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Couplings of Brownian motions on SU(2,C) and SL(2,R)

Magalie Bénéfice

Univ. Bordeaux, CNRS, Bordeaux INP, IMB, UMR 5251, F-33400 Talence, France

Abstract

In the subRiemannian manifolds SU(2,C) (resp. SL(2,R)), the choice of cylindrical coordinates gives
an interesting interpretation of the Brownian motion as a Brownian motion on the sphere (resp. the
hyperbolic plane) together with its swept area. After a detailed account of this geometrical interpretation,
we use Itô depiction of processes in a moving frame to present models of co-adapted couplings of these
Brownian motions. In particular we propose a successful co-adapted coupling on SU(2,C) inspiring
ourselves with previous works on the Heisenberg group.

1 Introduction

The notion of coupling has been quite developed these last decades, first for Markov chains, then for Markov
processes (see [13] for a general introduction). We begin with reminding the definition of coupling.

Definition 1.1. Let us consider µ and ν two probability laws on M ×M . We call coupling of µ and ν any
measure π such that µ is its first marginal distribution and ν its second one.

In particular, coupling two Brownian motions (Bt)t and (B′
t)t consists in coupling their laws. The coupling

of Brownian motions has been studied on Rn [11] and also on Riemannian manifolds (see [14]). In the
two previous citations, the authors focus in particular on co-adapted couplings, which are couplings where
Brownian motions are adapted to the same filtration and which are often quite easy to construct. Couplings
can lead to some analysis results involving the heat semi-group just like Poincaré or Sobolev inequalities [12,
5]. In particular, there is a big interest in constructing successful couplings, that is couplings defined such
that the first meeting time (or "coupling time") τ := inf{t > 0|Bt = B′

t} of the Brownian motions is almost
surely finite. A first motivation in the study of successful couplings is the study of the total variation distance
between the laws of the Brownian motions:

dTV (L(Bt),L(B′
t)) := sup

A measurable

{P(Bt ∈ A)− P(B′
t ∈ A)}.

We can obtain good estimates of this distance studying the rate of convergence of the coupling P(τ > t) and
the following inequality:

Proposition 1.1 (Aldous’ Inequality). Let t > 0. Considering (Bs,B
′
s)s a coupling of Brownian motions,

we get:
P(τ > t) ≥ dTV (L(Bt),L(B′

t)).

An other motivation is the study of harmonic functions. As an example, classical Liouville theorem says
that every harmonic bounded function on R2 is constant. Wang proved in [15], the following result:

Theorem 1.2. Let M be a Riemannian manifold with Ricci curvature bounded below. There exists a
successful coupling if and only if all harmonic bounded function on M are constant.
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Our goal is to focus on the coupling of Brownian motions on subRiemannian manifolds. We first recall
quickly the meaning of this structure.

Let M be a smooth connected Riemannian manifold of dimension N and n ≤ N an integer. For each
x ∈M , we define a vector subspace Hx of dimension n of TxM , the tangent space in x . This way we define
a subspace of the tangent space TM denoted by H and called horizontal space. We can then define the
horizontal curves, that is the smooth curves γ : I ⊂ R → M such that γ̇(t) ∈ Hγ(t): the horizontal curves
are "moving" only with directions in H. Defining a scalar product 〈·, ·〉Hx

on Hx for all x ∈ M , we obtain
the length L(γ) of the horizontal curve γ:

L(γ) :=

∫

I

√

〈γ̇(t), γ̇(t)〉Hγ(t)
dt.

The Carnot-Caratheodory distance between x and y ∈M is finally defined by:

dcc(x, y) = inf{L(γ) | γ horizontal curve between x and y}.

Let us suppose that the horizontal space satisfies Hörmander condition, that is, provided (X1, ..., Xn) a
local basis of vector fields in H, the tangent space TM is spanned by the vectors along with all their
commutators (obtained by operation with Lie brackets). Then the Carnot Caratheodory distance is finite
and the subRiemannian structure is well defined. In the case of stratified Lie groups, we can choose some
globally defined and left-invariant vector fields that we will denote X̄1, ..., X̄n. Then we can introduce the
subLaplacian operator:

L :=
1

2

n
∑

1

X̄i
2
.

Given this operator, we can define the Brownian motion on these Lie groups as the Markov process Bt with
infinitesimal generator L. This is the case for the Heisenberg group H. In that particular case, the Brownian
motion is usually described as a Brownian motion on R2 together with its Levy area, that is the area swept
by the path of the Brownian motion on R2. Thanks to this description, the problem is reduced to a study
of couplings on the Euclidean case. Kendall [9] have constructed some successful co-adapted coupling on H.
Banerjee, Gordina and Mariano [1] proposed an other successful coupling on H but not co-adapted. More
generally, Bonnefont and Juillet [5] proved that co-adapted couplings do not stay at bounded distance on H.
In this paper we deal with couplings in two other Lie groups with subRiemannian structure: SU(2,C) and
SL(2,R).

In the case of SU(2,C), we can define a submersion Π1 induced by the Hopf fibration from SU(2,C) to the
sphere S2. Similarly, we can define a submersion Π2 from SL(2,R) to the hyperbolic plane H

2. Using some
good coordinate system called cylindrical coordinates, we can bring back the study of Brownian motions on
these subRiemannian manifold to the study of processes on Riemannian manifolds:

Theorem 1.3. The Brownian motion Bt on SU(2,C) (resp. SL(2,R)) can be described by Π1(Bt) (resp.
Π2(Bt)) a Brownian motion on the sphere S2 (resp. on the hyperbolic plane H

2) together with its swept area
up to a sign and modulo 4π.

While this is explained in [3], we give a different way to prove this result in the second section of this
article. We also add a geometric interpretation of the distance between two Brownian motions as it is useful
in the study of couplings:

Proposition 1.4. Let us take Bx
t and B

y
t two Brownian motions on SU(2,C) (resp. SL(2,R)) starting

from x and y respectively. We define At the signed swept area, up to a constant, between the two paths
(Π1(B

x
s ))s≤t and (Π1(B

y
s ))s≤t (resp. (Π2(B

x
s ))s≤t and (Π2(B

y
s))s≤t). We denote Ãt ∈] − 2π, 2π] such that

Ãt ≡ At mod (4π). We also denote by Rt the distance between Π1(B
x
t ) and Π1(B

y
t ) (resp. Π2(B

x
t ) and

Π2(B
y
t )). Then we have the following equivalence:

d2cc(B
x
t ,B

y
t ) ∼ R2

t + |Ãt|
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In the third section, we describe (Xt, Yt), a coupling of Brownian motions on S2 (respectively on H
2),

using Itô depiction of diffusion processes in some good frames (eX1 , e
X
2 ) and (eY1 , e

Y
2 ) along X and Y respec-

tively:
d∇Xt = dU1(t)e

X
1 (t) + dU2(t)e

X
2 (t) and d∇Yt = dV1(t)e

Y
1 (t) + dV2(t)e

Y
2 (t) (1)

with (U1(t), U2(t)) and (V1(t), V2(t)) some Brownian motions in R2 adapted to a common filtration. This
description can be generalised to every Riemannian manifold M of constant curvature k with dimension
2. With this description and using calculation involving covariant derivatives we obtain general stochastic
equations for Rt and At:

Proposition 1.5. Let (Xt, Yt) be a coupling of Brownian motion defined by (1) on I, a closed interval of
R+. We suppose that 0 < Rt < i(M) for all t except maybe at the ends of I, i(M) being the injectivity radius
of M . We get

dRt = dV1(t)− dU1(t) +
√
k cot(

√
kRt)dt−

√
k

sin(
√
kRt)

dU2(t) · dV2(t)

and

dAt =
tan(

√
kRt

2 )√
k

(dU2(t) + dV2(t)) +
1

2 cos2(
√
kRt

2 )
(dU2 · dV1(t)− dV2(t) · dU1(t))

with dUi(t) · dVj(t) denoting the derivative of the joint quadratic variation of Ui and Vj. Moreover we have:

dRt · dAt =
1√
k
tan

(√
kRt

2

)

(dV1(t) · dU2(t)− dU1(t) · dV2(t)) .

Using these formula, we describe a general way to define co-adapted couplings. We give some examples
and, in particular, we describe a reflection coupling as well as a coupling keeping the Brownian motions at
constant distance.

In the last section we study successful couplings. In fact, it is evident that there is no such coupling in
the case of SL(2,R): because there exists some non constant but bounded harmonic functions on H2, using
Theorem (1.2) we can say that there is no successful coupling of Brownian motions on the hyperbolic plane,
and so neither on SL(2,R). In the case of SU(2,C), using the couplings of section 3, we prove that we can
generalise to SU(2,C) the co-adapted coupling found on the Heisenberg group by Kendall in [9] to obtain a
successful coupling:

Theorem 1.6. There exists a co-adapted successful coupling in SU(2).

2 A definition of the Brownian motion in SU(2,C) and SL(2,R)

Here, the first subsection deals with the definition and basic properties of the considered Lie groups along
with the definitions of the cylindrical coordinates. The second and third subsection contain the calculus of
the subLaplacian in the cylindrical coordinates. Finally the last subsections deal with the proofs of Theorem
(1.3) and Proposition (1.4).

2.1 Definition of SU(2,C) and SL(2,R)

Let us recall the definition of the two Lie groups we are studying and present the cylindrical coordinates.

• The SU(2,C) group, that we will below simply denote SU(2), is the group of the unitary two dimen-
sional matrices with complex coefficients and with determinant 1. Its group law is the one induced by
the multiplication of matrices. Considering the manifold structure induced by the usual topology on
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the matrices group and, as the application
{

SU(2)× SU(2) → SU(2)
(A,B) 7→ A−1 · B is smooth, SU(2) is a Lie

group. Note that we have:

SU(2) =
{

(

z1 z2
−z̄2 z̄1

)

, z1, z2 ∈ C, |z1|2 + |z2|2 = 1
}

=
{

(

cos(η)eiθ1 sin(η)eiθ2

− sin(η)e−iθ2 cos(η)e−iθ1

)

, η ∈
[

0,
π

2

]

, θ1, θ2 ∈ [0, 2π]
}

.

The associated Lie algebra is su(2) = {M ∈ M2(C), exp(tM) ∈ SU(2) ∀t > 0} constituted by the
skew-adjoint two dimensional matrices with complex coefficients and trace 0. It is also the tangent
space of SU(2) at point I2. A basis of this algebra can be constituted by the Pauli matrices. We will
use these Pauli matrices up to the multiplicative coefficient 1

2 , we denote:

X =
1

2

(

0 1
−1 0

)

, Y =
1

2

(

0 i
i 0

)

and Z =
1

2

(

i 0
0 −i

)

.

Then (X,Y, Z) is a basis of su(2) and, thanks to the multiplicative coefficient, it also satisfies:

[X,Y ] = Z , [Y, Z] = X and [Z,X ] = Y. (2)

This last property will be useful in the following sections.
It is important to notice that all matrices in SU(2) can be written on the form:

exp(ϕ(cos(θ)X + sin(θ)Y )) exp(zZ) =

(

cos
(

ϕ
2

)

ei
z
2 ei(θ−

z
2 ) sin

(

ϕ
2

)

−e−i(θ− z
2 ) sin

(

ϕ
2

)

cos
(

ϕ
2

)

e−i z2

)

(this result is trivial taking ϕ = 2η, z = 2θ1 and θ ≡ θ2 − θ1 mod (2π)). Thus, we have described a
system of coordinates (ϕ, θ, z) of SU(2) with ϕ ∈ [0, π], z ∈]− 2π, 2π] and θ ∈ [0, 2π[ called cylindrical
coordinates. We can also consider the coordinate system induced by exp(xX + yY ) exp(zZ) with
(x, y) ∈ R2, z ∈]− 2π, 2π].
Let us remark that the cylindrical coordinates are a good way to observe the link between the sphere S2

and SU(2). Indeed, as there is a trivial diffeormophism between SU(2) and S3, using the Hopf fibration,
we can define a submersion from SU(2) to S2. For example, we can define it using quaternions.

For

(

z1 z2
−z̄2 z̄1

)

∈ SU(2), with z1 = x1 + iy1 and z2 = x2 + iy2, we define a unique quarternion

q = x1 + x2i+ y2j + y1k. Denoting p = k the north pole in S3, we define:

Π1 : SU(2) → S2

q 7→ qpq∗ = 2(x1y2 + x2y1)i+ 2(y1y2 − x1x2)j + (x21 − x22 − y22 + y21)k
.

We can show ([3]) that Π1 define a submersion. Using the cylindrical coordinates (ϕ, θ, z) for q, we
obtain:

Π1(q) = sin(ϕ) sin(θ)i − sin(ϕ) cos(θ)j + cos(ϕ)k.

Thus Π1 sends every element of SU(2) described by the cylindrical coordinates (ϕ, θ, z) on the point
of S2 described by the spherical coordinates (ϕ, θ). Moreover the fiber over (ϕ, θ) of this projection is
described by {(ϕ, θ, z), z ∈]− 2π, 2π]}.

• We now deal with the SL(2,R) group, simply denoted SL(2) afterward. That is the group of two
dimensional matrices with real coefficients and with determinant 1, for the group law induced by the
multiplication. As for SU(2) this is a Lie group with the topology on the matrices groups. The asso-
ciated Lie algebra, denoted sl(2), is constituted by the two dimensional matrices with real coefficients
and trace 0. It is also the tangent space of SL(2) at point I2. The following matrices, using the same
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notation as for SU(2), form a basis of sl(2): X = 1
2

(

1 0
0 −1

)

, Y = 1
2

(

0 −1
−1 0

)

and Z = 1
2

(

0 −1
1 0

)

.

This time, the relation induced by the Lie brackets are:

[X,Y ] = Z , [Y, Z] = −X and [Z,X ] = −Y. (3)

As before, we can proove that every element of SL(2) can be written on the form :

exp(ϕ( cos(θ)X + sin(θ)Y )) exp(zZ) =
(

cosh
(

ϕ
2

)

cos
(

z
2

)

+ sinh
(

ϕ
2

)

cos
(

θ + z
2

)

− cosh
(

ϕ
2

)

sin
(

z
2

)

− sinh
(

ϕ
2

)

sin
(

θ + z
2

)

cosh
(

ϕ
2

)

sin
(

z
2

)

− sinh
(

ϕ
2

)

sin
(

θ + z
2

)

cosh
(

ϕ
2

)

cos
(

z
2

)

− sinh
(

ϕ
2

)

cos
(

θ + z
2

)

)

with (x, y) ∈ R
2, z ∈]− 2π, 2π], ϕ > 0 and θ ∈ [0, 2π[ as seen in [6] for example. We can thus define as

well a system of cylindrical coordinates on SL(2).
Similarly to SU(2), we can define a submersion from SL(2) to H2, the Poincaré upper half-plane,
defining:

Π2 : SL(2) → H2

M =

(

a b
c d

)

7→ ai+ b

ci+ d

.

As before Π2 define a submersion and, using the cylindrical coordinates (ϕ, θ, z) for M , we get:

Π2(M) =
i− sinh(ϕ) sin(θ)

cosh(ϕ)− sinh(ϕ)cos(θ)
.

With the help of the Cartesian formula of the hyperbolic metric and trigonometric relations, we obtain
that Π1(M) is described by the polar coordinates (ϕ, θ) relative to the pole i. Thus the fiber over (ϕ, θ)
of this projection is given by {(ϕ, θ, z), z ∈]− 2π, 2π]}.

For the two cases we denote X̄, Ȳ and Z̄ the left-invariant vector fields associated to X , Y , Z, that is the
vector fields induced by:

∂

∂ǫ |ǫ=0

(

exp
(

ϕ(cos(θ)X + sin(θ)Y )
)

exp(zZ) exp(ǫM)
)

for M = X,Y, Z.

We can then provide a subRiemannian structure to SU(2) (respectively SL(2)) considering H = V ect〈X̄, Ȳ 〉
as the horizontal plane and the associated Carnot-Caratheodory distance dcc. The subLaplacian operator
is then given by L = X̄2 + Ȳ 2. Note that, as the considered vector fields are chosen left invariant, the
subRiemannian structure is in fact only determined by the horizontal plane at point I2, HI2 = V ect〈X,Y 〉.
It has been proven by Baudoin and Bonnefont in [2, 4, 3], that d2cc(0, (ϕ, θ, z)) is equivalent to ϕ2+ |z| noting
(ϕ, θ, z) an element of SU(2) (respectively SL(2)) in cylindrical coordinates.

2.2 Calculation of the subLaplacian on SU(2)

To obtain the left invariant vectors X̄ and Ȳ , we have to express in cylindrical coordinates:

exp
(

ϕ(cos(θ)X + sin(θ)Y )
)

exp(zZ) exp(ǫX) and exp
(

ϕ(cos(θ)X + sin(θ)Y )
)

exp(zZ) exp(ǫY ).

We will then study the derivation of these coordinates in ǫ = 0. We first deal with SU(2). In [3], calculations
are made directly using matrices. Here we propose another way only using the Lie brackets relations (2) and
easy to adapt to SL(2).

The triplet (X,Y, Z) is a basis of the Lie Algebra su(2) satisfying (2). Thus it can be seen as a sort of
direct orthonormal basis for the action of rotation [·, ·] which we will denote · ∧ · as the tensor operator, in
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order to simplify the calculations. In the following lemmas we will deal with some basis (u, v, w) of the Lie
algebra satisfying (2) that is, such that u∧ v = w, v ∧w = u and w ∧ u = v. We will focus on expressions of
the type

exp (αu+ βv + γw) exp (ǫ (α′u+ β′v + γ′w))

for α, β, γ, α′, β′, γ′ real numbers and ǫ real near 0.

Lemma 2.1. Let (u, v, w) be a basis satisfying (2). Then we get:

exp (αu) exp (ǫβv) = exp

(

αu+ ǫ
βα

2

(

cot
(α

2

)

v + w
)

)

+O
(

ǫ2
)

. (4)

More generally we have:

exp(αu) exp(βv) = exp (β(cos (α) v + sin (α)w)) exp (αu) . (5)

Proof. Let us deal with (4). Using the Campbell Hausdorff formula we have

exp(αu) exp(ǫβv) = exp (αu + ǫβψ(−adαu)(v)) +O(ǫ2)

with ψ(z) = z
ez−1 =

∑

n≥0

Bn

n! z
n, Bn denoting the Bernoulli coefficients.

We have: ad(αu)(v) = αu ∧ v = αw and ad(2)
(αu)(v) = α2u ∧w = −α2v.

So we obtain:

ad(k)
(αu)(v) =

{

(−1)nα2nv if k = 2n, n ≥ 0;
(−1)nα2n+1w if k = 2n+ 1, n ≥ 0.

Thus:

ψ
(

−ad(αu)

)

=
∑

n≥0

B2n

(2n)!
(−1)nα2nv −

∑

n≥0

B2n+1

(2n+ 1)!
(−1)nα2n+1w = Re (ψ(iα)) v − Im (ψ(iα))w.

To obtain the announced equality, we just need to note that:

ψ(iα) =
iα

eiα − 1
=

iαe−iα2

ei
α
2 − e−iα2

=
αe−iα2

2 sin(α2 )
=
α

2

(

cot
(α

2

)

− i
)

.

Notice that exp(A) exp(B) exp(−A) = exp (Ad (exp(A)) (B)) = exp
(

eadA(B)
)

for any matrix A, B with

real or complex coefficients. Thus:

exp(αu) exp(βv) = exp(αu) exp(βv) exp(−αu) exp(αu)

= exp
(

eadαu (βv)
)

exp(αu).

We finally obtain (5) as:

eadαu(βv) =
∑

k≥0

1

k!
ad(k)

αu (βv) = β





∑

n≥0

α2n

(2n)!
(−1)nv +

∑

n≥0

α2n+1

(2n+ 1)!
(−1)nw





= β (cos(α)v + sin(α)w) .

Lemma 2.2. Let (u, v, w) be a basis of our Lie algebra satisfying (2) and t such that u ∧ t = ρw; ρ 6= 0.
Then we get:

exp(αu) exp(ǫt) = exp
(

αu + ǫ
(

t+ ρ
(

−v + α

2
cot
(α

2

)

v +
α

2
w
)))

+O(ǫ2). (6)
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Proof. We use exactly the same strategy as for the previous case using the Campbell Hausdorff formula.
This time we have: ad(αu)(t) = αu ∧ t = αρw; ad(2)

(αu)(t) = −α2ρv; ad(3)
(αu)(v) = −α3ρw.

So we obtain:

ad(k)
(αu)(t) =







t if k = 0
(−1)nα2nρv if k = 2n, n ≥ 1
(−1)nα2n+1ρw if k = 2n+ 1, n ≥ 0

and

ψ (−adαu) (t) = t+ ρ (Re (ψ(iα)) − 1) v − ρIm (ψ(iα))w

= t+ ρ
(α

2
cot
(α

2

)

− 1
)

v + ρ
α

2
w.

Remark. Note that the two lemmas stay true if the coefficients α and β are complex.

Now we can find the expressions of the invariant vectors on SU(2) in cylindrical coordinates. We take
(ϕ, θ, z) some cylindrical coordinates of an element of SU(2). We will denote x = ϕ cos(θ) and y = ϕ sin(θ).
We look for the cylindrical coordinates of exp(xX + yY ) exp(zZ) exp(ǫ(aX+ bY )), with a,b ∈ R and ǫ small.

• First, we use Lemma 2.1 with u = Z, v = aX+bY
r

, α = z, β = r and r =
√
a2 + b2. Note that

w = −bX+aY
r

. we get:

exp(zZ) exp(ǫ(aX + bY )) = exp(ǫr(cos(z)v + sin(z)w)) exp(zZ)

= exp(ǫ(cos(z)(aX + bY ) + sin(z)(−bX + aY ))) exp(zZ)

= exp(ǫ(A(z)X +B(z)Y )) exp(zZ)

with A(z) = a cos(z)− b sin(z) and B(z) = a sin(z) + b cos(z).

If x = y = 0, we obtain the wanted expression in cylindrical coordinates. For what will follow, we will
suppose that (x, y) 6= (0, 0). We recall that ϕ =

√

x2 + y2.

• To obtain the expression of exp(xX + yY ) exp(ǫ(A(z)X + B(z)Y )) in cylindrical coordinates, we use
Lemma 2.2 with u = xX+yY

ϕ
, α = ϕ and t = A(z)X + B(z)Y . We have u ∧ t = xB(z)−yA(z)

ϕ
Z thus we

take w = Z and ρ = xB(z)−yA(z)
ϕ

. Taking v = w ∧ u = −yX+xY
ϕ

, we obtain a basis (u, v, w) satisfying
(2). We get:

exp (xX + yY ) exp (ǫ (A(z)X +B(z)Y )) = exp

(

xX + yY + ǫ

(

A(z)X +B(z)Y+

ρ

(

− −yX + xY

ϕ
+
ϕ

2
cot
(ϕ

2

) −yX + xY

ϕ
+
ϕ

2
Z

)))

+O(ǫ2)

= exp ((x+ ǫC)X + (y + ǫD)Y + ǫE · Z)

with C = A(z) + ρy
(

1
ϕ
− 1

2 cot
(

ϕ
2

)

)

, D = B(z) + xρ
(

− 1
ϕ
+ 1

2 cot
(

ϕ
2

)

)

, E = ρϕ
2 .

• In cylindrical coordinates we can write:

exp ((x+ ǫC)X + (y + ǫD)Y + ǫEZ) = exp (x(ǫ)X + y(ǫ)Y ) exp (ǫγ(ǫ)Z) .
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We use the first equality of lemma 2.1 with u = x(ǫ)X+y(ǫ)Y
ϕ(ǫ) , α = ϕ(ǫ) =

√

x(ǫ)2 + y(ǫ)2, v = Z and

β = γ(ǫ). We also have w = y(ǫ)X−x(ǫ)Y
ϕ(ǫ) . Then we obtain:

exp (x(ǫ)X + y(ǫ)Y ) exp (ǫγ(ǫ)Z) = exp

(

x(ǫ)X + y(ǫ)Y

+ ǫ
γ(ǫ)ϕ(ǫ)

2

(

cot

(

ϕ(ǫ)

2

)

Z +
y(ǫ)X − x(ǫ)Y

ϕ(ǫ)

))

+O(ǫ2)

= exp

((

x(ǫ) + ǫ
γ(ǫ)

2
y(ǫ)

)

X

+

(

y(ǫ)− ǫ
γ(ǫ)

2
x(ǫ)

)

Y + ǫ
γ(ǫ)ϕ(ǫ)

2
cot

(

ϕ(ǫ)

2

)

Z

)

+O(ǫ2).

Thus we take x(ǫ), y(ǫ) and γ(ǫ) such that:






























x+ ǫC = x(ǫ) + ǫ
γ(ǫ)

2
y(ǫ)

y + ǫD = y(ǫ)− ǫ
γ(ǫ)

2
x(ǫ)

E =
ϕ(ǫ)γ(ǫ)

2
cot(

ϕ(ǫ)

2
)

(7a)

(7b)

(7c)

Note that x(0) = x, y(0) = y and ϕ(0) = ϕ. Finally we get:

exp (xX + yY ) exp (zZ) exp (ǫ(aX + bY )) = exp (x(ǫ)X + y(ǫ)Y ) exp (ǫγ(ǫ)Z) exp (zZ) +O(ǫ2)

= exp (x(ǫ)X + y(ǫ)Y ) exp (z(ǫ)Z) +O(ǫ2)

with z(ǫ) = z + ǫγ(ǫ)

= exp (ϕ(ǫ)(cos(θ(ǫ))X + sin(θ(ǫ))Y ) exp (z(ǫ)Z) +O(ǫ2).

• To obtain the values of the left invariant vector, we now have to study θ′(0), ϕ′(0) and z′(0).

– Using (7c), we directly have z′(0) = γ(0) = 2
ϕ
tan

(

ϕ
2

)

E = ρ× tan
(

ϕ
2

)

with

ρ =
xB(z)− yA(z)

ϕ
= cos(θ)B(z)− sin(θ)A(z)

= cos(θ) (a sin(z) + b cos(z))− sin(θ) (a cos(z)− b sin(z))

= a (cos(θ) sin(z)− sin(θ) cos(z)) + b (cos(θ) cos(z) + sin(θ) sin(z))

= a sin(z − θ) + b cos(z − θ).

Thus z′(0) = tan
(

ϕ
2

)

(a sin(z − θ) + b cos(z − θ)).

– Then, summing the squares of (7a) and (7b), we get ϕ(ǫ)2 = x(ǫ)2 + y(ǫ)2 = x2 + y2 +
2ǫ (xC + yD) +O(ǫ2), hence 2ϕ(0)ϕ′(0) = 2 (xC + yD) and

ϕ′(0) =
xC + yD

ϕ
= cos(θ)C + sin(θ)D

= cos(θ)

(

A(z) + ρy

(

1

ϕ
− 1

2
cot
(ϕ

2

)

))

+ sin(θ)

(

B(z) + xρ

(

− 1

ϕ
+

1

2
cot
(ϕ

2

)

))

= cos(θ)A(z) + sin(θ)B(z) + ρ

(

1

ϕ
− 1

2
cot
(ϕ

2

)

)

(y cos(θ)− x sin(θ))

= cos(θ)A(z) + sin(θ)B(z)

= cos(θ) (a cos(z)− b sin(z)) + sin(θ) (a sin(z) + b cos(z))

= a cos(θ − z) + b sin(θ − z).
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– Now note that tan (θ(ǫ)) = y(ǫ)
x(ǫ) .

Thus θ′(ǫ)
cos2(θ(ǫ)) =

y′(ǫ)x(ǫ)−x′(ǫ)y(ǫ)
x(ǫ)2 and θ′(0) = cos2(θ)y

′(0)x−x′(0)y
r2 cos2(θ) = y′(0)x−x′(0)y

r2
.

Using (7a) and then (7b), we get:

x′(0) = C − γ(0)

2
y(0) = C − ρ

2
tan(

ϕ

2
)y

y′(0) = D +
γ(0)

2
x(0) = D +

ρ

2
tan(

ϕ

2
)x.

We obtain:

θ′(0) =

(

D + ρ
2 tan

(

ϕ
2

)

x
)

x−
(

C − ρ
2 tan

(

ϕ
2

)

y
)

y

ϕ2
=
Dx− Cy

ϕ2
+
ρ

2
tan

(ϕ

2

)

=
D cos(θ) − C sin(θ)

ϕ
+
ρ

2
tan

(ϕ

2

)

.

We have:

D cos(θ) − C sin(θ) = cos(θ)

(

B(z) + xρ

(

− 1

ϕ
+

1

2
cot
(ϕ

2

)

))

− sin(θ)

(

A(z) + ρy

(

1

ϕ
− 1

2
cot
(ϕ

2

)

))

= cos(θ)B(z) − sin(θ)A(z) + ρ

(

− 1

ϕ
+

1

2
cot
(ϕ

2

)

)

(x cos(θ) + y sin(θ))

= ρ+ ϕρ

(

− 1

ϕ
+

1

2
cot
(ϕ

2

)

)

=
ϕρ

2
cot
(ϕ

2

)

.

Hence: θ′(0) = ρ
2

(

cot
(

ϕ
2

)

+ tan
(

ϕ
2

))

= a sin(z−θ)+b cos(z−θ)
2

(

cot
(

ϕ
2

)

+ tan
(

ϕ
2

))

.

• Finally, taking (a, b) = (1, 0), we get X̄ =





cos(θ − z)
1
2 sin(z − θ)

(

cot
(

ϕ
2

)

+ tan
(

ϕ
2

))

tan
(

ϕ
2

)

sin(z − θ)



 and, taking (a, b) =

(0, 1), we get Ȳ =





sin(θ − z)
1
2 cos(θ − z)

(

cot
(

ϕ
2

)

+ tan
(

ϕ
2

))

tan
(

ϕ
2

)

cos(z − θ)



 .

We can now calculate the subLaplacian operator L = 1
2

(

X̄2 + Ȳ 2
)

(also made in [3]).

X̄2 = cos(θ − z)∂ϕ

[

cos(θ − z)∂ϕ +
1

2
sin(z − θ)

(

cot
(ϕ

2

)

+ tan
(ϕ

2

))

∂θ + tan
(ϕ

2

)

sin(z − θ)∂z

]

+
1

2
sin(z − θ)

(

cot
(ϕ

2

)

+ tan
(ϕ

2

))

∂θ

[

cos(θ − z)∂ϕ

+
1

2
sin(z − θ)

(

cot
(ϕ

2

)

+ tan
(ϕ

2

))

∂θ + tan
(ϕ

2

)

sin(z − θ)∂z

]

+ tan
(ϕ

2

)

sin(z − θ)∂z

[

cos(θ − z)∂ϕ +
1

2
sin(z − θ)

(

cot
(ϕ

2

)

+ tan
(ϕ

2

))

∂θ + tan
(ϕ

2

)

sin(z − θ)∂z

]
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and

Ȳ 2 = sin(θ − z)∂ϕ

[

sin(θ − z)∂ϕ +
1

2
cos(θ − z)

(

cot
(ϕ

2

)

+ tan
(ϕ

2

))

∂θ + tan
(ϕ

2

)

cos(z − θ)∂z

]

+
1

2
cos(θ − z)

(

cot
(ϕ

2

)

+ tan
(ϕ

2

))

∂θ

[

sin(θ − z)∂ϕ

+
1

2
cos(θ − z)

(

cot
(ϕ

2

)

+ tan
(ϕ

2

))

∂θ + tan
(ϕ

2

)

cos(z − θ)∂z

]

+ tan
(ϕ

2

)

cos(z − θ)∂z

[

sin(θ − z)∂ϕ +
1

2
cos(θ − z)

(

cot
(ϕ

2

)

+ tan
(ϕ

2

))

∂θ + tan
(ϕ

2

)

cos(z − θ)∂z

]

.

We obtain:

X̄2 + Ȳ 2 = ∂2ϕ,ϕ +
1

4

(

cot
(ϕ

2

)

+ tan
(ϕ

2

))2

∂2θ,θ +
(

1 + tan2
(ϕ

2

))

∂2θ,z

+
1

2

(

cot
(ϕ

2

)

− tan
(ϕ

2

))

∂ϕ + tan2
(ϕ

2

)

∂2z,z

= ∂2ϕ,ϕ +
1

sin2(ϕ)
∂2θ,θ + tan2

(ϕ

2

)

∂2z,z +
1

cos2
(

ϕ
2

)∂2θ,z + cot(ϕ)∂ϕ.

2.3 Calculation of the subLaplacian for SL(2)

We now consider the case of SL(2). In this case, (X,Y, Z) are satisfying (3). In order to use our previous
results, we define (X̃, Ỹ , Z̃) := (iX, iY,−Z). This way we get (X̃, Ỹ , Z̃) a basis of su(2) satisfying (2). We
have to study

exp (xX + yY ) exp (zZ) exp (ǫ (aX + bY )) = exp
(

−ixX̃ − iyỸ
)

exp
(

−zZ̃
)

exp
(

ǫ
(

−iaX̃ − ibỸ
))

.

In the previous part, as said in the note concerning the two lemmas, the calculation can be made using
complex coefficients. Then we obtain:

exp(xX + yY ) exp(zZ) exp(ǫ(aX + bY )) = exp
(

ϕ(ǫ)
(

cos (θ(ǫ)) X̃ + sin (θ(ǫ)) Ỹ
))

exp
(

z(ǫ)Z̃
)

+O(ǫ2)

= exp
(

iϕ(ǫ)
(

cos (θ(ǫ)) X̃ + sin (θ(ǫ)) Ỹ
))

exp
(

−z(ǫ)Z̃
)

+O(ǫ2),

with ϕ(0) = −iϕ, θ(0) = θ and z(0) = −z.
We get:

d

dǫ
(iϕ(ǫ))|ǫ=0 = iϕ′(0) = i (−ia cos(θ − (−z))− ib sin(θ − (−z))) = a cos(θ + z) + b sin(θ + z);

d

dǫ
(−z(ǫ))|ǫ=0 = −z′(0) = − tan

(−iϕ
2

)

(−ia sin(−z − θ)− ib cos(−z − θ))

= − tanh
(ϕ

2

)

(a sin(z + θ)− b cos(θ + z)) ;

θ′(0) =
−ia sin(−z − θ)− ib cos(θ − (−z))

2

(

cot

(−iϕ
2

)

+ tan

(−iϕ
2

))

= −i−a sin(z + θ) + b cos(θ + z)

2

(

i coth
(ϕ

2

)

− i tanh
(ϕ

2

))

=
−a sin(z + θ) + b cos(θ + z)

2

(

coth
(ϕ

2

)

− tanh
(ϕ

2

))

.
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Thus we obtain X̄ =





cos(θ + z)

− sin(z+θ)
2

(

coth
(

ϕ
2

)

− tanh
(

ϕ
2

))

− tanh
(

ϕ
2

)

sin(z + θ)



 and Ȳ =





sin(θ + z)
cos(θ+z)

2

(

coth
(

ϕ
2

)

− tanh
(

ϕ
2

))

tanh
(

ϕ
2

)

cos(z + θ)



.

As before, we can calculate the subLaplacian operator

L =
1

2
(X̄2 + Ȳ 2) = ∂2ϕ,ϕ +

1

4

(

coth
(ϕ

2

)

− tanh
(ϕ

2

))2

∂2θ,θ +
(

1− tanh2
(ϕ

2

))

∂2θ,z

+
1

2

(

coth
(ϕ

2

)

+ tanh
(ϕ

2

))

∂ϕ + tanh2
(ϕ

2

)

∂2z,z

= ∂2ϕ,ϕ +
1

sinh2(ϕ)
∂2θ,θ + tanh2

(ϕ

2

)

∂2z,z +
1

cosh2
(

ϕ
2

)∂2θ,z + coth(ϕ)∂ϕ.

2.4 Geometrical interpretation of the Brownian motion in SU(2)

Using the subLaplacian operator, we can now define the Brownian motion Bt in SU(2). Using cylindrical
coordinates, there exists ϕt, θt and zt three real diffusion processes, such that:

Bt = exp(ϕt(cos(θt)X + sin(θt)Y )) exp(ztZ) and































































〈dϕt, dϕt〉 = dt

〈dθt, dθt〉 = 1
sin2(ϕt)

dt

〈dzt, dzt〉 = tan2
(

ϕt

2

)

dt

〈dθt, dzt〉 = 1

2 cos2(ϕt
2 )
dt

〈dϕt, dθt〉 = 〈dϕt, dzt〉 = 0

Drift(dϕt) = cot(ϕt)dt

Drift(dθt) = 0

Drift(dzt) = 0.

Then, taking B1
t and B2

t two real Brownian motions, we get:











dϕt = dB1
t + cot(ϕt)dt

dθt =
1

sin(ϕt)
dB2

t

dzt = tan
(

ϕt

2

)

dB2
t

.

Using the first two equations, we get the infinitesimal generator of the diffusion (ϕt, θt):

1

2

(

∂2ϕ,ϕ +
1

sin2(ϕ)
∂2θ,θ + cot(ϕ)∂ϕ

)

.

That is exactly the Laplace Beltrami operator on the sphere S2 in spherical coordinates (ϕ, θ). Then, (ϕt, θt)
are the polar coordinates of the Brownian motion Π1(Bt) on S2.
If we denote by At the area swept by the path of (ϕt, θt) on S2 with respect with the north pole defined by
the polar coordinates, that is the quantity At =

∫ t

0
(1− cos(ϕs))dθs, we get:

dAt =
1− cos(ϕt)

sin(ϕt)
dB2

t = tan
(ϕt

2

)

dB2
t = dzt.

Remark. Note that this swept area is a signed value. For example, if θt is decreasing for all t, then we get
At < 0.

This prove Theorem (1.3) for SU(2). Let us now deal with the distance between two Brownian motions
on SU(2) by proving Proposition (1.4).
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Proof of Proposition (1.4) for SU(2). We first need a geometric estimation of dcc(x, y) for x, y ∈ SU(2). We
denote (ϕx, θx, zx) (resp. (ϕy, θy, zy)) the cylindrical coordinates of x (resp. y). As said before, we have
estimations for dcc(0, (ϕ, θ, z)), with (ϕ, θ, z) the cylindrical coordinates of x−1y. Thus, we need to compute
(ϕ, θ, z). We have:

x−1y =
(

exp
(

ϕx(cos(θx)X + sin(θx)Y )
)

exp(zxZ)
)−1

exp
(

ϕy(cos(θy)X + sin(θy)Y )
)

exp(zyZ).

Considering the matrix form of X and Y , we get:

exp(ϕ(cos(θ)X + sin(θ)Y ))−1 =

(

cos
(

ϕ
2

)

eiθ sin
(

ϕ
2

)

−e−iθ sin
(

ϕ
2

)

cos
(

ϕ
2

)

)−1

=

(

cos
(

ϕ
2

)

−eiθ sin
(

ϕ
2

)

e−iθ sin
(

ϕ
2

)

cos
(

ϕ
2

)

)

= exp(−ϕ(cos(θ)X + sin(θ)Y )).

Then, using lemma 2.1 as in the first part, we get for ϕ ∈ [0, π], θ ∈ [0, 2π[ and z ∈]− 2π, 2π]

exp(zZ) exp(ϕ(cos(θ)X + sin(θ)Y )) = exp
(

ϕ
(

(cos(θ) cos(z)− sin(θ) sin(z))X

+ (cos(θ) sin(z) + sin(θ) cos(z))Y
)

)

exp(zZ)

= exp
(

ϕ(cos(z + θ)X + sin(θ + z)Y )
)

exp(zZ).

Thus:

x−1y =
(

exp
(

ϕx(cos(θx)X + sin(θx)Y )
)

exp(zxZ)
)−1

exp
(

ϕy(cos(θy)X + sin(θy)Y )
)

exp(zyZ)

= exp(−zxZ) exp
(

− ϕx(cos(θx)X + sin(θx)Y )
)

exp
(

ϕy(cos(θy)X + sin(θy)Y )
)

exp(zyZ)

= exp
(

− ϕx(cos(θx − zx)X + sin(θx − zx)Y )
)

exp(−zxZ) exp
(

ϕy(cos(θy)X + sin(θy)Y )
)

exp(zyZ)

= exp
(

− ϕx(cos(θx − zx)X + sin(θx − zx)Y )
)

× exp
(

ϕy(cos(θy − zx)X + sin(θy − zx)Y )
)

exp
(

(zy − zx)Z
)

= exp
(

ϕ(cos(θ)X + sin(θ)Y )
)

exp(zZ) exp
(

(zy − zx)Z
)

with exp
(

ϕ(cos(θ)X + sin(θ)Y )
)

exp(zZ) equal to the matricial product:





cos
(

−ϕx

2

)

ei(θ
x−zx) sin

(

−ϕx

2

)

−e−i(θx−zx) sin
(

−ϕx

2

)

cos
(

−ϕx

2

)









cos
(

ϕy

2

)

ei(θ
y−zx) sin

(

ϕy

2

)

−e−i(θy−zx) sin
(

ϕy

2

)

cos
(

ϕy

2

)



 .

Then we get:















cos
(ϕ

2

)

ei
z
2 = cos

(

ϕx

2

)

cos

(

ϕy

2

)

+ ei(θ
x−θy) sin

(

ϕx

2

)

sin

(

ϕy

2

)

(8a)

ei(θ−
z
2 ) sin

(ϕ

2

)

= cos

(

ϕx

2

)

sin

(

ϕy

2

)

ei(θ
y−zx) − sin

(

ϕx

2

)

cos

(

ϕy

2

)

ei(θ
x−zx). (8b)

We can now try to get a geometric interpretation on the values ϕ and z.

• We begin with ϕ: we are going to prove that ϕ is the usual distance on S2 between Π1(x) and Π1(y).
Let us denote ρ this distance.
Indeed, we note that:

cos(ρ(Π1(x),Π1(y))) =< Π1(x),Π1(y) >R3

= sin(θx) sin(θy) sin(ϕx) sin(ϕy) + cos(θx) cos(θy) sin(ϕx) sin(ϕy) + cos(ϕx) cos(ϕy)

= cos(ϕx) cos(ϕy) + sin(ϕx) sin(ϕy) cos(θx − θy).
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From (8a), we get

cos2
(ϕ

2

)

=

(

cos

(

ϕx

2

)

cos

(

ϕy

2

)

+ cos (θx − θy) sin

(

ϕx

2

)

sin

(

ϕy

2

))2

+ sin2(θx − θy) sin2
(

ϕx

2

)

sin2
(

ϕy

2

)

= cos2
(

ϕx

2

)

cos2
(

ϕy

2

)

+ sin2
(

ϕx

2

)

sin2
(

ϕy

2

)

+ 2 cos

(

ϕx

2

)

cos

(

ϕy

2

)

cos(θx − θy) sin

(

ϕx

2

)

sin

(

ϕy

2

)

=
(1 + cos(ϕx))(1 + cos(ϕy))

4
+

(1− cos(ϕx))(1 − cos(ϕy))

4
+

sin(ϕx) sin(ϕy) cos(θx − θy)

2

=
1 + cos(ϕx) cos(ϕy)

2
+

sin(ϕx) sin(ϕy) cos(θx − θy)

2

=
1 + cos(ρ(Π1(x),Π1(y)))

2
= cos2

(

ρ(Π1(x),Π2(y))

2

)

.

We obtain the announced result as ϕ and ρ(Π1(x),Π1(y)) live in [0, π].
Moreover, we get that

cos(ϕ) = cos(ϕx) cos(ϕy) + sin(ϕx) sin(ϕy) cos(θx − θy). (9)

• We will now deal with z. Let us denote A the area of the spherical triangle with vertices Π1(x), Π1(y)
and N , the north pole. The lengths of the opposite sides are respectively ϕy, ϕx and R . Using an
equivalent of the Heron formula for spherical triangle (see[8]), we have:

cos

(A
2

)

=
1

4 cos
(

ϕ
2

)

cos
(

ϕx

2

)

cos
(

ϕy

2

) (1 + cos(ϕx) + cos(ϕy) + cos(ϕ)) .

Because of (8a) and (9), we get:

cos
(z

2

)

=
1

cos
(

ϕ
2

)

(

cos

(

ϕx

2

)

cos

(

ϕy

2

)

+ cos (θx − θy) sin

(

ϕx

2

)

sin

(

ϕy

2

))

=
1

cos
(

ϕ
2

)

(

cos

(

ϕx

2

)

cos

(

ϕy

2

)

+
cos(ϕ)− cos(ϕx) cos(ϕy)

sin(ϕx) sin(ϕy)
sin

(

ϕx

2

)

sin

(

ϕy

2

))

=
1

4 cos
(

ϕ
2

)

cos
(

ϕx

2

)

cos
(

ϕy

2

)

(

4 cos2
(

ϕx

2

)

cos2
(

ϕy

2

)

+ cos(ϕ) − cos(ϕx) cos(ϕy)

)

=
1

4 cos
(

ϕ
2

)

cos
(

ϕx

2

)

cos
(

ϕy

2

) ((1 + cos(ϕx)) (1 + cos(ϕy)) + cos(ϕ)− cos(ϕx) cos(ϕy))

=
1

4 cos
(

ϕ
2

)

cos
(

ϕx

2

)

cos
(

ϕy

2

) (1 + cos(ϕx) + cos(ϕy) + cos(ϕ)) .

Thus we get |z| ≡ A mod (4π).

Moreover, still using (8a), we get that sin
(

z
2

)

= sin(θx − θy)
sin

(

ϕx

2

)

sin
(

ϕy

2

)

cos(ϕ
2 )

, and so z < 0 if and only

if θx < θy .

Finally, d2cc(x, y) ∼ ρ2(Π1(x),Π1(y)) + |Ã|, with Ã ≡ zy − zx + sign(θx − θy)A mod (4π), Ã ∈] − 2π, 2π].
Now, considering our Brownian motions, we get dcc(Bx

t ,B
y
t ) ∼ ρ(Π1(B

x
t ),Π1(B

y
t )) + |Ãt| with Ãt ≡ zyt −

zxt + sign(θxt − θyt )At mod (4π), Ãt ∈] − 2π, 2π] and with At the area of the spherical triangle of vertices
Π1(B

x
t ),Π1(B

y
t ) and N . We can also give a geometric interpretation of the quantity zyt −zxt +sign(θxt −θyt )At.

In fact zyt +sign(θxt −θyt )At−zxt −sign(θx0 −θy0)A0 is the signed swept area of a loop starting from y, following:
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• the path s 7→ Π1(B
y
s), s ≤ t from Π1(y) to Π1(B

y
t );

• the geodesic joining Π1(B
y
t ) to Π1(B

x
t );

• the path s 7→ Π1(B
x
s ), s ≤ t joining Π1(B

x
t ) to Π1(x);

• finally the geodesic joining Π1(x) to Π1(y).

Thus, up to a constant, the quantity zyt − zxt + sign(θxt − θyt )At is this signed area with sign changing when
the paths of Π1(B

y
t )t and Π1(B

x
t )t are crossing.

2.5 Geometrical interpretation of the Brownian motion in SL(2,R)

As for SU(2), the Brownian motion Bt in SL(2,R) can been characterized by three real diffusion processes
ϕt, θt and zt satisfying:

Bt = exp(ϕt(cos(θt)X̄ + sin(θt)Ȳ )) exp(ztZ̄) and































































〈dϕt, dϕt〉 = dt

〈dθt, dθt〉 = 1
sinh2(ϕt)

dt

〈dzt, dzt〉 = tanh2
(

ϕt

2

)

dt

〈dθt, dzt〉 = 1

2 cosh2(ϕt
2 )
dt

〈dϕt, dθt〉 = 〈dϕt, dzt〉 = 0

Drift(dϕt) = coth(ϕt)dt

Drift(dθt) = 0

Drift(dzt) = 0.

As before, taking B1
t and B2

t two real independent Brownian motions, we get:











dϕt = dB1
t + coth(ϕt)dt

dθt =
1

sinh(ϕt)
dB2

t

dzt = tanh
(

ϕt

2

)

dB2
t

.

We obtain an analogous interpretation as for SU(2). We remark that the diffusion (ϕt, θt) admits the Laplace
Beltrami operator on the hyperbolic plane H2 in the polar coordinates (ϕ, θ) as infinitesimal generator, that
is:

1

2

(

∂2ϕ,ϕ +
1

sinh2(ϕ)
∂2θ,θ + coth(ϕ)∂ϕ

)

.

We also use the fact that the area At swept by the path of (ϕt, θt) on H2 with respect of the pole defined
by the polar coordinates, is At =

∫ t

0
(cosh(ϕs)− 1)dθs. We have indeed:

dAt =
cosh(ϕt)− 1

sinh(ϕt)
dB2

t = tanh
(ϕt

2

)

dB2
t = dzt

As before this swept area is a signed value depending of the sign of dθt. This prove Theorem (1.3) for SL(2).

We can now prove the geometric interpretation for the distance between two Brownian motions on SL(2)
contained in Proposition (1.4).

Proof of proposition (1.4) for SL(2). We proceed as for SU(2). We denote (ϕx, θx, zx) (resp. (ϕy, θy, zy))

14



the cylindrical coordinates of x (resp. y). This time we get

exp(ϕ(cos(θ)X + sin(θ)Y ))−1 =

(

cosh
(

ϕ
2

)

+ sinh
(

ϕ
2

)

cos(θ) − sinh
(

ϕ
2

)

sin(θ)

− sinh
(

ϕ
2

)

sin(θ) cosh
(

ϕ
2

)

− sinh
(

ϕ
2

)

cos(θ)

)−1

=

(

cosh
(

ϕ
2

)

− sinh
(

ϕ
2

)

cos(θ) sinh
(

ϕ
2

)

sin(θ)

sinh
(

ϕ
2

)

sin(θ) cosh
(

ϕ
2

)

+ sinh
(

ϕ
2

)

cos(θ)

)

= exp(−ϕ(cos(θ)X + sin(θ)Y )).

Using again Lemma 2.1 but with X̃, Ỹ and Z̃, we get:

exp(zZ) exp(ϕ(cos(θ)X + sin(θ)Y )) = exp
(

−zZ̃
)

exp
(

−iϕ
(

cos(θ)X̃ + sin(θ)Ỹ
))

= exp
(

−iϕ
(

cos(θ − z)X̃ + sin(θ − z)Ỹ
))

exp
(

−zZ̃
)

= exp
(

ϕ(cos(θ − z)X + sin(θ − z)Y )
)

exp(zZ).

Thus:

x−1y =
(

exp
(

ϕx(cos(θx)X + sin(θx)Y )
)

exp(zxZ)
)−1

exp
(

ϕy(cos(θy)X + sin(θy)Y )
)

exp(zyZ)

= exp(−zxZ) exp
(

− ϕx(cos(θx)X + sin(θx)Y )
)

exp
(

ϕy(cos(θy)X + sin(θy)Y )
)

exp(zyZ)

= exp
(

− ϕx(cos(θx + zx)X + sin(θx + zx)Y )
)

exp(−zxZ) exp
(

ϕy(cos(θy)X + sin(θy)Y )
)

exp(zyZ)

= exp
(

− ϕx(cos(θx + zx)X + sin(θx + zx)Y )
)

× exp
(

ϕy(cos(θy + zx)X + sin(θy + zx)Y )
)

exp
(

(zy − zx)Z
)

= exp
(

ϕ(cos(θ)X + sin(θ)Y )
)

exp(zZ) exp
(

(zy − zx)Z
)

If we denote M = exp
(

ϕ(cos(θ)X + sin(θ)Y )
)

exp(zZ), we have:

M =

(

cosh
(

ϕ
2

)

cos
(

z
2

)

+ sinh
(

ϕ
2

)

cos
(

θ + z
2

)

− cosh
(

ϕ
2

)

sin
(

z
2

)

− sinh
(

ϕ
2

)

sin
(

θ + z
2

)

cosh
(

ϕ
2

)

sin
(

z
2

)

− sinh
(

ϕ
2

)

sin
(

θ + z
2

)

cosh
(

ϕ
2

)

cos
(

z
2

)

− sinh
(

ϕ
2

)

cos
(

θ + z
2

)

)

The matrix M is also equal to the product:

exp
(

− ϕx(cos(θx + zx)X + sin(θx + zx)Y )
)

exp
(

ϕy(cos(θy + zx)X + sin(θy + zx)Y )
)

.
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In particular we get:

M1,1 = cosh

(

ϕx

2

)

cosh

(

ϕy

2

)

+ cosh

(

ϕx

2

)

sinh

(

ϕy

2

)

cos(θy + zx)

− cosh

(

ϕy

2

)

sinh

(

ϕx

2

)

cos(θx + zx)− sinh

(

ϕx

2

)

sinh

(

ϕy

2

)

cos(θy − θx)

M1,2 = − cosh

(

ϕx

2

)

sinh

(

ϕy

2

)

sin(θy + zx)− sinh

(

ϕx

2

)

cosh

(

ϕy

2

)

cos(θx + zx)

+ sinh

(

ϕx

2

)

sinh

(

ϕy

2

)

sin(θy − θx)

M2,1 = − cosh

(

ϕx

2

)

sinh

(

ϕy

2

)

sin(θy + zx)− sinh

(

ϕx

2

)

cosh

(

ϕy

2

)

cos(θx + zx)

− sinh

(

ϕx

2

)

sinh

(

ϕy

2

)

sin(θy − θx)

M2,2 = cosh

(

ϕx

2

)

cosh

(

ϕy

2

)

− cosh

(

ϕx

2

)

sinh

(

ϕy

2

)

cos(θy + zx)

+ cosh

(

ϕy

2

)

sinh

(

ϕx

2

)

cos(θx + zx)− sinh

(

ϕx

2

)

sinh

(

ϕy

2

)

cos(θy − θx)

Thus:














cosh
(ϕ

2

)

cos
(z

2

)

=
M1,1 +M2,2

2
= cosh

(

ϕx

2

)

cosh

(

ϕy

2

)

− sinh

(

ϕx

2

)

sinh

(

ϕy

2

)

cos(θy − θx) (10a)

cosh
(ϕ

2

)

sin
(z

2

)

=
M2,1 +M1,2

2
= − sinh

(

ϕx

2

)

sinh

(

ϕy

2

)

sin(θy − θx). (10b)

• This time, the distance between Π2(x) and Π2(y) is characterized by

cosh(ρ(Π2(x),Π2(y))) = cosh(ϕx) cosh(ϕy) + sinh(ϕx) sinh(ϕy) cos(θx − θy).

Using the identity cosh2(ϕ2 ) =
1+cosh(ϕ)

2 we obtain

cosh(ϕ) = cosh(ϕx) cosh(ϕy) + sinh(ϕx) sinh(ϕy) cos(θx − θy) (11)

and so: ϕ = ρ(Π2(x),Π2(y))

• We now deal with z. Using the same notations as before (this time M is the pole used to de-
fine polar coordinates on H) and the equivalent of the Heron formula for hyperbolic triangles, we
have: cos

(A
2

)

= 1

4 cosh(ϕ
2 ) cosh(

ϕx

2 ) cosh(ϕy

2 )
(1 + cosh(ϕx) + cosh(ϕy) + cosh(ϕ)) = cos

(

z
2

)

and thus

z = sign(z)A. Moreover, we have sin
(

z
2

)

= sin(θx − θy)
sinh

(

ϕx

2

)

sinh
(

ϕy

2

)

cosh(ϕ
2 )

, and so z < 0 if and only if

θx < θy .

Finally, d2cc(x, y) ∼ ρ2 (Π2(x),Π2(y)) +
√

|Ã| with Ã ≡ zy − zx + sign(θx − θy)A mod (4π) and Ã ∈

] − 2π, 2π]. And, for Brownian motions on SL(2), we get dcc(Bx
t ,B

y
t ) ∼ ρ(Π2(B

x
t ),Π2(B

y
t )) +

√

|Ãt| with

Ãt ≡ zyt −zxt +sign(θxt −θyt )At mod (4π) and At the area of the hyperbolic triangle of vertices Π2(B
x
t ),Π2(B

y
t )

and N . As before the quantity zyt −zxt +sign(θxt −θyt )At is equal up to a constant to the signed area delimited
by the paths s 7→ p(Bx

s ), s ≤ t, s 7→ Π2(B
y
s), s ≤ t and the geodesics joining Π2(x) to Π2(y) and Π2(B

x
t ) to

Π2(B
y
t ) respectively.
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3 Couplings on manifolds of constant curvature k

Our aim, now, is to use these results to find a good way to define couplings of Brownian motions on SU(2)
and SL(2). As the Brownian motion on SU(2) (resp. SL(2)) is entirely determined by a Brownian motion
on S2 (resp. H2), to define a coupling on this Lie group, we only need to define a coupling on S2 (resp. H

2).
Note that, in the case of the Heisenberg group we have the same remark but considering a Brownian motion
on R

2. Thus we are going to describe a coupling model on manifolds of dimension 2 with constant curvature
k, having, for k = 1, coupling on S2, for k = −1, coupling on H

2 and even, for k = 0, coupling on R2.

3.1 Description of a coupling model

Let M be a manifold of dimension 2 with constant curvature k. Let us start with a way to describe Brownian
motions using Itô depiction in a frame in the sense of Emery (see [7] for a basic introduction).

Proposition 3.1. We consider Xt a semi-martingale on M and (e1(t), e2(t)) a TM -valued continuous semi-
martingale forming an orthonormal basis of vector fields along (Xt)t. We suppose that all the processes are
in the same filtration. If Xt is a Brownian motion on M , there exists (U1, U2) a Brownian motion on R2

such that:
d∇Xt = dU1(t)e1(t) + dU2(t)e2(t). (12)

Conversely, if Xt satisfies (12) with (U1, U2) a Brownian motion on R2, then Xt is a Brownian motion on
M .

Proof. Let us begin with the direct implication. For i ∈ {1, 2}, taking Ui such that dUi(t) = 〈e∗i (t), d∇Xt〉,
with (e∗1, e

∗
2) the dual basis of (e1, e2) in T ∗M , we directly get that Ui are martingales. Moreover as Xt is a

Brownian motion and (e1, e2)(t) forms an orthonormal basis of TXt
M , for i, j ∈ {1, 2}:

dUi(t) · dUj(t) = (e∗i ⊗ e∗j)(t)(dXt, dXt) = Tr(e∗i ⊗ e∗j )(t)dt = δi,jdt.

We obtain the expected result.

For the converse implication, as
∫ ·
0
〈φ(Xt), d

∇Xt〉 =
∫ ·
0
〈φ(Xt), e

∗
1(t)〉dU1(t) +

∫ ·
0
〈φ(Xt), e

∗
2(t)〉dU2(t) is a

martingale for all φ ∈ Γ (T ∗M), we obtain that Xt is a martingale. Then for f a smooth function on M , by
Itô’s formula, we get:

d(f(Xt)) = df(Xt) · d∇Xt +
1

2
Hess(f)(Xt)(d

∇Xt, d
∇Xt)

with:

Hess(f)(Xt)(d
∇Xt, d

∇Xt) =
∑

i,j

〈Hess(f)(Xt), (e
∗
i ⊗ e∗j)(t)〉(e∗i ⊗ e∗j )(t)(d

∇Xt, d
∇Xt)

=
∑

i,j

〈Hess(f)(Xt), (e
∗
i ⊗ e∗j)(t)〉〈e∗i (t), d∇Xt〉 · 〈e∗j (t), d∇Xt〉

=
∑

i,j

〈Hess(f)(Xt), (e
∗
i ⊗ e∗j)(t)〉dUi(t) · dUj(t)

= Tr(Hess(f))(Xt)dt = ∆f(Xt)dt.

Thus, Xt is a Brownian motion on M .

We can now define couplings (Xt, Yt) of Brownian motions onM using two dimensional Brownian motions
(U1(t), U2(t)) and (V1(t), V2(t)) adapted to a common filtration such that we have relation (1):

d∇Xt = dU1(t)e
X
1 (t) + dU2(t)e

X
2 (t) and d∇Yt = dV1(t)e

Y
1 (t) + dV2(t)e

Y
2 (t)
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with eXi (t) and eYi (t) defined as follow. We consider the continuous stochastic process Rt = ρ(Xt, Yt) with
ρ the Riemannian distance. We suppose that 0 < Rt < i(M) for all t ∈ I, with i(M) the injectivity radius
of M and I an open interval on R+. Then for all t ∈ I we can define:

• eX1 (t) =
exp−1

Xt
(Yt)

Rt
a unitary vector on TXt

M ;

• eX2 (t) such that (eX1 (t), eX2 (t)) is a direct orthonormal basis on TX(t)M ;

• (eY1 (t), e
Y
2 (t)) parallel transport of (eX1 (t), eX2 (t)) along the geodesic joining Xt and Yt. This define a

direct orthonormal basis on TYt
M .

We can use the following lemma to prove the first part of Proposition (1.5):

Lemma 3.2. Let x, y ∈M , r = ρ(x, y) with 0 < r < π, u ∈ TxM and v ∈ TyM . We define ex1 =
exp−1

x (y)
r

∈
TxM , ey1 ∈ TyM the parallel transport of ex1 along the geodesic joining x and y, and ex2 (resp. ey2) such that
(ex1 , e

x
2) (resp. (ey1 , e

y
2) ) is a basis of TxM (resp TyM). Then, we have:

dρ(x,y)(u, v) = v1 − u1

and

Hess(ρ)(x,y)((u, v), (u, v)) =















√
k(u22 + v22) cot(

√
kr)− 2

√
ku2v2

1
sin(

√
kr)
, if k > 0

√
−k(u22 + v22) coth(

√
−kr)− 2

√
−ku2v2 1

sinh(
√
−kr)

, if k < 0
2u2v2

r
, if k = 0.

with ui = 〈u, exi 〉 and vi = 〈v, eyi 〉 for i ∈ {1, 2}.

Note that, below, we will use the expression of the case k > 0 as the general expression of the Hessian
as it induced the two other cases by direct computation in the case k < 0 and taking the limit in the case
k = 0.

Proof of Proposition (1.5), first part. Using this lemma and applying Ito’s formula, we directly get:

dRt = dρ(Xt,Yt)(d
∇Xt, d

∇Yt) +
1

2
Hess(ρ)(Xt, Yt)((d

∇Xt, d
∇Yt), (d

∇Xt, d
∇Yt))

= dV1(t)− dU1(t) +
1

2

(√
k
(

dU2(t) · dU2(t) + dV2(t) · dV2(t)
)

cot(
√
kRt)−

2
√
k

sin(
√
kRt)

dU2(t) · dV2(t)
)

= dV1(t)− dU1(t) +
1

2

(

2
√
k cot(

√
kRt)dt−

2
√
k

sin(
√
kRt)

dU2(t) · dV2(t)
)

= dV1(t)− dU1(t) +
√
k
(

cot(
√
kRt)dt−

1

sin(
√
kRt)

dU2(t) · dV2(t)
)

. (13)

Remark. In fact, by describing the covariant derivative of (eXi (t))t (resp. (eYi (t))t) along Xt (resp. Yt) we
can define our orthonormal basis as the solution of a system of stochastic differential equations depending
on U1, U2, V1, V2 and Rt. In the case where no singularities appear in this system, our coupling keeps sense
even if Rt ∈ {0, i(M)}. Then we can consider Rt as a signed distance and the results of Proposition (1.5)
are still true.

Let us now prove Lemma (3.2).
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Proof of Lemma (3.2). Let x, y ∈ M , r = ρ(x, y), u ∈ TxM and v ∈ TyM . We are going to study the first
and second derivatives of functions E(t) := 1

2ρ(expx(tu), expy(tv))
2.

We define (s, t) ∈ [0, 1]× [0,+∞[ 7→ c(s, t) ∈M such that:

• s 7→ c(s, t) is a geodesic starting at expx(tu) and ending at expy(tv) for all t ≥ 0;

• t 7→ c(0, t) is a geodesic starting at x and ending at expx(tu);

• t 7→ c(1, t) is a geodesic starting at y and ending at expy(tv).

In particular, s 7→ J(s, t) := ∂tc(s, t) is a Jacobi field for all t ≥ 0. We define e1(s, t) :=
∂sc(s,t)

ρ(expx(tu),expy(tv))

and e2(s, t) such that (e1(s, t), e2(s, t)) is an orthonormal basis of Tc(s,t)M for each s, t. In particular e1(0, 0) =
ex1 and e1(1, 0) = ey1 . For the covariant derivative calculus, we will use the notation ∇s for ∇∂sc(s,t) and ∇t

for ∇∂tc(s,t). Note that, for t constant, ei(s, t) are defined by parallel transport along c and so ∇sei(s, t) = 0.
We will denote r(t) = ρ(expx(tu), expy(tv)) = ||∂sc(s, t)||, ui(s) := 〈J(0, t), ei(0, t)〉, ui := ui(0) and vi(s) :=
〈J(1, t), ei(1, t)〉, vi := vi(0) for i ∈ {1, 2}.

Since s 7→ c(s, t) is a geodesic connecting expx(tu) and expy(tv), it has constant speed and E(t) =
1
2 ||∂sc(s, t)||2 for all s ∈ [0, 1]. Thus, E(t) = 1

2

∫ 1

0
〈∂sc(s, t), ∂sc(s, t)〉ds. We derive this function:

E′(t) =

∫ 1

0

〈∇t∂sc(s, t), ∂sc(s, t)〉ds =
∫ 1

0

〈∇s∂tc(s, t), ∂sc(s, t)〉ds since ∇ is torsionfree

=

∫ 1

0

∂s〈∂tc(s, t), ∂sc(s, t)〉ds−
∫ 1

0

〈∂tc(s, t),∇s∂sc(s, t)〉ds

=

∫ 1

0

∂s〈∂tc(s, t), ∂sc(s, t)〉ds since s 7→ c(s, t) is a geodesic;

= [〈∂tc(s, t), ∂sc(s, t)〉]10.

We obtain:

E′(0) = 〈∂tc(1, t)|t=0, ∂sc(s, 0)|s=1〉 − 〈∂tc(0, t)|t=0, ∂sc(s, 0)|s=0〉
= 〈v, re1(1, 0)〉 − 〈u, re1(0, 0)〉 = r(v1 − u1).

We can now calculate the second derivative. We only deal with the case k > 0 as the two other cases use
similar calculations.

E′′(t) =

∫ 1

0

∂t〈∇s∂tc(s, t), ∂sc(s, t)〉ds =
∫ 1

0

〈∇t∇s∂tc(s, t), ∂sc(s, t)〉+ 〈∇s∂tc(s, t),∇t∂sc(s, t)〉ds.

By definition of the curvature tensor R and since [∂tc, ∂sc] = 0, we have

R(∂tc(s, t), ∂sc(s, t))∂tc(s, t) = ∇t∇s∂tc(s, t)−∇s∇t∂tc(s, t).

Then:

E′′(t) =

∫ 1

0

〈∇s∇t∂tc(s, t), ∂sc(s, t)〉+ 〈R(∂tc(s, t), ∂sc(s, t))∂tc(s, t), ∂sc(s, t)〉+ 〈∇s∂tc(s, t),∇s∂tc(s, t)〉ds

=

∫ 1

0

〈∇s∇t∂tc(s, t), ∂sc(s, t)〉 − 〈R(J(s, t), ∂sc(s, t))∂sc(s, t), J(s, t)〉 + ||∇sJ(s, t)||2dt.

The same way as previously we get :
∫ 1

0

〈∇s∇t∂tc(s, t), ∂sc(s, t)〉ds =
∫ 1

0

〈∇s∇t∂tc(s, t), ∂sc(s, t)〉+ 〈∇t∂tc(s, t),∇s∂sc(s, t)〉ds

= [〈∇t∂tc(s, t), ∂sc(s, t)〉]10.
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For t = 0, 1, t 7→ c(s, t) is a geodesic and so have constant variations, then
∫ 1

0 〈∇s∇t∂tc(s, t), ∂sc(s, t)〉ds = 0.
For t fixed, let us study our Jacobi field along s 7→ c(s, t). Using the basis (e1(s, t), e2(s, t)), we can write:

J(s, t) = j1(s, t)e1(s, t) + j2(s, t)e2(s, t).

Since ∇sei(s, t) = 0, we have:

∇sJ(s, t) = ∂sj1(s, t)e1(s, t) + ∂sj2(s, t)e2(s, t) and

∇s∇sJ(s, t) = ∂2ssj1(s, t)e1(s, t) + ∂2ssj2(s, t)e2(s, t).

Thus:

E′′(t) =

∫ 1

0

−〈R
(

J(s, t), ∂sc(s, t)
)

∂sc(s, t), J(s, t)〉 + ||∇sJ(s, t)||2ds

=

∫ 1

0

−〈R
(

j1(s, t)e1(s, t) + j2(s, t)e2(s, t), r(t)e1(s, t)
)

r(t)e1(s, t), J(s, t)〉ds

+

∫ 1

0

(∂sj1(s, t))
2 + (∂sj2(s, t))

2ds

=

∫ 1

0

−kr(t)2j2(s, t)2 + (∂sj1(s, t))
2 + (∂sj2(s, t))

2ds.

By property of Jacobi fields, we have

∇s∇sJ(s, t) = −R(J(s, t), ∂sc(s, t))∂sc(s, t)
= −r(t)2(j1(s, t)R(e1(s, t), e1(s, t))e1(s, t) + j2(s, t)R(e2(s, t), e1(s, t))e1(s, t))

= −kr(t)j2(s, t)e2(s, t).

We obtain

{

∂2ssj1(s, t) = 0
j1(0, t) = u1(t)
j1(1, t) = v1(t)

and

{

∂2ssj2(s, t) = −kr(t)2j2(s, t)
j2(0, t) = u2(t)
j2(1, t) = v2(t)

and so j1(s, t) = u1(t)(1− s)+ v1(t)s and

j2(s, t) = a cos(
√
kr(t)s) + b sin(

√
kr(t)s). We have, a = j2(0, t) = u2(t) and b = j2(1,t)−u2(t) cos(

√
kr(t))

sin(
√
kr(t))

so

j2(s, t) = u2(t) cos(
√
kr(t)s) +

v2(t)− u2(t) cos(
√
kr(t))

sin(
√
kr(t))

sin(
√
kr(t)s).

Moreover, ∂sj2(s, t) =
√
kr(t)

(

−u2(t) sin(
√
kr(t)s) + v2(t)−u2(t) cos(

√
kr(t))

sin(
√
kr(t))

cos(
√
kr(t)s)

)

and ∂sj1(s, t) =

v1(t)− u1(t).

Then, for t = 0, we have:

E′′(0) =

∫ 1

0

(v1 − u1)
2 + kr2

(

(

sin2(
√
krs)− cos2(

√
krs)

)

(

u22 −
(v2 − u2 cos(

√
k))2

sin2(
√
kr)

))

− 4u2
v2 − u2 cos(

√
kr)

sin(
√
kr)

cos(
√
krs) sin(

√
krs)

)

ds

= (v1 − u1)
2 + kr2

(

− cos(
√
kr) sin(

√
kr)√

kr

(

u22 −
(v2 − u2 cos(

√
kr))2

sin2(
√
kr)

)

− 2√
kr
u2
v2 − u2 cos(

√
kr)

sin(
√
kr)

sin2(
√
kr)

)
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E′′(0) = (v1 − u1)
2 +

√
kr

(

− cos(
√
kr) sin(

√
kr)

(

u22 −
v22 + u22 cos

2(
√
kr)− 2u2v2 cos(

√
kr)

sin2(
√
kr)

)

− 2√
kr

(

u2v2 − u22 cos(
√
kr)
)

sin(
√
krt)

)

= (v1 − u1)
2 +

√
kr

(

u22(− cos(
√
kr) sin(

√
kr) + 2 cos(

√
kr) sin(

√
kr) +

cos3(
√
kr)

sin(
√
kr)

) + v22
cos(

√
kr)

sin(
√
kr)

− u2v2

(

2
cos2(

√
kr)

sin(
√
kr)

+ 2 sin(
√
kr)

))

Finally E′′(0) = (v1 − u1)
2 +

√
kr
(

(u22 + v22) cot(
√
kr)− 2u2v2

1
sin(

√
kr)

)

and we obtain, for u ∈ TxM , v ∈
TyM :

d

(

1

2
ρ2
)

(x,y)

(u, v) = r(v1 − u1)

and

Hess

(

1

2
ρ2
)

(x,y)

((u, v), (u, v)) = (v1 − u1)
2 +

√
kr

(

(u22 + v22) cot(
√
kr)− 2u2v2

1

sin(
√
kr)

)

.

Finally we get:

dρ(x,y)(u, v) =
d

ds |s=0
ρ(exps(su), expy(sv)) =

d

ds |s=0
(
√

2E(s)) =
E′(0)
√

2E(0)
= (v1 − u1)

and

Hess(ρ)(x,y)((u, v), (u, v)) =
d2

ds2 |s=0
ρ(exps(su), expy(sv)) =

d

ds |s=0

E′(s)
√

2E(s)
=

E′′(0)
√

2E(0)
− E′(0)2

(2E(0))
3
2

=
(v1 − u1)

2

r
+
√
k

(

(u22 + v22) cot(
√
kr)− 2u2v2

(

1

sin(
√
kr)

))

− (v1 − u1)
2

r

=
√
k(u22 + v22) cot(

√
kr)− 2

√
ku2v2

1

sin(
√
kr)

.

3.2 Swept area

We now focus on the signed swept area At between Xt and Yt as described before. This way we will be
able to compare the last coordinates of the two Brownian motions on SU(2) (resp. SL(2)). Note that this
signed area stays with constant sign while the two paths of the Brownian motions don’t cross. We are first
going to find an expression of the area in terms of a function of the covariant derivative of the paths. Let
γx, γy : [0,+∞[ 7→ M be two continuous curves on M starting at x and y respectively. We can consider
(s, t) ∈ [0, 1]× [0,+∞[ 7→ c(s, t) ∈M such that s 7→ c(s, t) is a geodesic starting at γx(t) and ending at γy(t)
for all t ≥ 0. Providing that the distance between γx(t) and γy(t) is non null for each t but small enough,
we can also define as before the basis (ex1(t), e

y
2(t)).

Assuming that the map (s, ζ) 7→ c(s, ζ) is a local chart of M , the volume form is given by
√

det(G)dζds
where G is the positive definite symmetric matrix representing the metric in these local coordinates. In
particular, we have:

√

det(G) = ||∂sc(s, ζ))||2||∂ζc(s, ζ))||2 − 〈∂sc(s, ζ)), ∂ζc(s, ζ))〉2 = | det
(

∂sc(s, ζ), ∂ζc(s, ζ)
)

|.
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Then, the signed swept area can be formally defined by A(t) :=
∫ 1

0

∫ t

0 det(∂sc(s, ζ), ∂ζc(s, ζ))dζds where the
determinant is calculated in the basis (e1(s, ζ), e2(s, ζ)) of Tc(s,ζ)M for each ζ, t. We get the following lemma:

Lemma 3.3. Let u ∈ TxM and v ∈ TyM , we have:

dA(x,y)(u, v) =
1√
k
tan

(√
kr

2

)

(u2 + v2),

HessA(x,y)((u, v), (u, v) =
u2v1 − v2u1

cos2(
√
kr
2 )

+ tan2

(√
kr

2

)

(v2v1 − u2u1).

Note that, as in Lemma (3.2), the above results are given as a general formula for the three cases k > 0,
k < 0 and k = 0.

Proof. Let A(t) := t 7→ Ax,y(expx(tu), expy(tv)) the swept area following the trajectories of t 7→ expx(tu)
and t 7→ expy(tv) evaluated at time t. As for the proof of the previous lemma, we will study A′(0) and
A′′(0).
First, using the same notations as the previous proof, we have:

A′(t) =

∫ 1

0

det(∂sc(s, t), ∂tc(s, t))ds =

∫ 1

0

det(r(t)e1(s, t), J(s, t))ds = r(t)

∫ 1

0

j2(s, t)ds

= r(t)

(

∫ 1

0

u2(t) cos(
√
kr(t)s) +

v2(t)− u2(t) cos(
√
kr(t))

sin(
√
kr(t))

sin(
√
kr(t)s)ds

)

=
1√
k

(

u2(t)[sin(
√
kr(t)s)]10 +

v2(t)− u2(t) cos(
√
kr(t))

sin(
√
kr(t))

[− cos(
√
kr(t)s)]10

)

=
1√
k

(

u2(t) sin(
√
kr(t)) +

v2(t)− u2(t) cos(
√
kr(t))

sin(
√
kr(t))

(

1− cos(
√
kr(t))

)

)

=
u2(t) sin

2(
√
kr(t)) − u2(t) cos(

√
kr(t))(1 − cos(

√
kr(t))) + v2(t)(1− cos(

√
kr(t)))√

k sin(
√
kr(t))

= (u2(t) + v2(t))
1− cos(

√
kr(t))√

k sin(
√
kr(t))

= (u2(t) + v2(t))
1√
k
tan

(√
kr(t)

2

)

.

So we get the covariant derivative and also:

A′′(t) = (u′2(t) + v′2(t))
1√
k
tan

(√
kr(t)

2

)

+ (u2(t) + v2(t))
r′(t)

2 cos2(
√
kr(t)
2 )

.

Note that r′(0) has been calculated previously for the covariant derivative of the distance, so:

A′′(0) = (u′2(0) + v′2(0))
1√
k
tan

(√
kr

2
)

)

+ (u2 + v2)
v1 − u1

2 cos2(
√
kr
2 )

.

We now just have to compute u′2(0) and v′2(0). As u2(s) = 〈∂tc(0, t), e2(0, t)〉 and t 7→ c(s, t) is a geodesic,
we have:

u′2(s) = 〈∇t∂tc(0, t), e2(0, t)〉+ 〈∂tc(0, t),∇te2(0, t)〉 = 〈∂tc(0, t),∇te2(0, t)〉.
Thus, u′2(0) = 〈v,∇te2(0, t)|t=0〉 and, in the same way, we have v′2(0) = 〈v,∇te2(1, t)|t=0〉 .
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Note that:

〈∇te2(s, t), e2(s, t)〉 =
1

2
∂t〈e2(s, t), e2(s, t)〉 = 0 since 〈e2(s, t), e2(s, t)〉 = 1,

〈∇te2(s, t), e1(s, t)〉 = ∂t(〈e2(s, t), e1(s, t)〉)− 〈e2(s, t),∇te1(s, t)〉 = −〈e2(s, t),∇te1(s, t)〉
since 〈e2(s, t), e1(s, t)〉 = 0.

Then, ∇te2(s, t) = −〈∇te1(s, t), e2(s, t)〉e1(s, t). We have:

∇te1(s, t) = ∇t

(

∂sc(s, t)×
1

r(t)

)

= − r′(t)

r(t)2
∂sc(s, t) +∇t(∂sc(s, t))×

1

r(t)

= −r
′(t)

r(t)
e1(s, t) +

∇sJ(s, t)

r(t)
.

Thus:

〈∇te1(s, t), e2(s, t)〉 =
1

r(t)
∂sj2(s, t) =

√
k

(

−u2(t) sin(
√
kr(t)s) +

v2(t)− u2(t) cos(
√
kr(t))

sin(
√
kr(t))

cos(
√
kr(t)s)

)

.

We obtain:

∇te2(0, t) = −
√
k
v2(t)− u2(t) cos(

√
kr(t))

sin(
√
kr(t))

e1(0, t) and ∇te2(1, t) = −
√
k
v2(t) cos(

√
kr(t)) − u2(t)

sin(
√
kr(t))

e1(1, t)

and so:

u′2(0) =
√
k
u2 cos(

√
kr) − v2

sin(
√
kr)

u1 and v′2(0) =
√
k
u2 − v2 cos(

√
kr)

sin(
√
kr)

v1.

Finally:

A′′(0) =

(

u2 cos(
√
kr) − v2

sin(
√
kr)

u1 +
u2 − v2 cos(

√
kr)

sin(
√
kr)

v1

)

tan

(√
kr

2

)

+ (u2 + v2)
v1 − u1

2 cos2(
√
kr
2 )

=

(

(u2u1 − v2v1) cot(
√
kr) + (u2v1 − v2u1)

1

sin(
√
kr)

)

tan

(√
kr

2

)

+
u2v1 − v2u1 − (u2u1 − v2v1)

2 cos2(
√
kr
2 )

= (u2u1 − v2v1)

(

cot(
√
kr) tan

(√
kr

2

)

− 1

2 cos2(
√
kr
2 )

)

+ (u2v1 − v2u1)

(

tan(
√
kr
2 )

sin(
√
kr)

+
1

2 cos2(
√
kr
2 )

)

= (u2u1 − v2v1)

(

cos(
√
kr)

2 cos2(
√
kr
2 )

− 1

2 cos2(
√
kr
2 )

)

+ (u2v1 − v2u1)

(

1

2 cos2(
√
kr
2 )

+
1

2 cos2(
√
kr
2 )

)

= − (u2u1 − v2v1) tan
2

(√
kr

2

)

+ (u2v1 − v2u1)
1

cos2(
√
kr
2 )

.

For the coupling (Xt, Yt) defined by (1.5) we can now use Itô’s formula to end the proof of Proposition
(1.5), finding an equation for the signed swept area, up to a constant, At :
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Proof of Proposition (1.5), second part.

dAt =
1√
k
tan

(√
kRt

2

)

(dU2(t) + dV2(t)) +
1

2

(

dU2(t) · dV1(t)− dV2(t) · dU1(t)

cos2(
√
kRt

2 )

+ tan2

(√
kRt

2

)

(dV2(t) · dV1(t)− dU2(t) · dU1(t))

)

=
1√
k
tan

(√
kRt

2

)

(dU2(t) + dV2(t)) +
1

2

(

dU2(t) · dV1(t)− dV2(t) · dU1(t)

cos2(
√
kRt

2 )

)

.

We also directly obtain

dRt · dAt =
1√
k
tan

(√
kRt

2

)

(dV1(t) · dU2(t)− dU1(t) · dV2(t)) .

3.3 Co-adapted coupling

In this subsection, we will deal with the special case of co-adaptive Brownian motions on M . We first recall
the general definition of a co-adapted coupling and then adapt it to our model:

Definition 3.1. Let µt and νt the laws in time t of two continuous Markov processes (Xt)t and (Yt)t on M .
The process (X̃t, Ỹt)t is said a co-adapted coupling of (Xt)t and (Yt)t if:

• the processes X̃ and Ỹ lay in a same filtered probability space (Ft)t and follow in each time t the
probability laws µt and νt respectively;

• for all bounded measurable function f , z ∈ M , s, t > 0, the functions z 7→ E[f(X̃t+s) | Fs, X̃s = z]
and z 7→ E[f(Xt+s) | Xs = z] (resp. z 7→ E[f(Ỹt+s) | Fs, Ỹs = z] and z 7→ E[f(Yt+s) | Ys = z]) are
equals PXs

-a.s. (resp. PYs
-a.s.).

Proposition 3.4. We consider a coupling (Xt, Yt)t of Brownian motions on M satisfying (1) in a filtered
probability space (Ω, (Ft)t,P). The following assertions are equivalent:

(i) (Xt, Yt)t is a co-adapted coupling;

(ii) U :=

(

U1

U2

)

and V :=

(

V1
V2

)

form a co-adapted coupling of Brownian motions in R2;

(iii) Enriching the filtration if needed, there exists a two dimensional Brownian motion W adapted to the
filtration and independent of U , and Kt, K̂t ∈ M2(R) with KtK

T
t + K̂tK̂

T
t = I2, Kt, K̂t ∈ Ft such

that :
dV (t) = KtdU(t) + K̂tdW (t). (14)

Proof. The equivalence of (ii) and (iii) is a well known fact about couplings in R2 that can be found in [10]
for example.
Let us show that (ii) implies (i). The converse implication may be dealt with the same method, also used
in [14]. We denote G the filtration induced by U and V . As said in a previous remark, our basis are solutions
of equations depending of R, U and V . Then, Xt, Yt, (e

X
1 (t), eX2 (t)) and (eY1 (t), e

Y
2 (t)) are adapted to the

filtration G. Moreover, Xt and Yt are Markov processes for this same filtration. Then, this is also true for
the filtration F induced by Xt and Yt as it is included in G. Thus, for s, t > 0, z ∈M , we have

E[f(Xt+s)|Fs, Xs = z] = E[E[f(Xt+s)|Gs, Xs = z]|Fs, Xs = z] = E[Ps,tf(z)|Fs, Xs = z] = Ps,tf(z)

with Ps,t the transition function of X . Thus we obtain a co-adaptive coupling for (X,Y ).
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Using (14), we can rewrite our relations for Rt and At:

Proposition 3.5. For a co-adapted coupling satisfying (1) and Proposition (3.4), we have:

dRt · dRt = 2(1−K1,1)dt;

dRt
(m)
=

√
k cot(

√
kRt)dt−

√
k

sin(
√
kRt)

K2,2dt =
√
k
cos(

√
kRt)−K2,2

sin(
√
kRt)

dt;

dAt · dAt = 2
tan2(

√
kRt

2 )

k
(1 +K2,2)dt;

dAt
(m)
=

1

2 cos2(
√
kRt

2 )
(K1,2 −K2,1);

dRt · dAt =
1√
k
tan(

√
kRt

2
)(K1,2 −K2,1)dt.

Proof. Let us recall that dRt = dV1(t)− dU1(t) +
√
k

sin(
√
tRt)

(cos(
√
tRt)dt− dU2(t) · dV2(t). Thus:

dRt · dRt = (dV1(t)− dU1(t)) · (dV1(t)− dU1(t))

= 2dt− 2dU1(t) · dV1(t)
= 2dt− 2dU1(t) · (K1,1dU1(t) +K1,2dU2(t)) since W is independant with U

= 2(1−K1,1)dt;

Drift(dRt) =

√
k

sin(
√
tRt)

(

cos(
√
tRt)dt− dU2(t) · (K1,2dU1(t) +K2,2dU2(t))

)

=
√
k cot(

√
kRt)dt−

√
k

sin(
√
kRt)

K2,2dt =
√
k
cos(

√
kRt)−K2,2

sin(
√
kRt)

dt.

Then, using dAt =
tan(

√
kRt
2 )√
k

(dU2(t) + dV2(t)) +
1

2 cos2(
√

kRt
2 )

(dU2(t) · dV1(t)− dV2(t) · dU1(t)):

dAt · dAt =
tan2(

√
kRt

2 )

k
(dU2(t) + dV2(t)) · (dU2(t) + dV2(t))

=
tan2(

√
kRt

2 )

k
(2dt+ 2dU2(t) · dV2(t))

= 2
tan2(

√
kRt

2 )

k

(

dt+ dU2(t) · (K2,1dU1(t) +K2,2dU2(t))
)

= 2
tan2(

√
kRt

2 )

k
(1 +K2,2)dt;

Drift(dAt) =
1

2 cos2(
√
kRt

2 )
(dU2(t) · dV1(t)− dV2(t) · dU1(t))

=
1

2 cos2(
√
kRt

2 )

(

dU2(t) · (K1,1dU1(t) +K1,2dU2(t)) − (K2,1dU1(t) +K2,2dU2(t)) · dU1(t)
)

=
1

2 cos2(
√
kRt

2 )
(K1,2 −K2,1).
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Finally

dRt · dAt =
tan(

√
kRt

2 )√
k

(

(dV1(t)− dU1(t)) · (dU2(t) + dV2(t))
)

=
tan(

√
kRt

2 )√
k

(

dV1(t) · dU2(t)− dU1(t) · dV2(t)
)

=
tan(

√
kRt

2 )√
k

(

(K1,1dU1(t) +K1,2dU2(t)) · dU2(t)− dU1(t) · (K2,1dU1(t) +K2,2dU2(t))
)

=
tan(

√
kRt

2 )√
k

(K1,2 −K2,1)dt.

Example. • Synchronous coupling: We take Kt = I2, K̂t = 0, dV (t) = dU(t). We get:

dRt · dRt = 0;

Drift(dRt) =
√
k
cos(

√
kRt)− 1

sin(
√
kRt)

dt = −
√
k × tan(

√
kRt

2
)dt.

Thus Rt is deterministic and Rt =
2√
k
arcsin(e−

kt
2 sin(

√
kR0

2 )). We also have:

dAt · dAt = 4
tan2(

√
kRt

2 )

k
dt and Drift(dAt) = 0.

In particular, At is a martingale.

• Reflection coupling: For Kt =

(

−1 0
0 1

)

, K̂t = 0, dV1(t) = −dU1(t) and dV2(t) = dU2(t), we get:

dRt · dRt = 4dt and Drift(dRt) = −
√
k × tan(

√
kRt

2
).

As before, we have:

dAt · dAt = 4
tan2(

√
kRt

2 )

k
dt and Drift(dAt) = 0.

• Perverse coupling: For Kt =

(

1 0
0 −1

)

, K̂t = 0, dV1(t) = dU1(t) and dV2(t) = −dU2(t), we get:

dRt · dRt = 0;

Drift(dRt) =
√
k
cos(

√
kRt) + 1

sin(
√
kRt)

dt =
√
k × cot(

√
kRt

2
).

Thus Rt is deterministic and Rt =
2√
k
arccos(e−

kt
2 cos(

√
kR0

2 )). We also have At constant.

In all these examples, dRt · dAt = 0.

We also can add a noise to these couplings in order to remove the drift part. In particular, this will
permit to obtain a coupling with constant distance between the Brownian motions.
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• Synchronous coupling with noise/ fixed-distance coupling:

Taking Kt =

(

1 0

0 cos(
√
kRt)

)

, K̂t =

(

0 0

0 sin(
√
kRt)

)

, we get Rt constant. We also have:

dAt · dAt = 2
tan2(

√
kRt

2 )

k
(1 + cos(

√
kRt))dt =

4

k
sin2(

√
kRt

2
)dt =

4

k
sin2(

√
kR0

2
)dt;

Drift(dAt) = 0.

Note that At is a Brownian motion up to a multiplicative constant.

We can do the same for the reflection coupling.

• Reflection coupling with noise: For Kt =

(

−1 0
0 cos(

√
Rt)

)

, K̂t =

(

0 0
0 sin(

√
Rt)

)

, we get:

dRt · dRt = 4dt and Drift(dRt) = 0.

Thus 1
2Rt is a Brownian motion. We also have:

dAt · dAt =
4

k
sin2(

√
kRt

2
)dt and Drift(dAt) = 0.

For these two couplings, dRt · dAt = 0 too.

Remark. • In [14], Pascu and Popescu proved on the sphere that there exists a co-adapted coupling of
Brownian motions of deterministic distance function Rt if and only if R is continuous and satisfy the
inequality

− tan(
Rt

2
)dt ≤ dRt ≤ cot(

Rt

2
))dt.

In particular the synchronous coupling and perverse coupling described above are the couplings realizing
the extrema of this inequality.

• In the case where k = 0 we find all the expected results we could have for the study of the Heisenberg
group. See for example [9, 5].

4 Successful couplings

We are now going to interest ourselves in the construction of a successful coupling. In a first time, we will
study successful coupling of Brownian motions on M , a Riemannian manifold with constant curvature, and
their swept areas for the areas liying in R. This will induce a first successful coupling on SU(2). Then,
considering that, in SU(2), the last coordinate zt lies in R/]− π

2 ,
π
2 ], we will change some steps to obtain a

more efficient coupling.
Using the previous notations, let us suppose that k > 0. As said before our method is based on the idea of
Kendall for coupling two dimensional real Brownian motions and their swept areas ([9]). The original idea
is to switch between reflection and synchronous coupling, using reflection coupling to make Rt decrease, and
synchronous coupling to keep the swept area comparable to R2

t and decreasing as well.
Here, in comparison to Kendall’s original proposition, we will add a noise during the "synchronous coupling
step" as in the previous example in order to keep Rt constant. If not, we would have a strictly positive
probability to be trapped in a "synchronous coupling step" without returning in a reflection coupling step.
Note that, for k → 0, that is for real two dimensional Brownian motion, fixed-distance coupling (synchronous
coupling with noise) and synchronous coupling are the same.
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Let us choose κ, ǫ > 0 such that 0 < ǫ < κ. We denote τ the first time of coupling of the two Brownian
motions AND their swept areas, that is:

τ := inf{t > 0|Rt = 0 and At = 0}.

Using perverse or synchronous coupling if needed, we can suppose that 0 < R0 < i(M). Note that for k > 0,
we get i(M) = π√

k
. Let us suppose that there exists η > 0 such that i(M) − η > R0 > 0. We then define

another stopping time:
τη := inf{t > 0|Rt ≥ i(M)− η}.

We are going to study first τ ∧ τη instead of τ : this way we will have Rt < i(M) − η for all t < τ . Using
constant fixed-distance coupling if necessary, we can suppose that A0 = 0 without changing the value of R0

(indeed, At is a changed-time Brownian motion during the fixed-distance coupling). We will construct the
coupling as follow on [0, τ ∧ τη] :

1. We use reflection coupling until the process |At|
R2

t
starting at 0 takes the value κ;

2. While the process |At|
R2

t
, starting at κ, satisfy |At|

R2
t
> κ− ǫ we use fixed-distance coupling;

3. While the process |At|
R2

t
, starting at κ− ǫ, satisfy |At|

R2
t
< κ we use reflection coupling.

We iterate 2 and 3 until Rt = At = 0 or Rt = i(M)− η.

Theorem 4.1. Under the hypothesis i(M)− 2η > R0 > 0, the co-adapted coupling described below satisfies
τ ∧ τη < +∞ a.s. for k > 0. Moreover, we get P(τ > τη) < 1.

Proof. We denote τ ′ := τ ∧ τη. We define N (ǫ) : [0, τ ′] → {0, 1} such that N (ǫ)(t) = 0 during fixed-distance
coupling and N (ǫ)(t) = 1 during reflection coupling. We get, for all t > 0:

dRt = 2N (ǫ)(t)dCt −
√
k tan

(√
kRt

2

)

N (ǫ)(t)dt

dAt =
2√
k
× sin(

√
kRt

2 )

cos(N (ǫ)(t)
√
kRt

2 )
dC̃t

with Ct and C̃t two independent real Brownian motions. Note that, during reflection coupling, that is
when N (ǫ)(t) = 1, we have |At|

R2
t

≤ κ whereas, during fixed-distance coupling, that is N (ǫ)(t) = 0, we have
|At|
R2

t
≥ κ− ǫ. As R varies only during reflection couplings, if Rt → 0, we have R2

t ≥ 1
κ
|At|, thus At → 0. In

fact, with this strategy we have τ ′ = inf{t | Rt ∈ {0, i(M)− η}}. Then we have to prove that Rt hits 0 or
i(M)− η in an a.s. finite time. For the following calculation, we take t < τ ′ that is 0 < Rt < i(M)− η.

Let us define σ(t) :=
∫ t

0
4
R2

s
ds and Kσ(t) = log(Rt). By Itô’s formula, we get: dKσ(t) =

dRt

Rt
− 1

2R2
t
d〈Rt, Rt〉.

Thus:

dKσ(t) · dKσ(t) =
4N (ǫ)(t)

R2
t

dt = N (ǫ)(t)dσ(t)

Drift(dKσ(t)) = −
√
k

Rt

tan

(√
kRt

2

)

N (ǫ)(t)dt− 2N (ǫ)(t)

R2
t

dt = −N (ǫ)(t)





√
kRt tan

(√
kRt

2

)

4
+

1

2



 dσ(t).
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With this time change, excluding the times when N (ǫ)(t) = 0 (fixed-distance coupling) in which K stays
constant, σ 7→ Kσ acts like a Brownian motion with negative drift.
Let us also define Wσ(t) =

At

R2
t
. With Itô’s formula, we get:

dWσ(t) =
1

R2
t

dAt − 2
At

R3
t

dRt +
1

2
× 6

At

R4
t

d〈Rt, Rt〉 =
1

R2
t

dAt − 2
At

R3
t

dRt + 3× 4N (ǫ)At

R4
t

dt.

Thus we have:

Drift(dWσ(t)) =

(

2
√
k

R3
t

tan

(√
kRt

2

)

N (ǫ)(t)At + 3× 4N (ǫ)(t)
At

R4
t

)

dt

= N (ǫ)(t)Wσ(t)

(√
kRt

2
tan

(√
kRt

2

)

+ 3

)

dσ(t),

dWσ(t) · dWσ(t) =





4sin2
(√

kRt

2

)

kR4
t cos

2
(

N (ǫ)(t)
√
kRt

2

) +
16N (ǫ)A2

t

R6
t



 dt as 〈dCt, dC̃t〉 = 0

=





sin2
(√

kRt

2

)

kR2
t cos

2
(

N (ǫ)(t)
√
kRt

2

) +
4N (ǫ)A2

t

R4
t



 dσ(t)

=





1

4

(

2√
kRt

)2 sin2
(√

kRt

2

)

cos2
(

N (ǫ)
√
kRt

2

) + 4N (ǫ)(t)W 2
σ(t)



 dσ(t).

Finally, dKσ(t) · dWσ(t) =
1
Rt
dRt ·

(

−2At

R3
t
dRt

)

= −2At

R4
t
× 4N (ǫ)(t)dt = −2N (ǫ)(t)Wσ(t) dσ(t).

Let S := σ(τ ′). For the following part, in order to simplify the notations, we will denote σ instead of σ(t)
and N (ǫ)(σ) instead of N (ǫ)(t). We want to show that τ ′ < +∞ a.s. As

∫ S

0
e2Kσdσ =

∫ τ

0
4e2log(Rt) dt

R2
t
= 4τ ′,

this is the same as showing that
∫ S

0 e2Kσdσ < +∞ a.s.
First of all let us note that the number of changes of type of coupling (reflection coupling/fixed-distance
coupling) is countable as it is finite on all closed and bounded interval of time [S1, S2] such that S2 < τ ′.
Actually if we have an infinite number of changes of type of coupling, we can define (considering the time
scale induced by σ) two sequences (σs

n)n and (σr
n)n such that σs

n < σr
n < σs

n+1 for all n ≥ 0 and such that
N (ǫ)(σ) = 0 on [σs

n, σ
r
n[ and N (ǫ)(σr

n) = 1. As S2 < τ ′, we have Rt non nul and Wσ well defined on [S1, S2]
such that |Wσs

n
| = κ and |Wσr

n
| = κ − ǫ. As (σs

n)n and (σr
n)n converge to the same limit, this leads to a

contradiction concerning the two previous equalities as |W | is continuous.

Thus we have a countable number of changes of type of coupling. Using the previous notations, let us
denote [σs

n, σ
r
n[ the interval during which N (ǫ)(σ) = 0 and [σr

n, σ
s
n+1[ the interval during wich N (ǫ)(σ) = 1.

The same way we denote tsn and trn such that σ(tsn) = σs
n and σ(trn) = σr

n.
As seen before, R is constant on intervals [tsn, t

r
n[ and acting as a two times Brownian motion with negative

drift out of these intervals. As the time needed to exit a bounded open interval for a real Brownian motion
with negative drift is a.s. finite, we have

∑

n≥0

(tsn+1 − trn) < +∞ a.s. Note that:

∫ S

0

N (ǫ)(σ)e2Kσdσ =
∑

n≥0

∫ σs
n+1

σr
n

e2Kσdσ =
∑

n≥0

∫ σs
n+1

σr
n

R2
tdσ =

∑

n≥0

∫ tsn+1

trn

4dt = 4
∑

n≥0

(tsn+1 − trn).
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Then, this quantity is a.s. finite and, in order to show that τ ′ < +∞, it is enough to show that:

∫ S

0

(1−N (ǫ))e2Kσdσ < +∞.

As Rt and Kσ are constant during fixed-distance coupling, we have:

∫ S

0

(1−N (ǫ))e2Kσ =
∑

n≥0

∫ σr
n

σs
n

e2Kσdσ =
∑

n≥0

e2Kσs
n (σr

n − σs
n).

Thus we want to show that
∑

n≥0

e2Kσs
n (σr

n − σs
n) < +∞ a.s.

• We will first show the equality:

E



exp



−
∑

n≥0

e2Kσs
n (σr

n − σs
n)





∣

∣

∣

∣

(Kσs
m
)m



 = exp









−
∑

n≥0

eKσs
n ×

√
kRtsn

2

sin

(√
kRtsn

2

) × 2
√
2ǫ









. (15)

As our coupling is the fixed-distance one on [σs
n, σ

r
n], there exists Vσ, a real Brownian motion, such

that:

dWσ =
1√
kRt

sin

(√
kRt

2

)

dVσ =
1√
kRtsn

sin

(√
kRtsn

2

)

dVσ.

In particular |Wσ | only depends on Rtsn
for σr

n ≥ σ ≥ σs
n and so depends on Kσs

n
only.

Then, knowing
(

Kσs
m

)

m
, σr

n − σs
n is the first hitting time of k − ǫ by the process |Wσ|. As |Wσs

n
| = κ,

by continuity, Wσ keeps the same sign all along the interval [σs
n, σ

r
n]. Then we have:

σr
n − σs

n = inf{σ > 0 |Wσ+σs
n
= sign(Wσs

n
)(κ− ǫ)}

= inf{σ > 0 |(Wσ+σs
n
−Wσs

n
) = sign(Wσs

n
)(κ− ǫ − κ)}

= inf

{

σ > 0
∣

∣

∣

√
kRtsn

sin

(√
kRtsn

2

) (Wσ+σs
n
−Wσs

n
) = −

√
kRtsn

sin

(√
kRtsn

2

) sign(Wσs
n
)ǫ

}

.

Moreover, on [σs
n, σ

r
n] and conditional on Kσs

n
,

√
kRtsn

sin

(
√

kRtsn
2

) (Wσ+σs
n
−Wσs

n
)σ is a real Brownian motion

starting from 0. Thus, conditional on Kσs
n
, σr

n − σs
n has the same law than Tan

the hitting time of

an =
√
kRtsn

sin

(
√

kRtsn
2

)ǫ by a real Brownian motion starting at 0. Then the Laplace transform gives:

E[exp(−µTan
)] = exp(−an

√

2µ) ∀µ > 0 and E[exp (−µ(σr
n − σs

n)) |Kσs
n
] = exp(−

√
kRtsn

sin

(√
kRtsn

2

)ǫ
√

2µ).

Finally:

E
[

exp
(

−e2Kσs
n (σr

n − σs
n)
)

|(Kσs
m
)m
]

= exp









−
√
kRtsn

sin

(√
kRtsn

2

)ǫ
√
2eKσs

n









.

30



Furthermore, conditional to (Kσs
m
)m, (σr

n − σs
n)n are independent. Thus:

E

[

exp

(

−
N
∑

n=0

e2Kσs
n (σr

n − σs
n)

)

∣

∣

∣

∣

(Kσs
m
)m

]

= exp









−
N
∑

n=0

√
kRtsn

2

sin

(√
kRtsn

2

)2ǫ
√
2eKσs

n









.

Using the dominated convergence theorem we get the announced equality.

• We will now deal with the quantity
∑

n≥0

√
kRtsn

2

sin

(√
kRtsn

2

)eKσs
n occurring in the previous result.

Let us first notice that
∫ σs

n

0
N (ǫ)(σ)dσ =

n−1
∑

m=0
(σs

m+1 − σr
m). The quantities σs

m+1 − σr
m are the first

exit times of the open ] − κ, κ[ during reflection times ([σr
m, σ

s
m+1]) by the diffusion Wσ starting at

±(κ− ǫ) ∈]− κ, κ[. Note that, unlike the fixed-distance coupling case, here the sign of Wt can change.

During these times we have:






























dWσ(t) · dWσ(t) =







1

4





tan
(√

kRt

2

)

√
kRt

2





2

+ 4W 2
σ(t)






dσ(t)

Drift(dWσ(t)) =Wσ(t)

(√
kRt

2
tan

(√
kRt

2

)

+ 3

)

dσ(t).

(16)

We now take m some positive integer. We define a new time change: ζm(σ) :=
∫ σ

0
dWs+σr

m
· dWs+σr

m
.

As Rt is upper-bounded by i(M) − η, there exists 0 < M a constant such that
tan

(√
kRt
2

)

√
kRt
2

< M and
√
kRt

2 tan
(√

kRt

2

)

< M . Thus,

σ

4
≤ ζm(σ) ≤

(

M2

4
+ 4κ2

)

σ and

∣

∣

∣

∣

Drift(d(W 2
σ ))

dζm(σ)

∣

∣

∣

∣

≤ 4κ(M + 3)

Then there exists a one dimensional Brownian motion Bm, starting at 0 and independent of ζm, such
that for all σ ∈ [0, σs

m+1 − σr
m]:

Bm
ζm(σ) − 4κ(3 +M)ζm(σ) ≤Wσ+σr

m
−Wσr

m
≤ Bm

ζm(σ) + 4κ(3 +M)ζm(σ).

We now obtain

ζm(σs
m+1−σr

m) ≥ inf{ζ > 0 | Bm
ζ +4κ(3+M)ζ = κ−Wσr

m
}∧inf{ζ > 0 | Bm

ζ −4κ(3+M)ζ = −κ−Wσr
m
}.

As Wσr
m

can only take the two values κ− ǫ and −(κ− ǫ), we get ζm(σs
m+1 − σr

m) ≥ Tm with:

Tm := inf{ζ > 0 | Bm
ζ + 4κ(3 +M)ζ = ǫ} ∧ inf{ζ > 0 | Bm

ζ − 4κ(3 +M)ζ = −ǫ}.

In particular, we have:

σs
m+1 − σr

m ≥ 1
M2

4 + 4κ2
Tm. (17)

For all m, (Tm)m is a sequence of independent and equally distributed variables with nonnegative and
finite mean. Then, the strong law of large numbers yields:

(

M2

4
+ 4κ2

)

1

n

n−1
∑

m=0

(σs
m+1 − σr

m) ≥ 1

n

n−1
∑

m=0

Tm
a.s.−−−−−→

n→+∞
E[T0].
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Thus, for n large enough, we get a.s.:

∫ σs
n

0 N (ǫ)(σ)dσ

n
=

1

n

n−1
∑

m=0

(σs
m+1 − σr

m) ≥ E[T0]

2(M
2

4 + 4κ2)
> 0. (18)

Moreover, we obtain
∫ σs

n

0 N (ǫ)(σ)dσ
a.s−−−−−→

n→+∞
+∞

Let us now recall that Kσ = K0+
∫ σ

0
N (ǫ)(s)dCs−

∫ σ

0
N (ǫ)

(√
kRt tan

(√
kRt
2

)

4 + 1
2

)

ds. Thus Kσ−K0+

∫ σ

0 N
(ǫ)

(√
kRt tan

(√
kRt
2

)

4 + 1
2

)

ds is a Brownian motion for the change of time
∫ σ

0 N
(ǫ)(s)ds.

Note that:

1

2
≤

∫ σs
n

0 N (ǫ)

(√
kRt tan

(√
kRt
2

)

4 + 1
2

)

ds

∫ σs
n

0 N (ǫ)(s)ds
.

By the strong law of large number for Brownian motions, we also have:

Kσs
n
−K0 +

∫ σs
n

0 N (ǫ)

(√
kRt tan

(√
kRt
2

)

4 + 1
2

)

ds

∫ σs
n

0
N (ǫ)(s)ds

a.s−−−−−→
n→+∞

0.

Finally, a.s. for n large enough, we obtain:

Kσs
n

∫ σs
n

0
N (ǫ)(s)ds

≤ −1

4
. (19)

By combining the results (18) and (19), we get a.s. for n large enough and noting c0 = E[T0]

2
(

M2

4 +4κ2
) :

1

n
Kσs

n
=

Kσs
n

∫ σs
n

0 N (ǫ)(s)ds
×
∫ σs

n

0
N (ǫ)(s)ds

n
≤ −c0

4
< 0

It remains to notice that a.s., for all n, we have 0 <
√
kRtsn

2 < π
2 . Thus:

√
kRtsn

2

sin

(√
kRtsn

2

) ≤ π

2
and

∑

n≥M

√
kRtsn

2

sin

(√
kRtsn

2

)eKσs
n ≤ π

2

∑

n≥M

(e−
c0
4 )n < +∞.

Finally we get:
∑

n≥0

√
kRtsn

2

sin

(√
kRtsn

2

)eKσs
n < +∞ a.s. (20)

• Using (15) and (20), we have E[exp(−
∑

n≥0

eKσs
n (σr

n − σs
n))|(Kσs

m
)m] > 0 a.s.

Still conditional to (Kσs
m
)m, since exp(− ∑

n≥0

eKσs
n (σr

n−σs
n)) ≥ 0, the event exp(− ∑

n≥0

eKσs
n (σr

n−σs
n)) >

0, equivalent to the event
∑

n≥0

eKσs
n (σr

n−σs
n) < +∞, has a non-zero probability. As

(

e2Kσs
n (σr

n − σs
n)
)

n
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are independent, using the Kolmogorov zero-one law, we get P(
∑

n≥0

eKσs
n (σr

n−σs
n) < +∞|(Kσs

m
)m) = 1

a.s.
Finally,

∑

m≥0

e2Kσs
m (σr

m − σs
m) < +∞ a.s. and so τ ′ < +∞ a.s.

To show that P(τ > τη) < 1, we just need to remark that this event only depends on the evolution of Rt.
As Rt is acting as a time changed Brownian motion with negative drift omitting the times where it stays
constant, we directly obtain our result.

We can now give the proof of Theorem (1.6).

Proof of Theorem (1.6). To construct a successful coupling, we now just have to start the coupling described
in Theorem 4.1.

(i) If τ ∧ τη = τ , we obtain Rt = At = 0.

(ii) If τ ∧ τη = τη, we use a synchronous coupling until Rt = R0 and then a fixed distance coupling until
At = 0 and we re-start the coupling of theorem 4.1.

In step (ii), as Rt is deterministic and decreasing during synchronous coupling, each "synchronous step" will
take a constant finite time. It also takes an a.s. finite time to obtain At = 0 with fixed distance coupling.
Thus we repeat the same experiment independently. As the probability that τ < τη is non-zero during the
coupling of theorem 4.1, it will take a finite number of change of coupling to be in this event and then have
an a.s. finite time of success. Let us remind that, if R0 ∈ {0, i(M)}, we need to use perverse or synchronous
coupling before our successful coupling to start with Rt ∈]0, i(M)[. As Rt is deterministic for perverse and
synchronous couplings, this won’t change our result.

Remark. As announced previously, we can improve this strategy in the case of SU(2): considering At

mod (2π) instead of a value in R, we can suppose that At stays in ]− 2π, 2π]. This time we can take κ < 2π.
This way, fixed-distance coupling is stopped when Wσ ∈ {−(κ− ǫ);κ− ǫ} with a non zero probability to reach
one or another of these bounds and there will be less time spent in fixed-distance coupling than in theorem
(4.1). In particular, for n ≥ 0, there exists (Vσ)σ a Brownian motion starting at 0 such that:

σr
n − σs

n = inf

{

σ
∣

∣

∣ sgn(Wσs
n
)κ+

sin

(√
kRtsn

2

)

√
kRtsn

Vσ ∈
{

sgn(Wσs
n
)(κ− ǫ); sgn(Wσs

n
)

(

4π

R2
tsn

− (κ− ǫ)

)

}

}

= inf
{

σ | sgn(Wσs
n
)

sin

(√
kRtsn

2

)

√
kRtsn

Vσ ∈ {−ǫ; 4π

R2
tsn

− 2κ+ ǫ}
}

< inf{σ | sgn(Wσs
n
)Vσ = an} with an defined as before.

This way, instead of (15), we obtain:

E[exp(−
∑

n≥0

e2Kσs
n (σr

n − σs
n))|(Kσs

m
)m] > exp









−
∑

n≥0

eKσs
n ×

√
kRtsn

2

sin

(√
kRtsn

2

) × 2
√
2ǫ









.

In addition to decreasing the time spent in fixed-distance coupling, having bounded values for At prevents
from using synchronous coupling when Rt is too close of i(M) = π. Let us explain this.
During reflection coupling, Wσ stays continuous and still satisfies (16). Supposing that Rt ≤ π − η for
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all t in [trm, t
s
m+1], we still have (17). Else, supposing that Rt > π − η for some t ∈ [trm, t

s
m+1], we get

|Wσ(t)| = |At|
R2

t
≤ 2π

(π−η)2 . Choosing η, κ and ǫ such that 2π
(π−η)2 < κ − ǫ < 2π, we obtain |Wσ(t)| < κ − ǫ.

Thus reflection coupling won’t end while Rt stays up to π − η. More, there will exist t̃rm ∈]trm, tsm+1[ such
that |Wσ(t̃rm)| = κ− ǫ and Rt ≤ π − η for all t in [t̃rm, t

s
m+1]. As before, we obtain:

σs
m+1 − σr

m > σs
m+1 − σ(t̃rm) ≥ 1

M2

4 + 4κ2
Tm.

Thus the last inequality is always true and we get again (18). Following the rest of the proof of theorem
(4.1), we directly obtain τ < +∞ a.s.
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