( t, (x + ) -), we deduce that (40) also hold for x + .

Let t ≥ T2 := T 2 + τ max with

τ max = max -L f (w R ) , L f (ǔ f ( ū)-)
such that (8) holds at time t = t and x ∈ (β( t), L). From the point 1. of Definition 1.2, [4, Theorem 11.1.3] and the definition of β, there exists a minimal backward generalized characteristic, denoted by ξ -, associated to u emanating from ( t, x) defined on an interval [a, t] with a > 0 and ξ -(a) = L such that for any t ∈ (a, t), (32) holds. In particular, ξ -is a genuine characteristic (also called shock-free, see [4, Definition 10.2.4]). From Proposition B.1 with ξ = ξ -, a = a and b = t, there exists a constant v ∈ [0, 1] such that, for any t ∈ [a, t], ξ-(t) = f (v) < 0 and, for any t ∈ (a, t), u(t, ξ

-(t) -) = v and f (v) ≤ f (w R ). In particular, we have a = t -τ -( t, x) = t - x-L f (u( t,x -)) ≥ T2 -L f (w R ) ≥ T 2 .
From (32), we deduce that for any t ∈ (a, t]

u(t, ξ -(t) -) = v and f (v) ≤ f (w R ).
• We assume that there exists a time t 0 ∈ (a, t) such that ξ -(t 0 ) = β(t 0 ) ∈ (0, L). Then ξ -interacts with any maximal backward generalized characteristic emanating from (t, β(t)) with t ∈ (t 0 , t). This leads to a contradiction since from [4, 1.1.2 Corollary], two genuine characteristics cannot interact. Thus, we have for any t ∈ (a, t],

β(t) < ξ -(t). (41) 
• We assume that β(a) = ξ -(a). Since β(a) = L, from Proposition 4.3, for any y ∈ (0, L),

u(a, y ± ) ∈ [0, ǔf(ū)-). ( 42 
) Let δ > 0 such that x -δ ∈ (β( t), L). From Lemma A.1 with γ 1 (•) = ξ -(•) -δ, γ 2 (•) = ξ -(•), t 1 = t et t 2 = a, we have L L-δ u(a, x)dx + t a (f (u(t, (ξ -(t) -δ) + )) -ξ-(t)u(t, (ξ(t) -δ) -))dt = x x-δ u( t, x)dx + t a (f (v) -f (v)v)dt (43) 
Using that t ∈ [a, t], ξ-(t) = f (v) and the concavity of f , we deduce that

f (u(t, (ξ -(t) -δ) + )) -f (v) -f (v)(u(t, (ξ(t) -δ) -) -v) ≤ 0 (44)
From ( 43) and (44), we have

x x-δ u( t, x)dx ≤ L L-δ u(a, x)dx. (45) 
Since, for any z ∈

(x -δ, x), β( t) < x -δ < z < L, from Proposition 4.3, u( t, z ± ) ∈ [w R , 1].
Therefore, together with (42), we have

L L-δ u(a, x)dx ≤ δ ǔf(ū)-< δw R ≤ x x-δ u( t, x)dx
This leads to a contradiction using (45). Thus, we have

β(a) < ξ -(a). ( 46 
)
Using that for any t ∈ [a, t], β(t) < ξ -(t), ξ -(a) = L and β is a Lipschitz function (see Proposition 4.3), there exists δ > 0 such that for any t ∈ [aδ, a + δ], β(t) < L. Therefore, from Proposition 4.4, we have for a.e t ∈ [aδ, a + δ],

f (u(t, L -)) = f (w R ) and ū < u(t, L -) From Proposition B.1 with ξ = ξ -, a = a, b = t, c = a -δ, d = a + δ, g = f (w R ) = G, we deduce that for any t ∈ (b, t), u( t, x -) = w R with a = τ -( t, x) (47) 
Using that u( t, x + ) = lim →0 + u( t, (x + ) -), we deduce that (47) also hold for x + . 2 Lemma 4.2 For a.e t ≥ T2 := T 2 + 2τ max with

τ max = max -L f (w R ) , L f (ǔ f ( ū)-) .    ṁ(t) = 0 if β(t) = 0, ṁ(t) = F 1 (t, u) -F 2 (t, u) if 0 < β(t) < L, ṁ(t) ≥ F 1 (t, u) -F 2 (t, u) if β(t) = L, (48) 
where F 1 (t, u) and F 2 (t, u) are defined in [START_REF] Stanislav | First order quasilinear equations in several independent variables[END_REF].

Proof. From Lemma A.1 with γ 1 = 0, γ 2 = L, t 1 = 0 et t 2 = t and the definition of m in (6), we have for a.e t > 0,

ṁ(t) = f (u(t, 0 + )) -f (u(t, L -)), (49) 
where (49) in understood in the sense of Carathéodory solutions. More precisely, Caratheodory solutions are absolutely continuous curves that satisfy the integral version of the differential equation (49), that is,

m(t) = m(0) + t 0 (f (u(s, 0 + )) -f (u(s, L -))) ds.
Let us fix t ≥ T2 such that ( 8), ( 27), ( 28) and (49) hold. We have three alternatives.

Case 1: β( t) = 0. From Proposition 4.5, for any x ∈ (0, L), u( t,

x ± ) = w R . Using that u( t, 0 + ) = lim x→0 x>0 u( t, x + ) and u( t, L -) = lim x→0 x<L u( t,
x -), we conclude that u( t, 0 + ) = u( t, L -) = w R . Thus, from (49), for a.e t ≥ T2 such that β(t) = 0, we have ṁ(t) = 0.

Case 2: 0 < β( t) < L. From ( 27), ( 28) and (49), we have

ṁ( t) = F 1 ( t, u) -F 2 ( t, u).
Case 3 : β( t) = L. From ( 8) and ( 27), f (u( t, 0 + )) = F 1 ( t, u) and f (u( t, L -)) ≤ f (w R ) = F 2 ( t, u). Therefore, using (49),

ṁ(t) = f (u(t, 0 + )) -f (u(t, L -)) ≥ F 1 (t, u) -F 2 (t, u).
2 Lemma 4.3 We assume that there exist t 1 > 0 and t 2 > 0 such that T 2 + L f (ǔ f ( ū)-) < t 1 < t 2 and for any t ∈ [t 1 , t 2 ], β(t) = L. Then, we have Proof. We assume that t 2 ≥ L f (ǔ f ( ū)-) + t 1 . Let (x n ) n∈N be a sequence such that for any n ∈ N, x n ∈ (0, L) and

t 2 -t 1 < L f (ǔ f (ū)-) . x t 0 L a t 2 -δ f (v) a -δ f (v) t 2 ξ -(•) δ
x n → L as n → ∞. Since f ∈ C 2 ([0, 1]), we have lim n→∞ t 2 -τ + (t 2 , x n ) = lim n→∞ t 2 - x n f (u(t 2 , x - n )) = t 2 -τ + (t 2 , L). (50) 
From the point 1. of Definition 1.2, [4, Theorem 11.1.3] and the definition of β, there exists a minimal backward generalized characteristic, denoted by ξ n -, associated to u emanating from (t 2 , x n ) defined on an interval [a n , t 2 ] with a n := t

2 -τ + (t 2 , x n ) > 0 and ξ n -(a n ) = 0 such that for any t ∈ (a n , t 2 ) u(t, ξ n -(t) -) = u(t 2 , x - n ) = u(t, ξ n -(t) + ). (51) 
From [4, Section 10.2], (50) and ( 51), (ξ n -) n∈N converges to the minimal generalized characteristic ξ(•) emanating from (t 2 , L) defined on an interval [a, t 2 ] with a := t 2τ + (t 2 , L) > 0 and ξ -(a) = 0 such that, for any t ∈ (a, t 2 ],

u(t, ξ -(t) -) = u(t 2 , L -) = u(t, ξ -(t) + ). ( 52 
)
In particular, ξ -is a genuine characteristic (see [4, 

(t) -) = v and f (v) ≤ f (ū) -ε. In particular, we have a = t 2 -τ + ( t, L) = t 2 - L f (u(t 2 , L -)) > t 2 - L f (ǔ f (ū)-) ≥ t 1 . (53) 
From ( 52), we deduce that for any t ∈ (a, t 2 ]

u(t, ξ -(t) -) = v and f (v) ≤ f (ū) -ε. ( 54 
) Let us fix δ > 0 such that a -δ f (v) ≥ t 1 . From Lemma A.1 with γ 1 (•) = 0, γ 2 (•) = ξ -(•) + δ, t 1 = a -δ f (v)
and t 2 = a (see Figure 9), we have

a a-δ f (v) f (u(t, 0 + ))dt+0 = δ 0 u (a, x) dx+ a a-δ f (v) (f (u(t, (ξ -(t)+δ) -))-ξ-(t)u(t, (ξ -(t)+δ) -))dt
Using that f is concave and for any t ∈ [a,

t 2 ], ξ-(t) = f (v), we have for any t ∈ [a -δ f (v) , a] f (u(t, (ξ -(t) + δ) -)) -f (v) -f (v)(u(t, (ξ -(t) + δ) -) -v) ≤ 0.
Therefore, 9), we have that

a a-δ f (v) f (u(t, 0 + ))dt + 0 ≤ δ 0 u (a, x) dx + δ f (v) (f (v) -f (v)v) (55) From Lemma A.1 with γ 1 (•) = ξ -(•), γ 2 (•) = ξ -(•) + δ, t 1 = a and t 2 = t 2 -δ f (v) (see Figure
δ 0 u(a, x)dx + t2-δ f (v) a (f (v) -f (v)v)dt = L L-δ u(t 2 -δ f (v) , x)dx + t2-δ f (v) a (f (u(t, (ξ -(t) + δ) -)) -ξ-(t)u(t, (ξ -(t) + δ) -))dt
Using that f is concave and for any t ∈ [a, t 2 ], ξ-(t) = f (v), we have for any t ∈ [a,

t 2 -δ f (v) ] f (u(t, (ξ -(t) + δ) -)) -f (v) -f (v)(u(t, (ξ -(t) + δ) -) -v) ≤ 0.
Thus, we have

δ 0 u(a, x)dx ≤ L L-δ u t 2 - δ f (v) , x dx (56) From Lemma A.1 with γ 1 (•) = ξ -(•), γ 2 (•) = L, t 1 = t 2 -δ f (v)
and t 2 = t 2 (see Figure 9), we have

L L-δ u(t 2 - δ f (v) , x)dx + δ f (v) (f (v) -f (v)v) = t2 t2-δ f (v) f (u(t, L -))dt (57)
From ( 55), ( 56) and (57), we have

a a-δ f (v) f (u(t, 0 + ))dt ≤ t2 t2-δ f (v) f (u(t, L -))dt. ( 58 
)
Since [START_REF] Rudin | Functional analysis[END_REF] holds almost everywhere, we have for a.e t

∈ [t 1 , t 2 ] f (u(t, L -)) ≤ f (w R ). ( 59 
) From Lemma A.1 with γ 1 (•) = ξ -(•), γ 2 (•) = L, t 1 = a and t 2 = t 2 , we have L 0 u(a, x) dx + t2 a (f (v) -f (v)v) dt = 0 + t2 a f (u(t, L -)) dt (60)
From (59) and f (w R ) = f (w L ), we have

L 0 u(a, x) dx ≤ (t 2 -a)(f (w L ) -f (v) + f (v)v) ( 61 
)
Since f is a concave function, we have

f (w L ) -f (v) -f (v)(v -w L ) ≤ 0. ( 62 
)
From ( 29), a := t 2τ + (t 2 , L) ≥ t 1 > 0 and (54),

t 2 -a = L f (u(t 2 , L -)) = L f (v) . ( 63 
)
Combining ( 61) with ( 62) and ( 63), we deduce that

L 0 u(a, x) dx ≤ L f (v) f (v)w L = Lw L .
Therefore, together with ( 2) and ( 6), we have

m(a) = L 0 (u(a, x) -w(x))dx ≤ Lw L - L 0 w(x)dx < 0.
Using that m is a continuous function and (53), we deduce that there exists δ > 0 such that for any t ∈ [a -δ, a] ⊂ [t 

)) = F 1 (t, u) > f (w L ) (64) 
From ( 58) with δ = f (v) δ, (59) and (64), we deduce that

δf (w L ) < a a- δ f (u(t, 0+))dt ≤ t2 t2- δ f (u(t, L -))dt ≤ δf (w R )
This leads to a contradiction since f

(w L ) = f (w R ). 2 
Proposition 4.6 There exists T 4 > 0 (independent of the initial data u 0 ) such that for any t ≥ T 4 , β(t) ∈ (0, L) and

ṁ(t) = -g(m(t)) (65) Proof. Let us fix τ max = max -L f (w R ) , L f (ǔ f ( ū)-
) . We will prove that for a.e t > T2 + 2τ max , β(t) ∈ (0, L).

Case 1 : there exists t 0 ∈ [ T2 + τ max , T2 + 2τ max ] such that m(t 0 ) > 0. Using (5), Remark 1 and Lemma 4.2, for any t ≥ t 0 , m(t) ≥ 0. Since m(•) is a continuous function, without loss of generality, we can additionally assume that (8) holds at time t = t 0 . Moreover,

t -τ + (t, β(t)) = t - β(t)
f (u(t,β(t) -)) > t 0τ max ≥ T2 . We assume that β(t 0 ) = 0. From Proposition 4.5, for any x ∈ (0, L), u(t 0 , x ± ) = w R . In particular, we have f (u(t 0 , 0 + )) = f (w R ). Moreover, using ( 8), ( 5) and m(t 0 ) > 0, we have f (u(t 0 , 0 + )) ≤ F 1 (t 0 , u) < f (w L ). This leads to a contradiction since f (w R ) = f (w L ). Thus, we have

β(t 0 ) > 0.
Since β is a continuous function and β(t 0 ) > 0, there exists t b ∈ R ∪ {+∞} such that for any t ∈ [t 0 , t b ), β(t) ∈ (0, L) and β(t b ) ∈ {0, L}. From Proposition 4.5, for a.e t ∈ [t 0 , t b ), for any x ∈ (0, β(t)), f (u(t, x)) = F 1 (tτ + (t, x), u) and for any x ∈ (β(t), L), u(t, x ± ) = w R . In particular, we have for a.e t ∈ [t 0 , t b ),

f (u(t, β(t) -)) = F 1 (t -τ + (t, β(t)), u) and u(t, β(t) + ) = w R
Therefore, together with ( 5) and for any t ∈ [t 0 , t b ), m(t) ≥ 0, we have

u(t, β(t) -) ∈ [0, w L ] and u(t, β(t) + ) = w R (66)
From ( 24), (66), f (w L ) = f (w R ) and the concavity of f , we deduce that, for a.e t ∈ [t 0 , t b ),

β(t) = f (u(t, β(t) -)) -f (u(t, β(t) + )) u(t, β(t) -) -u(t, β(t) + ) ≥ 0. ( 67 
)
As a consequence, for any t ∈ [t 0 , t b ), β(t) ≥ β(t 0 ) > 0 and β(t b ) = 0. We now assume that β(t b ) = L. Since for a.e t ≥ t 0 (67) holds as soon as β(t) ∈ (0, L), we have for any t ≥ t b , β(t) = L. This leads to a contradiction using Lemma 4.3. We conclude that for any t ≥ T2 + 2τ max ≥ t 0 , β(t) ∈ (0, L).

Case 2 : for any t ∈ [ T2 + τ max , T2 + 2τ max ], m(t) ≤ 0. For a.e t ∈ [ T2 + τ max , T2 + 2τ max ] such that β(t) ∈ (0, L), we have

f (u(t, β(t) -)) = F 1 (t -τ + (t, β(t)), u) and u(t, β(t) + ) = w R .
Therefore, together with (5) and for any t ∈ [ T2 + τ max , T2 + 2τ max ], m(t) ≤ 0, we have

u(t, β(t) -) ∈ [w L , ǔf(ū)-] and u(t, β(t) + ) = w R . (68) 
From ( 24), (68), f (w L ) = f (w R ) and the concavity of f , we deduce that, for a.e t ∈ [ T2 + τ max , T2 + 2τ max ] such that β(t) ∈ (0, L),

β(t) = f (u(t, β(t) -)) -f (u(t, β(t) + )) u(t, β(t) -) -u(t, β(t) + ) ≤ 0. ( 69 
)
If β( T2 + τ max ) ∈ [0, L) then from (69), for any t ∈ [ T2 + τ max , T2 + 2τ max ], β(t) < L and so β( T2 + 2τ max ) < L. If β( T2 + τ max ) = L then from Lemma 4.3 and (69), β( T2 + 2τ max ) < L.

We conclude that

β( T2 + 2τ max ) < L. ( 70 
) Let δ = x0(w R -w L ) 2w R
, we assume that there exists t ∈ [ T2 +τ max , T2 +2τ max ] such that (8) holds at time t = t and β( t) ∈ [0, δ]. From Proposition 4.5, for any x ∈ (β( t), L), u(t, x ± ) = w R . Then, from (2), ( 6) and (68),

m( t) = L 0 u( t, x)dx -(L -x 0 )w R -x 0 w L ≥ (L -β( t))w R -(L -x 0 )w R -x 0 w L ≥ (L -δ)w R -(L -x 0 )w R -x 0 w L > 0 (71)
This leads to a contradiction since m( t) ≤ 0 and so β( t) > δ. Thus, using that β is a continuous function, for any t ∈ [ T2 + τ max , T2 + 2τ max ], we have β(t) ∈ [δ, L]. In particular,

β( T2 + 2τ max ) ≥ δ. (72) 
From ( 70) and (72), we have

δ ≤ β( T2 + 2τ max ) < L. (73) 
From (73) and using that β is a continuous function, there exists t b > T2 + 2τ max such that β(t b ) = 0 or β(L) = 0 and for any t

∈ [ T2 + 2τ max , t b ), β(t) ∈ (0, L) (by convention t b = +∞ if ∀t ≥ T2 + 2τ max , β(t) ∈ (0, L)). From Lemma 4.2, for a.e t ∈ ( T2 + 2τ max , t b ), ṁ(t) = F 1 (t, u) -f (w R ).
Therefore, together with (5), Remark 1 and the continuity of m, for any t ∈ ( T2 + 2τ max , t b ),

m(t) ≤ 0. (74) 
From Proposition 4.5, for a.e t ∈ [ T2 + 2τ max , t b ), for any x ∈ (0,

β(t)), f (u(t, x)) = F 1 (t - τ + (t, x), u) and for any x ∈ (β(t), L), u(t, x ± ) = w R .
In particular, we have for a.e t ∈ [ T2 + 2τ max , t b ),

f (u(t, β(t) -)) = F 1 (t -τ + (t, β(t)), u) and u(t, β(t) + ) = w R
Therefore, together with ( 5) and (74), we have

u(t, β(t) -) ∈ [w L , ǔf(ū)-) and u(t, β(t) + ) = w R (75) 
From ( 24), (75), f (w L ) = f (w R ) and the concavity of f , we deduce that, for a.e t ∈ [ T2 + 2τ max , t b ),

β(t) = f (u(t, β(t) -)) -f (u(t, β(t) + )) u(t, β(t) -) -u(t, β(t) + ) ≤ 0. ( 76 
)
As a consequence, together with (73), for any t ∈ [ T2 + 2τ max , t b ), β(t) ≤ β( T2 + 2τ max ) < L.

We assume that there exists t ∈ [ T2 + 2τ max , t b ] such that (8) holds at time t = t and

β( t) ∈ [0, δ] with δ = x0(w R -w L ) 2w R
. From Proposition 4.5, for any x ∈ (β( t), L), u(t, x ± ) = w R . Then, from (2), ( 6) and (75),

m( t) = L 0 u( t, x)dx -(L -x 0 )w R -x 0 w L ≥ (L -β( t))w R -(L -x 0 )w R -x 0 w L ≥ (L -δ)w R -(L -x 0 )w R -x 0 w L > 0 (77)
From (74), this leads to a contradiction and so β( t) > δ. Since β is continuous, for any t ∈ [ T2 + 2τ max , t b ), 0 < δ ≤ β(t). We deduce that for any t ≥ T2 + 2τ max ,

β(t) ∈ (0, L).
We conclude that for a.e t ≥ T 3 := T2 + 2τ max , β(t) ∈ (0, L). From Proposition 4.2, for a.e t ≥ T 3

:= T2 + 2τ max , ṁ(t) = F 1 (t, u) -F 2 (t, u). (78) 
Using that for any (t, x) ∈ R + × (0, L), u(t, x) ∈ [0, 1], ( 2) and ( 6), we have for any t ≥ 0,

-x 0 w L -(L -x 0 )w R ≤ m(t) ≤ L -x 0 w L -(L -x 0 )w R (79) 
From ( 5), Remark 4, g is a continuous function, (78) and ( 79), there exists a finite time T 4 > 0 such that for any

t ≥ T 4 , f (w L ) -g(m(t)) ∈ [0, f (ū) -]. (80) 
Thus, from ( 5) and (78), we deduce that for a.e t ≥ T 4 ,

ṁ(t) = -g(m(t)). 2 
Proof of Theorem 2.2. From Proposition 4.6, for a.e t ≥ T 4 ,

β(t) ∈ (0, L) and ṁ(t) = -g(m(t)), (81) 
with m(t) :

= L 0 (u(t, x) -w(x))dx. Therefore, from Remark 4, lim t→∞ m(t) = 0. (82) 
From (81) and Proposition 4.5, for a.e t ≥ T 4 ,

∀x ∈ (0, β(t)), f (u(t, x ± )) = F 1 (t -τ + (t, x), u) and u(t, x ± ) ∈ [0, ū) (83) 
and ∀x ∈ (β(t), L), u(t, x ± ) = w R .

Using that f ∈ C 2 ([0, 1]) is strictly concave and ū = argmax u∈[0,1] f (u), then f : [0, ū] → [0, f (ū)] is bijective and we denote by f -1 + its inverse function. Since for any x ∈ (0, ū), f (x) > 0 then, using the Inverse function theorem, f -1

+ ∈ C 2 ([0, f (ū)]
). From (80), ( 83) and (84), we have, for a.e t ≥ T 4 ,

m(t) + T 0 w(x)dx = T 0 u(t, x)dx = β(t) 0 f -1 + (f (w L ) -g(m(t -τ + (t, x)))) dx + L β(t) w R dx (85) 
From ( 29) and (83), for any

x ∈ [0, L], t - L f (ǔ f (ū)-) ≤ t -τ + (t, x) ≤ t. (86) 
We introduce two functions a(•) and b(•) defined by, for any t ≥ T 4 a(t) := min

s∈[t- L f ( ǔf ( ū)-) ,t]
g(m(s)) and b(t) := max

s∈[t- L f ( ǔf ( ū)-) ,t] g(m(s)). (87) 
From (85) and using that f -1 + is an increasing function,

m(t) + T 0 w(x)dx -Lw R f -1 + (f (w L ) -b(t))) -w R ≤ β(t) ≤ m(t) + T 0 w(x)dx -Lw R f -1 + (f (w L ) -a(t))) -w R (88)
We introduce two functions α a and α b defined by, for any t ≥ T 4 + τ max ,

α a (t) = f -1 + (f (w L ) -K 0 a(t))) -w L and α b (t) = f -1 + (f (w L ) -K 0 b(t))) -w L . (89) 
From ( 2), ( 86), ( 88) and (89), for any t ≥ T 4 ,

m(t) -α b (t) w L -w R + α b (t) ≤ β(t) -x 0 ≤ m(t) -α a (t) w L -w R + α a (t) (90) 
From ( 82), ( 87) and (88), we have,

lim t→∞ max(α a (t), α b (t)) = 0 (91) 
From ( 82), ( 90) and (91), we deduce that

lim t→∞ β(t) = x 0 . (92) 
For any t ≥ T 4 + τ max , 

u(t, •) -w(•) L 1 (0,L) = min(β(t),x0) 0 |u(t, x) -w(x)|dx + max(β(t),x0) min(β(t),x0) |u(t, x) -w(x)|dx + L max(β(t),x0) |u(t, x) -w(x)|dx
|u(t, x) -w(x)|dx = L max(β(t),x0) |w R -w R |dx = 0, We have max(β(t),x0) min(β(t),x0) |u(t, x) -w(x)|dx ≤ (max(β(t), x 0 ) -min(β(t), x 0 )), ≤ |β(t) -x 0 |.
β(t) ∈ (0, L) and f (w L ) -g(m(t)) ∈ [0, f (ū) -] and ṁ(t) = -K 0 m(t), (94) 
with m(t) := L 0 (u(t, x)w(x))dx and

T 4 := max L -x 0 w L -(L -x 0 )w R -f (w L ) K0 f (w L ) , -x 0 w L -(L -x 0 )w R + f (w L )-f (ū)+ K0 f (ū) --f (w L ) + T 3 .
Therefore, for any T ≥ T 4 m(t) = m(T 4 )e -K0(t-T4) .

From (94) and Proposition 4.5, for a.e t ≥ T 4 ,

∀x ∈ (0, β(t)), f (u(t, x ± )) = F 1 (t -τ + (t, x), u) and u(t, x ± ) ∈ [0, ū) (96) 
and ∀x ∈ (β(t), L), u(t, x ± ) = w R .

Using that f ∈ C 2 ([0, 1]) is strictly concave and ū = argmax u∈[0,1] f (u), then f : [0, ū] → [0, f (ū)] is bijective and we denote by f -1 + its inverse function. Since for any x ∈ (0, ū), f (x) > 0 then, using the Inverse function theorem, f -1

+ ∈ C 2 ([0, f (ū)]
). From ( 96) and (97), we have, for a.e t ≥ T 4 ,

m(t) + T 0 w(x)dx = T 0 u(t, x)dx = β(t) 0 f -1 + (f (w L ) -K 0 m(t -τ + (t, x))) dx + L β(t) w R dx (98) 
From ( 29) and (96), for any

x ∈ [0, L], t - L f (ǔ f (ū)-) ≤ t -τ + (t, x) ≤ t. (99) 
We introduce two functions a(•) and b(•) defined by, for any t ≥ T 4 a(t) = min

s∈[t- L f ( ǔf ( ū)-) ,t] m(s) and b(t) = max s∈[t- L f ( ǔf ( ū)-) ,t] m(s). (100) 
From (98) and using that f -1 + is an increasing function,

m(t) + T 0 w(x)dx -Lw R f -1 + (f (w L ) -K 0 b(t))) -w R ≤ β(t) ≤ m(t) + T 0 w(x)dx -Lw R f -1 + (f (w L ) -K 0 a(t))) -w R (101)
We introduce two functions α a and α b defined by, for any t ≥ T 4 + τ max ,

α a (t) = f -1 + (f (w L ) -K 0 a(t))) -w L and α b (t) = f -1 + (f (w L ) -K 0 b(t))) -w L . (102) 
From ( 2), (99), ( 101) and (102), for any t ≥ T 4 ,

m(t) -α b (t) w L -w R + α b (t) ≤ β(t) -x 0 ≤ m(t) -α a (t) w L -w R + α a (t) (103) 
From ( 95), (100) and (101), we have, for any

t ≥ T 4 + τ max , max(|α a (t)|, |α b (t)|)| ≤ max x∈[0,L] [(f -1 ) (x)]K 0 |m(T 4 )|e -K0 t- L f ( ǔf ( ū)-) -T4 (104) 
From ( 103) and (104), we deduce that there exists C > 0 such that, for any t ≥ T 4 + τ max , 

|β(t) -x 0 | ≤ Ce -K0(
|u(t, x) -w(x)|dx = min(β(t),x0) 0 |F 1 (t -τ + (t, x)) -w L |dx, = min(β(t),x0) 0 |f -1 + (f (w L ) -K 0 m(t -τ + (t, x))) -w L |, ≤ min(β(t), x 0 ) max(|α a (t)|, |α b (t)|), ≤ x 0 max x∈[0,L] [(f -1 ) (x)]K 0 |m(T 4 )|e -K0 t- L f ( ǔf ( ū)-) -T4
, and

L max(β(t),x0) |u(t, x) -w(x)|dx = L max(β(t),x0) |w R -w R |dx = 0,
and from (105), there exists C > 0 such that

max(β(t),x0) min(β(t),x0) |u(t, x) -w(x)|dx ≤ (max(β(t), x 0 ) -min(β(t), x 0 )), ≤ |β(t) -x 0 |, ≤ Ce -K0(t-τmax-T4) |m(T 4 )|.
Therefore, together with (95) at time t = T 5 := T 4 + τ max , there exists C > 0 such that for any

t ≥ T 5 , u(t, •) -w(•) L 1 (0,L) ≤ Ce -K0(t-T5) u(T 5 , •) -w(•) L 1 (0,L) . (106) 
Adapting the proof of [1, Proposition 2.10] and using (5),

L 0 |u(T 5 , x) -w(x)|dx ≤ 2 T5 0 |f (ū) --f (w L )|dt + R |u 0 (x) -w(x)|dx (107) 
From ( 106) and (107), there exists C > 0 such that for any t ≥ 0,

u(t, •) -w(•) L 1 (0,L) ≤ Ce -K0t u 0 (•) -w(•) L 1 (0,L) + C .
Proof of Corollary 2.2. From Proposition 4.6, for a.e t ≥ T 4 ,

β(t) ∈ (0, L) and f (w L ) -g(m(t)) ∈ [0, f (ū) -] and ṁ(t) = -g(m(t)), (108) 
with m(t) := 

∈ (0, β(t)), f (u(t, x ± )) = F 1 (t -τ + (t, x), u) and u(t, x ± ) ∈ [0, ū) (110) 
and

∀x ∈ (β(t), L), u(t, x ± ) = w R . (111) 
From ( 29) and (110), for any

x ∈ [0, L], t - L f (ǔ f (ū)-) ≤ t -τ + (t, x) ≤ t. (112) 
From ( 5), ( 109), ( 110), ( 111) and (112), for any t ≥ T 4 + τ max , ∀x ∈ (0, β(t)), u(t, x ± ) = w L and ∀x ∈ (β(t), L), u(t, x ± ) = w R and m(t) = 0.

Therefore, together with ( 2) and ( 6), for a.e x ∈ (0, L), we have u(t, x) = w(x).

A Conservation of mass

Lemma A.1 Let t 1 < t 2 and let (γ 1 , γ 2 ) ∈ C 0,1 ([t 1 , t 2 ]; [0, L]) 2 satisfy γ 1 (t) < γ 2 (t) for any t ∈ (t 1 , t 2 ). We have γ2(t1) γ1(t1) u(t 1 , x) dx + t2 t1 F (u(t, γ 1 (t) + )) dt = γ2(t2) γ1(t2) u(t 2 , x) dx + t2 t1 F (u(t, γ 2 (t) -)) dt (113)
with u the G-entropy solution of (1) and for every t ∈ R + , for every γ ∈ C 0,1 ([0, T ]; R), 

F (u(t, γ(t) ± )) = f (u(t, γ(t)±) -γ(t)u(t, γ(t) ± ).
g ≤ f (u(t, 0 + )) ≤ G and l ≤ f (u(t, L -)) ≤ L (114) 
where g, G, l, L are given constants. We consider ξ a genuine characteristic on an interval [a, b] such that ∀t ∈ (a, b], ξ(t) ∈ (0, L).

Then there exists a constant v ∈

[0, 1] such that, for any t ∈ [a, b], ξ(t) = f (v) and, for any t ∈ (a, b), u(t, ξ(t)) = v. Moreover, ξ(a) = 0 and a > 0 implies f (v) > 0 and g ≤ f (v) ≤ G if a ∈ (c, d), 0 ≤ f (v) ≤ f (ū) -ε otherwise, (115) 
a = 0 implies u(a, ξ(a)+) ≤ v ≤ u(a, ξ(a)-), (116) 
ξ(a) = L and a > 0 implies f (v) < 0 and l ≤ f (v) ≤ L if a ∈ (c, d), 0 ≤ f (v) ≤ f (w R ) otherwise. ( 117 
)
Remark 2 Note that if the inequality in (114) is strict then the inequalities in (115), ( 116) and (117) are also strict. For instance, if g ≤ f (u(t, 0 + )) < G then (115) is replaced by g ≤ f (v) < G.

Proof. From Definition 1.2, the unique G-entropy is a Kruzhkov entropy solution over R + ×(0, L). Thus, From [4, Theorem 10.2.3 and Theorem 11.1.1], there exists a constant v ∈ [0, 1] such that, for any t ∈ [a, b], ξ(t) = f (v) and, for any t ∈ (a, b), u(t, ξ(t)) = v. We have three different possibilities :

Case 1: ξ(a) = 0 and a > 0). We immediately have f (v) > 0. Let us fix δ > 0, from Lemma A.1 with t 1 = a, t 2 = a + δ f (v) , γ 1 (•) = 0 and γ 2 (•) = ξ(•) (see Figure 10a), we have

a+ δ f (v) a f (u(t, 0 + ))dt + 0 = δ 0 u a + δ f (v) , x dx + a+ δ f (v) a (f (v) -f (v)v)dt. ( 118 
)
From ( 8), for a.e t > 0, f (u(t, 0)) ≤ F 1 (t, u) ≤ f (u)ε. Thus, we have 10a), we have

δ 0 u a + δ f (v) , x dx + a+ δ f (v) a (f (v) -f (v)v)dt ≤ δ f (v) (f (ū) -). ( 119 
) Let c ∈ (a, b). From Lemma A.1 with t 1 = a + δ f (v) , t 2 = c, γ 1 (•) = ξ(•) -δ and γ 2 (•) = ξ(•) (see Figure
δ 0 u a + δ f (v) , x dx + c a+ δ f (v) (f (u(t, (ξ(t) -δ) + )) -ξ(t)u(t, (ξ(t) -δ) + ))dt = ξ(c) ξ(c)-δ u(c, x)dx + c a+ δ f (v) (f (v) -f (v)v)dt
Using that f is concave and for any

t ∈ [a, b], ξ(t) = f (v), we have for any t ∈ [a + δ f (v) , c] f (u(t, (ξ(t) -δ) + )) -f (v) -f (v)(u(t, (ξ(t) -δ) + ) -v) ≤ 0.
Thus, we have

δ 0 u a + δ f (v) , x dx ≥ ξ(c) ξ(c)-δ u(c, x)dx. (120) 
From ( 119) and (120),

ξ(c) ξ(c)-δ u(c, x)dx + δ f (v) (f (v) -f (v)v) ≤ δ f (v) (f (ū) -).
Dividing by δ and taking δ → 0 + and using that u(c, ξ(c)) = v, we deduce that

f (v) ≤ f (ū) -. If a ∈ (c, d) then we choose δ > 0 such that [a -δ f (v) , a + δ f (v) ] ∈ (c, d). From (114), we have for a.e t ∈ [a -δ f (v) , a + δ f (v) ], g ≤ f (u(t, 0 + )) ≤ G. Thus, using (118), we get δ 0 u a + δ f (v) , x dx + a+ δ f (v) a (f (v) -f (v)v)dt ≤ δ f (v) G.
Moreover, (120) holds. Thus, we deduce that

ξ(c) ξ(c)-δ u(c, x)dx + δ f (v) (f (v) -f (v)v) ≤ δ f (v) G.
Dividing by δ and taking δ → 0 + and using that u(c, ξ(c)) = v, we deduce that f (u(t, 0 + ))dt + 0

f (v) ≤ G. From Lemma A.1 with t 1 = a -δ f (v) , t 2 = a, γ 1 (•) = 0 and γ 2 (•) = ξ(•) + δ (see Figure 10b), we have a a-δ f (v) f (u(t, 0 + ))dt+0 = δ 0 u (a, x) dx+
≤ δ 0 u (a, x) dx + δ f (v) (f (v) -f (v)v).
From ( 114) and [a -δ f (v) , a + δ f (v) ] ∈ (c, d), we deduce that From ( 122) and (123),

δ f (v) g ≤ δ 0 u (a, x) dx + δ f (v) (f (v) -f (v)v). (122) 
δ f (v) g - δ f (v) (f (v) -f (v)v) ≤ ξ(c)-δ ξ(c) u(c, x)dx
Dividing by δ and taking δ → 0 + and using that u(c, ξ(c)) = v, we deduce that Case 3: ξ(a) = L and a > 0. We immediately have f (v) < 0. Let us fix δ > 0, from Lemma A.1 with t 1 = a, t 2 = a -δ f (v) , γ 1 (•) = ξ(•) and γ 2 (•) = L (see Figure 11a), we have

g ≤ f (v).
a-δ f (v) a (f (v) -f (v)v)dt + 0 = a-δ f (v) a f (u(t, L -))dt + L L-δ u a - δ f (v) , x dx. (124) 
From ( 8), for a.e t > 0, f (u(t, L)) ≤ F 2 (t, u) = f (w R ). Thus, we have Dividing by δ and taking δ → 0 + , using that u(c, ξ(c)) = v, we deduce that

f (v) ≤ f (w R ).
If a ∈ (c, d) then we choose δ > 0 such that [a + δ f (v) , a -δ f (v) ] ∈ (c, d). From (114), we have for a.e t ∈ [a + δ f (v) , a -δ f (v) ], l ≤ f (u(t, L -)) ≤ L. Thus, using (124), we get

a-δ f (v) a (f (v) -f (v)v)dt - L L-δ u a - δ f (v) , x dx ≤ -δ f (v) L.
Moreover, (126) holds. Thus, we deduce that

-δ f (v) (f (v) -f (v)v) - ξ(c)+δ ξ(c) u(c, x)dx ≤ -δ f (v) L.
Dividing by δ and taking δ → 0 + and using that u(c, ξ(c)) = v, we deduce that f (v) ≤ L.

From Lemma A.1 with t 1 = a + δ f (v) , t 2 = a, γ 1 (•) = ξ(•)δ and γ 2 (•) = L (see Figure 11b), we have Dividing by δ and taking δ → 0 + and using that u(c, ξ(c)) = v, we deduce that l ≤ f (v). 
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 1 sign(x) where K 0 > 0 is the gain of the controller. Any G-solution of the PDE (1) with the controller F 1 converges in finite time to the stationary solution w(•) (see Corollary 2.1).

Figure 1 :

 1 Figure 1: Plottings of the initial data v 0 (-), the target function w (--) and the Gsolution of (1) (-) over (0, 1) at time t = 20 with L = 1 and for any x ∈ R, g(x) = K 0 x with K 0 = 0.4.

Figure 2 :

 2 Figure 2: Plotting of the G-solution of (1) (-) over (-15, 20) at time t = 20 with L = 1 and for any x ∈ R, g(x) = K 0 x with K 0 = 0.4.

Figure 3 :

 3 Figure 3: Plotting of the saturated Pcontroller F 1 (•) with respect to time t.

Figure 4 :

 4 Figure 4: Plottings of the initial data v 0 (-), the target function w (--) and the G-solution of (1) (-) over (0, 1) at time t = 20 with L = 1 and for any x ∈ R, g(x) = K 0 |x| 1 2 sign(x) with K 0 = 0.4.

Figure 5 :

 5 Figure 5: Plotting of the G-solution of (1) (-) over (-15, 20) at time t = 20 with L = 1 and for any x ∈ R, g(x) = K 0 |x| 1 2 sign(x) with K 0 = 0.4.

Figure 6 :

 6 Figure 6: Plotting of the saturated SMCcontroller F 1 (•) with respect to time t.

  ) Thus, c := c 1 = c 2 and β is a Lipschitz function over [T, c). By definition of c 1 and c 2 , c is the first time when β(c) = 0 or β(c) = L (by convention, c = +∞ if β(t) ∈ (0, L) for any t ≥ T 2 ). • If c = +∞ then β is a Lipschitz function over [T 2 , +∞) and by definition of β 1 and β 2 , (18)holds over [T 2 , ∞).• If c < +∞ then β is a Lipschitz function over [T 2 , c) and there exists a final time c ≥ c such that for any t ∈ [c, c] either β(t) = L or β(t) = 0 (by convention c = +∞ if for any t ≥ c, either β(t) = L or β(t) = 0). If c = +∞, there exists c1 > 0 such that for any t ∈ (c, c1 ), β(t) ∈ (0, L) using the continuity of β. To simplify the proof, we only consider the case, for any t ∈ [c, c], β(t) = 0 (the same arguments work with the case β(t) = L).

Figure 8 :

 8 Figure 8: Case β(a) = ξ -(a) where ξ -is a minimal backward generalized characteristic associated to u emanating from ( t, x) defined on an interval [a, t] with a > 0 and ξ -(a) = 0. Moreover, for anyt ∈ [a, t], ξ-(t) = f (v) and, for any t ∈ (a, t], u(t, ξ -(t) -) = v and f (v) ≤ f (ū)ε with v ∈ [0, 1].

Figure 9 :

 9 Figure 9: Plotting of the minimal backward generalized characteristic ξ -, emanating from (t 2 , L), defined maximally over [a, t 2 ] with a > 0 and ξ -(a) = 0.

From ( 5 )

 5 , (86), (87), (91), we have for anyt ≥ T 4 + τ max , min(β(t),x0) 0 |u(t, x)w(x)|dx = min(β(t),x0) 0 |F 1 (tτ + (t, x))w L |dx, = min(β(t),x0) 0 |f -1 + (f (w L )g(m(tτ + (t, x))))w L |, ≤ min(β(t), x 0 ) max(|α a (t)|, |α b (t)|).Thus, from (91) and (92), lim t→∞ min(β(t),x0) 0 |u(t, x)w(x)|dx = 0. Moreover, L max(β(t),x0)

L0

  (u(t, x)w(x))dx. From Proposition [6, Proposition 1], there exists a time T 5 := T 4 + 1 0 dy g(y) such that for any t ≥ T 5 , m(t) = 0. (109) From (108) and Proposition 4.5, for a.e t ≥ T 4 , ∀x

Proof. 2 B

 2 It directly follows from the point 1. of Definition 1.2 and [7, Lemma 1]. Notion of generalized backward characteristics with Gentropy boundary conditions Proposition B.1 Let u be the unique G-entropy solution of (1) and we assume that there exist c, d > 0 such that c < d and for a.e t ∈ [c, d]

  (f (u(t, (ξ(t)+δ) -))-ξ(t)u(t, (ξ(t)+δ) -))dt (121) Using that f is concave and for any t∈ [a, b], ξ(t) = f (v), we have for any t ∈ [a -δ f (v) , a] f (u(t, (ξ(t) + δ) -))f (v)f (v)(u(t, (ξ(t) + δ) -)v)

  Let c ∈ (a, b). From Lemma A.1 witht 1 = a, t 2 = c, γ 1 (•) = ξ(•) and γ 2 (•) = ξ(•) + δ, we have δ 0 u(a, x)dx + c a (f (v)f (v)v)dt = ξ(c)+δ ξ(c) u(c, x)dx + c a (f (u(t, (ξ(t) + δ) -)) -ξ(t)u(t, (ξ(t) + δ) -))dtUsing that f is concave and for any t ∈ [a, b] ξ(t) = f (v), we have for any t ∈ [a, c] f (u(t, (ξ(t) + δ) -))f (v)f (v)(u(t, (ξ(t) + δ) -)v)

Case 2 :Figure 10 :

 210 Figure 10: Plotting of a genuine characteristic ξ on an interval [a, b] with a < b such that ξ(a) = 0 with a > 0 and ξ(t) = f (v) > 0 with v ∈ [0, ǔf(ū)-].

  c ∈ (a, b). Using Lemma A.1 witht 1 = a -δ f (v) , t 2 = c, γ 1 (•) = ξ(•) and γ 2 (•) = ξ(•) + δ (see Figure11a), we deduce thatc a-δ f (v) (f (v)f (v)v)dt + L L-δ u(a -δ f (v) , x)dx = ξ(c)+δ ξ(c) u(c, x)dx + c a-δ f (v) (f (u(t, (ξ(t) + δ) -)) -ξ(t)u(t, (ξ(t) + δ) -))dt.Using that f is concave and for any t∈ [a -δ f (v) , c], ξ(t) = f (v), we have for any t ∈ [a -δ f (v) , c] f (u(t, (ξ(t) + δ) -))f (v)f (v)(u(t, (ξ(t) + δ) -)v) v)f (v)v) -ξ(c)+δ ξ(c) u(c, x)dx ≤ -δ f (v) f (w R ).

ff

  (f (u(t, (ξ(t)-δ) + ))-ξ(t)u(t, (ξ(t)-δ) + ))dt = (u(t, L -))dt.(127) Using that f is concave and for anyt ∈ [a, b], ξ(t) = f (v), we have for any t ∈ [a + δ f (v) , a] f (u(t, (ξ(t)δ) + ))f (v)f (v)(u(t, (ξ(t)δ) + )v) (u(t, L -))dt ≤ -δ f (v) (f (v)f (v)v) -L L-δ u (a, x) dx. From (114) and [a + δ f (v) , a -δ f (v) ] ∈ (c, d), we deduce that δ f (v) l ≤ -δ f (v) (f (v)f (v)v) -L L-δ u (a, x) dx. (128) Let c ∈ (a, b). From Lemma A.1 with t 1 = a, t 2 = c, γ 1 (•) = ξ(•)δ and γ 2 (•) = ξ(•), we have L L-δ u(a, x)dx + c a (f (u(t, (ξ(t)δ) + )) -ξ(t)u(t, (ξ(t)δ) + ))dt = ξ(c) ξ(c)-δ u(c, x)dx + c a (f (v)f (v)v)dt. Using that f is concave and for any t ∈ [a, b] ξ(t) = f (v), we have for any t ∈ [a, c] f (u(t, (ξ(t)δ) + ))f (v)f (v)(u(t, (ξ(t)δ) + )v) ≤ 0.Thus, we have ξ(c)-δ ξ(c) u(c, x)dx ≤ L L-δ u(a, x)dx.
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 11 Figure 11: Plotting of a genuine characteristic ξ on an interval [a, b] with a < b such that ξ(a) = L with a > 0 and ξ(t) = f (v) < 0 with v ∈ [w R , 1].

  ) where (t n ) n∈N a sequence such that for any n ∈ N, t n < c and lim n→∞ t n = c. Passing to the limit as n tends to +∞ in (25), we deduce that β is a Lipschitz function over [T 2 , +∞). By definition of β 1 and β 2 , (18) holds over [T 2 , +∞).

-If c < +∞, then as in the case c = +∞, β is a Lipschitz function over [T 2 , c] and by definition of β 1 and β 2 , (18) holds over [T 2 , c]. Moreover, for any t ∈ (c, c1 ), β coincides with the unique forward characteristic γ, issues from ( t, β( t)), defined on [ t, c1 ). Thus, for any t ∈ (c, c1 ), β is a Lipschitz function over [ t, c1 ] with Lipschitz constant denoted by K. By definition of β 1 and β 2 , (18) holds over [ t, c1 ). As a consequence, β is continuous over [T 2 , c1 ). Let the sequence (t n ) n∈N be defined by t n = t + 1 n for any n ∈ N. For any t 1 ∈ [c, c) and t 2 ∈ (c, c1 ), we have

  Proof of Corollary 2.1. From Proposition 4.6, for a.e t ≥ T 4 ,

	4.3 Proofs of Corollary 2.1 and Corollary 2.2
	Thus, from (92),		
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