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AN INVERSE PROBLEM FOR A PARABOLIC SYSTEM IN AN
UNBOUNDED GUIDE

LAURE CARDOULIS*

ABSTRACT. In this article we consider a two-by-two parabolic system defined on an unbounded
guide with coefficients depending both on the space variable and on the time variable. The
main aim of this paper is to obtain a stability result for the coefficients depending on the space
variable. Using Carleman inequalities adapted for the guide, we obtain Holder estimates of these
coefficients in any finite portion of the guide with boundary measurements, given two sets of
initial conditions.

1. INTRODUCTION

Let w be a bounded connex domain in R*~!, n > 2 with C? boundary. Denote 2 =R x w and
Q=0x(0,T),X=00x(0,T). We consider the following problem

Oru = Au+ adru + Bpw + g1 in Q,
Ow = Aw +y¢3u + 0psw + g2 in Q, (1.1)
u(.,0) = ay, w(.,0) =ag in Q, :
u=as, w=ayin X,
where a, 3,7, are bounded coefficients defined on €2 such that
a,B,7,6 € Ay(My) = {f € L=(Q), | fll () < Mo} for some My > 0,

and ¢1, ¢, @3, ¢4 are bounded coefficients defined on [0, 7] such that fori=1,--- ,4

61 € Aa(Mo) = {7 € C'(0,T)), f(5) # 0 and | Fllex o1y < Mo).

The main problem is to estimate the coefficients (a, 8,7, d) from boundary observations of (u,w).
We will consider two sets of Cauchy and Dirichlet conditions A and B and denote

G= (91792)7 A= (alaa2aa3aa/4); B = (blaanb3ab4)a pP= (CY,/B,’)/,(S, ¢1a¢2a¢37¢4)7

ﬁl = (aa Ba ﬁa g? ¢1, ¢23 ¢37 ¢4)7 ﬁ? = (OL, 57 ?7 g} 4;1, ¢27 ¢37 ¢4)7 P~3 = (Oé, 37’?7 Sa ¢17 ¢27 ¢37 ¢4)
(1.2)
Let two positive reals [, L be such that { < L. Denote

Qr=(-L,L) xwand = (—1,]) X w.

The first result of this paper gives a Holder stability result (3.4) for the coefficients «, 3,7, and
is the following (see Theorem 3.1)

”04 - &||2L2(Ql) + ||B - BHQLQ(Ql) + ||'Y - WN/HZL?(QL) + H5 - SHQLQ(Ql)
1
<K (/ > (100(0F (ua — @a))|* + 10, (0F (wa — wa))|?) do dt
"/LX(07T) k=0
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1 K
+/LX(OT)I;)(8( E(ug — ip))|? + 0, (0F (wp — @p))|?) do dt)

where K is a positive constant, x € (0,1), v, is a part of the boundary (see (2.2)), and assuming
that the hypothesis (3.3) is satisfied. We consider in the above result V4 = (ua,w4) (resp.
Va = (Wa,Wa)) a solution of (1.1) associated with the coefficients (p, G, A) (resp. (g1, G, A)) and
Vg = (up,wp) (resp. Vg = (i, Wp)) a solution of (1.1) associated with the coefficients (p, G, B)
(resp. (p1,G, B)) where A is a set of Cauchy and Dirichlet conditions and B is a suitable change of
initial and boundary conditions. The above result is an improvement of results obtained in [5] with
different and less restrictive hypotheses but with two choices of Cauchy and Dirichlet conditions
A and B. In abbreviated form we will call A and B the two sets of initial conditions. It is an
improvement because on one hand the hypotheses, though quite differents, are easier to satisfy
than in [5] and on the other hand there are no observation terms of the solutions (u,w) at a fixed
time on the right-hand side of the estimate, such as ||(ua — @a)(., 5)HH2 a,) (see [5]). The idea of
choosing two different sets of initial conditions can be found in [2] for a hyperbolic equation in a
bounded domain (see also [6] for a hyperbolic system).

A consequence of the above result is given in Theorem 3.2 where the measurements are given for
only one component (for example u) and is the following (see (3.6))

llae = @l 2 + 18 = BllZz(0,) + 17 = A F2( + 16 = 81720

<K <||UA — @all%2 0.1, B2 (wnan)) T 10a = @allin o) e wnan)

+llus = @Bl H2 0,0, 52 wn00 ) + 1B = @B I3 (0,17, 4 (wn0L)

1

- / >

v x(0,T) . —o

where K > 0, & € (0,1) and «’ is a neighborhood of vz, w’ being a subdomain of 2 such that

v C Ow', and assuming that « = & and 8 = B in w’. We can relax the hypothesis that the

coefficients o and 3 are supposed known in w’ when these coefficients are in H2(£2) and we obtain

a similar result with the L2-norms replaced by the H2-norms for the coefficients o and 3 on the

left-hand side of the above estimate and additional terms such as |[(ua — %4)(., %)||?14(QL) on the

right-hand side of this estimate (see (3.7)).

The third result gives a Holder result (3.10) for the coefficients ¢1, 5,7, 0 (assuming also that

¢ € C*([0, T])) and is the following (see Theorem 3.3)

(10, (0F (wa — @a))|* + 10 (0f (up — up))[*) do dt))

ZH@’ — o)l22 0.y 18 = Bllzzgan + Iy = iz + 18 = dlIZ20)

! T T
(Z 10F (ua — a) (-, )II?me) + (10 (us *ﬂB)(wg)llizz(gL))
0

T
2

- T . T
|07 (ua — aa) (5 520, + 1107 (up — ag) (-, *)H%z(QL)) + [(wa —wa)(, 5)\\%2(9@

+(wp —wp)(, 5 IIHz(QL Z 100 (07 (ua — @) * + 10, (0 (wa — @4))|*) dor dt
"‘/LX(O T)k 0

2

oy 2100w — )P 5 0,0 (wB—wB))|)dadt)>
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where K is still a positive constant, x € (0, 1), and qZ;l belongs to a set of admissible coefficients
(namely Az(Ms), see (3.8)). In the above case we denote Va = (ua,wa) (resp. Va = (Ua,Wa))
a solution of (1.1) associated with (p, G, A) (resp. (a2, G, A)) and Vi = (up,wp) (resp. Vg =
(up,wp)) a solution of (1.1) associated with (p, G, B) (resp. (p2, G, B)). So this third result gives
a determination of one coefficient depending on the time variable. Be careful that the meanings of
‘7,4 and ‘73 are not the same in Theorems 3.1 and 3.2 on one hand and Theorem 3.3 on the other
hand.

Finally the fourth theorem gives a Holder result (3.11) for the following reaction-diffusion system

Ou = Au 4+ apru+ Boow + 01 - Vu+ Os - Vw + g1 in Q,
Orw = Aw + yop3u + dpaw + O3 - Vu+ 0,4 - Vw+ g2 in Q,
u(.,0) =ay, w(.,0) =agin Q,
u=az, w=ayin X,

where all the coefficients «, 3,7, 9, 1, P2, ¢3, ¢4, O1,02, 03,0, are bounded. We present here a

result for the four coefficients 3, v, d, ©1 (and assuming that ©; has the form ©; = V¢&;). So denote
now

(1.3)

O =(01,---,04), ©=(61,020306.). (1.4)
We get the following result

18 = Bl + 17 = W2y + 16 = 1220, + 1101 = O1llz20)n

- T - T
< & (1w = ) ) ey + 10 = @) 5 oo

1
+/ Z(\ay(atk(uA—ﬂA))|2+|5u(af(wA—QDA))|2) do dt
v x(0,T) p.—g

L K
y —u 2 k wr — W 2 o
+/7LX(O,T)I;)(8V(@ (up —ip))|* + 10, (0f (wp — wp))|?) d dt))

where K is a positive constant, x € (0,1). This time we denote V4 = (ua,wa) (resp. Vy =
(a,Wa)) a solution of (1.3) associated with (p, G, A, ©) (resp. (g3, G, A,0)) and Vi = (up, wp)
(resp. Vp = (i, Wp)) a solution of (1.3) associated with (p, G, B, ©) (resp. (g3, G, B, 0)).

Note that all our results imply uniqueness results. Up to our knowledge, there are few results
concerning the simultaneous identification of more than one coefficient in each equation (see for
examples [1, 2, 5, 6, 9, 10]) and note that in these papers the coefficients only depend on the space
variable. Also notice that there are very few results where the measurements are given with only
one component. Here the first and fourth theorems (Theorems 3.1 and 3.4) extend some results
obtained in [5, Theorem 3.2] but with hypotheses (see (3.2) and (3.3)) less restrictive than in [5].
The second result (Theorem 3.2) gives a result for four coefficients depending on the space variable
and with measurements of only one component. The third theorem (Theorem 3.3) also gives a
result for four coefficients but one of each depending on the time variable. Furthermore, usually the
papers investigate the case of bounded domains and give results with observations on a subdomain
of the domain (see for example [1, 2, 10]). Here we present results with observations on a part of the
boundary (see Theorems 3.1, 3.3, 3.4). Besides, because of our unbounded domain and our choice of
weight functions (2.3), we will use cut-off functions in time and in the direction z; (see for example
[12] where cut-off functions are removed but in a bounded domain). Finally, usually the results
have observations terms with data of the solution at a fixed time (such as || (ua —@a)(., T) H%IQ(QL),
see for example [5, 7, 8]). We have been able to remove them in Theorems 3.1, 3.2i) thanks to
the properties of the weight functions. So the theorems presented here give stability results for
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four coeflicients for a system defined on an unbounded domain, with boundary measurements in
Theorems 3.1, 3.3 and 3.4, measurements for only one component in Theorem 3.2, with a time
variable coefficient in Theorem 3.3. These results extend previous results for one equation [7, §]
or for a system [5] defined on an unbounded guide. Last we recall that the method of Carleman
estimates used for solving inverse problems has been initiated by [3].

This Paper is organized as folows: in Section 2, we recall the weight functions adapted for our
unbounded domain and the Carleman estimate (2.6) as well as the crucial inequality (2.4) for our
Holder estimates. Then in Section 3 we state and prove our results.

2. CARLEMAN ESTIMATE

Denote Qr = Qr x (0,T) = (=L, L) xw x (0,T), x = (z1,- -+ ,x,) ER", &' = (29, -+ ,x,) and
define the operator
Agu = Ou — Au.
Let I > 0, following [7] we are going to carry out special weight functions allowing us to avoid
observations on the cross section of the wave guide in our inverse problem. For this we consider some
positive real L > [ and we choose @ = (a1, a’) € R™\ Q such that if d(z) = |2’/ —a’|? —2? for z € Q,
then
d>0inQp, |Vd >0inQy. (2.1)
Moreover we define
I ={x €0, <x—a,v(x) >>0} and v, =T NON. (2.2)

Here < .,. > denotes the usual scalar product in R and v(z) is the outwards unit normal vector
to 09, at x. Notice that v, does not contain any cross section of the guide. From [14]-[15] we
consider weight functions as follows: for ¢ € (0,T), if My > supg,.r(t — T/2)? = (T/2)?,

O(x,t) =d(z) — (t - g) + My and ¢(z,t) = V@Y, (2.3)

The constant A > 0 will be set in Proposition 2.2 and is usually used as a large parameter in
Carleman inequalities. Since we will not use it, we will consider A fixed in the article. We recall
from [7] and [8] the following result.

Proposition 2.1. There exist T > 0, L > 1, & € R"\ Qp and € > 0 such that (2.1) holds and,
setting

Op.c = (Q x ((0,2€) U(T =26, 7)) U (=L, —L + 2¢) U (L — 2¢, L)) x w x (0,T)),

we have
di < dy < ds (2.4)
where
do =inf ¢ (-,0), dy = sup ¢, dy =sup ¢ (-,0) and@zz.
(o) Op.c O, 2
From now on and from simplicity we denote 6 = % throughout the paper. These two above

estimates (2.4) will be fruitful in Section 3 to solve our inverse problem. In the sequel C' will
be a generic positive constant. When needed, we will specify its dependency with respect to the
different parameters. We will use the following notations: Let a = (aq,- -+, ay,) be a multi-index
with o; € NU{0}. We set 0 = 07" --- 09", |ao| = a1 + - - - + v, and define

H*'(Qp) = {u € L*(QL), 050" u € L*(QL), |a| + 2041 < 2}
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endowed with its norm

[l Fren(qp) = Z 10507 ullZ2 (g,

|| 4+200,41<2

We recall now a global Carleman-type estimate proved in [7, Proposition 4.2] or in [8, Proposition
3], based on a classical Carleman estimate (see Yamamoto [14, Theorem 7.3]). The key difference
with the classical Carleman inequality in [14, Theorem 7.3] is to remove, on the cross-sections
of Q, the boundary condition and the observation. For that we need cut-off functions in time.
On the other hand, to manage our infinite wave guide we also need to consider cut-off functions
in space but only in the infinite direction z;. These cut-off functions will induce additive terms
coming from the commutator between the evolution operator and these cut-off functions. Let x,n
be C* cut-off functions such that x, Vx,Ax € A1(Mp), 0<x<1,0<n<1,

x(x)=0if z € ((—oo,—L +€) U (L —¢,400)) X w),
x(@)=1ifz € (=L + 2¢, L — 2¢) X w,
n(t) =0ift € (0,e)U(T —e,T), nt) =1if t € x(26,T — 2e). (2.5)
with € defined in Proposition 2.1.
Proposition 2.2. [7, Proposition 4.2] There ezxist a value of A > 0 and positive constants sy and

C = C(\, s0) such that

I(u) = / (sl(b(atu|2 +|Aul?) + s¢ |Vul* + 53¢3u|2> X Pdx dt
QL

< C||es¢Aou||2L2(QL) + Cs3e?h Hu||fqz,1(QL) + Cs/ o) |0, ul?e**?do dt, (2.6)
vL x(0,

for all s > so and all uw € H>1(Qr) satisfying u(.,0) = u(.,T) =0 in Qr, u=0 on (IQNINAL) x
(0,T). We denote d,u = v - Vu and recall that Agu = dyu — Au.

Since the method of Carleman estimates requires several time differentiations, we assume in the
following that w,w (solution of (1.1) or (1.3)) belong to H = H?([0,7T], H*(2)) N W2 (Q x
(0,T)) for Theorems 3.1, H = H3([0,T], H*(2)) N W4>(Q x (0,T)) for Theorem 3.2, H =
H3([0,T], H3(2)) N W32 (Q x (0,T)) for Theorem 3.3, H = H?([0,T], H3(Q)) N W3>°(2 x (0,T))
for Theorem 3.4, satisfying the a-priori bound

lullp < Mz and |lw|[3 < My for given Mz > 0.

From now on, we use the notation f(6) = f(.,0) for any function f defined on Q.

3. INVERSE PROBLEM

3.1. Preliminary lemmas. From [11, Lemma 4.2], we derive the following result, also used in [7]
or [5, Lemma 3.1].

Lemma 3.1. There exist positive constants s1 and C such that

/ 2O (£(0))? da < cs/ e f2 dx dt + Q/ (0, f)? dx dt
Qr

L s L

for all s > sy and f € H*(0,T; L*(21)).

For the sake of completeness, we recall its proof.
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Proof. Consider 7 defined by (2.5) and any w € H*(0,T; L?(21)). Since n(f) = 1 and n(0) = 0,

we have
/QLw(x,G)2do:—/QL(() w(z,0)) dx/QL/at Dlw(e. ) P)dt de

_2/ /Q w(z, )0 (x, t)dz dt+2/ /Q (£)0m()[w(z, £)[2da dt.

As 0 <9 <1, using Young’s inequality, it comes that for any s > 0,
C
/ w(z,0)* dr < Cs/ |w|*dx dt + —/ |0yw|*da dt. (3.1)
Qr QL $JQL

Then we can conclude replacing w by e*? f in (3.1). O

The following lemma will be only used for Theorem 3.4. It is a classical lemma for a first
order partial differential operator but which necessites a strong positivity condition (3.2). This
condition is nevertheless weaker than the one used in [8] or [5] (which was |Vd - V()] > R > 0
in Q). So we follow an idea developed in [13] for Lamé system in bounded domains, also used
for example in [8] or in [5]. The lemma below will be used in the proof of Theorem 3.4 with
(01, ,v4) = (Wp(0),4a(6), Wa(0), ap(h)). Recall that d is defined by (2.1).

Lemma 3.2. Assume that the following assumption
|01VcZo Vg — Uchz' Vus| > R in Qp for some R >0 (3.2)
holds. Consider the first order partial differential operator Pf = v1Vf - Vuy —vsV f - Vuy. Then

there exist positive constants sy > 0 and C > 0 such that for all s > s},

52/ 25?0 §2 4y < C 628¢(‘9)|Pf|2 dz,
Qr, Qr,
for all f € HY Q).

Proof. The proof follows [8] or [5]. Let f € H}(Qy). Denote w = e5¢(?) f and Qu = %) P(e=5¢(D)y).
So we get Qu = Pw — sA¢(A)w(Pd). Therefore we have

/ Quf? dz > s2)? / (6(0))2w2(Pd)? dz — 25X [ 6(0)(Pw)w(Pd) da.
Qr Qr Qr

So
/ |Qw|? dx > 32/\2/ (6(0))*w?(Pd)? dx — sA o(0)(Pw?)(Pd) d.
QL QL

Qr

Thus integrating by parts

/ 1Qu|? dx > s*\? / (6(0))*w?(Pd)? dz + s / w2V - (¢(0)(Pd)(v1Vve — v3Vvy)) da.
Qr Qr

Qr

And we can conclude for s sufficiently large. g

3.2. Statements of results.
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3.2.1. First result. Consider V3 = (ua,wa) (resp. Va = (ia,w4)) a strong solution of (1.1) asso-
ciated with (p, G, A) defined by (1.2) (resp. (p1,G, A)) where A is a set of initial and boundary
conditions. Consider also Vp = (up,wp) (resp. Vg = (iip,wp)) a strong solution of (1.1) associ-
ated with (p, G, B) (resp. (p1, G, B)) and where B is another set of initial and boundary conditions.
Assume that all the coefficients «, 3,7, 8, &, 3,7, 0, belong to A1 (Mp) and all the coefficients ¢; to
Ay(My) (fori=1,---,4).

Our main result is the following

Theorem 3.1. Letl > 0. Let T > 0, L > 1 and a € R™\ Q satisfying the conditions of Proposition
2.1. Assume that
lta(-,)wp(-,0) —up(-,0)wa(-,0)| > R in Qp for some R > 0. (3.3)
Then there exists a sufficiently small number 79 > 0 such that if 7 € (0,79),
1

Z/ o (00OF s =B 12,08 s — )

k=0
+0,(0f (up — ap))|* +18,(9; (wp — wp))|*)do dt <7
then the following Hélder stability estimate holds
llae = @172 () + 118 = Bll 2 + 17 = A F2( + 16 = 81720,y < K7 for all 7 € (0,70).  (3.4)
Here, K > 0 and k € (0,1) are two constants depending on R, L, 1, My, My, Mz, T and a.

3.2.2. Second result. As a consequence of Theorem 3.1, we can give a stability result with measure-
ments of only one component. Theorem 3.2i) gives an estimate of the four coefficients «, 8,7, €
L?() when a = @ and 8 = /3 in a neighborhood w’ of the boundary of interest vz,. That means that
these two coefficients o and 3 are supposed known in w’. We relax this last hypothesis in Theorem
3.2ii) where an estimate of these four coefficients is given for o, 3 € H?(2). Consider V4 = (ua,wa)
(resp. Va = (@ia,4)) a strong solution of (1.1) associated with (p, G, A) defined by (1.2) (resp.
(p1,G,A)). Consider also Vz = (up,wp) (resp. Vg = (@i, wp)) a strong solution of (1.1) asso-
ciated with (p, G, B) (resp. (g1, G, B)). Assume that all the coefficients «, 8,7, 8, &, 53,7, 8, belong
to A1(Mp) and all the coefficients ¢; to Aa(Mp) (for i = 1,---,4). For Theorem 3.2ii) we also
suppose that o, 3, &, 8 € N (M) = {f € H*(Q), I fll 2|l < Mo} and ¢; € C?([0,TY).

Theorem 3.2. Letl > 0. Let T >0, L > 1 and a € R™\ Q satisfying the conditions of Proposition
2.1. Let W' be a neighborhood of vr, w' C Qpic such that vy C 0w, 0w’ being C?. Assume that
the hypothesis(3.3) holds and that we also have

1Béa| > R >0 in Q. (3.5)

i): We suppose that « = & and 8 = B in .
Then there exists a sufficiently small number 9 > 0 such that if T € (0,79),

~ 2 ~ 2
lua — @allgz o, 52 nan)) t lva — @allg o7y, 54w n0)

~ 2 =2
Hlus — w5z 0,17, 520000y T 1uB = @Bl (0,1, H4 (WAL

/ com £ Z (10,(0F (ua — ©a))[* +10,(0 (up — ip))[?) do dt < T

then the following Holder stability estimate holds
lloe = @l + 18 = BllZaayy + Iy = Al 22 + 16 = dlIZ2(q,) < K7 for all 7 € (0,79).  (3.6)
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ii): We suppose that «, B, &, 3 € H2(Q).
Then there exists a sufficiently small number o9 > 0 such that if T € (0, 7)),

l(ua = aa) (- 02y + 1(uB — @B) (O Faa,) + lua = @allFs o 1), #2 wnaw))

Hllua — @allirz o, mawnawy + 4B — @Bl%Hs (017,52 (wnawy) + 4B — @Bl %2 (0 1, Bt (wnar))
2

+/ > (100 (0F (wa — @a))* + |0, (0F (up — p))[*) do dt < T

LX(O,T) k=0
then the following Hélder stability estimate holds
lo = @l F2q,) + 18 - BH%{z(m) + 7 = A7) + 16 - 5||2L2(Ql) < K7" for all T € (0,79). (3.7)
Here, K >0 and € (0,1) are two constants depending on R, L, I, My, My, Mz, T, ||go|l(c1 w))»

and a.

3.2.3. Third result. Now we present a result for the four coefficients (¢1, 3,7, d). We consider here
Va = (ua,wa) (resp. Va = (iia,wa)) astrong solution of (1.1) associated with (p, G, A) defined by
(1.2) (resp. (p2,G,A)). Consider also Vg = (up,wp) (resp. Vp = (@i, wp)) a strong solution of
(1.1) associated with (p, G, B) (resp. (p2,G, B)). Assume that all the coefficients «, B,7,6,5,%,9,
belong to A;(Mp) and all the coefficients ¢;, ¢y to Ay(Mg) (for & = 1,---,4). Let the set of
admissible coefficients

A3(Mz) = {f € C*([0, 1)), |97 (f — ¢1)(1)| < Ma|(f — ¢1)(0)] for all € [0, 7]} (3.8)
with M3 a positive constant.

Our result is the following.

Theorem 3.3. Let!l > 0. LetT >0, L > 1 and a € R™\ Q satisfying the conditions of Proposition
2.1. We suppose that ¢1 € As(M3). Assume that Assumption (3.3) holds and that

la] > R >0 in Qf. (3.9)
Then there exists a sufficiently small number 79 > 0 such that if 7 € (0,79),

1
D 0F(wa = @) (0 Fr2 () + 10F (up = @) 0) 32 (qy)) + 107 (wa = @a) (- 0) |20y
k=0
+07 (up — ﬂB)('ﬁ)HQLz(QL Hll(wa = @), 020, ) + |(ws = @B) (-, 0)72(ay)

/ Z 10, (88 (ua — @A) 2 + 19, (8F (wa — @a))[?) do dt < T,
’\/LX(OT

then the following Hélder stabzlz'ty estimate holds
2
18 = Bl T2y + 17 = A2 + 16 = 811720, + D 105 (61 = d1)l[720,7) < KT for all 7 € (0, 70).
i=0
(3.10)
Here, K >0 and k € (0,1) are two constants depending on R, L, 1, My, My, Ma, M3, T, a

Remark 1. e Notice that the hypothesis ¢; € As(Ms) is satisfied when ¢; € C?([0,T]) is such

that ¢1(0) # ¢1(0) and SUP‘El“;;fg;iﬁl(;)ﬁl)(t)l < Ms. Moreover note also that if ¢; € C2([0,T])

is such that ¢(0) # ¢1(6), then if we denote fi = ¢ — ¢1, we have f,(8) # 0. Therefore
t— |}J:11((2))\ is bounded on [0, 7] so there exists a positive constant Cy such that for all ¢ € [0, 7],
|f1()] < Co|f1(0)|. Similarly there exists a positive constant C; such that |9, f1(¢)| < C1|f1(0)]
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and there exists a positive constant Cy such that |02 f1(t)| < Ca|f1(0)].

Note also that if ¢; € A3(M3) and o (0) = ¢1(6), then 8f(¢~1 —¢1) = 01in [0, T]. Therefore #1 has
the form ¢y (t) = ¢y (t) + k(t — 0) with k any real.

e Moreover if the function ¢; is more regular, for example if ¢; € CP(][0,T]) with p > 2, then
Theorem 3.3 is still valid with a more generalized admissible set of coefficients A5(Ms) = {f €
CP([0,T)), 107 (f — ¢1)(t)| < Ms|(f — ¢1)(0)| for all ¢ € [0,T]}. But in this case, because of our
method, the observations terms at the fixed time 6 on the right-hand side of the estimate (3.10)
would demand more regularity.

e On the contrary, we can relax some of the observations terms on u (u4 and @ 4) at 6 on the right-
hand side of (3.10) and only have ||(u —@)(-, G)H%IQ(QL) but for a more restrictive admissible set of
coefficients AY(Ms) = {f € C*([0,1)),|0:(f — ¢1)(t)| < Ms|(f — ¢1)(0)| for all i = 0,1,2 and ¢ €
0, 7]},

3.2.4. Fourth result. Finally, we consider the system (1.3). Consider Vy = (ua,wa) (resp. Va =
(Ga,wa)) a strong solution of (1.3) associated with (p, G, A, ©) defined by (1.2) and (1.4) (resp.
(p3,G, A,0)). Consider also Vz = (up,wp) (resp. Vp = (ip,wp)) a strong solution of (1.3)
associated with (p, G, B, ©) (resp. (g3, G, B,©)). Assume that all the coefficients a, B,7,6,8,,9,
belong to A;(Mp) and all the coefficients ¢; to Aa(Mp) (for i = 1,--- ,4). Moreover we suppose
that ©;,0; belong to (Ay(M))™ N (L*(Q))" (for i = 1,--- ,4) and there exist functions &;,&; such
that

@1 = Vgl, él = Vgl in Q.

Theorem 3.4. Let | > 0. Let T > 0, L > | and a € R™\ Q satisfying the conditions of
Proposition 2.1. Assume that Assumptions (3.2) and (3.3) are satisfied with (vi,--- ,v4) =
(@B(We)lﬂA('?e)va(;v 9),’&3(,6))

If & = & and ©1 = ©1 on Q) N IQL, then there exists a sufficiently small number 79 > 0 such
that if 7 € (0,79),

1
/ (100 (0F (ua — @) + 100 (OF (wa — )% + 00 (OF (up — 1)
k=0 7L x(0,T)
+H0, (0 (wp — @p))[*)do dt + || (ua — @a) (-, 0320, + | (up — @5) (030, <7
then the following Hélder stability estimate holds

18 = BliZan + Iy = iz + 18 = lIZ2(0,) + 191 = Otllz2 (@ < K7° (3.11)

for all T € (0,79).
Here, K >0 and k € (0,1) are two constants depending on R, L, 1, My, My, M>, T and a.

3.3. Proofs of theorems.

3.3.1. Proof of Theorem 3.1. Let V4 = (ua,wa) (vesp. Vi = (Ua,@Wa)) be a solution of (1.1)
associated with (p, G, A) (resp. (p1,G,A)) and Vg = (up,wp) (resp. Vg = (up,wp)) be a
solution of (1.1) associated with (p, G, B) (resp. (p1,G,B)). We decompose the proof in several
steps.

e Hirst step:

Denote V = (u,w) = Va, V = (i, %) = V4 and

U=u—u, W=w—-w, a=a—a.b=8-08,c=v—7, d=6—4. (3.12)
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Then (U, W) satisfy the following system
0U = AU + aprU + BpaW + agrti + b in Q,
W = AW + vd3U + 664W + cdsii + doad in Q, (3.13)
U=W=0on .
Define
Yo =nxU, 20 = nxW, y1 = Oy, 21 = 920 (3.14)
We deduce that (y;, z;) for i = 0,1 satisfy the following systems

Oyo = Ayo + ag1yo + Bo2z0 + anxdru + byxgew + B in Qr,
Orz0 = DAzo +7P3yo + dpazo + enxPst + dnxgsw + Re in Qr, (3.15)
Yo =20 =0 on 90y, x (0,T)
with
Ry = —(Ax)nU =20V x - VU + x0nU, Ry = —(Ax)nW —2nVx - VW + x9nW.
We have
Owy1 = Ay1 + adryr + Bdaz1 + Rz in Q,
Orz1 = Az1 +7¢3y1 + 0¢az1 + Ry in Qp, (3.16)
y1 =21 =0o0n 00 x (0,7),
with
R3 = ax0y(nd1) + bx0:(nd2w) + O R + ayoOrp1 + Bzo0r o,
Ry = ex0r(ndstt) + dx0y(nda) + 9 Ra + vyoOrp3 + 0200; .
e Second step: we estimate Z;ZO(I(yZ-) + I(z;)) by the Carleman inequalities (2.6).
Note that all the terms in Agy; or Agz; with derivatives of y or 17 will be bounded above by Ce?s%
with C' a positive constant (see Proposition 2.1 for the definitions of d; and d3). Moreover all the
terms such as [, o e?5%y2 dx dt on the right-and side of the estimates (2.6) will be absorbed by
I(y;) for s sufficiently large. So we have for s sufficiently large,
1
S Iw) +1(z:) <C | e(a® +0°+ P+ d°)x? du dt + Cs®e™h
i=0 QL

1
+CS/ e2s? Z(|(9,,yi|2 + 10, 2|?) do dt.
v x(0,T) i=0
Since €25¢ < ¢259(0) < g2sd2 o get

1

Z(I(yz) +1(z)) <C e®P(a® + b2 + 2 + d*)x? dx dt + Cs3e* ™ + Cse** 2 Fy(yy) (3.17)
i=0 QL

. 1
with Fy(yr) = fny(o,T) > ico(0uyil* + 10,2:|%) do dt.
e Third step: now we estimate [, e??)9¢ f(0)|? dr and Ja, e2 O |Af(0)|? dx for f = yo or

f =2z and ¢ =0,1. By Lemma 3.1, we have (since ¢ > 1 and é > é)

/ 22Oy (0)|? da < C’s/ eZ5Py2 da dt + ¢
Qr

c
eyt da dt < —(I(yo) + 1(11)),
L S JQr s

/ 290|940 ()| dx < Cs/ X0yt dx dt + ¢ e*9|0p1 |2 dx dt < CI(y1),
QL QL S Jqr

/ 22O | Ayo(0)|? dz < Cs/ | Ayo|* da dt + ¢ 0| Ay |? dx dt < Cs*(I(yo) +1(y1)).
Qr L S JQr
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Notice that the three above inequalities are satisfied replacing (yo, y1,y2) by (20, 21, 22)-
Therefore

/ 2O (|yo(0)* + 1090 (0)* + [Ago(0)]* + |20(0)* + [9:20(0)[* + |Az0(0)[*) dw
Qr,

1
< O3 (1) + 1(20).
i=0
So using (3.17) we deduce that

/ 2O (Jyo ()% + |00 () + | Ayo(0)[* + |20(0)* + 920 (0)|* + |Az0(0)[?) dz
Qr

< Cs? / e ?(a® + 1% + 2 + d*)x? dx dt + Cs5e®* ™ + Cs3e®* 2 Fy(vy). (3.18)
L

At last in this step, denote
R = (Ry, Rz, R3, Ry). (3.19)
e Fourth step: here we estimate fQL 290 (a2 + % + % + d?)x? dx.

We choose now the two sets of conditions A and B and consider Vy, VA, Vi and VB. From now
on, each function f defined in the precedent steps is denoted either f4 or fp when it is related
either by the conditions A or B. Denote now Fya(yz) = Fo(yr) associated with (Va,Va), and
Fop(y1) = Fo(7z) associated with (Vi,Vg) (see (3.17) in the second step):

FoalyL) = Z 0yial*+10,z:al?) do dt, Fop(yr) / Z 10uyiB|*+0,2i5|?) do dt.
v x(0,T) ;=9 v x(0,T)

Let R4 be defined by (3.19) for (V4, V) (resp. Rp for (Vg,Vz)). Multiplying the first equation of
(3.15) written for yoa by wp and the first equation of (3.15) written for yop by w4 and subtracting,
we eliminate the term in b and we get

anx¢1(tawp — UpWa) = W (Ooa — Ayoa — ad1yoa — Bdazoa — Ria)

—wa(Oyor — Ayos — ap1yo — Bp2208 — RiB)- (3.20)
By hypothesis (3.3), applying (3.20) for ¢ = 6, since 7 = 1 in a neighborhood of 6 we get

/ a2\ (¢1(0))* dz < C | e (100 (0)* + |0ryos (0) 1> + |Ayoa(0)* + |Ayos(0)[?
Qr Qr
+yoa(0)* + [204(0)* + |yor(0)]> + |208(0)[*) dz + Ce**h.
But ¢1 € A2(Mp) . So from (3.18) applied for yoa, YoB, 204, 205 We obtain
256(0) 2.2 2 b2 | 12 | 2 42\.2 5 2sd; 3 2sds
> 1 .
/ e a®x® dx < Cs / e“?(a®+b° 4 +d°)x* dr dt+Cs’e”** + Cs°e“* 2 Fy(yr) (3.21)
Qr

L

with Fy () = Foa(ye) + Fop(v). Similarly we can replace a by b on the left-hand side of (3.21),
still using (3.15) for yoa and yop. Indeed

—bnxp2(ap — UpWa) = U (OtYoa — Ayoa — ad1Yoa — Bo2z0a — Ria)
—0A(OoB — AYos — ad1yoB — Bd2z0B — RiB).
So we have
/ 625¢(9)(a2 + 1)2)X2 dr < Cs? / 625¢(a2 +02+2+ d2)x2 dx dt + Cs®e®h + 083628d2F1(’)/L).
QL L
(3.22)
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We do the same to obtain ¢ and d using this time (3.15) for zp4 and zpp and the hypothesis (3.3).

Therefore

/ 625¢(0)(62 + d2)x2 dr < Cs? / (325‘1’(112 +02+ 2+ alz)x2 dz dt + Cs®e® + CsPe?*2 |y (vr)-
Qr

L
(3.23)
Adding (3.22) and (3.23), we have

(& s ( ) a +b2+c +d dCU d1 < CS (& 8 a +b +c +d2 dl’ dt—l—C’S e s 1+CS e s 2F YL ).
X — X 1
Qr

L

Now we proceed as in [2, 11, 12] in order to prove that s? fQL e2*?(a? 4+ b% + ¢ + d?)x? dx dt can
be absorbed by the left-hand side of the above estimate for s sufficiently large (s > s2). Indeed

T
259(0) (g2 1 p% 4 2 +d2)X2(/ s2e250=2O0) q) da.

32/ e (a? + 0% + ? + d*)x? dx dt:/
QL Qr 0

But ¢ — ¢(0) = —e’\(d"‘Ml)(l - e_/\(t_e)z) and there exists a positive constant C' such that

Ca(t—6)2
Pp—p(0) < —C(l—e"\(t_‘g)z). Therefore fOT s2e23(0=9(0) gt < foT §2e725C(1=e27T) gy uniformly
in x. Moreover by the Lebesgue convergence theorem, we have

T
_ e A(t—0)2
/ g2~ 25C(1—e ) dt — 0 as s — oo.
0

Thus for s sufficiently large, we get

/ 628¢(9)(a2 + b2 +C2 +d2)X2 dr < CSSeQSdl +053625d2F1(’}/L).
Qr

Since €259 < ¢25¢(9) in Q) and y = 1 in €, we deduce that
e (|l — @720, + 18 — 3”%2(91) +ly =32 + 16— S||2L2(Ql)) < Cs* (e Fy(yL) + s°e*™)
which can be rewritten

|\0‘—54||2L2(Ql)+H5—5~||%2(Ql)+H7—’7HQL2(QL)+H5—S||2L2(Ql) < O3 (e 2700 By () s2e23(r o)y

(3.24)
As dy —dyp < 0 and dy — dg > 0, we can optimize the above inequality with respect to s (see for
example [5, 7, 8]). Indeed, note that if Fy(yz) = 0, since (3.24) holds for any s > sy and dy —dp < 0
we get (3.4). Now if Fi(yr) # 0 is sufficiently small (Fi(yz) < 3Zi§3)» we optimize (3.24) with
respect to s. Indeed denote

f(S) — €2S(d2_d0)Fl(’}/L) + e2s(d1—do) and g(s) _ 628(d2_d0)F1(’yL) + 8262S(d1_d0).
We have f(s) ~ g(s) at infinity. Moreover the function f has a minimum in

o 1 o dy — dy
° T 2do —d1) " (do —do)Fi(71)

) and f(s3) = K'Fi(y)"
; — do—dy 1 (do—dy \ 2= do—dy =38 T ini i i
with k = and K' = (2=g1) =% + (g2=gt) ©2~% . Finally the minimum s3 is sufficiently large

do—d1
(s3 > s9) if the following condition Fy(vz) < 79, with 79 = (dr&%, is satisfied. So we

conclude for Theorem 3.1.
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3.3.2. Proof of Theorem 3.2. We keep the notations of the proof of Theorem 3.1. In this theorem,
we want to remove all the observation terms on w obtained in Theorem 3.1 and express them in
terms of u. So we look at the terms f'ny(O,T) €2*?10,2;|? do dt for i = 0,1 appearing in step 2 of
Theorem 3.1. Recall that z; = 0 outside Qr_. and v C dw’.

As in [4, Lemma 2] we choose gy € C?(w’,R™) such that go = v on the C?-boundary dw’ where v
is the normal vector to dw’. We have by integration by parts for any integer i = 0, 1,

/ e%ANz; go - Vz; do dt = —/ V(e*%gy-Vz) -V dx dt
w’ % (0,T) w’ % (0,T)

+ / e?5%gy - Vz; 8,2 do dt.
dw’ x (0,T)

So
/ e°Az; go - Vz; do dt = —/ V(e*%gy-Vz) -V dx dt
w’x(0,T) w’x(0,T)
—|—/ e2s¢ |0, 2| do dt.
Ow’ % (0,T)
and we get
/ 2919, 2% do dt < C's / 29 (|V 22 + | Az ) da dt. (3.25)
yL%x(0,T) (w'N2L) % (0,T)
From the first equation in (3.15) we have
Bp2z0 = Oryo — Ayo — ag1yo — anx Pt — byxg2w — Ry in Q. (3.26)
By the same way, from (3.16) we have
Bp2z1 = Owy1 — Ayr — adryr — Rz in QL. (3.27)

i) First assume that ¢ = b =0 in w’. From hypothesis (3.5), (3.25)-(3.27) we get
1 1

| etaspdoazcsy [ Vol + V(A P+ Vol + [yl
i—0 77 x(0,T) i—0 7 (Ww'NQL)x(0,T)
+ Ay + |A(AY) |2 + |Ays)?) da dt + Cse*sd.

So
1

Z/ e*%(0, 2| do dt < Cse*™ + Cse**®2Go(w')
i=0 Y7L x(0,T)

with Go(w/) = ||y0‘|%11(0’T)H4(w/mQL)) + ||y0||%{2(0,T,H2(w’ﬁQL))'

Therefore (3.17) is still valid with sFy(vr,) replaced by s2G4(yr) = s* % (0.T) ZLO |0, y:|? do dt+
52Go(w'). Thus we follow the proof of Theorem 3.1 substituting Fy(vz) by G1(v5). The rest of
the proof (steps 3 and 4) remains unchanged.

ii) Here we suppose that a, 8, &, BeH 2(Q2). We will need to differentiate yo and zy twice with
respect to t (in order to get (3.35)) and we have

Oy2 = Ays + adrys + Boaza + Oy Rz + adipr1y1 + BOip22z1 in Qr,
Otz = Azy + YP3y2 + 6paza + Or Ry + v0:p3y1 + 00rpaz1 in Qp, (3.28)
ya =22 =0 o0n 9y x (0,7).
Therefore
Bpazo = Oy2 — Aya — adr1y2 — OeR3 — adipr1y1 — BOip221 in Q. (3.29)
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Notice that we can take >._, fny(o,T)(wv(@tk(“A —@a))2+ 10, (0F (wa — wa))|? + 0, (0F (up —

@5))|? + 0, (0F(wp —wg))|?)do dt as observation terms in (3.4). So we apply (3.25) for i = 0, 1, 2.
From (3.25)-(3.29) we get

2

2
e2s¢|3l,zi|2 do dt < Cs
Z /YLX(O»T) Z

/ (V0P + [V (Ago) 2 + [Vl + il
et = Jwnar)xo,1)
1A P+ A P Ap P @)V (@) P+ b PHA @O HA bR da ditCse?.

So
2

/ €918, 2| do dt < Cse**2Gy(w') + Cse?*h
i—0 Y7L x(0,T)

s / 9 ((a + B)x2 + V(@2 + IV + 1Ay + [AGX)[?) da de

with Go(w') = [1%0ll32 (0,1 14 wrnges ) + 19003 0,7, 520020 ))-
Thus the estimate (3.17) becomes

2
> (i) + 1(z:)) < CsPe M 4 Cs?e* =G (1)

1=0
+052/ e2P((a® + b2+ 2+ d®)x2 + |V(ax))? + |A(ax) |2 + [V (bY)|? + |A(bx)|?) dz dt (3.30)

with Gr(v) = [, 0.1y Loimo |Ovtil? do dt + Go ().

As in the third step of Theorem 3.1 when we get (3.18), by Lemma 3.1 we have

Z/Q O (i (O) + [Vyi(0)]° + | Ay (0)* + 2:(0) 1 + [Vz:(0) | + [Az(6) %) da
=0 L

2
< Cs? Z(I(yz) + 1(z:))-
i=0
So from (3.30)

1
Z/Q O |y (0) + [Vyi(0)]° + | Ay (0)* + 2:(0) | + [Vz:(0) | + [Az:(6) %) do
=0 L

< Cs4/ 625¢((a2 + 0242+ d2)x2 + |V(ax)|2 + \A(ax)|2 + |V(bx)|2 + |A(bx)|2) dx dt

L

+Cs%e? N 4 Oste® G (). (3.31)

Now we estimate [, e*%((a? + b2+ + ) + [V (ax) 2 + [A(ax)]? + [V ()2 + |AGY)?) da
as in the fourth step of Theorem 3.1. We consider two sets of initial conditions A and B and the
corresponding solutions V4, Va, Vg, Ve of (1.1). As in (3.20)-(3.23) we get

/ 20D+ 2+ A+ PP de < C | D (00a(0) + |00 () + |Ayoa(0)]?
QL QL

+Ayos(0)* + yoa(®)* + lyos (0)]> + [0:204(0)]* + |0:208(0)|* + |Az04(6) |
+|1Azp(0))2 + [204(0))? + |208(0)|%) dx + Ce?5.
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So from (3.31) we obtain
/ 623¢(0)(a2 +b2 +02 + d2>X2 dx < 08562Sd1 + 084628d2G2(’yL)
Qr,

wer / (@ + B+ @+ P2 + V(@) + [Aax)? + VO + [AGY)) de dt (3.32)

L

with Ga(v) = Gia(vr) + Gi(r).
We apply the same ideas for V(ay), V(bx), A(ax), A(by).
For any integer 1 < i < n, taking the space derivative with respect to x; in (3.20), we obtain

Oz, (ax)N$1(Uap — UpWa) + anX P10y, (UaWp — UpWa)
= 0y, (WB(0ryYoa — Ayoa — ad1Yoa — Bod2z04 — Ria))

0y, (Wa(9ryoB — Ayos — adp1yoB — Bd2z0B — R1B) - (3.33)
Therefore by hypothesis (3.3) we deduce that

/ 299V (ay)|? dz < C 290 (ax)? dx + Ce*h
QL QL

4 / 500 (V0,500 + [V Agoa ()2 + [Vyoa(O) + [Vz0(6)2
Qr

+V0iyon (0)° + [V Ayos(9)* + [Vyor O)” + V205 (6)]) da.
From (3.31)-(3.32) we get

/Q OV (ax)|? dr < Cs”e® M + Os'e® = Ga(vr) + O (|[yoa(0) s (g, ) + 908(0) 7130, )
L

+cs4/ e ((a® 402 + 2 + d*)x2 + |V(ax)|? + |Alax) > + [V(bx)|? + |A(bY)|?) dz dt. (3.34)
L
Taking again the space derivative with respect to x; in (3.33) we obtain

/Q D |A(ay)|* dov < Cs°e® M + Cs*e® 2 Ga(vL) + Ce®* (lyoa(0) | mraar) + Y05 (0) |l racar))
L

+Cs' / e ((a® + 0% + & + d)x* + [V (ax)]? + [Aax)* + [VOxX)? + [A(X) ) da dt. (3.35)
Similarly for b, so from (3.32),(3.34),(3.35) we have

/ O ((a® + 07 + & + d*)x* + [V(ax)* + |A(ax) > + [V (bx)|* + [A(bX)I?) da
Qr

< CsPe® M 4 Os*e® 2 Gy (vr) + Ce* 2 (|lyoa(0) | mr(ar) + I1¥o5(0) || (o))
+Cs4/ e ((a® + 0% + & + d*)x* + [V(ax)|* + [A(ax)* + [V (bx)* + |A(bx)|?) da dt.
QL

As in the proof of Theorem 3.1 (see the fourth step) we can absorb the last term of the above
estimate by the left-hand side so we deduce that for s sufficiently large

/ e ((a® + 0% + 2 + d*)x* + [V (ax)* + |Alax)|* + [V (0x) > + |A(bX)[?) da
Qr

S C85625d1 + 054625d2 G3(7L)
with G3(yr) = Ga(vr) + lyoa (@) m2r) + lvos (@) || a4(a,) and we conclude as for Theorem 3.1.
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3.3.3. Proof of Theorem 3.3. Let V4 = (ua,wya) (vesp. Vi = (U, @Wa)) be a solution of (1.1)
associated with (p, G, A) (resp. (pa2, G, A)) and Vg = (up,wp) (resp. Vg = (ip,wp)) be a
solution of (1.1) associated with (p, G, B) (resp. (p2,G,B)). As for Theorems 3.1 and 3.2 we
decompose the proof in several steps.

o First step: We keep the notations of (3.12)

V=(uw)=Vy, V=_(0,0)=Vy, U=u—0, W=w—-w,b=8—-0, c=v—7, d=0— .
and now define 3
Ji=¢1— ¢1.
We still define (see (3.14)) (for ¢ = 0,1,2)
yo = mxU, zo =nxW, yi = fyo, 2 = 0}z
The systems (3.13), (3.15), (3.16) become
0U = AU 4 ap1U + BoaW + afri + b in Q,
W = AW + v¢p3U + §paW + co3t + dpa in Q,
U=W=0in %,
and (y;, z;) for i = 0,1 satisfy the following systems
Ayo = Ayo + agryo + Bd2zo + afinxu + boenxw + 51 in Qr,
Orzo = Azo + ¥P3Yo + 0dazo + cPanxu + dpanxw + S2 in Qr, (3.36)
Yo — 20 = 0 on 8QL X (O,T)
with
S1 =Ry = —(Ax)nU — 2nVx - VU + xOnU, Sa = Ry = —(Ax)nW — 2nVx - VW + x0mW.
We have
O = Ayr + adiyr + Boaz + 53 in Qp,
021 = Az +yP3y1 +0¢a21 + Sy in Qp,
y1 =2 =0o0n 0y x (0,7),
with
Sz = O (afinx + boanxw) + 051 + ayoOed1 + Bzo0i 2,
Sy = Ra = 0 (c3nxt + dpanxw) + 0pS2 + 1Yo 0rd3 + 0200:ha.
We also have
Ohy2 = Ayz + a1y + Boaze + 0153 + adipryr + BOip2z1 in Qr,
Opzo = Azg + yP3y2 + dpaze + 014 + yOrd3y1 + 00rdsz1 in Qp,
Yo = 29 = 0 on 3QL X (O,T)
e In the second step we estimate Z?:o (I(y;) + I(z:)) as in Theorem 3.1 and we get
2 2
Z(I(yi) +1I(z)) <C (b + ¢ + d*)x? dx dt + C 628¢X2(Z(8Zf1)2) dx dt
i=0 Qr QL i=0
+0s%e25M 4 Cse?*%2 Fy(vp) (3.37)
with Fo(yz) = . %(0.T) S22 (180w 2 410, 2:]?) do dt (nearly same definition as before since (3.17)).
Now following the proof of Theorem 3.1 we look at (3.18) in this context. First note that because
of the fourth step of this proof, we can no longer use the estimates of the Laplacian terms in (3.18)
and contrary to Theorems 3.1, 3.2, 3.4, we have to take care of the powers of s on the right-hand
sides of our estimates. In fact we could only look at the estimate of fQL e25¢9)10,20(0)|? dx but
because of the remarks given just after the proof of this theorem, we will keep more terms. So



AN INVERSE PROBLEM FOR A PARABOLIC SYSTEM IN AN UNBOUNDED GUIDE 17

we will not estimate [, e299)|9,20(0)|? dz as in Theorems 3.1, 3.2, 3.4 (see the third step of
Theorem 3.1) and for that, we need to differentiate twice yo and zy with respect to t. Thus

/ éww@%wwdxscg/<ﬁﬂmﬁmwn+§/ Ll < (1) + ()
Qr

L L

So we have (coming from Lemma 3.1 as in (3.18)) and by (3.37)

| OO + @) + 0O + )F) do < 5 S (Tw) + 1)

=0

2
< % / 29 (b + ¢ + d?)x? dx dt + % / () (01 f1)7) da di+ Cse®*™ + e fy (),
s s j ’

L L =0
Since ¢ < ¢(0) we get

C
| OO +10m0@)F + OF + 102000 do < 5 [ 00+ d) do
L L

c 2 C y
+7/ 625¢(9)X2(Z(6Zf1)2) dx dt + Cse?*h + ;eZSdQFQ(’yL). (3.38)

5 L i=0
e Third step: here we estimate fQL 25?0 2(b2 + ¢® + d?) dx as in Theorem 3.1 with two different
sets of conditions A and B. We recall that each function f precendently defined is denoted either
fa or fp when it is related either by the conditions A or B.
For the coefficient b we can write from the first equation of (3.36)

—bnxd2(tiap — UipWa) = Up(0yoa — AYoa — aP1yoa — Bd220a — afinxiia — S14)
—UA(OryoB — Ayon — ad1yo — B2zop — afinxip — SiB).
Note that the terms in f; disappear in the above equality. For the coefficients ¢ and d we use the
second equation of (3.36) and proceed as in Theorem 3.1. Indeed, for example for ¢, we have
enx¢3(tiatp — Upwa) = Wp(0i20a — Azoa — YP3Yoa — 0Pazoa — S24)
—wWA(OrzoB — Azop — YP3Yon — 0¢azoB — S2B)-
Therefore by hypothesis (3.3) and (3.38) we obtain for s sufficiently large
2
C .
/ 20O (12 42 4 d?)y2 dr < & / 25900\ 2(S(9E £1)2) da di+Cse? D +Ce = Fy(6) (3.39)
Qr s Ja i=0

with F5(0) = Foa(vr) + Fop(yL) + 1AY04(0)l2(0,) + AY0B(O) 2Ly + 1A204(0)|2(0,) +
[Az05(0)] L2 (0y)- ‘
e Fourth step: we estimate now fQL 628¢(0)X2(Z§:0(8§f1)2) dx dt. Here again we use the two
different sets of coefficients A and B. From (3.36) for yp4 and yop, we get

anx fi(iawp — ipwa) = Wp(dhyoa — Ayoa — ad1yos — Boaz0a — S14)
—wa(0yoB — Ayop — aP1yoB — Bd2208 — S1B)- (3.40)
Applying (3.40) for t = 6, by hypotheses (3.3) and (3.9), using again (3.38) we obtain

2

C .
[ O RO dr < G [ O 0 e i

L 1=0

+SQ2 /Q 20O (12 4 2 4 d?)x? da + Cse® U 4 Ce*2 Fy(0). (341)
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Deriving now (3.40) with respect to t, we have
(Ocfr)an(tawp—upwa)+ fro(anx(tawp—tipwa)) = Oy (Wp(Oryoa—Ayoa—ad1yoa—Ld2204—S14)

—wa(9yos — Ayon — adryos — B2208 — S1B))
and evaluating this last equation at t = 6, still by hypotheses (3.3) and (3.9), we get

| O @07 de<c [ O (0 da
L

Qr

1
+C [ DY (10]2040) + 10]208(6) ) + Ce** = Py 6) (3.42)
=0

Qr
with
2 1
Z (10Fyoa(0)]17 QL)"‘Ha Yop (0 )HQLZ(QL))"FZ(HafAyOA(H)||%2(QL)+|‘afAy0B<9)”%%QL))'
k=0

From (3.38), (3.41) and (3.42) we have

2

2580\ 2(( 1, 2 Ly 2\ Q p250(6) .\ 2 i 12 dx
L OB O+ @A) de < G [ O (011 de

=0

C

+3 / 20O (52 4 2 4 d*)x? da + Cse® M 4 Ce® 2 F,(9) (3.43)
Qr,

Moreover by Taylor’s formula, we have

J1(t) = f1(6) + 8, f1(0)(t — 0) + 07 f1(co) (t - and 8, f1(t) = 8, f1(0) + 97 f1(cp) (t — )

with ¢g, ¢, € [0, T]. Therefore, since qZ;l € As3(Ms3) the admissible set of coefficients, we get

2

Y0111 < CUA0)* + (9:£1(6))%),

=0

so from (3.43) we deduce that for s sufficiently large
2
/ 625¢(9)X2(Z(3Zf1) Ydr dt < — ¢ / O (2 4 2+ d?)x? du+Cse® D +Ce® 2 Fy(6). (3.44)
L i=0 Qr
e Fifth and last step: now addding (3.39) and (3.44) we obtain

/ 625¢(9)(b2+62+d2)x2 d$+/
Qr

L

2
e250(0) 3 2( Z i f1)?) da dt < Cse® N 4 Ce?* 2 Fy(h).
1=0
So
/ 2¢O (1% + ¢ +d?) da +/ e 9)(2(871) ) dz dt < Cse® ™ + Ce** " Fy(0)
o Q;x(0,T) =0

and we conclude as for Theorem 3.1 by optimizing the above inequality with respect to s.
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Remark 2. e If the admissible set of coefficients is A5(Ms) (thus less restrictive than As(Ms)),
then we would have to derive p — 1 times (3.40) with respect to ¢ and that would demand more
regularity for the observation terms on u.

e On the contrary if the admissible set of coefficients is A4 (M3), so more restrictive than Az(M3)

(or if ¢, € C2([0,T)) is such that ¢ (0) # ¢1(6) and S“"felﬁ;j@e’fjgﬁ;ﬁl"“‘ < My for i = 0,1,2),

then we can drop (3.42) and (3.43) in the above proof. Therefore the result remains valid without
F5(0) and so Fy(0) = F5(0). Thus the observations terms on w are only |[(ua — u})(-,@)”%zmm

and [|(ug — uB)(,0) |32 (q, -

3.3.4. Ifroof of Theorem 3.4. Here again we follow the method described before. Let V4 = (ua,w4)
(resp. Va = (@ia,wa)) be a strong solution of (1.3) associated with (p, G, A, ©) defined by (1.2)
and (1.4) (resp. (p3,G,A,0)). Consider also Vg = (up,wp) (resp. Vp = (ip,wp)) a strong

solution of (1.3) associated with (p, G, B, ©) (resp. (g3, G, B, ©)).
e As before, in a first step we define
V = (u,w) = Vy, f/:(ﬂ,u?)sz, U=u—ta, W=w—-w,b=8-08,c=v—7, d=06—46
and also } }
H:@1—®1 ZVhWIthh:é-l—fl
Recall that for ¢ = 0,1,
Yo = nxU, z0 = nxW, y1 = 0iyo, 21 = Oi20-
Then
Oryo = Ayo + ag1yo + Bd2z0 + O1 - Vyo + Oz - Vzo + byxd2w + nV(xh) - Vi +T1 in Qr,
Or20 = Azo +7P3yo + 0¢az0 + O3 - Vyo + O4 - Vzo + enxdst + dnxpaw + Tz in Q,
Yo =20 =0 on 9N x (0,T)
(3.45)
with
Ty = (9em)xU — (Ax)nU = 2Vx - V(nU) —=nUO1 - VX — W62 - Vx — nhVi - Vx
Ty = (Om)xW — (Ax)nW = 2Vx - V(W) —nUO3 - Vx —nWO, - V.
And
Owy1 = Ayr + adryr + Bdazr + O1 - Vyr + Oz - Vzi + bnx 0 (¢2w) +nV(xh) - VO + T3 in Qr,
Orz1 = Az +7¢3y1 + 0paz1 + Oz - Vy1 + Oy - V1 + enx 0y (d3t) + dnx 0y (paw) + Ty in Qr,
y1 =2z =00n 90 x (0,7)
with
T3 = ayoOid1 + Bzodip2 + dn(bx2w + V(xh) - Va) + 0:11,
Ty = yyoOs 3 + 6200; P4 + Oen(cxdatt + dxdaw) + O;To.
Thus we obtain
1
Z(I(y,) +1I(z) <C (0 + 2 + d®)x2 + |[V(xh)|?) dz dt + Cs3e?sh
i=0 QL
1
+052/ 2910,y 2 + |9, 2:]2) do dt.
i=0 vL %(0,T)
We deduce that (see the third step of Theorem 3.1)

1
Z/ YO |y, (0)]° + Vs (0)]* + |2:(0)* + |V z:(0)*) d93+/ YO (|Ayo(0)]* +|Az0(0)[*) dx
i=0 701 Qo
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< Cs? Z(I(yz) +1(z:))

=0
< Cs? /Q X0 ((b% 4 2 + d®)x? + [V (xh)|?) d dt + Cs®e* N + Cs3e® 2 Fy(vyy) (3.46)
L

with Fy(vyr) defined by (3.17).

e In a second step we consider the solutions of (1.3) associated with two different sets of initial
conditions A and B and we recall that each function f precendently defined is denoted either f4
or fp when it is related either by the conditions A or B. As in the fourth step of Theorem 3.1 we
have a similar estimate to (3.23) for the coefficients ¢ and d. Indeed, writing (3.45) for zp4 and
zoB, by the hypothesis (3.3) and from (3.46) we have

/ 6234’(9)(024—6[2))(2 dr < 052/ 623¢((b2+02+d2>xz+|V(Xh)|2) dx dt+08562$d1+CS362Sd2F1(’7L>
Qr

L
(3.47)
with Fy(vyr) defined by (3.21). Now we eliminate b in (3.45) in order to estimate the coefficient h
and we evaluate at ¢ = 6. We use here the partial differential operator P defined in Lemma 3.2.

P(xh) = wp(0)V(xh) - Via(0) —wa(0)V(xh) - Vip(0)
P(xh) =wp(0)[0oa(0) —Ayoa(0) —ad1yoa(0) — Bdazoa(0) —O1-Vyoa(0) —O2-Vzoa(0) —T14(0)]
—wA(0)[0yoB(0)—Ayop(0) —ad1yos(0) —Bo2205(0) —O1-Vyop(0) —O2-Vzop(0) —T1p(0)]. (3.48)
From Lemma 3.2 we have

/ 290 (@, (hx)2 dz < C [ e2*O[P(d,, (yh))|? dx.
QL QL

So taking the space derivative with respect to z; (for i = 1,--- ,n) in (3.48), from (3.46) we get
that

5 / NV (xh) P de < C [ 2OV (xh)|? de+Cs? / e* (B +2+d?) > +|V(xh)|?) dz dt
Qr

QL
+Ce® % (|lyoa(0) 1 Fa (2, + 1905 (0)|32(a,)) + Cs”e® + Cs’e = Fi (L)

and for s sufficiently large,

Qr

52/ 2¢OV (xh)|? dz < 082/ X (0% 4 2 + d®)x* + |V (xh)|?) dz dt
Qr

L
+COs%e*h 1 Cs3e?%2 Fy(0) (3.49)

with F5(60) = Fi(z) + [y0a(0) 3 q,y + 1905 (0) 135 (g, - Now we look at the coefficient b. We
also use (3.45) for yoa and yop

—bnxo2(tiap — Upwa) = Up(OiYoa — Ayoa — aP1Yoa — Bo2z0a — O1 - Vyoa — Oz - Vzoa

—nV(xh) - Vi —Tia) — ua(Oyos — Ayos — ad1yos — Bp2208 — O1- Vyon
—0, - Vaop — qV(xh) - Vig — Tip). (3.50)
Therefore, evaluating (3.50) at ¢t = 0, still using hypothesis (3.3), from (3.46) we get

/ 625¢(9)b2x2 dz < C/ 628¢(0)|V(Xh)‘2 dx
QL Q2L

+Cs? / (02 4 2 + d®)x2 + [V (xh)|?) dx dt + Cs®e® N + Cs3e® 2 F)(yy). (3.51)
L



AN INVERSE PROBLEM FOR A PARABOLIC SYSTEM IN AN UNBOUNDED GUIDE 21

Thus from (3.49)-(3.51) we obtain

/ 628¢(9)(bx)2 dx < 082/ 628¢((b2 + 2+ d?)x* + |V(xh)|?) do dt
Qr QL

+C0s%e* N 4 Os3e?* 2 F5(0). (3.52)
(

2 +d?*)x? + |V(xh)|?) dz dt by the left-hand side so we get
/ e2s¢(9)((b2 + 02 4 d2)X2 + ‘V(Xh)|2) S 08562Sd1 + 053625d2F5(9)
Qp
and we conclude as in Theorem 3.1.
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