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AN INVERSE PROBLEM FOR A PARABOLIC SYSTEM IN AN

UNBOUNDED GUIDE

LAURE CARDOULIS*

Abstract. In this article we consider a two-by-two parabolic system defined on an unbounded

guide with coefficients depending both on the space variable and on the time variable. The

main aim of this paper is to obtain a stability result for the coefficients depending on the space
variable. Using Carleman inequalities adapted for the guide, we obtain Hölder estimates of these

coefficients in any finite portion of the guide with boundary measurements, given two sets of

initial conditions.

1. Introduction

Let ω be a bounded connex domain in Rn−1, n ≥ 2 with C2 boundary. Denote Ω = R× ω and
Q = Ω× (0, T ), Σ = ∂Ω× (0, T ). We consider the following problem

∂tu = ∆u+ αφ1u+ βφ2w + g1 in Q,
∂tw = ∆w + γφ3u+ δφ4w + g2 in Q,
u(., 0) = a1, w(., 0) = a2 in Ω,
u = a3, w = a4 in Σ,

(1.1)

where α, β, γ, δ are bounded coefficients defined on Ω such that

α, β, γ, δ ∈ Λ1(M0) = {f ∈ L∞(Ω), ‖f‖L∞(Ω) ≤M0} for some M0 > 0,

and φ1, φ2, φ3, φ4 are bounded coefficients defined on [0, T ] such that for i = 1, · · · , 4

φi ∈ Λ2(M0) = {f ∈ C1([0, T ]), f(
T

2
) 6= 0 and ‖f‖C1([0,T ]) ≤M0}.

The main problem is to estimate the coefficients (α, β, γ, δ) from boundary observations of (u,w).
We will consider two sets of Cauchy and Dirichlet conditions A and B and denote

G = (g1, g2), A = (a1, a2, a3, a4), B = (b1, b2, b3, b4), ρ = (α, β, γ, δ, φ1, φ2, φ3, φ4),

ρ̃1 = (α̃, β̃, γ̃, δ̃, φ1, φ2, φ3, φ4), ρ̃2 = (α, β̃, γ̃, δ̃, φ̃1, φ2, φ3, φ4), ρ̃3 = (α, β̃, γ̃, δ̃, φ1, φ2, φ3, φ4).
(1.2)

Let two positive reals l, L be such that l < L. Denote

ΩL = (−L,L)× ω and Ωl = (−l, l)× ω.
The first result of this paper gives a Hölder stability result (3.4) for the coefficients α, β, γ, δ and
is the following (see Theorem 3.1)

‖α− α̃‖2L2(Ωl)
+ ‖β − β̃‖2L2(Ωl)

+ ‖γ − γ̃‖2L2(Ωl)
+ ‖δ − δ̃‖2L2(Ωl)

≤ K

(∫
γL×(0,T )

1∑
k=0

(|∂ν(∂kt (uA − ũA))|2 + |∂ν(∂kt (wA − w̃A))|2) dσ dt
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+

∫
γL×(0,T )

1∑
k=0

(|∂ν(∂kt (uB − ũB))|2 + |∂ν(∂kt (wB − w̃B))|2) dσ dt)

)κ
where K is a positive constant, κ ∈ (0, 1), γL is a part of the boundary (see (2.2)), and assuming
that the hypothesis (3.3) is satisfied. We consider in the above result VA = (uA, wA) (resp.

ṼA = (ũA, w̃A)) a solution of (1.1) associated with the coefficients (ρ,G,A) (resp. (ρ̃1, G,A)) and

VB = (uB , wB) (resp. ṼB = (ũB , w̃B)) a solution of (1.1) associated with the coefficients (ρ,G,B)
(resp. (ρ̃1, G,B)) where A is a set of Cauchy and Dirichlet conditions and B is a suitable change of
initial and boundary conditions. The above result is an improvement of results obtained in [5] with
different and less restrictive hypotheses but with two choices of Cauchy and Dirichlet conditions
A and B. In abbreviated form we will call A and B the two sets of initial conditions. It is an
improvement because on one hand the hypotheses, though quite differents, are easier to satisfy
than in [5] and on the other hand there are no observation terms of the solutions (u,w) at a fixed
time on the right-hand side of the estimate, such as ‖(uA− ũA)(., T2 )‖2H2(ΩL) (see [5]). The idea of

choosing two different sets of initial conditions can be found in [2] for a hyperbolic equation in a
bounded domain (see also [6] for a hyperbolic system).
A consequence of the above result is given in Theorem 3.2 where the measurements are given for
only one component (for example u) and is the following (see (3.6))

‖α− α̃‖2L2(Ωl)
+ ‖β − β̃‖2L2(Ωl)

+ ‖γ − γ̃‖2L2(Ωl)
+ ‖δ − δ̃‖2L2(Ωl)

≤ K
(
‖uA − ũA‖2H2([0,T ],H2(ω′∩ΩL)) + ‖uA − ũA‖2H1([0,T ],H4(ω′∩ΩL))

+‖uB − ũB‖2H2([0,T ],H2(ω′∩ΩL)) + ‖uB − ũB‖2H1([0,T ],H4(ω′∩ΩL))

+

∫
γL×(0,T )

1∑
k=0

(|∂ν(∂kt (uA − ũA))|2 + |∂ν(∂kt (uB − ũB))|2) dσ dt)

)κ
where K > 0, κ ∈ (0, 1) and ω′ is a neighborhood of γL, ω′ being a subdomain of Ω such that

γL ⊂ ∂ω′, and assuming that α = α̃ and β = β̃ in ω′. We can relax the hypothesis that the
coefficients α and β are supposed known in ω′ when these coefficients are in H2(Ω) and we obtain
a similar result with the L2-norms replaced by the H2-norms for the coefficients α and β on the
left-hand side of the above estimate and additional terms such as ‖(uA − ũA)(., T2 )‖2H4(ΩL) on the

right-hand side of this estimate (see (3.7)).
The third result gives a Hölder result (3.10) for the coefficients φ1, β, γ, δ (assuming also that
φi ∈ C2([0, T ])) and is the following (see Theorem 3.3)

2∑
i=0

‖∂it(φ1 − φ̃1)‖2L2((0,T )) + ‖β − β̃‖2L2(Ωl)
+ ‖γ − γ̃‖2L2(Ωl)

+ ‖δ − δ̃‖2L2(Ωl)

≤ K

(
1∑
k=0

(‖∂kt (uA − ũA)(·, T
2

)‖2H2(ΩL) + ‖∂kt (uB − ũB)(·, T
2

)‖2H2(ΩL))

+‖∂2
t (uA − ũA)(·, T

2
)‖2L2(ΩL) + ‖∂2

t (uB − ũB)(·, T
2

)‖2L2(ΩL)) + ‖(wA − w̃A)(·, T
2

)‖2H2(ΩL)

+‖(wB − w̃B)(·, T
2

)‖2H2(ΩL) +

∫
γL×(0,T )

2∑
k=0

(|∂ν(∂kt (uA − ũA))|2 + |∂ν(∂kt (wA − w̃A))|2) dσ dt

+

∫
γL×(0,T )

2∑
k=0

(|∂ν(∂kt (uB − ũB))|2 + |∂ν(∂kt (wB − w̃B))|2) dσ dt)

)κ
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where K is still a positive constant, κ ∈ (0, 1), and φ̃1 belongs to a set of admissible coefficients

(namely Λ3(M3), see (3.8)). In the above case we denote VA = (uA, wA) (resp. ṼA = (ũA, w̃A))

a solution of (1.1) associated with (ρ,G,A) (resp. (ρ̃2, G,A)) and VB = (uB , wB) (resp. ṼB =
(ũB , w̃B)) a solution of (1.1) associated with (ρ,G,B) (resp. (ρ̃2, G,B)). So this third result gives
a determination of one coefficient depending on the time variable. Be careful that the meanings of
ṼA and ṼB are not the same in Theorems 3.1 and 3.2 on one hand and Theorem 3.3 on the other
hand.
Finally the fourth theorem gives a Hölder result (3.11) for the following reaction-diffusion system

∂tu = ∆u+ αφ1u+ βφ2w + Θ1 · ∇u+ Θ2 · ∇w + g1 in Q,
∂tw = ∆w + γφ3u+ δφ4w + Θ3 · ∇u+ Θ4 · ∇w + g2 in Q,
u(., 0) = a1, w(., 0) = a2 in Ω,
u = a3, w = a4 in Σ,

(1.3)

where all the coefficients α, β, γ, δ, φ1, φ2, φ3, φ4, Θ1,Θ2,Θ3,Θ4 are bounded. We present here a
result for the four coefficients β, γ, δ,Θ1 (and assuming that Θ1 has the form Θ1 = ∇ξ1). So denote
now

Θ = (Θ1, · · · ,Θ4), Θ̃ = (Θ̃1,Θ2,Θ3,Θ4). (1.4)

We get the following result

‖β − β̃‖2L2(Ωl)
+ ‖γ − γ̃‖2L2(Ωl)

+ ‖δ − δ̃‖2L2(Ωl)
+ ‖Θ1 − Θ̃1‖(L2(Ωl))n

≤ K
(
‖(uA − ũA)(.,

T

2
)‖2H3(ΩL) + ‖(uB − ũB)(.,

T

2
)‖2H3(ΩL)

+

∫
γL×(0,T )

1∑
k=0

(|∂ν(∂kt (uA − ũA))|2 + |∂ν(∂kt (wA − w̃A))|2) dσ dt

+

∫
γL×(0,T )

1∑
k=0

(|∂ν(∂kt (uB − ũB))|2 + |∂ν(∂kt (wB − w̃B))|2) dσ dt)

)κ
where K is a positive constant, κ ∈ (0, 1). This time we denote VA = (uA, wA) (resp. ṼA =

(ũA, w̃A)) a solution of (1.3) associated with (ρ,G,A,Θ) (resp. (ρ̃3, G,A, Θ̃)) and VB = (uB , wB)

(resp. ṼB = (ũB , w̃B)) a solution of (1.3) associated with (ρ,G,B,Θ) (resp. (ρ̃3, G,B, Θ̃)).
Note that all our results imply uniqueness results. Up to our knowledge, there are few results
concerning the simultaneous identification of more than one coefficient in each equation (see for
examples [1, 2, 5, 6, 9, 10]) and note that in these papers the coefficients only depend on the space
variable. Also notice that there are very few results where the measurements are given with only
one component. Here the first and fourth theorems (Theorems 3.1 and 3.4) extend some results
obtained in [5, Theorem 3.2] but with hypotheses (see (3.2) and (3.3)) less restrictive than in [5].
The second result (Theorem 3.2) gives a result for four coefficients depending on the space variable
and with measurements of only one component. The third theorem (Theorem 3.3) also gives a
result for four coefficients but one of each depending on the time variable. Furthermore, usually the
papers investigate the case of bounded domains and give results with observations on a subdomain
of the domain (see for example [1, 2, 10]). Here we present results with observations on a part of the
boundary (see Theorems 3.1, 3.3, 3.4). Besides, because of our unbounded domain and our choice of
weight functions (2.3), we will use cut-off functions in time and in the direction x1 (see for example
[12] where cut-off functions are removed but in a bounded domain). Finally, usually the results
have observations terms with data of the solution at a fixed time (such as ‖(uA− ũA)(., T2 )‖2H2(ΩL),

see for example [5, 7, 8]). We have been able to remove them in Theorems 3.1, 3.2i) thanks to
the properties of the weight functions. So the theorems presented here give stability results for
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four coefficients for a system defined on an unbounded domain, with boundary measurements in
Theorems 3.1, 3.3 and 3.4, measurements for only one component in Theorem 3.2, with a time
variable coefficient in Theorem 3.3. These results extend previous results for one equation [7, 8]
or for a system [5] defined on an unbounded guide. Last we recall that the method of Carleman
estimates used for solving inverse problems has been initiated by [3].
This Paper is organized as folows: in Section 2, we recall the weight functions adapted for our
unbounded domain and the Carleman estimate (2.6) as well as the crucial inequality (2.4) for our
Hölder estimates. Then in Section 3 we state and prove our results.

2. Carleman estimate

Denote QL = ΩL × (0, T ) = (−L,L)× ω× (0, T ), x = (x1, · · · , xn) ∈ Rn, x′ = (x2, · · · , xn) and
define the operator

A0u = ∂tu−∆u.

Let l > 0, following [7] we are going to carry out special weight functions allowing us to avoid
observations on the cross section of the wave guide in our inverse problem. For this we consider some

positive real L > l and we choose â = (a1, a
′) ∈ Rn\Ω such that if d̂(x) = |x′−a′|2−x2

1 for x ∈ ΩL,
then

d̂ > 0 in ΩL, |∇d̂| > 0 in ΩL. (2.1)

Moreover we define

ΓL = {x ∈ ∂ΩL, < x− â, ν(x) >≥ 0} and γL = ΓL ∩ ∂Ω. (2.2)

Here < ., . > denotes the usual scalar product in Rn and ν(x) is the outwards unit normal vector
to ∂ΩL at x. Notice that γL does not contain any cross section of the guide. From [14]-[15] we
consider weight functions as follows: for t ∈ (0, T ), if M1 > sup0<t<T (t− T/2)2 = (T/2)2,

ψ(x, t) = d̂(x)−
(
t− T

2

)2

+M1 and φ(x, t) = eλψ(x,t). (2.3)

The constant λ > 0 will be set in Proposition 2.2 and is usually used as a large parameter in
Carleman inequalities. Since we will not use it, we will consider λ fixed in the article. We recall
from [7] and [8] the following result.

Proposition 2.1. There exist T > 0, L > l, â ∈ Rn \ ΩL and ε > 0 such that (2.1) holds and,
setting

OL,ε = (ΩL × ((0, 2ε) ∪ (T − 2ε, T ))) ∪ (((−L,−L+ 2ε) ∪ (L− 2ε, L))× ω × (0, T )),

we have

d1 < d0 < d2 (2.4)

where

d0 = inf
Ωl
φ (·, θ) , d1 = sup

OL,ε

φ, d2 = sup
ΩL

φ (·, θ) and θ =
T

2
.

From now on and from simplicity we denote θ = T
2 throughout the paper. These two above

estimates (2.4) will be fruitful in Section 3 to solve our inverse problem. In the sequel C will
be a generic positive constant. When needed, we will specify its dependency with respect to the
different parameters. We will use the following notations: Let α = (α1, · · · , αn) be a multi-index
with αi ∈ N ∪ {0}. We set ∂αx = ∂α1

1 · · · ∂αnn , |α| = α1 + · · ·+ αn and define

H2,1(QL) = {u ∈ L2(QL), ∂αx ∂
αn+1

t u ∈ L2(QL), |α|+ 2αn+1 ≤ 2}
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endowed with its norm

‖u‖2H2,1(QL) =
∑

|α|+2αn+1≤2

‖∂αx ∂
αn+1

t u‖2L2(QL).

We recall now a global Carleman-type estimate proved in [7, Proposition 4.2] or in [8, Proposition
3], based on a classical Carleman estimate (see Yamamoto [14, Theorem 7.3]). The key difference
with the classical Carleman inequality in [14, Theorem 7.3] is to remove, on the cross-sections
of ΩL, the boundary condition and the observation. For that we need cut-off functions in time.
On the other hand, to manage our infinite wave guide we also need to consider cut-off functions
in space but only in the infinite direction x1. These cut-off functions will induce additive terms
coming from the commutator between the evolution operator and these cut-off functions. Let χ, η
be C∞ cut-off functions such that χ,∇χ,∆χ ∈ Λ1(M0), 0 ≤ χ ≤ 1, 0 ≤ η ≤ 1,

χ(x) = 0 if x ∈ ((−∞,−L+ ε) ∪ (L− ε,+∞))× ω),

χ(x) = 1 if x ∈ (−L+ 2ε, L− 2ε)× ω,

η(t) = 0 if t ∈ (0, ε) ∪ (T − ε, T ), η(t) = 1 if t ∈ ×(2ε, T − 2ε). (2.5)

with ε defined in Proposition 2.1.

Proposition 2.2. [7, Proposition 4.2] There exist a value of λ > 0 and positive constants s0 and
C = C(λ, s0) such that

I(u) =

∫
QL

(
1

sφ
(|∂tu|2 + |∆u|2) + sφ |∇u|2 + s3φ3|u|2

)
e2sφdx dt

≤ C‖esφA0u‖2L2(QL) + Cs3e2sd1‖u‖2H2,1(QL) + Cs

∫
γL×(0,T )

|∂νu|2e2sφdσ dt, (2.6)

for all s > s0 and all u ∈ H2,1(QL) satisfying u(., 0) = u(., T ) = 0 in ΩL, u = 0 on (∂Ω ∩ ∂ΩL)×
(0, T ). We denote ∂νu = ν · ∇u and recall that A0u = ∂tu−∆u.

Since the method of Carleman estimates requires several time differentiations, we assume in the
following that u,w (solution of (1.1) or (1.3)) belong to H = H2([0, T ], H2(Ω)) ∩ W 2,∞(Ω ×
(0, T )) for Theorems 3.1, H = H3([0, T ], H4(Ω)) ∩ W 4,∞(Ω × (0, T )) for Theorem 3.2, H =
H3([0, T ], H2(Ω))∩W 3,∞(Ω× (0, T )) for Theorem 3.3, H = H2([0, T ], H3(Ω))∩W 3,∞(Ω× (0, T ))
for Theorem 3.4, satisfying the a-priori bound

‖u‖H < M2 and ‖w‖H < M2 for given M2 > 0.

From now on, we use the notation f(θ) = f(., θ) for any function f defined on Q.

3. Inverse problem

3.1. Preliminary lemmas. From [11, Lemma 4.2], we derive the following result, also used in [7]
or [5, Lemma 3.1].

Lemma 3.1. There exist positive constants s1 and C such that∫
ΩL

e2sφ(θ)(f(θ))2 dx ≤ Cs
∫
QL

e2sφf2 dx dt+
C

s

∫
QL

e2sφ(∂tf)2 dx dt

for all s ≥ s1 and f ∈ H1(0, T ;L2(ΩL)).

For the sake of completeness, we recall its proof.
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Proof. Consider η defined by (2.5) and any w ∈ H1(0, T ;L2(ΩL)). Since η(θ) = 1 and η(0) = 0,
we have ∫

ΩL

w(x, θ)2dx =

∫
ΩL

(η(θ)w(x, θ))2dx =

∫
ΩL

∫ θ

0

∂t(η
2(t)|w(x, t)|2)dt dx

= 2

∫ θ

0

∫
ΩL

η2(t)w(x, t)∂tw(x, t)dx dt+ 2

∫ θ

0

∫
ΩL

η(t)∂tη(t)|w(x, t)|2dx dt.

As 0 ≤ η ≤ 1, using Young’s inequality, it comes that for any s > 0,∫
ΩL

w(x, θ)2 dx ≤ Cs
∫
QL

|w|2dx dt+
C

s

∫
QL

|∂tw|2dx dt. (3.1)

Then we can conclude replacing w by esφf in (3.1). �

The following lemma will be only used for Theorem 3.4. It is a classical lemma for a first
order partial differential operator but which necessites a strong positivity condition (3.2). This

condition is nevertheless weaker than the one used in [8] or [5] (which was |∇d̂ · ∇ũ(θ)| ≥ R > 0
in ΩL). So we follow an idea developed in [13] for Lamé system in bounded domains, also used
for example in [8] or in [5]. The lemma below will be used in the proof of Theorem 3.4 with

(v1, · · · , v4) = (w̃B(θ), ũA(θ), w̃A(θ), ũB(θ)). Recall that d̂ is defined by (2.1).

Lemma 3.2. Assume that the following assumption

|v1∇d̂ · ∇v2 − v3∇d̂ · ∇v4| ≥ R in ΩL for some R > 0 (3.2)

holds. Consider the first order partial differential operator Pf = v1∇f · ∇v2 − v3∇f · ∇v4. Then
there exist positive constants s′1 > 0 and C > 0 such that for all s ≥ s′1,

s2

∫
ΩL

e2sφ(θ)f2 dx ≤ C
∫

ΩL

e2sφ(θ)|Pf |2 dx,

for all f ∈ H1
0 (ΩL).

Proof. The proof follows [8] or [5]. Let f ∈ H1
0 (ΩL).Denote w = esφ(θ)f andQw = esφ(θ)P (e−sφ(θ)w).

So we get Qw = Pw − sλφ(θ)w(P d̂). Therefore we have∫
ΩL

|Qw|2 dx ≥ s2λ2

∫
ΩL

(φ(θ))2w2(P d̂)2 dx− 2sλ

∫
ΩL

φ(θ)(Pw)w(P d̂) dx.

So ∫
ΩL

|Qw|2 dx ≥ s2λ2

∫
ΩL

(φ(θ))2w2(P d̂)2 dx− sλ
∫

ΩL

φ(θ)(Pw2)(P d̂) dx.

Thus integrating by parts∫
ΩL

|Qw|2 dx ≥ s2λ2

∫
ΩL

(φ(θ))2w2(P d̂)2 dx+ sλ

∫
ΩL

w2∇ · (φ(θ)(P d̂)(v1∇v2 − v3∇v4)) dx.

And we can conclude for s sufficiently large. �

3.2. Statements of results.
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3.2.1. First result. Consider VA = (uA, wA) (resp. ṼA = (ũA, w̃A)) a strong solution of (1.1) asso-
ciated with (ρ,G,A) defined by (1.2) (resp. (ρ̃1, G,A)) where A is a set of initial and boundary

conditions. Consider also VB = (uB , wB) (resp. ṼB = (ũB , w̃B)) a strong solution of (1.1) associ-
ated with (ρ,G,B) (resp. (ρ̃1, G,B)) and where B is another set of initial and boundary conditions.

Assume that all the coefficients α, β, γ, δ, α̃, β̃, γ̃, δ̃, belong to Λ1(M0) and all the coefficients φi to
Λ2(M0) (for i = 1, · · · , 4).
Our main result is the following

Theorem 3.1. Let l > 0. Let T > 0, L > l and â ∈ Rn \Ω satisfying the conditions of Proposition
2.1. Assume that

|ũA(·, θ)w̃B(·, θ)− ũB(·, θ)w̃A(·, θ)| ≥ R in ΩL for some R > 0. (3.3)

Then there exists a sufficiently small number τ0 > 0 such that if τ ∈ (0, τ0),

1∑
k=0

∫
γL×(0,T )

(|∂ν(∂kt (uA − ũA))|2 + |∂ν(∂kt (wA − w̃A))|2

+|∂ν(∂kt (uB − ũB))|2 + |∂ν(∂kt (wB − w̃B))|2)dσ dt ≤ τ
then the following Hölder stability estimate holds

‖α− α̃‖2L2(Ωl)
+ ‖β − β̃‖2L2(Ωl)

+ ‖γ − γ̃‖2L2(Ωl)
+ ‖δ − δ̃‖2L2(Ωl)

≤ Kτκ for all τ ∈ (0, τ0). (3.4)

Here, K > 0 and κ ∈ (0, 1) are two constants depending on R, L, l, M0, M1, M2, T and â.

3.2.2. Second result. As a consequence of Theorem 3.1, we can give a stability result with measure-
ments of only one component. Theorem 3.2i) gives an estimate of the four coefficients α, β, γ, δ ∈
L2(Ω) when α = α̃ and β = β̃ in a neighborhood ω′ of the boundary of interest γL. That means that
these two coefficients α and β are supposed known in ω′. We relax this last hypothesis in Theorem
3.2ii) where an estimate of these four coefficients is given for α, β ∈ H2(Ω). Consider VA = (uA, wA)

(resp. ṼA = (ũA, w̃A)) a strong solution of (1.1) associated with (ρ,G,A) defined by (1.2) (resp.

(ρ̃1, G,A)). Consider also VB = (uB , wB) (resp. ṼB = (ũB , w̃B)) a strong solution of (1.1) asso-

ciated with (ρ,G,B) (resp. (ρ̃1, G,B)). Assume that all the coefficients α, β, γ, δ, α̃, β̃, γ̃, δ̃, belong
to Λ1(M0) and all the coefficients φi to Λ2(M0) (for i = 1, · · · , 4). For Theorem 3.2ii) we also

suppose that α, β, α̃, β̃ ∈ Λ′(M0) = {f ∈ H2(Ω), ‖f‖H2(Ω)‖ ≤M0} and φi ∈ C2([0, T ]).

Theorem 3.2. Let l > 0. Let T > 0, L > l and â ∈ Rn \Ω satisfying the conditions of Proposition
2.1. Let ω′ be a neighborhood of γL, ω′ ⊂ ΩL+ε such that γL ⊂ ∂ω′, ∂ω′ being C2. Assume that
the hypothesis(3.3) holds and that we also have

|βφ2| ≥ R > 0 in QL. (3.5)

i): We suppose that α = α̃ and β = β̃ in ω′.
Then there exists a sufficiently small number τ0 > 0 such that if τ ∈ (0, τ0),

‖uA − ũA‖2H2([0,T ],H2(ω′∩ΩL)) + ‖uA − ũA‖2H1([0,T ],H4(ω′∩ΩL))

+‖uB − ũB‖2H2([0,T ],H2(ω′∩ΩL)) + ‖uB − ũB‖2H1([0,T ],H4(ω′∩ΩL))

+

∫
γL×(0,T )

1∑
k=0

(|∂ν(∂kt (uA − ũA))|2 + |∂ν(∂kt (uB − ũB))|2) dσ dt ≤ τ

then the following Hölder stability estimate holds

‖α− α̃‖2L2(Ωl)
+ ‖β − β̃‖2L2(Ωl)

+ ‖γ − γ̃‖2L2(Ωl)
+ ‖δ − δ̃‖2L2(Ωl)

≤ Kτκ for all τ ∈ (0, τ0). (3.6)
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ii): We suppose that α, β, α̃, β̃ ∈ H2(Ω).
Then there exists a sufficiently small number τ0 > 0 such that if τ ∈ (0, τ0),

‖(uA − ũA)(·, θ)‖2H4(ΩL) + ‖(uB − ũB)(·, θ)‖2H4(ΩL) + ‖uA − ũA‖2H3([0,T ],H2(ω′∩ΩL))

+‖uA − ũA‖2H2([0,T ],H4(ω′∩ΩL)) + ‖uB − ũB‖2H3([0,T ],H2(ω′∩ΩL)) + ‖uB − ũB‖2H2([0,T ],H4(ω′∩ΩL))

+

∫
γL×(0,T )

2∑
k=0

(|∂ν(∂kt (uA − ũA))|2 + |∂ν(∂kt (uB − ũB))|2) dσ dt ≤ τ

then the following Hölder stability estimate holds

‖α− α̃‖2H2(Ωl)
+ ‖β − β̃‖2H2(Ωl)

+ ‖γ − γ̃‖2L2(Ωl)
+ ‖δ − δ̃‖2L2(Ωl)

≤ Kτκ for all τ ∈ (0, τ0). (3.7)

Here, K > 0 and κ ∈ (0, 1) are two constants depending on R, L, l, M0, M1, M2, T , ‖g0‖(C1(ω′))n

and â.

3.2.3. Third result. Now we present a result for the four coefficients (φ1, β, γ, δ). We consider here

VA = (uA, wA) (resp. ṼA = (ũA, w̃A)) a strong solution of (1.1) associated with (ρ,G,A) defined by

(1.2) (resp. (ρ̃2, G,A)). Consider also VB = (uB , wB) (resp. ṼB = (ũB , w̃B)) a strong solution of

(1.1) associated with (ρ,G,B) (resp. (ρ̃2, G,B)). Assume that all the coefficients α, β, γ, δ, β̃, γ̃, δ̃,

belong to Λ1(M0) and all the coefficients φi, φ̃1 to Λ2(M0) (for i = 1, · · · , 4). Let the set of
admissible coefficients

Λ3(M3) = {f ∈ C2([0, T ]), |∂2
t (f − φ1)(t)| ≤M3|(f − φ1)(θ)| for all t ∈ [0, T ]} (3.8)

with M3 a positive constant.
Our result is the following.

Theorem 3.3. Let l > 0. Let T > 0, L > l and â ∈ Rn \Ω satisfying the conditions of Proposition

2.1. We suppose that φ̃1 ∈ Λ3(M3). Assume that Assumption (3.3) holds and that

|α| ≥ R > 0 in ΩL. (3.9)

Then there exists a sufficiently small number τ0 > 0 such that if τ ∈ (0, τ0),

1∑
k=0

(‖∂kt (uA − ũA)(·, θ)‖2H2(ΩL) + ‖∂kt (uB − ũB)(·, θ)‖2H2(ΩL)) + ‖∂2
t (uA − ũA)(·, θ)‖2L2(ΩL)

+‖∂2
t (uB − ũB)(·, θ)‖2L2(ΩL) + ‖(wA − w̃A)(·, θ)‖2H2(ΩL) + ‖(wB − w̃B)(·, θ)‖2H2(ΩL)

+

∫
γL×(0,T )

2∑
k=0

(|∂ν(∂kt (uA − ũA))|2 + |∂ν(∂kt (wA − w̃A))|2) dσ dt ≤ τ,

then the following Hölder stability estimate holds

‖β − β̃‖2L2(Ωl)
+ ‖γ − γ̃‖2L2(Ωl)

+ ‖δ − δ̃‖2L2(Ωl)
+

2∑
i=0

‖∂it(φ1 − φ̃1)‖2L2(0,T ) ≤ Kτ
κ for all τ ∈ (0, τ0).

(3.10)
Here, K > 0 and κ ∈ (0, 1) are two constants depending on R, L, l, M0, M1, M2, M3, T , â.

Remark 1. • Notice that the hypothesis φ̃1 ∈ Λ3(M3) is satisfied when φ̃1 ∈ C2([0, T ]) is such

that φ1(θ) 6= φ̃1(θ) and
supt∈[0,T ] |∂t(φ1−φ̃1)(t)|

|φ1(θ)−φ̃1(θ)| ≤ M3. Moreover note also that if φ̃1 ∈ C2([0, T ])

is such that φ1(θ) 6= φ̃1(θ), then if we denote f1 = φ1 − φ̃1, we have f1(θ) 6= 0. Therefore

t 7→ | f1(t)
f1(θ) | is bounded on [0, T ] so there exists a positive constant C0 such that for all t ∈ [0, T ],

|f1(t)| ≤ C0|f1(θ)|. Similarly there exists a positive constant C1 such that |∂tf1(t)| ≤ C1|f1(θ)|
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and there exists a positive constant C2 such that |∂2
t f1(t)| ≤ C2|f1(θ)|.

Note also that if φ̃1 ∈ Λ3(M3) and φ̃1(θ) = φ1(θ), then ∂2
t (φ̃1 − φ1) = 0 in [0, T ]. Therefore φ̃1 has

the form φ̃1(t) = φ1(t) + k(t− θ) with k any real.
• Moreover if the function φ1 is more regular, for example if φ1 ∈ Cp([0, T ]) with p ≥ 2, then
Theorem 3.3 is still valid with a more generalized admissible set of coefficients Λ′3(M3) = {f ∈
Cp([0, T ]), |∂pt (f − φ1)(t)| ≤ M3|(f − φ1)(θ)| for all t ∈ [0, T ]}. But in this case, because of our
method, the observations terms at the fixed time θ on the right-hand side of the estimate (3.10)
would demand more regularity.
• On the contrary, we can relax some of the observations terms on u (uA and ũA) at θ on the right-
hand side of (3.10) and only have ‖(u− ũ)(·, θ)‖2H2(ΩL) but for a more restrictive admissible set of

coefficients Λ′′3(M3) = {f ∈ C2([0, T ]), |∂it(f − φ1)(t)| ≤ M3|(f − φ1)(θ)| for all i = 0, 1, 2 and t ∈
[0, T ]}.

3.2.4. Fourth result. Finally, we consider the system (1.3). Consider VA = (uA, wA) (resp. ṼA =
(ũA, w̃A)) a strong solution of (1.3) associated with (ρ,G,A,Θ) defined by (1.2) and (1.4) (resp.

(ρ̃3, G,A, Θ̃)). Consider also VB = (uB , wB) (resp. ṼB = (ũB , w̃B)) a strong solution of (1.3)

associated with (ρ,G,B,Θ) (resp. (ρ̃3, G,B, Θ̃)). Assume that all the coefficients α, β, γ, δ, β̃, γ̃, δ̃,
belong to Λ1(M0) and all the coefficients φi to Λ2(M0) (for i = 1, · · · , 4). Moreover we suppose

that Θi, Θ̃1 belong to (Λ1(M0))n ∩ (L2(Ω))n (for i = 1, · · · , 4) and there exist functions ξ1, ξ̃1 such
that

Θ1 = ∇ξ1, Θ̃1 = ∇ξ̃1 in Ω.

Theorem 3.4. Let l > 0. Let T > 0, L > l and â ∈ Rn \ Ω satisfying the conditions of
Proposition 2.1. Assume that Assumptions (3.2) and (3.3) are satisfied with (v1, · · · , v4) =
(w̃B(·, θ), ũA(·, θ), w̃A(·, θ), ũB(·, θ)).
If ξ1 = ξ̃1 and Θ1 = Θ̃1 on ∂Ω ∩ ∂ΩL, then there exists a sufficiently small number τ0 > 0 such
that if τ ∈ (0, τ0),

1∑
k=0

∫
γL×(0,T )

(|∂ν(∂kt (uA − ũA))|2 + |∂ν(∂kt (wA − w̃A))|2 + |∂ν(∂kt (uB − ũB))|2

+|∂ν(∂kt (wB − w̃B))|2)dσ dt+ ‖(uA − ũA)(·, θ)‖2H3(ΩL) + ‖(uB − ũB)(·, θ)‖2H3(ΩL) ≤ τ

then the following Hölder stability estimate holds

‖β − β̃‖2L2(Ωl)
+ ‖γ − γ̃‖2L2(Ωl)

+ ‖δ − δ̃‖2L2(Ωl)
+ ‖Θ1 − Θ̃1‖(L2(Ωl))n ≤ Kτ

κ (3.11)

for all τ ∈ (0, τ0).
Here, K > 0 and κ ∈ (0, 1) are two constants depending on R, L, l, M0, M1, M2, T and â.

3.3. Proofs of theorems.

3.3.1. Proof of Theorem 3.1. Let VA = (uA, wA) (resp. ṼA = (ũA, w̃A)) be a solution of (1.1)

associated with (ρ,G,A) (resp. (ρ̃1, G,A)) and VB = (uB , wB) (resp. ṼB = (ũB , w̃B)) be a
solution of (1.1) associated with (ρ,G,B) (resp. (ρ̃1, G,B)). We decompose the proof in several
steps.
• First step:
Denote V = (u,w) = VA, Ṽ = (ũ, w̃) = ṼA and

U = u− ũ, W = w − w̃, a = α− α̃. b = β − β̃, c = γ − γ̃, d = δ − δ̃. (3.12)
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Then (U,W ) satisfy the following system ∂tU = ∆U + αφ1U + βφ2W + aφ1ũ+ bφ2w̃ in Q,
∂tW = ∆W + γφ3U + δφ4W + cφ3ũ+ dφ4w̃ in Q,
U = W = 0 on Σ.

(3.13)

Define

y0 = ηχU, z0 = ηχW, y1 = ∂ty0, z1 = ∂tz0 (3.14)

We deduce that (yi, zi) for i = 0, 1 satisfy the following systems ∂ty0 = ∆y0 + αφ1y0 + βφ2z0 + aηχφ1ũ+ bηχφ2w̃ +R1 in QL,
∂tz0 = ∆z0 + γφ3y0 + δφ4z0 + cηχφ3ũ+ dηχφ4w̃ +R2 in QL,
y0 = z0 = 0 on ∂ΩL × (0, T )

(3.15)

with

R1 = −(∆χ)ηU − 2η∇χ · ∇U + χ∂tηU, R2 = −(∆χ)ηW − 2η∇χ · ∇W + χ∂tηW.

We have  ∂ty1 = ∆y1 + αφ1y1 + βφ2z1 +R3 in QL,
∂tz1 = ∆z1 + γφ3y1 + δφ4z1 +R4 in QL,
y1 = z1 = 0 on ∂ΩL × (0, T ),

(3.16)

with

R3 = aχ∂t(ηφ1ũ) + bχ∂t(ηφ2w̃) + ∂tR1 + αy0∂tφ1 + βz0∂tφ2,

R4 = cχ∂t(ηφ3ũ) + dχ∂t(ηφ4w̃) + ∂tR2 + γy0∂tφ3 + δz0∂tφ4.

• Second step: we estimate
∑1
i=0(I(yi) + I(zi)) by the Carleman inequalities (2.6).

Note that all the terms in A0yi or A0zi with derivatives of χ or η will be bounded above by Ce2sd1

with C a positive constant (see Proposition 2.1 for the definitions of d1 and d2). Moreover all the
terms such as

∫
QL

e2sφy2
i dx dt on the right-and side of the estimates (2.6) will be absorbed by

I(yi) for s sufficiently large. So we have for s sufficiently large,

1∑
i=0

(I(yi) + I(zi)) ≤ C
∫
QL

e2sφ(a2 + b2 + c2 + d2)χ2 dx dt+ Cs3e2sd1

+Cs

∫
γL×(0,T )

e2sφ
1∑
i=0

(|∂νyi|2 + |∂νzi|2) dσ dt.

Since e2sφ ≤ e2sφ(θ) ≤ e2sd2 we get

1∑
i=0

(I(yi) + I(zi)) ≤ C
∫
QL

e2sφ(a2 + b2 + c2 + d2)χ2 dx dt+ Cs3e2sd1 + Cse2sd2F0(γL) (3.17)

with F0(γL) =
∫
γL×(0,T )

∑1
i=0(|∂νyi|2 + |∂νzi|2) dσ dt.

• Third step: now we estimate
∫

ΩL
e2sφ(θ)|∂itf(θ)|2 dx and

∫
ΩL

e2sφ(θ)|∆f(θ)|2 dx for f = y0 or

f = z0 and i = 0, 1. By Lemma 3.1, we have (since φ ≥ 1 and 1
φ ≥

1
d2

)∫
ΩL

e2sφ(θ)|y0(θ)|2 dx ≤ Cs
∫
QL

e2sφy2
0 dx dt+

C

s

∫
QL

e2sφy2
1 dx dt ≤

C

s2
(I(y0) + I(y1)),∫

ΩL

e2sφ(θ)|∂ty0(θ)|2 dx ≤ Cs
∫
QL

e2sφy2
1 dx dt+

C

s

∫
QL

e2sφ|∂ty1|2 dx dt ≤ CI(y1),∫
ΩL

e2sφ(θ)|∆y0(θ)|2 dx ≤ Cs
∫
QL

e2sφ|∆y0|2 dx dt+
C

s

∫
QL

e2sφ|∆y1|2 dx dt ≤ Cs2(I(y0)+I(y1)).
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Notice that the three above inequalities are satisfied replacing (y0, y1, y2) by (z0, z1, z2).
Therefore∫

ΩL

e2sφ(θ)(|y0(θ)|2 + |∂ty0(θ)|2 + |∆y0(θ)|2 + |z0(θ)|2 + |∂tz0(θ)|2 + |∆z0(θ)|2) dx

≤ Cs2
1∑
i=0

(I(yi) + I(zi)).

So using (3.17) we deduce that∫
ΩL

e2sφ(θ)(|y0(θ)|2 + |∂ty0(θ)|2 + |∆y0(θ)|2 + |z0(θ)|2 + |∂tz0(θ)|2 + |∆z0(θ)|2) dx

≤ Cs2

∫
QL

e2sφ(a2 + b2 + c2 + d2)χ2 dx dt+ Cs5e2sd1 + Cs3e2sd2F0(γL). (3.18)

At last in this step, denote

R = (R1, R2, R3, R4). (3.19)

• Fourth step: here we estimate
∫

ΩL
e2sφ(θ)(a2 + b2 + c2 + d2)χ2 dx.

We choose now the two sets of conditions A and B and consider VA, ṼA, VB and ṼB . From now
on, each function f defined in the precedent steps is denoted either fA or fB when it is related
either by the conditions A or B. Denote now F0A(γL) = F0(γL) associated with (VA, ṼA), and

F0B(γL) = F0(γL) associated with (VB , ṼB) (see (3.17) in the second step):

F0A(γL) =

∫
γL×(0,T )

1∑
i=0

(|∂νyiA|2+|∂νziA|2) dσ dt, F0B(γL) =

∫
γL×(0,T )

1∑
i=0

(|∂νyiB |2+|∂νziB |2) dσ dt.

Let RA be defined by (3.19) for (VA, ṼA) (resp. RB for (VB , ṼB)). Multiplying the first equation of
(3.15) written for y0A by w̃B and the first equation of (3.15) written for y0B by w̃A and subtracting,
we eliminate the term in b and we get

aηχφ1(ũAw̃B − ũBw̃A) = w̃B(∂ty0A −∆y0A − αφ1y0A − βφ2z0A −R1A)

−w̃A(∂ty0B −∆y0B − αφ1y0B − βφ2z0B −R1B). (3.20)

By hypothesis (3.3), applying (3.20) for t = θ, since η = 1 in a neighborhood of θ we get∫
ΩL

e2sφ(θ)a2χ2(φ1(θ))2 dx ≤ C
∫

ΩL

e2sφ(θ)
(
|∂ty0A(θ)|2 + |∂ty0B(θ)|2 + |∆y0A(θ)|2 + |∆y0B(θ)|2

+|y0A(θ)|2 + |z0A(θ)|2 + |y0B(θ)|2 + |z0B(θ)|2
)
dx+ Ce2sd1 .

But φ1 ∈ Λ2(M0) . So from (3.18) applied for y0A, y0B , z0A, z0B we obtain∫
ΩL

e2sφ(θ)a2χ2 dx ≤ Cs2

∫
QL

e2sφ(a2 + b2 + c2 +d2)χ2 dx dt+Cs5e2sd1 +Cs3e2sd2F1(γL) (3.21)

with F1(γL) = F0A(γL) +F0B(γL). Similarly we can replace a by b on the left-hand side of (3.21),
still using (3.15) for y0A and y0B . Indeed

−bηχφ2(ũAw̃B − ũBw̃A) = ũB(∂ty0A −∆y0A − αφ1y0A − βφ2z0A −R1A)

−ũA(∂ty0B −∆y0B − αφ1y0B − βφ2z0B −R1B).

So we have∫
ΩL

e2sφ(θ)(a2 + b2)χ2 dx ≤ Cs2

∫
QL

e2sφ(a2 + b2 + c2 + d2)χ2 dx dt+Cs5e2sd1 +Cs3e2sd2F1(γL).

(3.22)
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We do the same to obtain c and d using this time (3.15) for z0A and z0B and the hypothesis (3.3).
Therefore∫

ΩL

e2sφ(θ)(c2 + d2)χ2 dx ≤ Cs2

∫
QL

e2sφ(a2 + b2 + c2 + d2)χ2 dx dt+Cs5e2sd1 +Cs3e2sd2F1(γL).

(3.23)
Adding (3.22) and (3.23), we have∫

ΩL

e2sφ(θ)(a2+b2+c2+d2)χ2 dx dt ≤ Cs2

∫
QL

e2sφ(a2+b2+c2+d2)χ2 dx dt+Cs5e2sd1+Cs3e2sd2F1(γL).

Now we proceed as in [2, 11, 12] in order to prove that s2
∫
QL

e2sφ(a2 + b2 + c2 + d2)χ2 dx dt can

be absorbed by the left-hand side of the above estimate for s sufficiently large (s ≥ s2). Indeed

s2

∫
QL

e2sφ(a2 + b2 + c2 + d2)χ2 dx dt =

∫
ΩL

e2sφ(θ)(a2 + b2 + c2 + d2)χ2(

∫ T

0

s2e2s(φ−φ(θ)) dt) dx.

But φ− φ(θ) = −eλ(d̂+M1)(1− e−λ(t−θ)2) and there exists a positive constant C such that

φ−φ(θ) ≤ −C(1−e−λ(t−θ)2). Therefore
∫ T

0
s2e2s(φ−φ(θ)) dt ≤

∫ T
0
s2e−2sC(1−e−λ(t−θ)

2
) dt uniformly

in x. Moreover by the Lebesgue convergence theorem, we have∫ T

0

s2e−2sC(1−e−λ(t−θ)
2
) dt→ 0 as s→∞.

Thus for s sufficiently large, we get∫
ΩL

e2sφ(θ)(a2 + b2 + c2 + d2)χ2 dx ≤ Cs5e2sd1 + Cs3e2sd2F1(γL).

Since e2sd0 ≤ e2sφ(θ) in Ωl and χ = 1 in Ωl, we deduce that

e2sd0(‖α− α̃‖2L2(Ωl)
+ ‖β − β̃‖2L2(Ωl)

+ ‖γ − γ̃‖2L2(Ωl)
+ ‖δ − δ̃‖2L2(Ωl)

) ≤ Cs3(e2sd2F1(γL) + s2e2sd1)

which can be rewritten

‖α− α̃‖2L2(Ωl)
+‖β− β̃‖2L2(Ωl)

+‖γ− γ̃‖2L2(Ωl)
+‖δ− δ̃‖2L2(Ωl)

≤ Cs3(e2s(d2−d0)F1(γL)+s2e2s(d1−d0)).

(3.24)
As d1 − d0 < 0 and d2 − d0 > 0, we can optimize the above inequality with respect to s (see for
example [5, 7, 8]). Indeed, note that if F1(γL) = 0, since (3.24) holds for any s ≥ s2 and d1−d0 < 0
we get (3.4). Now if F1(γL) 6= 0 is sufficiently small (F1(γL) < d0−d1

d2−d0 ), we optimize (3.24) with
respect to s. Indeed denote

f(s) = e2s(d2−d0)F1(γL) + e2s(d1−d0) and g(s) = e2s(d2−d0)F1(γL) + s2e2s(d1−d0).

We have f(s) ∼ g(s) at infinity. Moreover the function f has a minimum in

s3 =
1

2(d2 − d1)
ln(

d0 − d1

(d2 − d0)F1(γL)
) and f(s3) = K ′F1(γL)κ

with κ = d0−d1
d2−d1 and K ′ = (d0−d1d2−d0 )

d2−d0
d2−d1 +(d0−d1d2−d0 )

d1−d0
d2−d0 . Finally the minimum s3 is sufficiently large

(s3 ≥ s2) if the following condition F1(γL) ≤ τ0, with τ0 = d0−d1
(d2−d0)e2s2(d2−d1) , is satisfied. So we

conclude for Theorem 3.1.
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3.3.2. Proof of Theorem 3.2. We keep the notations of the proof of Theorem 3.1. In this theorem,
we want to remove all the observation terms on w obtained in Theorem 3.1 and express them in
terms of u. So we look at the terms

∫
γL×(0,T )

e2sφ|∂νzi|2 dσ dt for i = 0, 1 appearing in step 2 of

Theorem 3.1. Recall that zi = 0 outside ΩL−ε and γL ⊂ ∂ω′.
As in [4, Lemma 2] we choose g0 ∈ C2(ω′,Rn) such that g0 = ν on the C2-boundary ∂ω′ where ν
is the normal vector to ∂ω′. We have by integration by parts for any integer i = 0, 1,∫

ω′×(0,T )

e2sφ∆zi g0 · ∇zi dx dt = −
∫
ω′×(0,T )

∇(e2sφg0 · ∇zi) · ∇zi dx dt

+

∫
∂ω′×(0,T )

e2sφg0 · ∇zi ∂νzi dσ dt.

So ∫
ω′×(0,T )

e2sφ∆zi g0 · ∇zi dx dt = −
∫
ω′×(0,T )

∇(e2sφg0 · ∇zi) · ∇zi dx dt

+

∫
∂ω′×(0,T )

e2sφ |∂νzi|2 dσ dt.

and we get∫
γL×(0,T )

e2sφ|∂νzi|2 dσ dt ≤ Cs
∫

(ω′∩ΩL)×(0,T )

e2sφ(|∇zi|2 + |∆zi|2) dx dt. (3.25)

From the first equation in (3.15) we have

βφ2z0 = ∂ty0 −∆y0 − αφ1y0 − aηχφ1ũ− bηχφ2w̃ −R1 in QL. (3.26)

By the same way, from (3.16) we have

βφ2z1 = ∂ty1 −∆y1 − αφ1y1 −R3 in QL. (3.27)

i) First assume that a = b = 0 in ω′. From hypothesis (3.5), (3.25)-(3.27) we get

1∑
i=0

∫
γL×(0,T )

e2sφ|∂νzi|2 dσ dt ≤ Cs
1∑
i=0

∫
(ω′∩ΩL)×(0,T )

e2sφ(|∇∂tyi|2 + |∇(∆yi)|2 + |∇yi|2 + |yi|2

+|∆∂tyi|2 + |∆(∆yi)|2 + |∆yi|2) dx dt+ Cse2sd1 .

So
1∑
i=0

∫
γL×(0,T )

e2sφ|∂νzi|2 dσ dt ≤ Cse2sd1 + Cse2sd2G0(ω′)

with G0(ω′) = ‖y0‖2H1(0,T,H4(ω′∩ΩL)) + ‖y0‖2H2(0,T,H2(ω′∩ΩL)).

Therefore (3.17) is still valid with sF0(γL) replaced by s2G1(γL) = s2
∫
γL×(0,T )

∑1
i=0 |∂νyi|2 dσ dt+

s2G0(ω′). Thus we follow the proof of Theorem 3.1 substituting F0(γL) by G1(γL). The rest of
the proof (steps 3 and 4) remains unchanged.

ii) Here we suppose that α, β, α̃, β̃ ∈ H2(Ω). We will need to differentiate y0 and z0 twice with
respect to t (in order to get (3.35)) and we have ∂ty2 = ∆y2 + αφ1y2 + βφ2z2 + ∂tR3 + α∂tφ1y1 + β∂tφ2z1 in QL,

∂tz2 = ∆z2 + γφ3y2 + δφ4z2 + ∂tR4 + γ∂tφ3y1 + δ∂tφ4z1 in QL,
y2 = z2 = 0 on ∂ΩL × (0, T ).

(3.28)

Therefore

βφ2z2 = ∂ty2 −∆y2 − αφ1y2 − ∂tR3 − α∂tφ1y1 − β∂tφ2z1 in QL. (3.29)
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Notice that we can take
∑2
k=0

∫
γL×(0,T )

(|∂ν(∂kt (uA − ũA))|2 + |∂ν(∂kt (wA − w̃A))|2 + ∂ν(∂kt (uB −
ũB))|2 + |∂ν(∂kt (wB− w̃B))|2)dσ dt as observation terms in (3.4). So we apply (3.25) for i = 0, 1, 2.
From (3.25)-(3.29) we get

2∑
i=0

∫
γL×(0,T )

e2sφ|∂νzi|2 dσ dt ≤ Cs
2∑
i=0

∫
(ω′∩ΩL)×(0,T )

e2sφ(|∇∂tyi|2 + |∇(∆yi)|2 + |∇yi|2 + |yi|2

+|∆∂tyi|2+|∆(∆yi)|2+|∆yi|2+(a2+b2)χ2+|∇(aχ)|2+|∇(bχ)|2+|∆(aχ)|2+|∆(bχ)|2) dx dt+Cse2sd1 .

So
2∑
i=0

∫
γL×(0,T )

e2sφ|∂νzi|2 dσ dt ≤ Cse2sd2G̃0(ω′) + Cse2sd1

+Cs

∫
QL

e2sφ((a2 + b2)χ2 + |∇(aχ)|2 + |∇(bχ)|2 + |∆(aχ)|2 + |∆(bχ)|2) dx dt

with G̃0(ω′) = ‖y0‖2H2(0,T,H4(ω′∩ΩL)) + ‖y0‖2H3(0,T,H2(ω′∩ΩL)).

Thus the estimate (3.17) becomes

2∑
i=0

(I(yi) + I(zi)) ≤ Cs3e2sd1 + Cs2e2sd2G̃1(γL)

+Cs2

∫
QL

e2sφ((a2 + b2 + c2 + d2)χ2 + |∇(aχ)|2 + |∆(aχ)|2 + |∇(bχ)|2 + |∆(bχ)|2) dx dt (3.30)

with G̃1(γL) =
∫
γL×(0,T )

∑2
i=0 |∂νyi|2 dσ dt+ G̃0(ω′).

As in the third step of Theorem 3.1 when we get (3.18), by Lemma 3.1 we have

1∑
i=0

∫
ΩL

e2sφ(θ)(|yi(θ)|2 + |∇yi(θ)|2 + |∆yi(θ)|2 + |zi(θ)|2 + |∇zi(θ)|2 + |∆zi(θ)|2) dx

≤ Cs2
2∑
i=0

(I(yi) + I(zi)).

So from (3.30)

1∑
i=0

∫
ΩL

e2sφ(θ)(|yi(θ)|2 + |∇yi(θ)|2 + |∆yi(θ)|2 + |zi(θ)|2 + |∇zi(θ)|2 + |∆zi(θ)|2) dx

≤ Cs4

∫
QL

e2sφ((a2 + b2 + c2 + d2)χ2 + |∇(aχ)|2 + |∆(aχ)|2 + |∇(bχ)|2 + |∆(bχ)|2) dx dt

+Cs5e2sd1 + Cs4e2sd2G̃1(γL). (3.31)

Now we estimate
∫

ΩL
e2sφ(θ)((a2 + b2 + c2 + d2)χ2 + |∇(aχ)|2 + |∆(aχ)|2 + |∇(bχ)|2 + |∆(bχ)|2) dx

as in the fourth step of Theorem 3.1. We consider two sets of initial conditions A and B and the
corresponding solutions VA, ṼA, VB , ṼB of (1.1). As in (3.20)-(3.23) we get∫

ΩL

e2sφ(θ)(a2 + b2 + c2 + d2)χ2 dx ≤ C
∫

ΩL

e2sφ(θ)(|∂ty0A(θ)|2 + |∂ty0B(θ)|2 + |∆y0A(θ)|2

+|∆y0B(θ)|2 + |y0A(θ)|2 + |y0B(θ)|2 + |∂tz0A(θ)|2 + |∂tz0B(θ)|2 + |∆z0A(θ)|2

+|∆z0B(θ)|2 + |z0A(θ)|2 + |z0B(θ)|2) dx+ Ce2sd1 .
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So from (3.31) we obtain∫
ΩL

e2sφ(θ)(a2 + b2 + c2 + d2)χ2 dx ≤ Cs5e2sd1 + Cs4e2sd2G2(γL)

+Cs4

∫
QL

e2sφ((a2 + b2 + c2 + d2)χ2 + |∇(aχ)|2 + |∆(aχ)|2 + |∇(bχ)|2 + |∆(bχ)|2)) dx dt (3.32)

with G2(γL) = G̃1A(γL) + G̃1B(γL).
We apply the same ideas for ∇(aχ),∇(bχ),∆(aχ),∆(bχ).
For any integer 1 ≤ i ≤ n, taking the space derivative with respect to xi in (3.20), we obtain

∂xi(aχ)ηφ1(ũAw̃B − ũBw̃A) + aηχφ1∂xi(ũAw̃B − ũBw̃A)

= ∂xi (w̃B(∂ty0A −∆y0A − αφ1y0A − βφ2z0A −R1A))

−∂xi (w̃A(∂ty0B −∆y0B − αφ1y0B − βφ2z0B −R1B) . (3.33)

Therefore by hypothesis (3.3) we deduce that∫
ΩL

e2sφ(θ)|∇(aχ)|2 dx ≤ C
∫

ΩL

e2sφ(θ)(aχ)2 dx+ Ce2sd1

+

∫
ΩL

e2sφ(θ)(|∇∂ty0A(θ)|2 + |∇∆y0A(θ)|2 + |∇y0A(θ)|2 + |∇z0A(θ)|2

+|∇∂ty0B(θ)|2 + |∇∆y0B(θ)|2 + |∇y0B(θ)|2 + |∇z0B(θ)|2) dx.

From (3.31)-(3.32) we get∫
ΩL

e2sφ(θ)|∇(aχ)|2 dx ≤ Cs5e2sd1 + Cs4e2sd2G2(γL) + Ce2sd2(‖y0A(θ)‖2H3(ΩL) + ‖y0B(θ)‖2H3(ΩL))

+Cs4

∫
QL

e2sφ((a2 + b2 + c2 + d2)χ2 + |∇(aχ)|2 + |∆(aχ)|2 + |∇(bχ)|2 + |∆(bχ)|2) dx dt. (3.34)

Taking again the space derivative with respect to xi in (3.33) we obtain∫
ΩL

e2sφ(θ)|∆(aχ)|2 dx ≤ Cs5e2sd1 + Cs4e2sd2G2(γL) + Ce2sd2(‖y0A(θ)‖H4(ΩL) + ‖y0B(θ)‖H4(ΩL))

+Cs4

∫
QL

e2sφ((a2 + b2 + c2 + d2)χ2 + |∇(aχ)|2 + |∆(aχ)|2 + |∇(bχ)|2 + |∆(bχ)|2) dx dt. (3.35)

Similarly for b, so from (3.32),(3.34),(3.35) we have∫
ΩL

e2sφ(θ)((a2 + b2 + c2 + d2)χ2 + |∇(aχ)|2 + |∆(aχ)|2 + |∇(bχ)|2 + |∆(bχ)|2) dx

≤ Cs5e2sd1 + Cs4e2sd2G2(γL) + Ce2sd2(‖y0A(θ)‖H4(ΩL) + ‖y0B(θ)‖H4(ΩL))

+Cs4

∫
QL

e2sφ((a2 + b2 + c2 + d2)χ2 + |∇(aχ)|2 + |∆(aχ)|2 + |∇(bχ)|2 + |∆(bχ)|2) dx dt.

As in the proof of Theorem 3.1 (see the fourth step) we can absorb the last term of the above
estimate by the left-hand side so we deduce that for s sufficiently large∫

ΩL

e2sφ(θ)((a2 + b2 + c2 + d2)χ2 + |∇(aχ)|2 + |∆(aχ)|2 + |∇(bχ)|2 + |∆(bχ)|2) dx

≤ Cs5e2sd1 + Cs4e2sd2G3(γL)

with G3(γL) = G2(γL) + ‖y0A(θ)‖H4(ΩL) + ‖y0B(θ)‖H4(ΩL) and we conclude as for Theorem 3.1.
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3.3.3. Proof of Theorem 3.3. Let VA = (uA, wA) (resp. ṼA = (ũA, w̃A)) be a solution of (1.1)

associated with (ρ,G,A) (resp. (ρ̃2, G,A)) and VB = (uB , wB) (resp. ṼB = (ũB , w̃B)) be a
solution of (1.1) associated with (ρ,G,B) (resp. (ρ̃2, G,B)). As for Theorems 3.1 and 3.2 we
decompose the proof in several steps.
• First step: We keep the notations of (3.12)

V = (u,w) = VA, Ṽ = (ũ, w̃) = ṼA, U = u− ũ, W = w − w̃, b = β − β̃, c = γ − γ̃, d = δ − δ̃.
and now define

f1 = φ1 − φ̃1.

We still define (see (3.14)) (for i = 0, 1, 2)

y0 = ηχU, z0 = ηχW, yi = ∂ity0, zi = ∂itz0.

The systems (3.13), (3.15), (3.16) become ∂tU = ∆U + αφ1U + βφ2W + αf1ũ+ bφ2w̃ in Q,
∂tW = ∆W + γφ3U + δφ4W + cφ3ũ+ dφ4w̃ in Q,
U = W = 0 in Σ,

and (yi, zi) for i = 0, 1 satisfy the following systems ∂ty0 = ∆y0 + αφ1y0 + βφ2z0 + αf1ηχũ+ bφ2ηχw̃ + S1 in QL,
∂tz0 = ∆z0 + γφ3y0 + δφ4z0 + cφ3ηχũ+ dφ4ηχw̃ + S2 in QL,
y0 = z0 = 0 on ∂ΩL × (0, T )

(3.36)

with

S1 = R1 = −(∆χ)ηU − 2η∇χ · ∇U + χ∂tηU, S2 = R2 = −(∆χ)ηW − 2η∇χ · ∇W + χ∂tηW.

We have  ∂ty1 = ∆y1 + αφ1y1 + βφ2z1 + S3 in QL,
∂tz1 = ∆z1 + γφ3y1 + δφ4z1 + S4 in QL,
y1 = z1 = 0 on ∂ΩL × (0, T ),

with

S3 = ∂t (αf1ηχũ+ bφ2ηχw̃) + ∂tS1 + αy0∂tφ1 + βz0∂tφ2,

S4 = R4 = ∂t (cφ3ηχũ+ dφ4ηχw̃) + ∂tS2 + γy0∂tφ3 + δz0∂tφ4.

We also have ∂ty2 = ∆y2 + αφ1y2 + βφ2z2 + ∂tS3 + α∂tφ1y1 + β∂tφ2z1 in QL,
∂tz2 = ∆z2 + γφ3y2 + δφ4z2 + ∂tS4 + γ∂tφ3y1 + δ∂tφ4z1 in QL,
y2 = z2 = 0 on ∂ΩL × (0, T ).

• In the second step we estimate
∑2
i=0(I(yi) + I(zi)) as in Theorem 3.1 and we get

2∑
i=0

(I(yi) + I(zi)) ≤ C
∫
QL

e2sφ(b2 + c2 + d2)χ2 dx dt+ C

∫
QL

e2sφχ2(

2∑
i=0

(∂itf1)2) dx dt

+Cs3e2sd1 + Cse2sd2 F̃0(γL) (3.37)

with F̃0(γL) =
∫
γL×(0,T )

∑2
i=0(|∂νyi|2+|∂νzi|2) dσ dt (nearly same definition as before since (3.17)).

Now following the proof of Theorem 3.1 we look at (3.18) in this context. First note that because
of the fourth step of this proof, we can no longer use the estimates of the Laplacian terms in (3.18)
and contrary to Theorems 3.1, 3.2, 3.4, we have to take care of the powers of s on the right-hand
sides of our estimates. In fact we could only look at the estimate of

∫
ΩL

e2sφ(θ)|∂tz0(θ)|2 dx but

because of the remarks given just after the proof of this theorem, we will keep more terms. So
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we will not estimate
∫

ΩL
e2sφ(θ)|∂tz0(θ)|2 dx as in Theorems 3.1, 3.2, 3.4 (see the third step of

Theorem 3.1) and for that, we need to differentiate twice y0 and z0 with respect to t. Thus∫
ΩL

e2sφ(θ)|∂tz0(θ)|2 dx ≤ Cs
∫
QL

e2sφ|z1|2 dx dt+
C

s

∫
QL

e2sφ|z2|2 ≤
C

s2
(I(z1) + I(z2)).

So we have (coming from Lemma 3.1 as in (3.18)) and by (3.37)∫
ΩL

e2sφ(θ)(y0(θ)|2 + |∂ty0(θ)|2 + |z0(θ)|2 + |∂tz0(θ)|2) dx ≤ C

s2

2∑
i=0

(I(yi) + I(zi))

≤ C

s2

∫
QL

e2sφ(b2 + c2 + d2)χ2 dx dt+
C

s2

∫
QL

e2sφχ2(

2∑
i=0

(∂itf1)2) dx dt+Cse2sd1 +
C

s
e2sd2 F̃0(γL).

Since φ ≤ φ(θ) we get∫
ΩL

e2sφ(θ)(|y0(θ)|2 + |∂ty0(θ)|2 + |z0(θ)|2 + |∂tz0(θ)|2) dx ≤ C

s2

∫
ΩL

e2sφ(θ)(b2 + c2 + d2)χ2 dx

+
C

s2

∫
QL

e2sφ(θ)χ2(

2∑
i=0

(∂itf1)2) dx dt+ Cse2sd1 +
C

s
e2sd2 F̃0(γL). (3.38)

• Third step: here we estimate
∫

ΩL
e2sφ(θ)χ2(b2 + c2 + d2) dx as in Theorem 3.1 with two different

sets of conditions A and B. We recall that each function f precendently defined is denoted either
fA or fB when it is related either by the conditions A or B.
For the coefficient b we can write from the first equation of (3.36)

−bηχφ2(ũAw̃B − ũBw̃A) = ũB(∂ty0A −∆y0A − αφ1y0A − βφ2z0A − αf1ηχũA − S1A)

−ũA(∂ty0B −∆y0B − αφ1y0B − βφ2z0B − αf1ηχũB − S1B).

Note that the terms in f1 disappear in the above equality. For the coefficients c and d we use the
second equation of (3.36) and proceed as in Theorem 3.1. Indeed, for example for c, we have

cηχφ3(ũAw̃B − ũBw̃A) = w̃B(∂tz0A −∆z0A − γφ3y0A − δφ4z0A − S2A)

−w̃A(∂tz0B −∆z0B − γφ3y0B − δφ4z0B − S2B).

Therefore by hypothesis (3.3) and (3.38) we obtain for s sufficiently large∫
ΩL

e2sφ(θ)(b2+c2+d2)χ2 dx ≤ C

s2

∫
QL

e2sφ(θ)χ2(

2∑
i=0

(∂itf1)2) dx dt+Cse2sd1 +Ce2sd2F2(θ) (3.39)

with F2(θ) = F̃0A(γL) + F̃0B(γL) + ‖∆y0A(θ)‖L2(ΩL) + ‖∆y0B(θ)‖L2(ΩL) + ‖∆z0A(θ)‖L2(ΩL) +
‖∆z0B(θ)‖L2(ΩL).

• Fourth step: we estimate now
∫
QL

e2sφ(θ)χ2(
∑2
i=0(∂itf1)2) dx dt. Here again we use the two

different sets of coefficients A and B. From (3.36) for y0A and y0B , we get

αηχf1(ũAw̃B − ũBw̃A) = w̃B(∂ty0A −∆y0A − αφ1y0A − βφ2z0A − S1A)

−w̃A(∂ty0B −∆y0B − αφ1y0B − βφ2z0B − S1B). (3.40)

Applying (3.40) for t = θ, by hypotheses (3.3) and (3.9), using again (3.38) we obtain∫
ΩL

e2sφ(θ)χ2(f1(θ))2 dx ≤ C

s2

∫
QL

e2sφ(θ)χ2(

2∑
i=0

(∂itf1)2) dx dt

+
C

s2

∫
ΩL

e2sφ(θ)(b2 + c2 + d2)χ2 dx+ Cse2sd1 + Ce2sd2F2(θ). (3.41)
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Deriving now (3.40) with respect to t, we have

(∂tf1)αη(ũAw̃B−ũBw̃A)+f1∂t(αηχ(ũAw̃B−ũBw̃A)) = ∂t(w̃B(∂ty0A−∆y0A−αφ1y0A−βφ2z0A−S1A)

−w̃A(∂ty0B −∆y0B − αφ1y0B − βφ2z0B − S1B))

and evaluating this last equation at t = θ, still by hypotheses (3.3) and (3.9), we get∫
ΩL

e2sφ(θ)χ2(∂tf1(θ))2 dx ≤ C
∫

ΩL

e2sφ(θ)χ2(f1(θ))2 dx

+C

∫
ΩL

e2sφ(θ)
1∑
i=0

(|∂itz0A(θ)|2 + |∂itz0B(θ)|2) + Ce2sd2F3(θ) (3.42)

with

F3(θ) =

2∑
k=0

(‖∂kt y0A(θ)‖2L2(ΩL)+‖∂
k
t y0B(θ)‖2L2(ΩL))+

1∑
k=0

(‖∂kt ∆y0A(θ)‖2L2(ΩL)+‖∂
k
t ∆y0B(θ)‖2L2(ΩL)).

From (3.38), (3.41) and (3.42) we have∫
ΩL

e2sφ(θ)χ2((f1(θ))2 + (∂tf1(θ))2) dx ≤ C

s2

∫
QL

e2sφ(θ)χ2(

2∑
i=0

(∂itf1)2) dx dt

+
C

s2

∫
ΩL

e2sφ(θ)(b2 + c2 + d2)χ2 dx+ Cse2sd1 + Ce2sd2F4(θ) (3.43)

with F4(θ) = F2(θ) + F3(θ).
Moreover by Taylor’s formula, we have

f1(t) = f1(θ) + ∂tf1(θ)(t− θ) + ∂2
t f1(cθ)

(t− θ)2

2
and ∂tf1(t) = ∂tf1(θ) + ∂2

t f1(c′θ)(t− θ)

with cθ, c
′
θ ∈ [0, T ]. Therefore, since φ̃1 ∈ Λ3(M3) the admissible set of coefficients, we get

2∑
i=0

(∂itf1)2 ≤ C(f1(θ))2 + (∂tf1(θ))2),

so from (3.43) we deduce that for s sufficiently large∫
QL

e2sφ(θ)χ2(

2∑
i=0

(∂itf1)2) dx dt ≤ C

s2

∫
ΩL

e2sφ(θ)(b2+c2+d2)χ2 dx+Cse2sd1 +Ce2sd2F4(θ). (3.44)

• Fifth and last step: now addding (3.39) and (3.44) we obtain∫
ΩL

e2sφ(θ)(b2 + c2 + d2)χ2 dx+

∫
QL

e2sφ(θ)χ2(

2∑
i=0

(∂itf1)2) dx dt ≤ Cse2sd1 + Ce2sd2F4(θ).

So ∫
Ωl

e2sφ(θ)(b2 + c2 + d2) dx+

∫
Ωl×(0,T )

e2sφ(θ)(

2∑
i=0

(∂itf1)2) dx dt ≤ Cse2sd1 + Ce2sd2F4(θ)

and we conclude as for Theorem 3.1 by optimizing the above inequality with respect to s.
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Remark 2. • If the admissible set of coefficients is Λ′3(M3) (thus less restrictive than Λ3(M3)),
then we would have to derive p − 1 times (3.40) with respect to t and that would demand more
regularity for the observation terms on u.
• On the contrary if the admissible set of coefficients is Λ′′3(M3), so more restrictive than Λ3(M3)

(or if φ̃1 ∈ C2([0, T ]) is such that φ̃1(θ) 6= φ1(θ) and
supt∈[0,T ] |∂

i
t(φ1−φ̃1)(t)|

|φ1(θ)−φ̃1(θ)| ≤ M3 for i = 0, 1, 2),

then we can drop (3.42) and (3.43) in the above proof. Therefore the result remains valid without
F3(θ) and so F4(θ) = F2(θ). Thus the observations terms on u are only ‖(uA − ũA)(·, θ)‖2H2(ΩL)

and ‖(uB − ũB)(·, θ)‖2H2(ΩL).

3.3.4. Proof of Theorem 3.4. Here again we follow the method described before. Let VA = (uA, wA)

(resp. ṼA = (ũA, w̃A)) be a strong solution of (1.3) associated with (ρ,G,A,Θ) defined by (1.2)

and (1.4) (resp. (ρ̃3, G,A, Θ̃)). Consider also VB = (uB , wB) (resp. ṼB = (ũB , w̃B)) a strong

solution of (1.3) associated with (ρ,G,B,Θ) (resp. (ρ̃3, G,B, Θ̃)).
• As before, in a first step we define

V = (u,w) = VA, Ṽ = (ũ, w̃) = ṼA, U = u− ũ, W = w − w̃, b = β − β̃, c = γ − γ̃, d = δ − δ̃
and also

H = Θ1 − Θ̃1 = ∇h with h = ξ1 − ξ̃1.
Recall that for i = 0, 1,

y0 = ηχU, z0 = ηχW, y1 = ∂iy0, z1 = ∂tz0.

Then ∂ty0 = ∆y0 + αφ1y0 + βφ2z0 + Θ1 · ∇y0 + Θ2 · ∇z0 + bηχφ2w̃ + η∇(χh) · ∇ũ+ T1 in QL,
∂tz0 = ∆z0 + γφ3y0 + δφ4z0 + Θ3 · ∇y0 + Θ4 · ∇z0 + cηχφ3ũ+ dηχφ4w̃ + T2 in QL,
y0 = z0 = 0 on ∂ΩL × (0, T )

(3.45)
with

T1 = (∂tη)χU − (∆χ)ηU − 2∇χ · ∇(ηU)− ηUΘ1 · ∇χ− ηWΘ2 · ∇χ− ηh∇ũ · ∇χ
T2 = (∂tη)χW − (∆χ)ηW − 2∇χ · ∇(ηW )− ηUΘ3 · ∇χ− ηWΘ4 · ∇χ.

And ∂ty1 = ∆y1 + αφ1y1 + βφ2z1 + Θ1 · ∇y1 + Θ2 · ∇z1 + bηχ∂t(φ2w̃) + η∇(χh) · ∇∂tũ+ T3 in QL,
∂tz1 = ∆z1 + γφ3y1 + δφ4z1 + Θ3 · ∇y1 + Θ4 · ∇z1 + cηχ∂t(φ3ũ) + dηχ∂t(φ4w̃) + T4 in QL,
y1 = z1 = 0 on ∂ΩL × (0, T )

with
T3 = αy0∂tφ1 + βz0∂tφ2 + ∂tη(bχφ2w̃ +∇(χh) · ∇ũ) + ∂tT1,

T4 = γy0∂tφ3 + δz0∂tφ4 + ∂tη(cχφ3ũ+ dχφ4w̃) + ∂tT2.

Thus we obtain
1∑
i=0

(I(yi) + I(zi)) ≤ C
∫
QL

e2sφ((b2 + c2 + d2)χ2 + |∇(χh)|2) dx dt+ Cs3e2sd1

+Cs

1∑
i=0

∫
γL×(0,T )

e2sφ(|∂νyi|2 + |∂νzi|2) dσ dt.

We deduce that (see the third step of Theorem 3.1)

1∑
i=0

∫
ΩL

e2sφ(θ)(|yi(θ)|2 + |∇yi(θ)|2 + |zi(θ)|2 + |∇zi(θ)|2) dx+

∫
ΩL

e2sφ(θ)(|∆y0(θ)|2 + |∆z0(θ)|2) dx
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≤ Cs2
1∑
i=0

(I(yi) + I(zi))

≤ Cs2

∫
QL

e2sφ((b2 + c2 + d2)χ2 + |∇(χh)|2) dx dt+ Cs5e2sd1 + Cs3e2sd2F0(γL) (3.46)

with F0(γL) defined by (3.17).
• In a second step we consider the solutions of (1.3) associated with two different sets of initial
conditions A and B and we recall that each function f precendently defined is denoted either fA
or fB when it is related either by the conditions A or B. As in the fourth step of Theorem 3.1 we
have a similar estimate to (3.23) for the coefficients c and d. Indeed, writing (3.45) for z0A and
z0B , by the hypothesis (3.3) and from (3.46) we have∫

ΩL

e2sφ(θ)(c2+d2)χ2 dx ≤ Cs2

∫
QL

e2sφ((b2+c2+d2)χ2+|∇(χh)|2) dx dt+Cs5e2sd1+Cs3e2sd2F1(γL)

(3.47)
with F1(γL) defined by (3.21). Now we eliminate b in (3.45) in order to estimate the coefficient h
and we evaluate at t = θ. We use here the partial differential operator P defined in Lemma 3.2.

P (χh) = w̃B(θ)∇(χh) · ∇ũA(θ)− w̃A(θ)∇(χh) · ∇ũB(θ)

P (χh) = w̃B(θ)[∂ty0A(θ)−∆y0A(θ)−αφ1y0A(θ)−βφ2z0A(θ)−Θ1 ·∇y0A(θ)−Θ2 ·∇z0A(θ)−T1A(θ)]

−w̃A(θ)[∂ty0B(θ)−∆y0B(θ)−αφ1y0B(θ)−βφ2z0B(θ)−Θ1·∇y0B(θ)−Θ2·∇z0B(θ)−T1B(θ)]. (3.48)

From Lemma 3.2 we have

s2

∫
ΩL

e2sφ(θ)(∂xi(hχ))2 dx ≤ C
∫

ΩL

e2sφ(θ)|P (∂xi(χh))|2 dx.

So taking the space derivative with respect to xi (for i = 1, · · · , n) in (3.48), from (3.46) we get
that

s2

∫
ΩL

e2sφ(θ)|∇(χh)|2 dx ≤ C
∫

ΩL

e2sφ(θ)|∇(χh)|2 dx+Cs2

∫
QL

e2sφ((b2+c2+d2)χ2+|∇(χh)|2) dx dt

+Ce2sd2(‖y0A(θ)‖2H3(ΩL) + ‖y0B(θ)‖2H3(ΩL)) + Cs5e2sd1 + Cs3e2sd2F1(γL)

and for s sufficiently large,

s2

∫
ΩL

e2sφ(θ)|∇(χh)|2 dx ≤ Cs2

∫
QL

e2sφ((b2 + c2 + d2)χ2 + |∇(χh)|2) dx dt

+Cs5e2sd1 + Cs3e2sd2F5(θ) (3.49)

with F5(θ) = F1(γL) + ‖y0A(θ)‖2H3(ΩL) + ‖y0B(θ)‖2H3(ΩL). Now we look at the coefficient b. We

also use (3.45) for y0A and y0B

−bηχφ2(ũAw̃B − ũBw̃A) = ũB(∂ty0A −∆y0A − αφ1y0A − βφ2z0A −Θ1 · ∇y0A −Θ2 · ∇z0A

−η∇(χh) · ∇ũA − T1A)− ũA(∂ty0B −∆y0B − αφ1y0B − βφ2z0B −Θ1 · ∇y0B

−Θ2 · ∇z0B − η∇(χh) · ∇ũB − T1B). (3.50)

Therefore, evaluating (3.50) at t = θ, still using hypothesis (3.3), from (3.46) we get∫
ΩL

e2sφ(θ)b2χ2 dx ≤ C
∫

ΩL

e2sφ(θ)|∇(χh)|2 dx

+Cs2

∫
QL

e2sφ((b2 + c2 + d2)χ2 + |∇(χh)|2) dx dt+ Cs5e2sd1 + Cs3e2sd2F1(γL). (3.51)
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Thus from (3.49)-(3.51) we obtain∫
ΩL

e2sφ(θ)(bχ)2 dx ≤ Cs2

∫
QL

e2sφ((b2 + c2 + d2)χ2 + |∇(χh)|2) dx dt

+Cs5e2sd1 + Cs3e2sd2F5(θ). (3.52)

Finally adding (3.47), (3.49), (3.52), as in the proof of Theorem 3.1 we can neglect s2
∫
QL

e2sφ((b2+

c2 + d2)χ2 + |∇(χh)|2) dx dt by the left-hand side so we get∫
ΩL

e2sφ(θ)((b2 + c2 + d2)χ2 + |∇(χh)|2) ≤ Cs5e2sd1 + Cs3e2sd2F5(θ)

and we conclude as in Theorem 3.1.
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Mathématique Vol. 361, (2023), 653–665.
[7] L. Cardoulis and M. Cristofol, An inverse problem for the heat equation in an unbounded guide, Applied

Mathematics Letters 62, (2016), 6317.

[8] L. Cardoulis, M. Cristofol and M. Morancey, A stability result for the diffusion coefficient of the heat
operator defined on an unbounded guide, Mathematical Control and Related Fields, doi:10.3934/mcrf.2020054

(2021).

[9] L. Cardoulis and P. Gaitan, Simultaneous identification of the diffusion coefficient and the potential for the
Schrödinger operator with only one observation, Inverse Problems 26 (2010) 035012 (10pp).

[10] M. Cristofol, P. Gaitan and H. Ramoul, Inverse problems for a 2x2 reaction diffusion system using a

Carleman estimate with one observation, Inverse Problems 22 (2006), 1561–1573.
[11] M. Cristofol, S. Li and E. Soccorsi, Determining the waveguide conductivity in a hyperbolic equation from

a single measurement on the lateral boundary, Mathematical Control and Related Fields, Volume 6, Number
3 (2016), 407–427.

[12] X. Huang, O. Yu. Imanuvilov and M. Yamamoto, Stability for inverse source problems by Carleman esti-

mates, arXiv:1912.10484 (2019) (20pp).
[13] O. Yu. Immanuvilov, V. Isakov, and M. Yamamoto, An inverse problem for the dynamical Lamé system
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