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Introduction

The aim of this article is to construct and study co-adapted couplings of Brownian motion on SU [START_REF] Albeverio | Lévy processes and their subordination in matrix Lie groups[END_REF] and SL(2, R), in particular co-adapted successful couplings. We first remind some of the main notions, beginning with the definition of coupling. Let us consider µ and ν two probability laws on M. We call coupling of µ and ν any measure π on M × M such that µ is its first marginal distribution and ν its second one. In particular, by coupling two diffusion processes (X t ) t and (X ′ t ) t we study the joint law of (X t , X ′ t ) t . We interest ourselves in successful couplings, that is couplings for which the processes meet at an almost surely finite time. Here we will reduce our study to co-adapted couplings, that is couplings such that the future of the processes only depends on their common past. Note that this notion generalises the notion of Markovian coupling for which the process (X t , X ′ t ) t is Markovian. In the next subsection, we give an overview of the state of the art and the motivations for this work, in a second subsection we summarise our main results and in the last subsection we describe the overall structure of the article.

Motivations

The notion of coupling has been quite developed these last decades, first for Markov chains, then for Markov processes (see [START_REF] Lindvall | Lectures on the coupling method[END_REF] for a general introduction). The coupling of Brownian motions has been studied on R n [START_REF] Kendall | Coupling time distribution asymptotics for some couplings of the Lévy stochastic area[END_REF] and also on Riemannian manifolds (see [START_REF] Mihai | Couplings of Brownian motions of deterministic distance in model spaces of constant curvature[END_REF]). Aside from providing a better understanding of the geometric space, couplings can lead to some analysis results involving harmonic functions and the heat semi-group just like Harnack, Poincaré or Sobolev inequalities (see [START_REF] Kuwada | Duality on gradient estimates and Wasserstein controls[END_REF][START_REF] Wang | Analysis for diffusion processes on Riemannian manifolds[END_REF][START_REF] Cranston | Gradient estimates on manifolds using coupling[END_REF] for some examples). Some can be obtained via the obtention of Wasserstein distance inequalities, others using successful couplings. In the previous citations, the studied diffusions are elliptic. The case of hypoelliptic diffusions is an actual field of research: as an example, kinetic Langevin diffusion has been studied in [START_REF] Eberle | Couplings and quantitative contraction rates for Langevin dynamics[END_REF], Kolmogorov type diffusions in [START_REF] Ben Arous | Coupling constructions for hypoelliptic diffusions: two examples[END_REF][START_REF] Baudoin | Gradient bounds for Kolmogorov type diffusions[END_REF], Brownian motions on the Heisenberg group can be found in [START_REF] Ben Arous | Coupling constructions for hypoelliptic diffusions: two examples[END_REF][START_REF] Baudoin | Gradient bounds for Kolmogorov type diffusions[END_REF][START_REF] Kendall | Coupling time distribution asymptotics for some couplings of the Lévy stochastic area[END_REF][START_REF] Kendall | Brownian couplings, convexity, and shy-ness[END_REF][START_REF] Kendall | Coupling all the Lévy stochastic areas of multidimensional Brownian motion[END_REF][START_REF] Banerjee | Coupling in the Heisenberg group and its applications to gradient estimates[END_REF][START_REF] Bonnefont | Couplings in L p distance of two Brownian motions and their Lévy area[END_REF][START_REF] Banerjee | Coupling polynomial Stratonovich integrals: the two-dimensional Brownian case[END_REF]]. In the above examples, the diffusions are of the form (X t , z t ) with X t an elliptic diffusion that we call here "driving noise" and with z t = f ((X s ) s≤t ) for f a functional (for other examples of diffusion process of this form, see [START_REF] Baudoin | Stochastic areas, horizontal brownian motions, and hypoelliptic heat kernels[END_REF]). This structure changes the way to deal with the problem as one will in general construct a coupling (X t , X ′ t ) of the driving noises and see the effect on (z t , z ′ t ). We interest ourselves in Brownian motions on subRiemannian manifolds. The Brownian motion, in this case, is the diffusion induced by the hypoelliptic operator associated to the subRiemannian structure: the subLaplacian operator. As, in general, the natural subRiemannian distance lacks of smoothness, Itô formula can't be directly applied to compare the processes. When the subRiemannian manifold can be obtained from Sasakian contact manifold, one idea could be to deal with smooth Riemannian metrics converging to the subRiemannian metric as in [START_REF] Baudoin | Variations of the sub-riemannian distance on sasakian manifolds with applications to coupling[END_REF]. Another strategy has been used in the case of the Heisenberg group. In this case, X t is a two dimensional Brownian motion and z t is the Levy swept area which is, up to a constant the signed area swept by (X s ) s≤t and by the geodesics joining X 0 (resp. X t ) to the origin. Moreover the subRiemannian distance d cc satisfies:

d cc ((X t , z t ), (X ′ t , z ′ t )) ∼ R t + |A t | (1) 
with R t = ||X t -X ′ t || 2 , || • || 2 being the Euclidean norm on R 2 , and A t a signed swept area between the two driving noises. Thanks to this comparison, it is possible to evaluate the distance between the two processes. This is what is done in the above references. Our goal is to use this second strategy to deal with couplings in some other SubRiemannian manifolds. We look at the two model spaces SU [START_REF] Albeverio | Lévy processes and their subordination in matrix Lie groups[END_REF] and SL(2, R) that could play, together with the Heisenberg group, the role of "constant curvature subelliptic manifolds" in dimension 3 (note that the difficulty to obtain a consistent definition of the curvature for subelliptic manifold is a real problem that we will not develop here, see [START_REF] Bakry | Subelliptic Li-Yau estimates on three dimensional model spaces[END_REF][START_REF] Agrachev | Sub-Riemannian structures on 3D Lie groups[END_REF][START_REF] Falbel | Sub-Riemannian homogeneous spaces in dimensions 3 and 4[END_REF] for some notion of curvature on these model spaces). Baudoin and Bonnefont proved in [START_REF] Baudoin | The subelliptic heat kernel on SU(2): representations, asymptotics and gradient bounds[END_REF][START_REF] Bonnefont | The subelliptic heat kernels on SL(2, R) and on its universal covering SL(2, R): integral representations and some functional inequalities[END_REF][START_REF] Bonnefont | Functional inequalities for subelliptic heat kernels[END_REF] that the Brownian motion on SU(2) (resp. SL(2, R)) can be written on the form (X t , z t ) with X t a Brownian motion on the sphere S 2 (resp. on the hyperbolic plane H 2 ) induced by the Hopf fibration and z t a signed swept area. (Note that a different decomposition has been obtained in [START_REF] Albeverio | Lévy processes and their subordination in matrix Lie groups[END_REF] for SL(2, R) but for the elliptic Brownian motion.) As the structure is similar to the one in the Heisenberg group, it seems reasonable to try to generalise some of the existing coupling methods. More precisely we want to deal with the question of the existence of successful couplings on SU(2) and SL(2, R).

Successful couplings are defined such that the first meeting time (or "coupling time") τ := inf{t > 0|B t = B ′ t } of the Brownian motions is almost surely finite. These couplings do not always exist in Riemannian manifolds, for example there is no successful coupling in the hyperbolic space. One can look at [START_REF] Wang | Liouville theorem and coupling on negatively curved Riemannian manifolds[END_REF] for some criterion of existence of successful couplings in Riemannian manifold. A first motivation in constructing successful couplings is the study of the total variation distance between the laws of the Brownian motions:

d T V (L(B t ), L(B ′ t )) := sup A measurable {P(B t ∈ A) -P(B ′ t ∈ A)}.
We can obtain good estimates of this distance by studying the rate of convergence P(τ > t) of the coupling and by using Aldous inequality (also called Coupling inequality, see [START_REF] Asmussen | Applied probability and queues[END_REF], chapter VII). It says that for every coupling of Brownian motions (B s , B ′ s ) s and every t > 0:

P(τ > t) ≥ d T V (L(B t ), L(B ′ t )). (2) 
Note that couplings (not necessarily successful) that realise the equality in [START_REF] Albeverio | Lévy processes and their subordination in matrix Lie groups[END_REF], are called maximal couplings. If it has been proved that such couplings always exist in the case of continuous processes on Polish spaces, they can be very difficult to study (explicit construction, simulation, estimation of a coupling rate) as one will often need some knowledge of the future of one of the process. For a Riemannian manifold having a sort of "reflection structure" just as the Brownian motion on the plane or the sphere (see [START_REF] Kuwada | On uniqueness of maximal coupling for diffusion processes with a reflection[END_REF][START_REF] Hsu | Maximal coupling of Euclidean Brownian motions[END_REF]), this can be done using reflection coupling. In this specific case the coupling is co-adapted and even Markovian. More generally, the existence of Markovian maximal couplings of regular elliptic diffusions has been studied in [START_REF] Banerjee | Rigidity for Markovian maximal couplings of elliptic diffusions[END_REF], with the proof that this existence depends on the same rigidity properties of the Riemannian manifold as well as on strong conditions on the drift part of the the diffusion processes. In fact, Markovian maximal couplings are rare in Riemannian manifolds. On our model spaces, constructing successful coupling means that we need to "couple" at an almost surely finite time the driving noises X t and X ′ t but also the swept areas z t and z ′ t . In [START_REF] Kendall | Coupling all the Lévy stochastic areas of multidimensional Brownian motion[END_REF], Kendall constructed a successful co-adapted coupling on the Heisenberg group. In [START_REF] Banerjee | Coupling in the Heisenberg group and its applications to gradient estimates[END_REF], Banerjee, Gordina and Mariano proposed another coupling, successful but not co-adapted, leading to gradient estimates for harmonic functions just like Cheng-Yau inequality. Note that, using a different approach, this last inequality has been proved in [START_REF] Baudoin | On the Cheng-Yau gradient estimate for Carnot groups and sub-Riemannian manifolds[END_REF] for an enlarged class of subRiemannian manifolds. Comparing these two explicit successful couplings, it is interesting to remark that, if the driving noises start from the same point, the coupling rate of the non co-adapted coupling is better (P(τ > t) 1 t ) than for any co-adapted one (P(τ > t) 1 √ t ). In this present article we deal with the generalisation of Kendall's co-adapted coupling. Future works we will be dedicated to the generalisation of the coupling from Banerjee et all., proving that its coupling rate on SU(2) is exponentially decreasing. Note that other co-adapted successful couplings on the Heisenberg group can be found in [START_REF] Kendall | Coupling time distribution asymptotics for some couplings of the Lévy stochastic area[END_REF][START_REF] Banerjee | Coupling polynomial Stratonovich integrals: the two-dimensional Brownian case[END_REF]. We did not work on their generalisation for the moment.

Main results

In this subsection, we present our main results. We first express more formally the geometrical interpretation of the Brownian motions on the two model spaces SU(2) and SL(2, R). In the same way we have a natural submersion from the Heisenberg group H to the plane, in the case of SU(2), one can define a submersion Π 1 induced by the Hopf fibration from SU(2) to the sphere S 2 . Similarly, one can define a submersion Π 2 from SL(2, R) to the hyperbolic plane H 2 . Using some good coordinates system called cylindrical coordinates, as announced in the previous section, one can obtain an interesting geometric interpretation of the Brownian motion B t . This result can be written this way: [START_REF] Baudoin | The subelliptic heat kernel on SU(2): representations, asymptotics and gradient bounds[END_REF][START_REF] Bonnefont | The subelliptic heat kernels on SL(2, R) and on its universal covering SL(2, R): integral representations and some functional inequalities[END_REF][START_REF] Bonnefont | Functional inequalities for subelliptic heat kernels[END_REF]). We consider a Brownian motion B t on SU(2) (resp. SL(2, R)) and (ϕ t , θ t , z t ) its cylindrical coordinates. Then we have:

Proposition 1.1 ([
• X t := Π 1 (B t ) (resp. Π 2 (B t )
) is a Brownian motion on the sphere S 2 (resp. the hyperbolic plane H 2 ). Its spherical coordinates are given by (ϕ t , θ t ) with respect to a pole fixed by the submersion.

• z t -z 0 is the signed swept area (modulo 4π) of X t with respect to the fixed pole.

In particular, these two processes entirely describe B t .

To be able to compare two Brownian motions with the subRiemannian metric, we first prove a relation similar to (1): 

:= π 1 (B x t ) (resp. π 2 (B x t )) and Y t := π 1 (B y t ) (resp. π 2 (B y t ))
. The cylindrical coordinates of (B x t ) -1 • B y t are given by (R t , θ t , z t ) with:

• R t the Riemannian distance between X t and Y t ;

• z t ≡ A t + z y 0 -z x 0 + sign(θ x 0 -θ y 0 )A X 0 ,Y 0 ,N mod (4π)
with A a,b,c the area of the spherical (resp. hyperbolic) triangle of vertices a, b and c and A t the signed swept area between (X s ) s≤t and (Y s ) s≤t .

In particular, defining Ãt ∈] -2π, 2π] such that Ãt ≡ z t mod (4π), we have:

d 2 cc (B t , B ′ t ) ∼ R 2 t + | Ãt |
With this Proposition, we achieve to link our two model spaces to the Heisenberg group H. This way, as in the Heisenberg group, to compare two Brownian motions, we just have to compare the driving noises X t and Y t and to look at their swept area.

As explained before, the aim of this article is the research of successful couplings in the model spaces. In fact, it is evident that there is no such coupling in the case of SL(2, R): because there exists some non constant but bounded harmonic functions on H 2 , using Theorem (5.4) from Wang [START_REF] Wang | Liouville theorem and coupling on negatively curved Riemannian manifolds[END_REF], we can say that there is no successful coupling of Brownian motions on the hyperbolic plane, and so neither on SL(2, R). For SU(2) we generalise with success the coupling in H from Kendall [START_REF] Kendall | Coupling all the Lévy stochastic areas of multidimensional Brownian motion[END_REF], which gives our main theorem: Theorem 1.3. There exists a co-adapted successful coupling in SU(2).

In the case of H, this coupling consists in switching between two coupling models on the plane:

• The first coupling is meant to act on the distance R t between the driven noises. One uses a coupling such that R t hits 0 at an a.s. finite time: the reflection coupling.

• The second coupling is used to keep the swept area A t comparable to R t . The idea is that, each time |A t | is too big in relation to R t , R t stays constant and |A t | moves like a Brownian motion to reach an acceptable value. This is done with synchronous coupling, also called parallel transport coupling.

The first difficulty in the generalisation of this theorem to SU(2) is to obtain explicit constructions of couplings on S 2 acting as described above. In particular, if the existence of couplings acting as expected on R t is known (see [START_REF] Kuwada | On uniqueness of maximal coupling for diffusion processes with a reflection[END_REF] for a reflection coupling and [START_REF] Mihai | Couplings of Brownian motions of deterministic distance in model spaces of constant curvature[END_REF] for a coupling keeping R t constant) we need some other way to describe them if we want to know their impact on the swept area. The second difficulty lies, of course, in the presence of the curvature (the driving noises live in S 2 ) that impacts some part of the proof. The two possibilities to deal with this second difficulty will be to add a control on the upper bound of R t or to take the compacity of SU(2) into account.

To deal with the first difficulty, in this paper, we describe (X t , Y t ), a coupling of Brownian motions on S 2 , using Itô depiction of diffusion processes in some good frames (e X 1 , e X 2 ) and (e Y 1 , e Y 2 ) along X and Y respectively:

d ∇ X t = dU 1 (t)e X 1 (t) + dU 2 (t)e X 2 (t) and d ∇ Y t = dV 1 (t)e Y 1 (t) + dV 2 (t)e Y 2 (t) (3) 
with

(U 1 (t), U 2 (t)) and (V 1 (t), V 2 (t)
) some Brownian motions in R 2 adapted to a common filtration. With this description and using calculations involving covariant derivatives we obtain general stochastic equations for R t and A t . Note that, it can be generalised to every Riemannian manifold M of constant curvature k with dimension 2. Thus, even if no successful coupling can be constructed in SL(2, R), we obtain a model of co-adapted couplings for our two model spaces with a way to compare the processes. These general relations are given in the following proposition:

Proposition 1.4. Let (X t , Y t ) be a coupling of Brownian motion defined by (3) on I, a closed interval of R + . We suppose that 0 < R t < i(M) for all t except maybe at the ends of I, i(M) being the injectivity radius of M. We get

dR t = dV 1 (t) -dU 1 (t) + √ k cot( √ kR t )dt - √ k sin( √ kR t ) dU 2 (t) • dV 2 (t)
and

dA t = tan( √ kRt 2 ) √ k (dU 2 (t) + dV 2 (t)) + 1 2 cos 2 ( √ kRt 2 ) (dU 2 • dV 1 (t) -dV 2 (t) • dU 1 (t))
with dU i (t) • dV j (t) denoting the derivative of the joint quadratic variation of U i and V j . Moreover we have:

dR t • dA t = 1 √ k tan √ kR t 2 (dV 1 (t) • dU 2 (t) -dU 1 (t) • dV 2 (t)) .
Note that, if k tends to 0, we obtain some well known relation for the Heisenberg group. Thanks to this formula, we are able to give some examples, including reflection coupling as well as a coupling keeping R t constant. Note that this last coupling is not the classical parallel transport one but needs the introduction of some additive noise to compensates the curvature.

Organisation of the paper

The structure of the paper is as follow. In section 2 we give some preliminaries: some generalities about subRiemannian structure, subLaplacian operator, a presentation of the model spaces and of the cylindrical coordinates as well as the representation of the Brownian motions in cylindrical coordinates on the model spaces. Note that some alternative proof for the expression of the subLaplacian operator in cylindrical coordinates can be found in Appendices. Section 3 contains the proofs for Proposition 1.2. In section 4 we construct a model of co-adapted couplings with the proof of Proposition 1.4 and the examples. Finally, in section 5, we give the construction of the successful coupling and thus the proof of Theorem 1.3.

Preliminaries

Note that most of the content of these preliminaries can be found in previous works just as in [START_REF] Baudoin | The subelliptic heat kernel on SU(2): representations, asymptotics and gradient bounds[END_REF][START_REF] Bonnefont | The subelliptic heat kernels on SL(2, R) and on its universal covering SL(2, R): integral representations and some functional inequalities[END_REF][START_REF] Bonnefont | Functional inequalities for subelliptic heat kernels[END_REF].

The subRiemannian structure

Let M be a smooth connected Riemannian manifold of dimension N and n ≤ N an integer. For each x ∈ M, we define a vector subspace H x of dimension n of T x M, the tangent space in x . This way we define a subspace of the tangent space T M denoted by H and called horizontal space. We can then define the horizontal curves, that is the smooth curves γ : I ⊂ R → M such that γ(t) ∈ H γ(t) : the horizontal curves are "moving" only with directions in H. Defining a scalar product •, • Hx on H x for all x ∈ M, we obtain the length L(γ) of the horizontal curve γ:

L(γ) := I γ(t), γ(t) H γ(t) dt.
The Carnot-Caratheodory distance between x and y ∈ M is finally defined by: d cc (x, y) = inf{L(γ) | γ horizontal curve between x and y}.

Let us suppose that the horizontal space satisfies Hörmander condition, that is, provided (X 1 , ..., X n ) a local basis of vector fields in H, the tangent space T M is spanned by the vectors along with all their commutators (obtained by operation with Lie brackets). Then the Carnot Caratheodory distance is finite and the subRiemannian structure is well defined. In the case of stratified Lie groups, we can choose some globally defined and left-invariant vector fields that we will denote X1 , ..., Xn . We can then introduce the subLaplacian operator:

L := 1 2 n 1 Xi 2 .
Because Hörmander conditions are satisfied, this operator is hypoelliptic. This is this operator that will define our Brownian motions.

2.2 Definition of SU (2) and SL(2, R) and cylindrical coordinates

We begin with the presentation of two space models as well as the cylindrical coordinates.

• By SU(2), we denote the group of the unitary two dimensional matrices with complex coefficients and with determinant 1 together with the law induced by the multiplication of matrices. Considering the manifold structure induced by the usual topology on the matrices group, this is a Lie group. Note that we have:

SU(2) = z 1 z 2 -z2 z1 , z 1 , z 2 ∈ C, |z 1 | 2 + |z 2 | 2 = 1 = cos(η)e iθ 1 sin(η)e iθ 2 -sin(η)e -iθ 2 cos(η)e -iθ 1 , η ∈ 0, π 2 , θ 1 , θ 2 ∈ [0, 2π] .
The associated Lie algebra is su

(2) = {M ∈ M 2 (C), exp(tM) ∈ SU(2) ∀t > 0}.
It is constituted by the skew-adjoint two dimensional matrices with complex coefficients and trace 0. It is also the tangent space of SU(2) at point I 2 . A basis of this algebra can be formed by the Pauli matrices. We will use these Pauli matrices up to the multiplicative coefficient 1 2 , we denote:

X = 1 2 0 1 -1 0 , Y = 1 2 0 i i 0 and Z = 1 2 i 0 0 -i .
Then (X, Y, Z) is a basis of su(2) and, thanks to the multiplicative coefficient, it also satisfies:

[X, Y ] = Z , [Y, Z] = X and [Z, X] = Y. (4) 
It is important to notice that all matrices in SU(2) can be written on the form:

exp(ϕ(cos(θ)X + sin(θ)Y )) exp(zZ) = cos ϕ 2 e i z 2 e i(θ-z 2 ) sin ϕ 2 -e -i(θ-z 2 ) sin ϕ 2 cos ϕ 2 e -i z 2 
(this result is trivial taking ϕ = 2η, z = 2θ 1 and θ ≡ θ 2 -θ 1 mod (2π)). Thus, we have described a system of coordinates (ϕ, θ, z) of SU(2) with ϕ ∈ [0, π], z ∈ ] -2π, 2π] and θ ∈ [0, 2π[ called cylindrical coordinates. We can also consider the coordinate system induced by exp(xX +yY ) exp(zZ

) with (x, y) ∈ R 2 , z ∈]-2π, 2π].
Let us remark that the cylindrical coordinates are a good way to observe the link between the sphere S 2 and SU(2). Indeed, as there is a trivial diffeormophism between SU(2) and S 3 , using the Hopf fibration, we can define a submersion from SU(2) to S 2 . For example, we can define it using quaternions. For z 1 z 2 -z2 z1 ∈ SU(2), with z 1 = x 1 + iy 1 and z 2 = x 2 + iy 2 , we define a unique quarternion q = x 1 + x 2 i + y 2 j + y 1 k. Denoting p = k the north pole in S 3 , we define:

Π 1 : SU(2) → S 2 q → qpq * = 2(x 1 y 2 + x 2 y 1 )i + 2(y 1 y 2 -x 1 x 2 )j + (x 2 1 -x 2 2 -y 2 2 + y 2 1 )k .
We can show ( [START_REF] Bonnefont | Functional inequalities for subelliptic heat kernels[END_REF]) that Π 1 define a submersion. Using the cylindrical coordinates (ϕ, θ, z) for q, we obtain:

Π 1 (q) = sin(ϕ) sin(θ)i -sin(ϕ) cos(θ)j + cos(ϕ)k.
Thus Π 1 sends every element of SU(2) described by the cylindrical coordinates (ϕ, θ, z) on the point of S 2 described by the spherical coordinates (ϕ, θ). Moreover the fiber over (ϕ, θ) of this projection is described by {(ϕ, θ, z), z ∈] -2π, 2π]}.

• We now deal with the SL(2, R) group. That is the group of two dimensional matrices with real coefficients and with determinant 1 together with the law induced by the multiplication of matrices. As for SU [START_REF] Albeverio | Lévy processes and their subordination in matrix Lie groups[END_REF] this is a Lie group with the topology on the matrices groups. The associated Lie algebra, denoted sl(2), is constituted by the two dimensional matrices with real coefficients and trace 0. It is also the tangent space of SL(2, R) at point I 2 . The following matrices, using the same notation as for SU(2), form a basis of sl(2):

X = 1 2 1 0 0 -1 , Y = 1 2 0 -1 -1 0 and Z = 1 2 0 -1 1 0
. This time, the relation induced by the Lie brackets are:

[X, Y ] = Z , [Y, Z] = -X and [Z, X] = -Y. (5) 
As before, we can proove that every element of SL(2, R) can be written on the form :

exp(ϕ(cos(θ)X + sin(θ)Y )) exp(zZ) = cosh ϕ 2 cos z 2 + sinh ϕ 2 cos θ + z 2 -cosh ϕ 2 sin z 2 -sinh ϕ 2 sin θ + z 2 cosh ϕ 2 sin z 2 -sinh ϕ 2 sin θ + z 2 cosh ϕ 2 cos z 2 -sinh ϕ 2 cos θ + z 2 with (x, y) ∈ R 2 , z ∈] -2π, 2π
], ϕ > 0 and θ ∈ [0, 2π[ as seen in [START_REF] Boscain | Invariant Carnot-Caratheodory metrics on S 3 , SO(3), SL(2), and lens spaces[END_REF] for example. We can thus define as well a system of cylindrical coordinates on SL(2, R).

Similarly to SU(2), we can define a submersion from SL(2, R) to H 2 , the Poincaré upper half-plane, defining:

Π 2 : SL(2) → H 2 M = a b c d → ai + b ci + d .
As before Π 2 define a submersion and, using the cylindrical coordinates (ϕ, θ, z) for M, we get:

Π 2 (M) = i -sinh(ϕ) sin(θ) cosh(ϕ) -sinh(ϕ) cos(θ)
.

With the help of the Cartesian formula of the hyperbolic metric and trigonometric relations, we obtain that Π 1 (M) is described by the polar coordinates (ϕ, θ) relative to the pole i. Thus the fiber over (ϕ, θ) of this projection is given by {(ϕ, θ, z), z ∈ ] -2π, 2π]}.

For the two cases we denote X, Ȳ and Z the left-invariant vector fields associated to X, Y , Z, that is the vector fields induced by:

∂ ∂ǫ |ǫ=0 exp ϕ(cos(θ)X + sin(θ)Y ) exp(zZ) exp(ǫM) for M = X, Y, Z.
We can then provide a subRiemannian structure to SU(2) (respectively SL(2, R)) considering H = V ect X, Ȳ as the horizontal plane and the associated Carnot-Caratheodory distance d cc . It has been proven by Baudoin and Bonnefont in [8,[START_REF] Bonnefont | The subelliptic heat kernels on SL(2, R) and on its universal covering SL(2, R): integral representations and some functional inequalities[END_REF][START_REF] Bonnefont | Functional inequalities for subelliptic heat kernels[END_REF], that

d 2 cc (0, (ϕ, θ, z)) is equivalent to ϕ 2 + |z| noting (ϕ, θ, z) an element of SU(2) (respectively SL(2, R)) in cylindrical coordinates.
We now interest ourselves to the subLaplacian operator. Here it is given by L = 1 2 X2 + Ȳ 2 . Note that, as the considered vector fields are chosen left invariant, the subRiemannian structure is in fact only determined by the horizontal plane at point I 2 , H I 2 = V ect X, Y . In cylindrical coordinates, we have the following expression for the subLaplacian operator:

for SU(2): L = 1 2 ∂ 2 ϕ,ϕ + 1 sin 2 (ϕ) ∂ 2 θ,θ + tan 2 ϕ 2 ∂ 2 z,z + 1 cos 2 ϕ 2 ∂ 2 θ,z + cot(ϕ)∂ ϕ ; (6) 
for SL(2, R):

L = 1 2 ∂ 2 ϕ,ϕ + 1 sinh 2 (ϕ) ∂ 2 θ,θ + tanh 2 ϕ 2 ∂ 2 z,z + 1 cosh 2 ϕ 2 ∂ 2 θ,z + coth(ϕ)∂ ϕ . (7) 
In litterature, these results are obtained using direct matrix computations as in [START_REF] Bonnefont | Functional inequalities for subelliptic heat kernels[END_REF] or (only for SU(2)) in [START_REF] Ruzhansky | Pseudo-differential operators and symmetries, volume 2 of Pseudo-Differential Operators[END_REF] 1 . We give a different way to prove this result in the Appendices of this article only using Lie brackets relations ( 4) and (5).

Geometrical interpretation of the Brownian motion

In this section we give an explanation of Proposition 1.1. We define the Brownian motion on SU(2) as the diffusion process B t with infinitesimal generator L. Using cylindrical coordinates as in [START_REF] Baudoin | The subelliptic heat kernel on SU(2): representations, asymptotics and gradient bounds[END_REF][START_REF] Bonnefont | The subelliptic heat kernels on SL(2, R) and on its universal covering SL(2, R): integral representations and some functional inequalities[END_REF][START_REF] Bonnefont | Functional inequalities for subelliptic heat kernels[END_REF], there exists ϕ t , θ t and z t three real diffusion processes, such that:

B t = exp(ϕ t (cos(θ t )X + sin(θ t )Y )) exp(z t Z) and                                dϕ t , dϕ t = dt dθ t , dθ t = 1 sin 2 (ϕt) dt dz t , dz t = tan 2 ϕt 2 dt dθ t , dz t = 1 2 cos 2 ( ϕ t 2 ) dt dϕ t , dθ t = dϕ t , dz t = 0 Drif t(dϕ t ) = 1 2 cot(ϕ t )dt Drif t(dθ t ) = 0 Drif t(dz t ) = 0.
Then, taking B 1 t and B 2 t two real Brownian motions, we get:

     dϕ t = dB 1 t + 1 2 cot(ϕ t )dt dθ t = 1 sin(ϕt) dB 2 t dz t = tan ϕt 2 dB 2 t .
Using the first two equations, we get the infinitesimal generator of the diffusion (ϕ t , θ t ):

1 2 ∂ 2 ϕ,ϕ + 1 sin 2 (ϕ) ∂ 2 θ,θ + cot(ϕ)∂ ϕ .
That is exactly the Laplace Beltrami operator on the sphere S 2 in spherical coordinates (ϕ, θ). Then, (ϕ t , θ t ) are the polar coordinates of the Brownian motion Π 1 (B t ) on S 2 . If we denote by A t the area swept by the path of (ϕ t , θ t ) on S 2 with respect with the north pole defined by the polar coordinates, that is the quantity A t = t 0 (1 -cos(ϕ s ))dθ s , we get:

dA t = 1 -cos(ϕ t ) sin(ϕ t ) dB 2 t = tan ϕ t 2 dB 2 t = dz t .
Remark. Note that this swept area is a signed value. For example, if θ t is decreasing for all t, then we get A t < 0.

As for SU(2), the Brownian motion B t in SL(2, R) can been characterized by three real diffusion processes ϕ t , θ t and z t satisfying:

B t = exp(ϕ t (cos(θ t ) X + sin(θ t ) Ȳ )) exp(z t Z) and                                dϕ t , dϕ t = dt dθ t , dθ t = 1 sinh 2 (ϕt) dt dz t , dz t = tanh 2 ϕt 2 dt dθ t , dz t = 1 2 cosh 2 ( ϕ t 2 ) dt dϕ t , dθ t = dϕ t , dz t = 0 Drif t(dϕ t ) = 1 2 coth(ϕ t )dt Drif t(dθ t ) = 0 Drif t(dz t ) = 0.
As before, taking B 1 t and B 2 t two real independent Brownian motions, we get:

     dϕ t = dB 1 t + 1 2 coth(ϕ t )dt dθ t = 1 sinh(ϕt) dB 2 t dz t = tanh ϕt 2 dB 2 t .
We obtain an analogous interpretation as for SU [START_REF] Albeverio | Lévy processes and their subordination in matrix Lie groups[END_REF]. We remark that the diffusion (ϕ t , θ t ) admits the Laplace Beltrami operator on the hyperbolic plane H 2 in the polar coordinates (ϕ, θ) as infinitesimal generator, that is:

1 2 ∂ 2 ϕ,ϕ + 1 sinh 2 (ϕ) ∂ 2 θ,θ + coth(ϕ)∂ ϕ .
We also use the fact that the area A t swept by the path of (ϕ t , θ t ) on H 2 with respect of the pole defined by the polar coordinates, is A t = t 0 (cosh(ϕ s ) -1)dθ s . We have indeed:

dA t = cosh(ϕ t ) -1 sinh(ϕ t ) dB 2 t = tanh ϕ t 2 dB 2 t = dz t
As before this swept area is a signed value depending of the sign of dθ t .

3 Comparison of the Brownian motion in SU (2) and SL(2, R)

Geometrical interpretation of the distance on SU (2)

Let us now deal with the distance between two Brownian motions on SU(2) by proving Proposition 1.2.

Proof of Proposition (1.2) for SU [START_REF] Albeverio | Lévy processes and their subordination in matrix Lie groups[END_REF]. We first need a geometric estimation of d cc (x, y) for x, y ∈ SU(2). We denote (ϕ x , θ x , z x ) (resp. (ϕ y , θ y , z y )) the cylindrical coordinates of x (resp. y). As said before, we have estimations for d cc (0, (ϕ, θ, z)), with (ϕ, θ, z) the cylindrical coordinates of x -1 y. Thus, we need to compute (ϕ, θ, z). Using matricial computations, we have:

x -1 y = exp ϕ x (cos(θ x )X + sin(θ x )Y ) exp(z x Z) -1 exp ϕ y (cos(θ y )X + sin(θ y )Y ) exp(z y Z) = exp -ϕ x (cos(θ x -z x )X + sin(θ x -z x )Y ) exp ϕ y (cos(θ y -z x )X + sin(θ y -z x )Y ) exp (z y -z x )Z
Finally exp ϕ(cos(θ)X + sin(θ)Y ) exp(zZ) is equal to the matricial product:

cos -ϕ x 2 e i(θ x -z x ) sin -ϕ x 2 -e -i(θ x -z x ) sin -ϕ x 2 cos -ϕ x 2 cos ϕ y 2 e i(θ y -z x ) sin ϕ y 2 -e -i(θ y -z x ) sin ϕ y 2 cos ϕ y 2 .
In particular we have:

       cos ϕ 2 e i z 2 = cos ϕ x 2 cos ϕ y 2 + e i(θ x -θ y ) sin ϕ x 2 sin ϕ y 2 (8a) e i(θ-z 2 ) sin ϕ 2 = cos ϕ x 2 sin ϕ y 2 e i(θ y -z x ) -sin ϕ x 2 cos ϕ y 2 e i(θ x -z x ) . (8b)
We can now try to get a geometric interpretation on the values ϕ and z.

• We begin with ϕ: we are going to prove that ϕ is the usual distance on S 2 between Π 1 (x) and Π 1 (y). Let us denote ρ this distance. Indeed, we note that:

cos(ρ(Π 1 (x), Π 1 (y))) =< Π 1 (x), Π 1 (y) > R 3 = sin(θ x ) sin(θ y ) sin(ϕ x ) sin(ϕ y ) + cos(θ x ) cos(θ y ) sin(ϕ x ) sin(ϕ y ) + cos(ϕ x ) cos(ϕ y ) = cos(ϕ x ) cos(ϕ y ) + sin(ϕ x ) sin(ϕ y ) cos(θ x -θ y ).
From (8a), we get

cos 2 ϕ 2 = cos ϕ x 2 cos ϕ y 2 + cos (θ x -θ y ) sin ϕ x 2 sin ϕ y 2 2 + sin 2 (θ x -θ y ) sin 2 ϕ x 2 sin 2 ϕ y 2 = cos 2 ϕ x 2 cos 2 ϕ y 2 + sin 2 ϕ x 2 sin 2 ϕ y 2 + 2 cos ϕ x 2 cos ϕ y 2 cos(θ x -θ y ) sin ϕ x 2 sin ϕ y 2 = (1 + cos(ϕ x ))(1 + cos(ϕ y )) 4 + (1 -cos(ϕ x ))(1 -cos(ϕ y )) 4 + sin(ϕ x ) sin(ϕ y ) cos(θ x -θ y ) 2 = 1 + cos(ϕ x ) cos(ϕ y ) 2 + sin(ϕ x ) sin(ϕ y ) cos(θ x -θ y ) 2 = 1 + cos(ρ(Π 1 (x), Π 1 (y))) 2 = cos 2 ρ(Π 1 (x), Π 2 (y)) 2 .
We obtain the announced result as ϕ and ρ(Π

1 (x), Π 1 (y)) live in [0, π].
Moreover, we get that

cos(ϕ) = cos(ϕ x ) cos(ϕ y ) + sin(ϕ x ) sin(ϕ y ) cos(θ x -θ y ). (9) 
• We will now deal with z. Let us denote A the area of the spherical triangle with vertices Π 1 (x), Π 1 (y) and N, the north pole. The lengths of the opposite sides are respectively ϕ y , ϕ x and R . Using an equivalent of the Heron formula for spherical triangle (see [START_REF] Janson | Euclidean, spherical and hyperbolic trigonometry[END_REF]), we have:

cos A 2 = 1 4 cos ϕ 2 cos ϕ x 2 cos ϕ y 2 (1 + cos(ϕ x ) + cos(ϕ y ) + cos(ϕ)) .
Because of (8a) and ( 9), we get:

cos z 2 = 1 cos ϕ 2 cos ϕ x 2 cos ϕ y 2 + cos (θ x -θ y ) sin ϕ x 2 sin ϕ y 2 = 1 cos ϕ 2 cos ϕ x 2 cos ϕ y 2 + cos(ϕ) -cos(ϕ x ) cos(ϕ y ) sin(ϕ x ) sin(ϕ y ) sin ϕ x 2 sin ϕ y 2 = 1 4 cos ϕ 2 cos ϕ x 2 cos ϕ y 2 4 cos 2 ϕ x 2 cos 2 ϕ y 2 + cos(ϕ) -cos(ϕ x ) cos(ϕ y ) = 1 4 cos ϕ 2 cos ϕ x 2 cos ϕ y 2 ((1 + cos(ϕ x )) (1 + cos(ϕ y )) + cos(ϕ) -cos(ϕ x ) cos(ϕ y )) = 1 4 cos ϕ 2 cos ϕ x 2 cos ϕ y 2 (1 + cos(ϕ x ) + cos(ϕ y ) + cos(ϕ)) .
Thus we get |z| ≡ A mod (4π).

Moreover, still using (8a), we get that sin z 2 = sin(θ x -θ y )

sin ϕ x 2 sin ϕ y 2 cos( ϕ 2 )
, and so z < 0 if and only if θ x < θ y .

Finally, d 2 cc (x, y) ∼ ρ 2 (Π 1 (x), Π 1 (y)) + | Ã|, with à ≡ z y -z x + sign(θ x -θ y )A mod (4π), à ∈] -2π, 2π]. Now, considering our Brownian motions, we get

d cc (B x t , B y t ) 2 ∼ ρ 2 (Π 1 (B x t ), Π 1 (B y t )) + | Ãt | with Ãt ≡ z y t -z x t + sign(θ x t -θ y t )A t mod (4π), Ãt ∈] -2π, 2π
] and with A t the area of the spherical triangle of vertices Π 1 (B x t ), Π 1 (B y t ) and N. We can also give a geometric interpretation of the quantity z y t -z x t + sign(θ x t -θ y t )A t . In fact z y t + sign(θ x t -θ y t )A tz x t -sign(θ x 0 -θ y 0 )A 0 is the signed swept area of a loop starting from Π 1 (y), following:

• the path s → Π 1 (B y s ), s ≤ t from Π 1 (y) to Π 1 (B y t ); • the geodesic joining Π 1 (B y t ) to Π 1 (B x t ); • the path s → Π 1 (B x s ), s ≤ t joining Π 1 (B x t ) to Π 1 (x); • finally the geodesic joining Π 1 (x) to Π 1 (y).
Thus, up to a constant, the quantity z y t -z x t + sign(θ x t -θ y t )A t is this signed area with sign changing when the paths of Π 1 (B y t ) t and Π 1 (B x t ) t are crossing.

Geometrical interpretation of the distance on SL(2, R)

Similarly to SU(2), we prove the geometric interpretation for the distance between two Brownian motions on SL(2, R) contained in Proposition (1.2).

Proof of Proposition 1.2 for SL(2, R). We denote (ϕ x , θ x , z x ) (resp. (ϕ y , θ y , z y )) the cylindrical coordinates of x (resp. y). This time, matricial computations give:

x -1 y = exp -ϕ x (cos(θ x + z x )X + sin(θ x + z x )Y ) exp ϕ y (cos(θ y + z x )X + sin(θ y + z x )Y ) exp (z y -z x )Z
If we denote M = exp ϕ(cos(θ)X + sin(θ)Y ) exp(zZ), we have:

M = cosh ϕ 2 cos z 2 + sinh ϕ 2 cos θ + z 2 -cosh ϕ 2 sin z 2 -sinh ϕ 2 sin θ + z 2 cosh ϕ 2 sin z 2 -sinh ϕ 2 sin θ + z 2 cosh ϕ 2 cos z 2 -sinh ϕ 2 cos θ + z 2
The matrix M is also equal to the product:

exp -ϕ x (cos(θ x + z x )X + sin(θ x + z x )Y ) exp ϕ y (cos(θ y + z x )X + sin(θ y + z x )Y ) .
In particular we get:

M 1,1 = cosh ϕ x 2 cosh ϕ y 2 + cosh ϕ x 2 sinh ϕ y 2 cos(θ y + z x ) -cosh ϕ y 2 sinh ϕ x 2 cos(θ x + z x ) -sinh ϕ x 2 sinh ϕ y 2 cos(θ y -θ x ) M 1,2 = -cosh ϕ x 2 sinh ϕ y 2 sin(θ y + z x ) + sinh ϕ x 2 cosh ϕ y 2 sin(θ x + z x ) + sinh ϕ x 2 sinh ϕ y 2 sin(θ y -θ x ) M 2,1 = -cosh ϕ x 2 sinh ϕ y 2 sin(θ y + z x ) + sinh ϕ x 2 cosh ϕ y 2 sin(θ x + z x ) -sinh ϕ x 2 sinh ϕ y 2 sin(θ y -θ x ) M 2,2 = cosh ϕ x 2 cosh ϕ y 2 -cosh ϕ x 2 sinh ϕ y 2 cos(θ y + z x ) + cosh ϕ y 2 sinh ϕ x 2 cos(θ x + z x ) -sinh ϕ x 2 sinh ϕ y 2 cos(θ y -θ x ) As cosh ϕ 2 cos z 2 = M 1,1 +M 2,2 2 and cosh ϕ 2 sin z 2 = M 2,1 -M 1,2 2 
, we get:

       cosh ϕ 2 cos z 2 = cosh ϕ x 2 cosh ϕ y 2 -sinh ϕ x 2 sinh ϕ y 2 cos(θ y -θ x ) (10a) cosh ϕ 2 sin z 2 = -sinh ϕ x 2 sinh ϕ y 2 sin(θ y -θ x ). (10b) 
• This time, the distance between Π 2 (x) and Π 2 (y) is characterized by cosh(ρ(Π 2 (x), Π 2 (y))) = cosh(ϕ x ) cosh(ϕ y ) + sinh(ϕ x ) sinh(ϕ y ) cos(θ x -θ y ).

Using the identity cosh 2 ( ϕ 2 ) = 1+cosh(ϕ) 2 we obtain

cosh(ϕ) = cosh(ϕ x ) cosh(ϕ y ) + sinh(ϕ x ) sinh(ϕ y ) cos(θ x -θ y ) (11) 
and so: ϕ = ρ(Π 2 (x), Π 2 (y))

• We now deal with z. Using the same notations as before (this time M is the pole used to define polar coordinates on H) and the equivalent of the Heron formula for hyperbolic triangles, we have:

cos A 2 = 1 4 cosh ϕ 2 cosh ϕ x 2 cosh ϕ y 2 (1 + cosh(ϕ x ) + cosh(ϕ y ) + cosh(ϕ)) = cos z 2
and thus z = sign(z)A. Moreover, we have sin z 2 = sin(θ x -θ y )

sinh ϕ x 2 sinh ϕ y 2 cosh( ϕ 2 )
, and so z < 0 if and only if 

θ x < θ y . Finally, d 2 cc (x, y) ∼ ρ 2 (Π 2 (x), Π 2 (y)) + | Ã| with à ≡ z y -z x + sign(θ x -θ y )A mod (4π) and à ∈] -2π, 2π].

Description of a coupling model

Let M be a manifold of dimension 2 with constant curvature k. Let us start with a way to describe Brownian motions using Itô depiction in a frame in the sense of Emery (see [START_REF] Émery | Stochastic calculus in manifolds[END_REF] for a basic introduction).

Proposition 4.1. We consider X t a semi-martingale on M and (e 1 (t), e 2 (t)) a T Mvalued continuous semi-martingale forming an orthonormal basis of vector fields along (X t ) t . We suppose that all the processes are in the same filtration. If X t is a Brownian motion on M, there exists (U 1 , U 2 ) a Brownian motion on R 2 such that:

d ∇ X t = dU 1 (t)e 1 (t) + dU 2 (t)e 2 (t). (12) 
Conversely, if X t satisfies ( 12) with (U 1 , U 2 ) a Brownian motion on R 2 , then X t is a Brownian motion on M.

Although it can be found in the literature ( [START_REF] Émery | Stochastic calculus in manifolds[END_REF]), we give the proof of this proposition for the convenience of the reader.

Proof. Let us begin with the direct implication. For i ∈ {1, 2}, taking U i such that dU i (t) = e * i (t), d ∇ X t , with (e * 1 , e * 2 ) the dual basis of (e 1 , e 2 ) in T * M, we directly get that U i are martingales. Moreover as X t is a Brownian motion and (e 1 , e 2 )(t) forms an orthonormal basis of T Xt M, for i, j ∈ {1, 2}:

dU i (t) • dU j (t) = (e * i ⊗ e * j )(t)(dX t , dX t ) = T r(e * i ⊗ e * j )(t)dt = δ i,j dt.
We obtain the expected result.

For the converse implication, as

• 0 φ(X t ), d ∇ X t = • 0 φ(X t ), e * 1 (t) dU 1 (t) + • 0 φ(X t ), e * 2 (t) dU 2 (t)
is a martingale for all φ ∈ Γ (T * M), we obtain that X t is a martingale. Then for f a smooth function on M, by Itô's formula, we get:

d(f (X t )) = df (X t ) • d ∇ X t + 1 2 Hess(f )(X t )(d ∇ X t , d ∇ X t )
with:

Hess(f )(X t )(d ∇ X t , d ∇ X t ) = i,j Hess(f )(X t ), (e * i ⊗ e * j )(t) (e * i ⊗ e * j )(t)(d ∇ X t , d ∇ X t ) = i,j Hess(f )(X t ), (e * i ⊗ e * j )(t) e * i (t), d ∇ X t • e * j (t), d ∇ X t = i,j Hess(f )(X t ), (e * i ⊗ e * j )(t) dU i (t) • dU j (t) = T r(Hess(f ))(X t )dt = ∆f (X t )dt.
Thus, X t is a Brownian motion on M.

We can now define couplings (X t , Y t ) of Brownian motions on M using two dimensional Brownian motions (U 1 (t), U 2 (t)) and (V 1 (t), V 2 (t)) adapted to a common filtration such that we have relation (3):

d ∇ X t = dU 1 (t)e X 1 (t) + dU 2 (t)e X 2 (t) and d ∇ Y t = dV 1 (t)e Y 1 (t) + dV 2 (t)e Y 2 (t)
with e X i (t) and e Y i (t) defined as follow. We consider the continuous stochastic process R t = ρ(X t , Y t ) with ρ the Riemannian distance. We suppose that 0 < R t < i(M) for all t ∈ I, with i(M) the injectivity radius of M and I an open interval on R + . Then for all t ∈ I we can define:

• e X 1 (t) = exp -1 X t (Yt)
Rt a unitary vector on T Xt M;

• e X 2 (t) such that (e X 1 (t), e X 2 (t)) is a direct orthonormal basis on T X(t) M; • (e Y 1 (t), e Y 2 (t)
) parallel transport of (e X 1 (t), e X 2 (t)) along the geodesic joining X t and Y t . This define a direct orthonormal basis on T Yt M.

To prove the first part of Proposition (1.4) we need to have the expressions of the first order derivative and of the Hessian of the distance function with respect to the above basis. These are written in the following Lemma. Lemma 4.2. Let x, y ∈ M, r = ρ(x, y) with 0 < r < π, u ∈ T x M and v ∈ T y M. We define e x 1 = exp -1

x (y) r

∈ T x M, e y 1 ∈ T y M the parallel transport of e x 1 along the geodesic joining x and y, and e x 2 (resp. e y 2 ) such that (e x 1 , e x 2 ) (resp. (e y 1 , e y 2 ) ) is a basis of T x M (resp T y M). Then, we have:

dρ (x,y) (u, v) = v 1 -u 1
and

Hess(ρ) (x,y) ((u, v), (u, v)) =        √ k(u 2 2 + v 2 2 ) cot( √ kr) -2 √ ku 2 v 2 1 sin( √ kr) , if k > 0 √ -k(u 2 2 + v 2 2 ) coth( √ -kr) -2 √ -ku 2 v 2 1 sinh( √ -kr) , if k < 0 2u 2 v 2 r , if k = 0.
with u i = u, e x i and v i = v, e y i for i ∈ {1, 2}.

Note that, below, we will use the expression of the case k > 0 as the general expression of the Hessian as it induced the two other cases by direct computation in the case k < 0 and taking the limit in the case k = 0. We then directly obtain the proof of Proposition 1.4.

Proof of Proposition (1.4), first part. Using this lemma and applying Ito's formula, we directly get:

dR t = dρ (Xt,Yt) (d ∇ X t , d ∇ Y t ) + 1 2 Hess(ρ)(X t , Y t )((d ∇ X t , d ∇ Y t ), (d ∇ X t , d ∇ Y t )) = dV 1 (t) -dU 1 (t) + 1 2 √ k dU 2 (t) • dU 2 (t) + dV 2 (t) • dV 2 (t) cot( √ kR t ) - 2 √ k sin( √ kR t ) dU 2 (t) • dV 2 (t) = dV 1 (t) -dU 1 (t) + 1 2 2 √ k cot( √ kR t )dt - 2 √ k sin( √ kR t ) dU 2 (t) • dV 2 (t) = dV 1 (t) -dU 1 (t) + √ k cot( √ kR t )dt - 1 sin( √ kR t ) dU 2 (t) • dV 2 (t) . (13) 
Remark. In fact, by describing the covariant derivative of (e X i (t)) t (resp. (e Y i (t)) t ) along X t (resp. Y t ) we can define our orthonormal basis as the solution of a system of stochastic differential equations depending on U 1 , U 2 , V 1 , V 2 and R t . In the case where no singularities appear in this system, our coupling keeps sense even if R t ∈ {0, i(M)}. Then we can consider R t as a signed distance and the results of Proposition 1.4 are still true.

Although the computations has certainly been done elsewhere before, we want to describe the proof of Lemma 4.2 since some elements will be re-used to obtain the expression of the first order derivative and of the Hessian for the swept area in Lemma 4.3.

Proof of Lemma 4.2. Let x, y ∈ M, r = ρ(x, y), u ∈ T x M and v ∈ T y M. We are going to study the first and second derivatives of functions E(t) := 1 2 ρ(exp x (tu), exp y (tv)) 2 . We define (s, t) ∈ [0, 1] × [0, +∞[ → c(s, t) ∈ M such that:

• s → c(s, t) is a geodesic starting at exp x (tu) and ending at exp y (tv) for all t ≥ 0;

• t → c(0, t) is a geodesic starting at x and ending at exp x (tu);

• t → c(1, t) is a geodesic starting at y and ending at exp y (tv).

In particular, s → J(s, t) := ∂ t c(s, t) is a Jacobi field for all t ≥ 0. We define e 1 (s, t) := ∂sc(s,t) ρ(exp x (tu),exp y (tv)) and e 2 (s, t) such that (e 1 (s, t), e 2 (s, t)) is an orthonormal basis of T c(s,t) M for each s, t. In particular e 1 (0, 0) = e x 1 and e 1 (1, 0) = e y 1 . For the covariant derivative calculus, we will use the notation ∇ s for ∇ ∂sc(s,t) and ∇ t for ∇ ∂tc(s,t) . Note that, for t constant, e i (s, t) are defined by parallel transport along c and so ∇ s e i (s, t) = 0. We will denote r(t) = ρ(exp x (tu), exp y (tv)) = ||∂ s c(s, t)||, u i (s) := J(0, t), e i (0, t) ,

u i := u i (0) and v i (s) := J(1, t), e i (1, t) , v i := v i (0) for i ∈ {1, 2}.
Since s → c(s, t) is a geodesic connecting exp x (tu) and exp y (tv), it has constant speed and

E(t) = 1 2 ||∂ s c(s, t)|| 2 for all s ∈ [0, 1]. Thus, E(t) = 1 2 1 0 ∂ s c(s, t), ∂ s c(s, t) ds.
We derive this function:

E ′ (t) = 1 0 ∇ t ∂ s c(s, t), ∂ s c(s, t) ds = 1 0 ∇ s ∂ t c(s, t), ∂ s c(s, t) ds since ∇ is torsionfree = 1 0 ∂ s ∂ t c(s, t), ∂ s c(s, t) ds - 1 0 ∂ t c(s, t), ∇ s ∂ s c(s, t) ds = 1 0 ∂ s ∂ t c(s, t), ∂ s c(s, t) ds since s → c(s, t) is a geodesic; = [ ∂ t c(s, t), ∂ s c(s, t) ] 1 0 .
We obtain:

E ′ (0) = ∂ t c(1, t) |t=0 , ∂ s c(s, 0) |s=1 -∂ t c(0, t) |t=0 , ∂ s c(s, 0) |s=0 = v, re 1 (1, 0) -u, re 1 (0, 0) = r(v 1 -u 1 ).
We can now calculate the second derivative. We only deal with the case k > 0 as the two other cases use similar calculations.

E ′′ (t) = 1 0 ∂ t ∇ s ∂ t c(s, t), ∂ s c(s, t) ds = 1 0 ∇ t ∇ s ∂ t c(s, t), ∂ s c(s, t) + ∇ s ∂ t c(s, t), ∇ t ∂ s c(s, t) ds.
By definition of the curvature tensor R and since

[∂ t c, ∂ s c] = 0, we have R(∂ t c(s, t), ∂ s c(s, t))∂ t c(s, t) = ∇ t ∇ s ∂ t c(s, t) -∇ s ∇ t ∂ t c(s, t).
Then:

E ′′ (t) = 1 0 ∇ s ∇ t ∂ t c(s, t), ∂ s c(s, t) + R(∂ t c(s, t), ∂ s c(s, t))∂ t c(s, t), ∂ s c(s, t) + ∇ s ∂ t c(s, t), ∇ s ∂ t c(s, t) ds = 1 0 ∇ s ∇ t ∂ t c(s, t), ∂ s c(s, t) -R(J(s, t), ∂ s c(s, t))∂ s c(s, t), J(s, t) + ||∇ s J(s, t)|| 2 ds.
The same way as previously we get :

1 0 ∇ s ∇ t ∂ t c(s, t), ∂ s c(s, t) ds = 1 0 ∇ s ∇ t ∂ t c(s, t), ∂ s c(s, t) + ∇ t ∂ t c(s, t), ∇ s ∂ s c(s, t) ds = [ ∇ t ∂ t c(s, t), ∂ s c(s, t) ] 1 0 .
For t = 0, 1, t → c(s, t) is a geodesic and so have constant variations, then

1 0 ∇ s ∇ t ∂ t c(s, t), ∂ s c(s, t) ds = 0.
For t fixed, let us study our Jacobi field along s → c(s, t). Using the basis (e 1 (s, t), e 2 (s, t)), we can write: J(s, t) = j 1 (s, t)e 1 (s, t) + j 2 (s, t)e 2 (s, t).

Since ∇ s e i (s, t) = 0, we have: Thus:

∇ s J(s, t) = ∂ s j 1 (s, t
E ′′ (t) = 1 0 -R J(s, t), ∂ s c(s, t) ∂ s c(s, t), J(s, t) + ||∇ s J(s, t)|| 2 ds = 1 0
-R j 1 (s, t)e 1 (s, t) + j 2 (s, t)e 2 (s, t), r(t)e 1 (s, t) r(t)e 1 (s, t), J(s, t) ds

+ 1 0 (∂ s j 1 (s, t)) 2 + (∂ s j 2 (s, t)) 2 ds = 1 0 -kr(t) 2 j 2 (s, t) 2 + (∂ s j 1 (s, t)) 2 + (∂ s j 2 (s, t)) 2 ds.
By property of Jacobi fields, we have

∇ s ∇ s J(s, t) = -R(J(s, t), ∂ s c(s, t))∂ s c(s, t) = -r(t) 2 (j 1 (s, t)R(e 1 (s, t
), e 1 (s, t))e 1 (s, t) + j 2 (s, t)R(e 2 (s, t), e 1 (s, t))e 1 (s, t)) = -kr(t)j 2 (s, t)e 2 (s, t).

We obtain

∂ 2 ss j 1 (s, t) = 0 j 1 (0, t) = u 1 (t) j 1 (1, t) = v 1 (t) and ∂ 2 ss j 2 (s, t) = -kr(t) 2 j 2 (s, t) j 2 (0, t) = u 2 (t) j 2 (1, t) = v 2 (t)
and so j 1 (s, t) = u 1 (t)(1-

s) + v 1 (t)s and j 2 (s, t) = a cos( √ kr(t)s) + b sin( √ kr(t)s). We have, a = j 2 (0, t) = u 2 (t) and b = j 2 (1,t)-u 2 (t) cos( √ kr(t)) sin( √ kr(t)) so j 2 (s, t) = u 2 (t) cos( √ kr(t)s) + v 2 (t) -u 2 (t) cos( √ kr(t)) sin( √ kr(t)) sin( √ kr(t)s). Moreover, ∂ s j 2 (s, t) = √ kr(t) -u 2 (t) sin( √ kr(t)s) + v 2 (t)-u 2 (t) cos( √ kr(t)) sin( √ kr(t)) cos( √ kr(t)s) and ∂ s j 1 (s, t) = v 1 (t) -u 1 (t).
Then, for t = 0, we have:

E ′′ (0) = 1 0 (v 1 -u 1 ) 2 + kr 2 sin 2 ( √ krs) -cos 2 ( √ krs) u 2 2 - (v 2 -u 2 cos( √ k)) 2 sin 2 ( √ kr) -4u 2 v 2 -u 2 cos( √ kr) sin( √ kr) cos( √ krs) sin( √ krs) ds = (v 1 -u 1 ) 2 + kr 2 - cos( √ kr) sin( √ kr) √ kr u 2 2 - (v 2 -u 2 cos( √ kr)) 2 sin 2 ( √ kr) - 2 √ kr u 2 v 2 -u 2 cos( √ kr) sin( √ kr) sin 2 ( √ kr) -2 u 2 v 2 -u 2 2 cos( √ kr) sin( √ krt) = (v 1 -u 1 ) 2 + √ kr u 2 2 cos( √ kr) sin( √ kr) -1 + 2 + cos 2 ( √ kr) sin 2 ( √ kr) + v 2 2 cos( √ kr) sin( √ kr) -u 2 v 2 2 cos 2 ( √ kr) sin( √ kr) + 2 sin( √ kr) Finally E ′′ (0) = (v 1 -u 1 ) 2 + √ kr (u 2 2 + v 2 2 ) cot( √ kr) -2u 2 v 2 1 sin( √ kr) and we obtain, for u ∈ T x M, v ∈ T y M: d 1 2 ρ 2 (x,y) (u, v) = r(v 1 -u 1 )
and

Hess 1 2 ρ 2 (x,y) ((u, v), (u, v)) = (v 1 -u 1 ) 2 + √ kr (u 2 2 + v 2 2 ) cot( √ kr) -2u 2 v 2 1 sin( √ kr) .
Finally we get:

dρ (x,y) (u, v) = d ds |s=0 ρ(exp s (su), exp y (sv)) = d ds |s=0 ( 2E(s)) = E ′ (0) 2E(0) = (v 1 -u 1 )
and

Hess(ρ) (x,y) ((u, v), (u, v)) = d 2 ds 2 |s=0 ρ(exp s (su), exp y (sv)) = d ds|s=0 E ′ (s) 2E(s) = E ′′ (0) 2E(0) - E ′ (0) 2 (2E(0)) 3 2 = (v 1 -u 1 ) 2 r + √ k (u 2 2 + v 2 2 ) cot( √ kr) -2u 2 v 2 1 sin( √ kr) - (v 1 -u 1 ) 2 r = √ k(u 2 2 + v 2 2 ) cot( √ kr) -2 √ ku 2 v 2 1 sin( √ kr) .

Swept area

We now focus on the signed swept area A t between X t and Y t as described before. This way we will be able to compare the last coordinates of the two Brownian motions on SU(2) (resp. SL(2, R)). Note that this signed area stays with constant sign while the two paths of the Brownian motions don't cross. We are first going to find an expression of the area in terms of a function of the covariant derivative of the paths. Let γ x , γ y : [0, +∞[ → M be two continuous curves on M starting at x and y respectively. We can consider (s, t) ∈ [0, 1] × [0, +∞[ → c(s, t) ∈ M such that s → c(s, t) is a geodesic starting at γ x (t) and ending at γ y (t) for all t ≥ 0. Providing that the distance between γ x (t) and γ y (t) is non null for each t but small enough, we can also define as before the basis (e x 1 (t), e y 2 (t)). Assuming that the map (s, ζ) → c(s, ζ) is a local chart of M, the volume form is given by det(G)dζds where G is the positive definite symmetric matrix representing the metric in these local coordinates. In particular, we have:

det(G) = ||∂ s c(s, ζ))|| 2 ||∂ ζ c(s, ζ))|| 2 -∂ s c(s, ζ)), ∂ ζ c(s, ζ)) 2 = | det ∂ s c(s, ζ), ∂ ζ c(s, ζ) |.
Then, the signed swept area can be formally defined by

A(t) := 1 0 t 0 det(∂ s c(s, ζ), ∂ ζ c(s, ζ))dζds
where the determinant is calculated in the basis (e 1 (s, ζ), e 2 (s, ζ)) of T c(s,ζ) M for each ζ, t. We get the following lemma: Lemma 4.3. Let u ∈ T x M and v ∈ T y M, we have:

dA (x,y) (u, v) = 1 √ k tan √ kr 2 (u 2 + v 2 ), Hess A (x,y) ((u, v), (u, v) = u 2 v 1 -v 2 u 1 cos 2 ( √ kr 2 ) + tan 2 √ kr 2 (v 2 v 1 -u 2 u 1 ).
Note that, as in Lemma 4.2, the above results are given as a general formula for the three cases k > 0, k < 0 and k = 0.

Proof. Let A(t) := t → A x,y (exp x (tu), exp y (tv)) the swept area following the trajectories of t → exp x (tu) and t → exp y (tv) evaluated at time t. As for the proof of the previous lemma, we will study A ′ (0) and A ′′ (0).

First, using the same notations as the previous proof, we have:

A ′ (t) = 1 0 det(∂ s c(s, t), ∂ t c(s, t))ds = 1 0 det(r(t)e 1 (s, t), J(s, t))ds = r(t) 1 0 j 2 (s, t)ds = r(t) 1 0 u 2 (t) cos( √ kr(t)s) + v 2 (t) -u 2 (t) cos( √ kr(t)) sin( √ kr(t)) sin( √ kr(t)s)ds = 1 √ k u 2 (t)[sin( √ kr(t)s)] 1 0 + v 2 (t) -u 2 (t) cos( √ kr(t)) sin( √ kr(t)) [-cos( √ kr(t)s)] 1 0 = 1 √ k u 2 (t) sin( √ kr(t)) + v 2 (t) -u 2 (t) cos( √ kr(t)) sin( √ kr(t)) 1 -cos( √ kr(t)) = u 2 (t) sin 2 ( √ kr(t)) -u 2 (t) cos( √ kr(t))(1 -cos( √ kr(t))) + v 2 (t)(1 -cos( √ kr(t))) √ k sin( √ kr(t)) = (u 2 (t) + v 2 (t)) 1 -cos( √ kr(t)) √ k sin( √ kr(t)) = (u 2 (t) + v 2 (t)) 1 √ k tan √ kr(t) 2 .
So we get the covariant derivative and also:

A ′′ (t) = (u ′ 2 (t) + v ′ 2 (t)) 1 √ k tan √ kr(t) 2 + (u 2 (t) + v 2 (t)) r ′ (t) 2 cos 2 ( √ kr (t) 2 ) 
.

Note that r ′ (0) has been calculated previously for the covariant derivative of the distance, so:

A ′′ (0) = (u ′ 2 (0) + v ′ 2 (0)) 1 √ k tan √ kr 2 ) + (u 2 + v 2 ) v 1 -u 1 2 cos 2 ( √ kr 
2 )

.

We now just have to compute u ′ 2 (0) and v ′ 2 (0). As u 2 (s) = ∂ t c(0, t), e 2 (0, t) and t → c(s, t) is a geodesic, we have: Then, ∇ t e 2 (s, t) = -∇ t e 1 (s, t), e 2 (s, t) e 1 (s, t). We have:

u ′ 2 (s) = ∇ t ∂ t c(0,
∇ t e 1 (s, t) = ∇ t ∂ s c(s, t) × 1 r(t) = - r ′ (t) r(t) 2 ∂ s c(s, t) + ∇ t (∂ s c(s, t)) × 1 r(t) = - r ′ (t) r(t) e 1 (s, t) + ∇ s J(s, t) r(

t) .

Thus:

∇ t e 1 (s, t), e 2 (s, t) = 1 r(t) ∂ s j 2 (s, t) = √ k -u 2 (t) sin( √ kr(t)s) + v 2 (t) -u 2 (t) cos( √ kr(t)) sin( √ kr(t)) cos( √ kr(t)s) .
We obtain:

∇ t e 2 (0, t) = - √ k v 2 (t) -u 2 (t) cos( √ kr(t)) sin( √ kr(t)) e 1 (0, t) and ∇ t e 2 (1, t) = - √ k v 2 (t) cos( √ kr(t)) -u 2 (t) sin( √ kr(t)) e 1 (1, t)
and so:

u ′ 2 (0) = √ k u 2 cos( √ kr) -v 2 sin( √ kr) u 1 and v ′ 2 (0) = √ k u 2 -v 2 cos( √ kr) sin( √ kr) v 1 .
Finally:

A ′′ (0) = u 2 cos( √ kr) -v 2 sin( √ kr) u 1 + u 2 -v 2 cos( √ kr) sin( √ kr) v 1 tan √ kr 2 + (u 2 + v 2 ) v 1 -u 1 2 cos 2 ( √ kr 2 ) = (u 2 u 1 -v 2 v 1 ) cot( √ kr) + (u 2 v 1 -v 2 u 1 ) 1 sin( √ kr) tan √ kr 2 + u 2 v 1 -v 2 u 1 -(u 2 u 1 -v 2 v 1 ) 2 cos 2 ( √ kr 2 ) = (u 2 u 1 -v 2 v 1 ) cot( √ kr) tan √ kr 2 - 1 2 cos 2 ( √ kr 2 ) + (u 2 v 1 -v 2 u 1 ) tan( √ kr 
2 ) sin( √ kr)

+ 1 2 cos 2 ( √ kr 2 ) = (u 2 u 1 -v 2 v 1 ) cos( √ kr) 2 cos 2 ( √ kr 2 ) - 1 2 cos 2 ( √ kr 2 ) + (u 2 v 1 -v 2 u 1 ) 1 2 cos 2 ( √ kr 2 ) + 1 2 cos 2 ( √ kr 
2 )

.

Thus A ′′ (0) = -(u 2 u 1 -v 2 v 1 ) tan 2 √ kr 2 + (u 2 v 1 -v 2 u 1 ) 1 cos 2 ( √ kr 2 )
.

For the coupling (X t , Y t ) defined by (1.4) we can now use Itô's formula to end the proof of Proposition (1.4), finding an equation for the signed swept area, up to a constant, A t : Proof of Proposition (1.4), second part.

dA t = 1 √ k tan √ kR t 2 (dU 2 (t) + dV 2 (t)) + 1 2 dU 2 (t) • dV 1 (t) -dV 2 (t) • dU 1 (t) cos 2 ( √ kRt 2 ) + tan 2 √ kR t 2 (dV 2 (t) • dV 1 (t) -dU 2 (t) • dU 1 (t)) = 1 √ k tan √ kR t 2 (dU 2 (t) + dV 2 (t)) + 1 2 dU 2 (t) • dV 1 (t) -dV 2 (t) • dU 1 (t) cos 2 ( √ kRt 2 )
.

We also directly obtain

dR t • dA t = 1 √ k tan √ kR t 2 (dV 1 (t) • dU 2 (t) -dU 1 (t) • dV 2 (t)) .

Co-adapted coupling

In this subsection, we will deal with the special case of co-adapted Brownian motions on M. We first recall the general definition of a co-adapted coupling and then adapt it to our model: • the processes X and Ỹ lay in a same filtered probability space (F t ) t and follow in each time t the probability laws µ t and ν t respectively;

• for all bounded measurable function f , z ∈ M, s, t > 0, the functions

z → E[f ( Xt+s ) | F s , Xs = z] and z → E[f (X t+s ) | X s = z] (resp. z → E[f ( Ỹt+s ) | F s , Ỹs = z] and z → E[f (Y t+s ) | Y s = z]
) are equals P Xs -a.s. (resp. P Ys -a.s.).

Proposition 4.4. We consider a coupling (X t , Y t ) t of Brownian motions on M satisfying (3) in a filtered probability space (Ω, (F t ) t , P). The following assertions are equivalent:

(i) (X t , Y t ) t is a co-adapted coupling; (ii) U := U 1 U 2 and V := V 1 V 2 form a co-adapted coupling of Brownian motions in R 2 ;
(iii) Enriching the filtration if needed, there exists a two dimensional Brownian motion W adapted to the filtration and independent of U, and

K t , Kt ∈ M 2 (R) with K t K T t + Kt KT t = I 2 , K t , Kt ∈ F t such that : dV (t) = K t dU(t) + Kt dW (t). ( 14 
)
Proof. The equivalence of (ii) and (iii) is a well known fact about couplings in R 2 that can be found in [START_REF] Kendall | Brownian couplings, convexity, and shy-ness[END_REF] for example. Let us show that (ii) implies (i). The converse implication may be dealt with the same method, also used in [START_REF] Mihai | Couplings of Brownian motions of deterministic distance in model spaces of constant curvature[END_REF]. We denote G the filtration induced by U and V . As said in a previous remark, our basis are solutions of equations depending of R, U and V . Then, X t , Y t , (e X 1 (t), e X 2 (t)) and (e Y 1 (t), e Y 2 (t)) are adapted to the filtration G. Moreover, X t and Y t are Markov processes for this same filtration. Then, this is also true for the filtration F induced by X t and Y t as it is included in G. Thus, for s, t > 0, z ∈ M, we have

E[f (X t+s )|F s , X s = z] = E[E[f (X t+s )|G s , X s = z]|F s , X s = z] = E[P s,t f (z)|F s , X s = z] = P s,t f (z)
with P s,t the transition function of X. Thus we obtain a co-adaptive coupling for (X, Y ).

Using ( 14), we can rewrite our relations for R t and A t :

Proposition 4.5. For a co-adapted coupling satisfying (3) and Proposition (4.4), we have:

dR t • dR t = 2(1 -K 1,1 )dt; dR t (m) = √ k cot( √ kR t )dt - √ k sin( √ kR t ) K 2,2 dt = √ k cos( √ kR t ) -K 2,2 sin( √ kR t ) dt; dA t • dA t = 2 tan 2 ( √ kRt 2 ) k (1 + K 2,2 )dt; dA t (m) = 1 2 cos 2 ( √ kRt 2 ) (K 1,2 -K 2,1 ); dR t • dA t = 1 √ k tan( √ kR t 2 )(K 1,2 -K 2,1 )dt.
Proof. Let us recall that

dR t = dV 1 (t) -dU 1 (t) + √ k sin( √ tRt) (cos( √ tR t )dt -dU 2 (t) • dV 2 (t). Thus: dR t • dR t = (dV 1 (t) -dU 1 (t)) • (dV 1 (t) -dU 1 (t)) = 2dt -2dU 1 (t) • dV 1 (t) = 2dt -2dU 1 (t) • (K 1,1 dU 1 (t) + K 1,2 dU 2 (t)) since W is independant with U = 2(1 -K 1,1 )dt; Drif t(dR t ) = √ k sin( √ tR t ) cos( √ tR t )dt -dU 2 (t) • (K 1,2 dU 1 (t) + K 2,2 dU 2 (t)) = √ k cot( √ kR t )dt - √ k sin( √ kR t ) K 2,2 dt = √ k cos( √ kR t ) -K 2,2 sin( √ kR t ) dt.
Then, using dA t = tan(

√ kR t 2 ) √ k (dU 2 (t) + dV 2 (t)) + 1 2 cos 2 ( √ kR t 2 ) (dU 2 (t) • dV 1 (t) -dV 2 (t) • dU 1 (t)): dA t • dA t = tan 2 ( √ kRt 2 ) k (dU 2 (t) + dV 2 (t)) • (dU 2 (t) + dV 2 (t)) = tan 2 ( √ kRt 2 ) k (2dt + 2dU 2 (t) • dV 2 (t)) = 2 tan 2 ( √ kRt 2 ) k dt + dU 2 (t) • (K 2,1 dU 1 (t) + K 2,2 dU 2 (t)) = 2 tan 2 ( √ kRt 2 ) k (1 + K 2,2 )dt; and Drif t(dA t ) = 1 2 cos 2 ( √ kRt 2 ) (dU 2 (t) • dV 1 (t) -dV 2 (t) • dU 1 (t)) = 1 2 cos 2 ( √ kRt 2 ) dU 2 (t) • (K 1,1 dU 1 (t) + K 1,2 dU 2 (t)) -(K 2,1 dU 1 (t) + K 2,2 dU 2 (t)) • dU 1 (t) = 1 2 cos 2 ( √ kRt 2 ) (K 1,2 -K 2,1 ).
Finally

dR t • dA t = tan( √ kRt 2 ) √ k (dV 1 (t) -dU 1 (t)) • (dU 2 (t) + dV 2 (t)) = tan( √ kRt 2 ) √ k dV 1 (t) • dU 2 (t) -dU 1 (t) • dV 2 (t) = tan( √ kRt 2 ) √ k (K 1,1 dU 1 (t) + K 1,2 dU 2 (t)) • dU 2 (t) -dU 1 (t) • (K 2,1 dU 1 (t) + K 2,2 dU 2 (t)) = tan( √ kRt 2 ) √ k (K 1,2 -K 2,1 )dt.
Example.

• Synchronous coupling: We take K t = I 2 , Kt = 0, dV (t) = dU(t). We get:

dR t • dR t = 0; Drif t(dR t ) = √ k cos( √ kR t ) -1 sin( √ kR t ) dt = - √ k × tan( √ kR t 2 )dt. Thus R t is deterministic and R t = 2 √ k arcsin(e -kt 2 sin( √ kR 0 
2 )). We also have:

dA t • dA t = 4 tan 2 ( √ kRt 
2 ) k dt and Drif t(dA t ) = 0.

In particular, A t is a martingale.

• Reflection coupling: For K t = -1 0 0 1 , Kt = 0, dV 1 (t) = -dU 1 (t) and dV 2 (t) = dU 2 (t), we get:

dR t • dR t = 4dt and Drif t(dR t ) = - √ k × tan( √ kR t 2 ).
As before, we have:

dA t • dA t = 4 tan 2 ( √ kRt 
2 ) k dt and Drif t(dA t ) = 0.

• Perverse coupling:

For K t = 1 0 0 -1 , Kt = 0, dV 1 (t) = dU 1 (t) and dV 2 (t) =
-dU 2 (t), we get:

dR t • dR t = 0; Drif t(dR t ) = √ k cos( √ kR t ) + 1 sin( √ kR t ) dt = √ k × cot( √ kR t 2 ).
Thus R t is deterministic and

R t = 2 √ k arccos(e -kt 2 cos( √ kR 0 
2 )). We also have A t constant.

In all these examples, dR t • dA t = 0.

We also can add a noise to these couplings in order to remove the drift part. In particular, this will permit to obtain a coupling with constant distance between the Brownian motions.

• Synchronous coupling with noise/ fixed-distance coupling:

Taking K t = 1 0 0 cos( √ kR t ) , Kt = 0 0 0 sin( √ kR t )
, we get R t constant. We also have:

dA t • dA t = 2 tan 2 ( √ kRt 2 ) k (1 + cos( √ kR t ))dt = 4 k sin 2 ( √ kR t 2 )dt = 4 k sin 2 ( √ kR 0 2 )dt; Drif t(dA t ) = 0.
Note that A t is a Brownian motion up to a multiplicative constant.

We can do the same for the reflection coupling.

• Reflection coupling with noise:

For K t = -1 0 0 cos( √ R t ) , Kt = 0 0 0 sin( √ R t ) ,
we get: dR t • dR t = 4dt and Drif t(dR t ) = 0. Thus 1 2 R t is a Brownian motion. We also have:

dA t • dA t = 4 k sin 2 ( √ kR t 2
)dt and Drif t(dA t ) = 0.

For these two couplings, dR t • dA t = 0 too.

Remark.

• In [START_REF] Mihai | Couplings of Brownian motions of deterministic distance in model spaces of constant curvature[END_REF], Pascu and Popescu proved on the sphere that there exists a coadapted coupling of Brownian motions of deterministic distance function R t if and only if R is continuous and satisfy the inequality

-tan( R t 2 )dt ≤ dR t ≤ cot( R t 2 
))dt.

In particular the synchronous coupling and perverse coupling described above are the couplings realizing the extrema of this inequality.

• In the case where k = 0 we find all the expected results we could have for the study of the Heisenberg group. See for example [START_REF] Kendall | Coupling all the Lévy stochastic areas of multidimensional Brownian motion[END_REF][START_REF] Bonnefont | Couplings in L p distance of two Brownian motions and their Lévy area[END_REF].

Successful couplings

We are now going to interest ourselves in the construction of the successful coupling on SU(2). In a first time, we will study successful coupling of Brownian motions on M, a Riemannian manifold with constant non negative curvature, and their swept areas for the areas liying in R. This will induce a first successful coupling on SU(2). Then, considering that, in SU(2), the last coordinate z t lies in R/] -π 2 , π 2 ], we will change some steps to obtain a more efficient coupling. Using the previous notations, let us suppose that k > 0. As said before our method is based on the idea of Kendall for coupling two dimensional real Brownian motions and their swept areas ( [START_REF] Kendall | Coupling all the Lévy stochastic areas of multidimensional Brownian motion[END_REF]). The original idea is to switch between reflection and synchronous coupling, using reflection coupling to make R t decrease, and synchronous coupling to keep the swept area comparable to R 2 t and decreasing as well. Here, in comparison to Kendall's original proposition, we will add a noise during the "synchronous coupling step" as in the previous example in order to keep R t constant. If not, we would have a strictly positive probability to be trapped in a "synchronous coupling step" without returning in a reflection coupling step. Note that, for k → 0, that is for real two dimensional Brownian motion, fixed-distance coupling (synchronous coupling with noise) and synchronous coupling are the same.

Let us choose κ, ǫ > 0 such that 0 < ǫ < κ. We denote τ the first time of coupling of the two Brownian motions AND their swept areas, that is:

τ := inf{t > 0|R t = 0 and A t = 0}.
Using perverse or synchronous coupling if needed, we can suppose that 0 < R 0 < i(M). Note that for k > 0, we get i(M) = π √ k . Let us suppose that there exists η > 0 such that i(M) -η > R 0 > 0. We then define another stopping time:

τ η := inf{t > 0|R t ≥ i(M) -η}.
We are going to study first τ ∧ τ η instead of τ : this way we will have R t < i(M) -η for all t < τ . Using constant fixed-distance coupling if necessary, we can suppose that A 0 = 0 without changing the value of R 0 (indeed, A t is a changed-time Brownian motion during the fixed-distance coupling). We will construct the coupling as follow on [0, τ ∧ τ η ] :

1. We use reflection coupling until the process |At| We iterate 2 and 3 until R t = A t = 0 or R t = i(M) -η.

Theorem 5.1. Under the hypothesis i(M) -2η > R 0 > 0, the co-adapted coupling described below satisfies τ ∧ τ η < +∞ a.s. for k > 0. Moreover, we get P(τ > τ η ) < 1.

Proof. We denote τ ′ := τ ∧ τ η . We define N (ǫ) : [0, τ ′ ] → {0, 1} such that N (ǫ) (t) = 0 during fixed-distance coupling and N (ǫ) (t) = 1 during reflection coupling. We get, for all t > 0:

dR t = 2N (ǫ) (t)dC t - √ k tan √ kR t 2 N (ǫ) (t)dt dA t = 2 √ k × sin( √ kRt 2 ) cos(N (ǫ) (t) √ kRt 2 )
d Ct with C t and Ct two independent real Brownian motions. Note that, during reflection coupling, that is when

N (ǫ) (t) = 1, we have |At| R 2 t ≤ κ whereas, during fixed-distance coupling, that is N (ǫ) (t) = 0, we have |At| R 2 t ≥ κ -ǫ. As R varies only during reflection couplings, if R t → 0, we have R 2 t ≥ 1 κ |A t |, thus A t → 0.
In fact, with this strategy we have τ ′ = inf{t | R t ∈ {0, i(M) -η}}. Then we have to prove that R t hits 0 or i(M) -η in an a.s. finite time. For the following calculation, we take t < τ ′ that is 0 < R t < i(M)-η.

Let us define σ(t) := t 0 4 R 2 s ds and K σ(t) = log(R t ). By Itô's formula, we get:

dK σ(t) = dRt Rt -1 2R 2 t d R t , R t . Thus: dK σ(t) • dK σ(t) = 4N (ǫ) (t) R 2 t dt = N (ǫ) (t)dσ(t) Drif t(dK σ(t) ) = - √ k R t tan √ kR t 2 N (ǫ) (t)dt - 2N (ǫ) (t) R 2 t dt = -N (ǫ) (t)   √ kR t tan √ kRt 2 4 + 1 2   dσ(t).
With this time change, excluding the times when N (ǫ) (t) = 0 (fixed-distance coupling) in which K stays constant, σ → K σ acts like a Brownian motion with negative drift. Let us also define

W σ(t) = At R 2 t
. With Itô's formula, we get:

dW σ(t) = 1 R 2 t dA t -2 A t R 3 t dR t + 1 2 × 6 A t R 4 t d R t , R t = 1 R 2 t dA t -2 A t R 3 t dR t + 3 × 4N (ǫ) A t R 4 t dt.
Thus we have:

Drif t(dW σ(t) ) = 2 √ k R 3 t tan √ kR t 2 N (ǫ) (t)A t + 3 × 4N (ǫ) (t) A t R 4 t dt = N (ǫ) (t)W σ(t) √ kR t 2 tan √ kR t 2 + 3 dσ(t), dW σ(t) • dW σ(t) =   4sin 2 √ kRt 2 kR 4 t cos 2 N (ǫ) (t) √ kRt 2 + 16N (ǫ) A 2 t R 6 t   dt as dC t , d Ct = 0 =   sin 2 √ kRt 2 kR 2 t cos 2 N (ǫ) (t) √ kRt 2 + 4N (ǫ) A 2 t R 4 t   dσ(t) =   1 4 2 √ kR t 2 sin 2 √ kRt 2 cos 2 N (ǫ) √ kRt 2 + 4N (ǫ) (t)W 2 σ(t)   dσ(t). Finally, dK σ(t) •dW σ(t) = 1 Rt dR t • -2 At R 3 t dR t = -2 At R 4 t ×4N (ǫ) (t)dt = -2N (ǫ) (t)W σ(t) dσ(t).
Let S := σ(τ ′ ). For the following part, in order to simplify the notations, we will denote σ instead of σ(t) and N (ǫ) (σ) instead of N (ǫ) (t). We want to show that τ ′ < +∞ a.s. As First of all let us note that the number of changes of type of coupling (reflection coupling/ fixed-distance coupling) is countable as it is finite on all closed and bounded interval of time [S 1 , S 2 ] such that S 2 < τ ′ . Actually if we have an infinite number of changes of type of coupling, we can define (considering the time scale induced by σ) two sequences (σ s n ) n and (σ r n ) n such that σ s n < σ r n < σ s n+1 for all n ≥ 0 and such that Then, this quantity is a.s. finite and, in order to show that τ ′ < +∞, it is enough to show that:

N (ǫ) (σ) = 0 on [σ s n , σ r n [ and N (ǫ) (σ r n ) = 1. As S 2 < τ ′ ,
S 0 (1 -N (ǫ) )e 2Kσ dσ < +∞.
As R t and K σ are constant during fixed-distance coupling, we have:

S 0 (1 -N (ǫ) )e 2Kσ = n≥0 σ r n σ s n e 2Kσ dσ = n≥0 e 2K σ s n (σ r n -σ s n ).
Thus we want to show that n≥0 e 2K σ s n (σ r n -σ s n ) < +∞ a.s.

• We will first show the equality:

E exp - n≥0 e 2K σ s n (σ r n -σ s n ) (K σ s m ) m = exp - n≥0 e K σ s n × √ kR t s n 2 sin √ kR t s n 2 ×2 √ 2ǫ .
(15) As our coupling is the fixed-distance one on [σ s n , σ r n ], there exists V σ , a real Brownian motion, such that:

dW σ = 1 √ kR t sin √ kR t 2 dV σ = 1 √ kR t s n sin √ kR t s n 2 dV σ .
In particular |W σ | only depends on R t s n for σ r n ≥ σ ≥ σ s n and so depends on K σ s n only.

Then, knowing K σ s m m , σ r n -σ s n is the first hitting time of k -ǫ by the process |W σ |. As |W σ s n | = κ, by continuity, W σ keeps the same sign all along the interval [σ s n , σ r n ]. Then we have: Finally:

σ r n -σ s n = inf{σ > 0 |W σ+σ s n = sign(W σ s n )(κ -ǫ)} = inf{σ > 0 |(W σ+σ s n -W σ s n ) = sign(W σ s n )(κ -ǫ -κ)} = inf σ > 0 √ kR t s n sin √ kR t s n 2 (W σ+σ s n -W σ s n ) = - √ kR t
E exp -e 2K σ s n (σ r n -σ s n ) |(K σ s m ) m = exp    - √ kR t s n sin √ kR t s n 2 ǫ √ 2e K σ s n    .
Furthermore, conditional to (K σ s m ) m , (σ r n -σ s n ) n are independent. Thus:

E exp - N n=0 e 2K σ s n (σ r n -σ s n ) (K σ s m ) m = exp    - N n=0 √ kR t s n 2 sin √ kR t s n 2 2ǫ √ 2e K σ s n    .
Using the dominated convergence theorem we get the announced equality.

• We will now deal with the quantity ) by the diffusion W σ starting at ±(κ -ǫ) ∈] -κ, κ[. Note that, unlike the fixed-distance coupling case, here the sign of W t can change.

During these times we have:

               dW σ(t) • dW σ(t) =    1 4   tan √ kRt 2 √ kRt 2   2 + 4W 2 σ(t)    dσ(t) Drif t(dW σ(t) ) = W σ(t) √ kR t 2 tan √ kR t 2 + 3 dσ(t). (16) 
We now take m some positive integer. Then there exists a one dimensional Brownian motion B m , starting at 0 and independent of ζ m , such that for all σ ∈ [0, σ s m+1 -σ r m ]:

B m ζm(σ) -4κ(3 + M)ζ m (σ) ≤ W σ+σ r m -W σ r m ≤ B m ζm(σ) + 4κ(3 + M)ζ m (σ).
We now obtain

ζ m (σ s m+1 -σ r m ) ≥ inf{ζ > 0 | B m ζ + 4κ(3 + M)ζ = κ -W σ r m } ∧ inf{ζ > 0 | B m ζ -4κ(3 + M)ζ = -κ -W σ r m }. As W σ r
m can only take the two values κ-ǫ and -(κ-ǫ), we get ζ m (σ s m+1 -σ r m ) ≥ T m with:

T m := inf{ζ > 0 | B m ζ + 4κ(3 + M)ζ = ǫ} ∧ inf{ζ > 0 | B m ζ -4κ(3 + M)ζ = -ǫ}.
In particular, we have:

σ s m+1 -σ r m ≥ 1 M 2 4 + 4κ 2 T m . (17) 
For all m, (T m ) m is a sequence of independent and equally distributed variables with nonnegative and finite mean. Then, the strong law of large numbers yields:

M 2 4 + 4κ 2 1 n n-1 m=0 (σ s m+1 -σ r m ) ≥ 1 n n-1 m=0 T m a.s. ----→ n→+∞ E[T 0 ].
Thus, for n large enough, we get a.s.:

σ s n 0 N (ǫ) (σ)dσ n = 1 n n-1 m=0 (σ s m+1 -σ r m ) ≥ E[T 0 ] 2( M 2 4 + 4κ 2 ) > 0. (18) 
Moreover, we obtain

σ s n 0 N (ǫ) (σ)dσ a.s ----→ n→+∞ +∞ Let us now recall that K σ = K 0 + σ 0 N (ǫ) (s)dC s - σ 0 N (ǫ) √ kRt tan √ kR t 2 4 + 1 2 ds. Thus K σ -K 0 + σ 0 N (ǫ) √ kRt tan √ kR t 2 4 + 1 2
ds is a Brownian motion for the change of time σ 0 N (ǫ) (s)ds.

Note that:

1 2 ≤ σ s n 0 N (ǫ) √ kRt tan √ kR t 2 4 + 1 2 ds σ s n 0 N (ǫ) (s)ds
.

By the strong law of large number for Brownian motions, we also have:

K σ s n -K 0 + σ s n 0 N (ǫ) √ kRt tan √ kR t 2 4 + 1 2 ds σ s n 0 N (ǫ) (s)ds a.s ----→ n→+∞ 0.
Finally, a.s. for n large enough, we obtain:

K σ s n σ s n 0 N (ǫ) (s)ds ≤ - 1 4 . (19) 
By combining the results ( 18) and ( 19), we get a.s. for n large enough and noting 

c 0 = E[T 0 ] 2 M 2 4 +4κ 2 : 1 n K σ s n = K σ s n σ s n 0 N (ǫ) (s)ds × σ s n 0 N (ǫ) (s)ds n ≤ - c 0 4 < 0 
• Using ( 15) and ( 20), we have E[exp(-

n≥0 e K σ s n (σ r n -σ s n ))|(K σ s m ) m ] > 0 a.s. Still conditional to (K σ s m ) m , since exp(- n≥0 e K σ s n (σ r n -σ s n )) ≥ 0, the event exp(- n≥0 e K σ s
n (σ r n -σ s n )) > 0, equivalent to the event n≥0 e K σ s n (σ r n -σ s n ) < +∞, has a non-zero probability. As e 2K σ s n (σ r n -σ s n ) n are independent, using the Kolmogorov zero-one law, we get P(

n≥0 e K σ s n (σ r n -σ s n ) < +∞|(K σ s m ) m ) = 1 a.s. Finally, m≥0 e 2K σ s
m (σ r m -σ s m ) < +∞ a.s. and so τ ′ < +∞ a.s.

To show that P(τ > τ η ) < 1, we just need to remark that this event only depends on the evolution of R t . As R t is acting as a time changed Brownian motion with negative drift omitting the times where it stays constant, we directly obtain our result.

We can now give the proof of Theorem (1.3).

Proof of Theorem (1.3).

To construct a successful coupling, we now just have to start the coupling described in Theorem 5.1.

(i) If τ ∧ τ η = τ , we obtain R t = A t = 0.

(ii) If τ ∧τ η = τ η , we use a synchronous coupling until R t = R 0 and then a fixed distance coupling until A t = 0 and we re-start the coupling of theorem 5.1.

At step (ii), as R t is deterministic and decreasing during synchronous coupling, each "synchronous step" will take a constant finite time. It also takes an a.s. finite time to obtain A t = 0 with fixed distance coupling. Thus we repeat the same experiment independently. As the probability that τ < τ η is non-zero during the coupling of theorem 5.1, it will take a finite number of change of coupling to be in this event and then have an a.s. finite time of success. Let us remind that, if R 0 ∈ {0, i(M)}, we need to use perverse or synchronous coupling before our successful coupling to start with R t ∈]0, i(M)[. As R t is deterministic for perverse and synchronous couplings, this won't change our result.

Remark. As announced previously, we can make two improvements for this strategy in the case of SU(2).

• Considering A t mod (2π) instead of a value in R, we can suppose that A t stays in ] -2π, 2π]. The idea is to take κ small enough such that fixed-distance coupling is stopped when W σ ∈ {-(κ -ǫ); κ -ǫ} with a non zero probability to reach one or another of these bounds. Then there will be less time spent in fixed-distance coupling than in theorem (5.1). To be more precise, for n ≥ 0, there exists (V σ ) σ a Brownian motion starting at 0 such that:

σ r n -σ s n = inf σ sgn(W σ s n )κ + sin √ kR t s n 2 √ kR t s n V σ ∈ sgn(W σ s n )(κ -ǫ) ; sgn(W σ s n ) 4π R 2 t s n -(κ -ǫ) = inf σ | sgn(W σ s n ) sin √ kR t s n 2 √ kR t s n V σ ∈ {-ǫ; 4π R 2 t s n -2κ + ǫ} . If 4π R 2
t s n -2κ + ǫ > 0, which is the case for κ < 2 π + ǫ 2 , then the above stopping time is less than T an with a n defined as before. This way, instead of (15), we obtain:

E[exp(- n≥0 e 2K σ s n (σ r n -σ s n ))|(K σ s m ) m ] > exp    - n≥0 e K σ s n × √ kR t s n 2 sin √ kR t s n 2 × 2 √ 2ǫ    .
• In addition to decreasing the time spent in fixed-distance coupling, having bounded values for A t prevents from using synchronous coupling when R t is too close of i(M) = π. Let us explain this. During reflection coupling, W σ stays continuous and still satisfies [START_REF] Bonnefont | Couplings in L p distance of two Brownian motions and their Lévy area[END_REF]. Supposing that R t ≤ π -η for all t in [t r m , t s m+1 ], we still have [START_REF] Boscain | Invariant Carnot-Caratheodory metrics on S 3 , SO(3), SL(2), and lens spaces[END_REF]. Else, supposing that

R t > π -η for some t ∈ [t r m , t s m+1 ], we get |W σ(t) | = |At| R 2 t ≤ 2π (π-η) 2 .
Choosing η, κ and ω such that 2π (π-η) 2 < κ -ω < 2π, we obtain |W σ(t) | < κ. This is the case for κ -ω > 2 π . Note that, to keep the previous improvement, we take ω < ǫ 2 . Thus reflection coupling won't end while R t stays up to π -η. More, there will exist

tr m ∈]t r m , t s m+1 [ such that |W σ( tr m ) | = κ -ω and R t ≤ π -η for all t in [ tr m , t s m+1 ].
As before, we obtain:

σ s m+1 -σ r m > σ s m+1 -σ( tr m ) ≥ 1 M 2 4 + 4κ 2 Tm
with, Tm defined as T m but with ω instead of ǫ:

Tm := inf{ζ > 0 | B m ζ + 4κ(3 + M)ζ = ω} ∧ inf{ζ > 0 | B m ζ -4κ(3 + M)ζ = -ω}.
Thus, using ( Tm ) m instead of (T m ) m , we get again [START_REF] Cranston | Gradient estimates on manifolds using coupling[END_REF]. Following the rest of the proof of theorem (5.1), we directly obtain τ < +∞ a.s.

A Calculation of the subLaplacian on SU(2)

The aim of this appendix is to provide a proof for the expression (6) of the subLaplacian operator of SU(2) in cylindrical coordinates. Contrary to the other proofs previously mentioned, this proof is only using Lie brackets relations (4) and is easy to adapt to SL(2, R) as we will show in (B). The first step is the computation of the left invariant vectors X and Ȳ in cylindrical coordinates. In order to do that, we need to express the following expressions in cylindrical coordinates:

exp ϕ(cos(θ)X + sin(θ)Y ) exp(zZ) exp(ǫX) and exp ϕ(cos(θ)X + sin(θ)Y ) exp(zZ) exp(ǫY ).

We will then study the derivation of these coordinates in ǫ = 0.

The triplet (X, Y, Z) is a basis of the Lie Algebra su(2) satisfying (4). Thus it can be seen as a sort of direct orthonormal basis for the action of rotation [•, •] which we will denote • ∧ • as the tensor operator, in order to simplify the calculations. In the following lemmas we will deal with some basis (u, v, w) of the Lie algebra satisfying (4) that is, such that u ∧ v = w, v ∧ w = u and w ∧ u = v. We will focus on expressions of the type

exp (αu + βv + γw) exp (ǫ (α ′ u + β ′ v + γ ′ w))
for α, β, γ, α ′ , β ′ , γ ′ real numbers and ǫ real near 0.

Lemma A.1. Let (u, v, w) be a basis satisfying (4). Then we get:

exp (αu) exp (ǫβv) = exp αu + ǫ βα 2 cot α 2 v + w + O ǫ 2 . ( 21 
)
More generally we have:

exp(αu) exp(βv) = exp (β(cos (α) v + sin (α) w)) exp (αu) . (22) 
and

ψ (-ad αu ) (t) = t + ρ (Re (ψ(iα)) -1) v -ρIm (ψ(iα)) w = t + ρ α 2 cot α 2 -1 v + ρ α 2 w.
Remark. Note that the two lemmas stay true if the coefficients α and β are complex.

Now we can find the expressions of the invariant vectors on SU(2) in cylindrical coordinates. We take (ϕ, θ, z) some cylindrical coordinates of an element of SU(2). We will denote x = ϕ cos(θ) and y = ϕ sin(θ). We look for the cylindrical coordinates of exp(xX + yY ) exp(zZ) exp(ǫ(aX + bY )), with a,b ∈ R and ǫ small. • In cylindrical coordinates we can write:

exp ((x + ǫC) X + (y + ǫD) Y + ǫEZ) = exp (x(ǫ)X + y(ǫ)Y ) exp (ǫγ(ǫ)Z) .

We use the first equality of lemma A.1 with u = x(ǫ)X+y(ǫ)Y ϕ(ǫ)

, α = ϕ(ǫ) = x(ǫ) 2 + y(ǫ) 2 , v = Z and β = γ(ǫ). We also have w = y(ǫ)X-x(ǫ)Y ϕ(ǫ)

. Then we obtain: Thus we take x(ǫ), y(ǫ) and γ(ǫ) such that: Now note that tan (θ(ǫ)) = y(ǫ) x(ǫ) . Thus θ ′ (ǫ) cos 2 (θ(ǫ)) = y ′ (ǫ)x(ǫ)-x ′ (ǫ)y(ǫ)

               x + ǫC = x(ǫ) + ǫ γ(ǫ) 2 
x(ǫ) 2 and θ ′ (0) = cos 2 (θ) y ′ (0)x-x ′ (0)y r 2 cos 2 (θ)

= y ′ (0)x-x ′ (0)y r 2

. Using (24a) and then (24b), we get:

x ′ (0) = C - γ(0) 2 y(0) = C - ρ 2 tan( ϕ 2 )y y ′ (0) = D + γ(0) 2 x(0) = D + ρ 2 tan( ϕ 2 )x. 
We obtain: We can now calculate the subLaplacian operator L = 1 2 X2 + Ȳ 2 (also made in [START_REF] Bonnefont | Functional inequalities for subelliptic heat kernels[END_REF]). B Calculation of the subLaplacian on SL(2, R)

θ ′ (0) = D + ρ 2 tan ϕ 2 x x -C -
We now consider the case of SL(2, R). In this case, (X, Y, Z) are satisfying [START_REF] Banerjee | Coupling in the Heisenberg group and its applications to gradient estimates[END_REF]. In order to use our previous results, we define ( X, Ỹ , Z) := (iX, iY, -Z). This way we get ( X, Ỹ , Z) a basis of su(2) satisfying (4). We have to study exp (xX + yY ) exp (zZ) exp (ǫ (aX + bY ))

= exp -ix X -iy Ỹ exp -z Z exp ǫ -ia X -ib Ỹ .

In the previous part, as said in the note concerning the two lemmas, the calculation can be made using complex coefficients. Then we obtain: As before, we can calculate the subLaplacian operator 

L = 1 2 ( X2 + Ȳ 2 ) = ∂ 2 ϕ,

R 2 t 2 t 2 t 3 . 2 t 2 t

 222322 starting at 0 takes the value κ; 2. While the process |At| R , starting at κ, satisfy |At| R > κ -ǫ we use fixed-distance coupling; While the process |At| R , starting at κ -ǫ, satisfy |At| R < κ we use reflection coupling.

S 0 e 2 t

 02 2Kσ dσ = τ 0 4e 2log(Rt) dt R = 4τ ′ ,this is the same as showing that S 0 e 2Kσ dσ < +∞ a.s.

  m+1 -σ r m ). The quantities σ s m+1 -σ r m are the first exit times of the open ] -κ, κ[ during reflection times ([σ r m , σ s m+1 ]

•-1 2 cot ϕ 2 ,+ 1 2 cot ϕ 2 , E = ρ ϕ 2 .

 222 First, we use Lemma A.1 with u = Z, v = aX+bY r , α = z, β = r and r = √ a 2 + b 2 . Note that w = -bX+aY r . we get: exp(zZ) exp(ǫ(aX + bY )) = exp(ǫr(cos(z)v + sin(z)w)) exp(zZ) = exp(ǫ(cos(z)(aX + bY) + sin(z)(-bX + aY ))) exp(zZ) = exp(ǫ(A(z)X + B(z)Y )) exp(zZ) with A(z) = a cos(z) -b sin(z) and B(z) = a sin(z) + b cos(z).If x = y = 0, we obtain the wanted expression in cylindrical coordinates. For what will follow, we will suppose that (x, y) = (0, 0). We recall that ϕ = x 2 + y 2 .• To obtain the expression of exp(xX + yY) exp(ǫ(A(z)X + B(z)Y )) in cylindrical coordinates, we use Lemma A.2 with u = xX+yY ϕ , α = ϕ and t = A(z)X + B(z)Y . We have u ∧ t = xB(z)-yA(z) ϕ Z thus we take w = Z and ρ = xB(z)-yA(z) ϕ . Taking v = w ∧ u = -yX+xY ϕ , we obtain a basis (u, v, w) satisfying (4). We get: exp (xX + yY ) exp (ǫ (A(z)X + B(z)Y )) = exp xX + yY + ǫ A(z)X + B(z)Y + (x + ǫC) X + (y + ǫD) Y + ǫE • Z) with C = A(z) + ρy 1 ϕ D = B(z) + xρ -1 ϕ

  exp (x(ǫ)X + y(ǫ)Y ) exp (ǫγ(ǫ)Z) = exp x(ǫ)X + y(ǫ)Y + ǫ γ(ǫ)ϕ(ǫ)

  that x(0) = x, y(0) = y and ϕ(0) = ϕ. Finally we get:exp (xX + yY ) exp (zZ) exp (ǫ(aX + bY )) = exp (x(ǫ)X + y(ǫ)Y ) exp (ǫγ(ǫ)Z) exp (zZ) + O(ǫ 2 ) = exp (x(ǫ)X + y(ǫ)Y ) exp (z(ǫ)Z) + O(ǫ 2 ) with z(ǫ) = z + ǫγ(ǫ) = exp (ϕ(ǫ)(cos(θ(ǫ))X + sin(θ(ǫ))Y ) exp (z(ǫ)Z) + O(ǫ 2 ).• To obtain the values of the left invariant vector, we now have to study θ ′ (0), ϕ ′ (0) and z ′ (0). Using (24c), we directly have z′ (0) = γ(0) = 2 ϕ tan ϕ 2 E = ρ × tan ϕ 2 with ρ = xB(z) -yA(z) ϕ = cos(θ)B(z) -sin(θ)A(z) = cos(θ) (a sin(z) + b cos(z)) -sin(θ) (a cos(z) -b sin(z)) = a (cos(θ) sin(z) -sin(θ) cos(z)) + b (cos(θ) cos(z) + sin(θ) sin(z)) = a sin(z -θ) + b cos(z -θ). Thus z ′ (0) = tan ϕ 2 (a sin(z -θ) + b cos(z -θ)).Then, summing the squares of (24a) and (24b), we get ϕ(ǫ) 2 = x(ǫ) 2 + y(ǫ) 2 = x 2 + y 2 + 2ǫ (xC + yD) + O(ǫ 2 ), hence 2ϕ(0)ϕ ′ (0) = 2 (xC + yD) and ϕ ′ (0) = xC + yD ϕ = cos(θ)C + sin(θ)D = cos(θ) A(z) (θ) -x sin(θ)) = cos(θ)A(z) + sin(θ)B(z) = cos(θ) (a cos(z) -b sin(z)) + sin(θ) (a sin(z) + b cos(z)) = a cos(θ -z) + b sin(θ -z).

ρ 2 tan ϕ 2 y y ϕ 2 =-Cy ϕ 2 + ρ 2 tan ϕ 2 =+ ρ 2 tan ϕ 2 .ϕ 2 =ρ 2 cot ϕ 2 + tan ϕ 2 = 2 cot ϕ 2 + tan ϕ 2 .•

 22222222 Dx D cos(θ) -C sin(θ) ϕWe have:D cos(θ) -C sin(θ) = cos(θ) B(z) + xρcos(θ)B(z) -sin(θ)A(z) + ρa sin(z-θ)+b cos(z-θ) Finally, taking (a, b) = (1, 0), we get X =

i coth ϕ 2 -i tanh ϕ 2 =

 22 exp(xX + yY ) exp(zZ) exp(ǫ(aX + bY ))= exp ϕ(ǫ) cos (θ(ǫ)) X + sin (θ(ǫ)) Ỹ exp z(ǫ) Z + O(ǫ 2 ) = exp iϕ(ǫ) cos (θ(ǫ)) X + sin (θ(ǫ)) Ỹ exp -z(ǫ) Z + O(ǫ 2 ), with ϕ(0) = -iϕ, θ(0) = θ and z(0) = -z.We get:d dǫ (iϕ(ǫ)) |ǫ=0 = iϕ ′ (0) = i (-ia cos(θ -(-z)) -ib sin(θ -(-z))) = a cos(θ+z)+b sin(θ+z); d dǫ (-z(ǫ)) |ǫ=0 = -z ′ (0) = -tan -iϕ 2 (-ia sin(-z -θ) -ib cos(-z -θ)) = -tanh ϕ2(a sin(z + θ) -b cos(θ + z)) ; θ ′ (0) = -ia sin(-z -θ) -ib cos(θ -(-z)-a sin(z + θ) + b cos(θ + z) 2 -a sin(z + θ) + b cos(θ + z)

  Brownian motion on S 2 (resp. H 2 ), to define a coupling on this Lie group, we only need to define a coupling on S 2 (resp. H 2 ). Note that, in the case of the Heisenberg group we have the same remark but considering a Brownian motion on R

And, for Brownian motions on SL(2, R), we get d cc (B x t , B y t ) ∼ ρ(Π 2 (B x t ), Π 2 (B y t )) + | Ãt | with Ãt ≡ z y t -z x t +sign(θ x t -θ y t )A t mod (4π) and A t the area of the hyperbolic triangle of vertices Π 2 (B x t ), Π 2 (B y t ) and N. As before the quantity z y t -z x t +sign(θ x t -θ y t )A t is equal up to a constant to the signed area delimited by the paths s → p(B x s ), s ≤ t, s → Π 2 (B y s ), s ≤ t and the geodesics joining Π 2 (x) to Π 2 (y) and Π 2 (B x t ) to Π 2 (B y t ) respectively. 4 Couplings on manifolds of constant curvature k and variation of the swept area Our aim, now, is to use these results to find a good way to define couplings of Brownian motions on SU(2) and SL(2, R). As the Brownian motion on SU(2) (resp. SL(2, R)) is entirely determined by a 2 . Thus we are going to describe a coupling model on manifolds of dimension 2 with constant curvature k, having, for k = 1, coupling on S 2 , for k = -1, coupling on H 2 and even, for k = 0, coupling on R 2 .

  )e 1 (s, t) + ∂ s j 2 (s, t)e 2 (s, t) and ∇ s ∇ s J(s, t) = ∂ 2 ss j 1 (s, t)e 1 (s, t) + ∂ 2 ss j 2 (s, t)e 2 (s, t).

  we have R t non nul and W σ well defined on [S 1 , S 2 ] such that |W σ s n | = κ and |W σ r n | = κ -ǫ. As (σ s n ) n and (σ r n ) n converge to the same limit, this leads to a contradiction concerning the two previous equalities as |W | is continuous.

	n≥0 (t s n+1 -t r n ) < +∞ a.s. Note that:						
	0	S	N (ǫ) (σ)e 2Kσ dσ =	n≥0	σ s n+1 σ r n	e 2Kσ dσ =	n≥0	σ s n+1 σ r n	R 2 t dσ =	n≥0	t s n+1 n t r	4dt
			= 4	n≥0	(t s n+1 -t r n ).					
	Thus we have a countable number of changes of type of coupling. Using the previous
	notations, let us denote [σ s n , σ r n [ the interval during which N (ǫ) (σ) = 0 and [σ r n , σ s n+1 [ the interval during wich N (ǫ) (σ) = 1. The same way we denote t s n and t r n such that σ(t s n ) = σ s n and σ(t r n ) = σ r n . As seen before, R is constant on intervals [t s n , t r n [ and acting as a two times Brownian motion with negative drift out of these intervals. As the time needed to exit a bounded
	open interval for a real Brownian motion with negative drift is a.s. finite, we have

  Thus, conditional on K σ s n , σ r n -σ s n has the same law than T an the hitting time of a n =

	Brownian motion starting from 0. √ sin √ kR t s n 2 n kR t s	ǫ by a real Brownian motion starting
	at 0. Then the Laplace transform gives:			
	E[exp(-µT an )] = exp(-a n 2µ) ∀µ > 0 and E[exp (-µ(σ r n -σ s n )) |K σ s n ] = exp(-√ sin	kR t s n 2 √ kR t s n	ǫ 2µ).
			sin	√	s n kR t s n 2	sign(W σ s n )ǫ .
	Moreover, on [σ s n , σ r n ] and conditional on K σ s n ,	sin	√ √ kR t s n kR t s n 2	(W σ+σ s n -W σ s n ) σ is a real

  We define a new time change: ζ m (σ) :=

	σ 0 dW s+σ r m • dW s+σ r m . As R t is upper-bounded by i(M) -η, there exists 0 < M a constant such that tan √ kR t 2 √ 2 kR t < M and √ kRt 2 tan √ kRt 2 < M. Thus,
	σ 4	≤ ζ m (σ) ≤	M 2 4	+ 4κ 2 σ and	Drif t(dW σ ) dζ m (σ)	≤ 4κ(M + 3)

  It remains to notice that a.s., for all n, we have 0 <

											√	kR t s n 2	< π 2 . Thus:
	sin	√	kR t s n 2 √ kR t s n 2	≤	π 2	and	n≥M	sin	√	kR t s n 2 √ kR t s n 2	e K σ s n ≤	π 2	n≥M	(e -c 0 4 ) n < +∞.
	Finally we get:				√	kR t s n					
						n≥0	sin	2 √ kR t s n 2				

e K σ s

n < +∞ a.s.

  X2 = cos(θ -z)∂ ϕ cos(θ -z)∂

									ϕ +	1 2	sin(z -θ) cot	ϕ 2	+ tan	ϕ 2	∂ θ
						+ tan	ϕ 2	sin(z -θ)∂ z
	+	1 2	sin(z -θ) cot		ϕ 2	+ tan	ϕ 2	∂ θ cos(θ -z)∂ ϕ +	1 2	sin(z -θ) cot	ϕ 2
						+ tan	ϕ 2	∂ θ + tan	ϕ 2	sin(z -θ)∂ z
	+ tan	ϕ 2	sin(z -θ)∂ z cos(θ -z)∂ ϕ +	1 2	sin(z -θ) cot	ϕ 2	+ tan	ϕ 2	∂ θ
						+ tan	ϕ 2	sin(z -θ)∂ z
	and									
	Ȳ 2 = sin(θ -z)∂ ϕ sin(θ -z)∂ ϕ +	1 2	cos(θ -z) cot	ϕ 2	+ tan	ϕ 2	∂ θ +
						+ tan	ϕ 2	cos(z -θ)∂ z
	+	1 2	cos(θ -z) cot		ϕ 2	+ tan	ϕ 2	∂ θ sin(θ -z)∂ ϕ +	1 2	cos(θ -z) cot	ϕ 2
						+ tan	ϕ 2	∂ θ + tan	ϕ 2	cos(z -θ)∂ z
	+ tan	ϕ 2	cos(z -θ)∂ z sin(θ -z)∂ ϕ +	1 2	cos(θ -z) cot	ϕ 2	+ tan	ϕ 2	∂ θ
						+ tan	ϕ 2	cos(z -θ)∂ z .
	We obtain:							
	X2 + Ȳ 2 = ∂ 2 ϕ,ϕ + + 1 2 cot = ∂ 2 ϕ,ϕ +	1 4 sin 2 (ϕ) cot ϕ 2 -tan ϕ 2 1 ∂ 2 θ,θ + tan 2 ϕ + tan ϕ 2 ϕ 2 ∂ ϕ + tan 2 ϕ 2 ∂ 2 θ,θ + 1 + tan 2 ϕ 2 ∂ 2 z,z 2 2 ∂ 2 z,z + 1 2 cos 2 ϕ ∂ 2 θ,z + cot(ϕ)∂ ϕ . ∂ 2 θ,z

Here the author uses Euler angle parametrisation which is quite similar from the one with cylindrical coordinates.

Proof. Let us deal with [START_REF] Falbel | Sub-Riemannian homogeneous spaces in dimensions 3 and 4[END_REF]. Using the Campbell Hausdorff formula we have exp(αu) exp(ǫβv) = exp (αu + ǫβψ(-ad αu )(v)) + O(ǫ 2 )

So we obtain:

To obtain the announced equality, we just need to note that:

Notice that exp(A) exp(B) exp(-A) = exp (Ad (exp(A)) (B)) = exp e ad A (B) for any matrix A, B with real or complex coefficients. Thus: exp(αu) exp(βv) = exp(αu) exp(βv) exp(-αu) exp(αu)

= exp e adαu (βv) exp(αu).

We finally obtain [START_REF] Hsu | Maximal coupling of Euclidean Brownian motions[END_REF] as:

Lemma A.2. Let (u, v, w) be a basis of our Lie algebra satisfying (4) and t such that u ∧ t = ρw; ρ = 0. Then we get:

Proof. We use exactly the same strategy as for the previous case using the Campbell Hausdorff formula. This time we have: ad (αu) (t) = αu ∧ t = αρw; ad

(αu) (t) = -α 2 ρv; ad