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Abstract This paper studies hazardous waste transportation problems. Due to their dangerous
nature, the transportation of these waste implies a risk of incident having irreversible consequences
on the environment. This problem has lead to a body of legal statutes that monitor the generation,
storage and transportation of hazardous waste. Assuming that the transport of hazardous waste is
done in a cooperative manner on a transport network, this paper investigates how to share the cost
of maintaining and operating such network among the involved agents. We analyze the hazardous
transportation problem from the viewpoint of axiomatic analysis. We consider several axioms that
are derived from different environmental law principles and provide a characterization of a new
allocation rule: the responsibility rule. Then we show that the responsibility rule coincides with
the multi-choice Shapley value of an appropriate multi-choice game.
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1 Introduction

Over the last decades, the generation of hazardous waste from industrial activities has been steadily
increasing. Tons of such waste are traded both internationally and locally, involving massive waste
movements. Because of the nature of such waste, threatening incident may occur during trans-
portation causing damage that may be irreversible. To address the problems of hazardous waste,
a variety of environmental regulations have emerged, establishing a body of legal statutes that
monitor their generation and transportation. To cite a few: the “Basel convention” regulates
the international movements of hazardous waste and their disposal; the “Comprehensive Envi-
ronmental Response, Compensation, and Liability Act” (CERCLA or Superfund Act) regulates
the storage sites of hazardous waste in the United States; the “Treaty on the Functioning of the
European Union” regulates the movements of hazardous waste within its borders. Each of these
regulations is based on a preventive approach that aims to implement appropriate measures to
reduce the risk associated with hazardous waste.

In this paper, we consider a finite set of agents involved in a hazardous waste transportation
network. The network is modeled by a directed sink tree graph divided into several portions, and
each agent has a certain amount of waste it wishes to ship. We suppose that a central authority
sets preventive measures to mitigate the environmental risks associated with the hazardous waste
involved in the network. Such preventive measures entails a cost for maintaining each portion of



the network that depends on the amount of waste passes through this portion. Two questions then
arise: which agent is liable for the risk on the network? How should the cost of maintaining the
network be allocated among its users?

To answer these questions, we define a hazardous waste transportation problem as a tuple
consisting of a directed sink tree graph, a vector of maximal amounts of waste and a list of cost
functions (one for each portion of the network). The sink of the tree is a waste treatment facility
where the total waste is shipped. The vector of maximal amounts of waste corresponds to the
total amounts of waste each agent is shipping to the facility. The cost function of each portion
describes the maintenance cost of the portion when a certain amount of waste is conveyed to it.
An allocation rule is defined as a mapping that associates to each hazardous waste transportation
problem a list of payoffs describing the cost share of each agent for each of its amount of waste.

We analyze the hazardous transportation problem from the viewpoint of axiomatic analysis.
We consider several axioms that are derived from different environmental law principles. These
principles, that we further discuss in Section 3.2, can be distinguished into two subsets. The
first subset is specific to environmental issues and contains: the prevention and precautionary
principles, which set the duty of agents to take appropriate measures to prevent environmental
risk; the polluter pays principle, which asserts that the cost associated with a pollution hazard
should be born by those causing the hazard. The second subset of principles intersects with some
tort law principles. It contains different liability regimes that set out the terms under which
an agent is liable for certain hazards. Inspired by the Basel convention, we consider the strict
liability, the joint liability and the several liability regimes. This allows us to clearly define which
agent is liable for the risk caused on which portion of the network. Accordingly, we consider
several axioms that can be interpreted with these environmental law principles. The first axiom
is a classical Efficiency axiom widely used in allocation problems. In our framework, this axiom
requires that the total maintenance cost of the hazardous waste transportation network should
be fully covered by the whole set of agents. The second axiom is related to the several liability
principle. Several liability is a legal doctrine that depicts an agent liable in proportion to the risks
it causes. Accordingly, we consider the axiom of Independence of higher waste amounts, which
requires that the cost share of an agent for any amount of waste does not depend on a higher
waste amount of any agent, including itself. This implies that an agent does not pay for the risk
associated with waste it is not able to generate. Then, we consider the axiom of Path consistency,
which requires that an agent’s cost share does not depend on the costs of portions not used by
that agent. We relate this axiom to the strict liability whereby an agent’s liability is tied to the
portion it uses. Finally, we introduce the axiom of Upstream solidarity for a cost increase, which
requires that each agent located upstream a portion should be equally impacted if the marginal
cost of this portion varies. This axiom complements the joint liability principles by removing any
ambiguity that may arise under this liability regime.

We show that there is a unique allocation rules satisfying Efficiency, Independence of higher
waste amounts, Path consistency and Upstream solidarity for a cost increase (Proposition 4). This
rule, called the responsibility rule (Theorem 1), can be described as follows. Consider any portion
k and suppose that each agent liable for this portion is shipping the same amount of waste j. If
an agent is not able to ship this amount then it ships its maximum. In this case, we say that the
agents form a j-synchronized waste profile. Then, the agents liable for the portion k, and that
ship the amount j, share equally the variation in cost between shipping the j-synchronized and
shipping the (j − 1)-synchronized waste profiles. By successively applying this procedure on each
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portion for which an agent is liable, we obtain its payoff (for its waste amount j) according to the
responsibility rule.

Finally, we analyze hazardous waste transportation problems by adopting a cooperative game
theoretic approach. Specifically, we define a multi-choice game from a hazardous waste transporta-
tion problem. We show that the responsibility rule coincides with the multi-choice Shapley value,
introduced in Lowing and Techer [2022], of such multi-choice game (Theorem 3).

Related literature

This work is closely related to the wide literature on cost sharing problems in networks. Specifically,
our model generalizes the model of cleaning a polluted river introduced in Ni and Wang [2007].
The authors consider a polluted river as a line divided into several segments. The cost of cleaning
each segment is exogenously given. Ni and Wang [2007] propose and characterize two allocation
rules: the local responsibility rule and the upstream responsibility rule. Further, they show that
both rules coincide with the Shapley value of an appropriate cooperative TU-game. This model has
been extended by Dong et al. [2012] by considering a polluted river network modeled by a directed
sink tree. Recently, van den Brink et al. [2018] study the polluter river network problem and show
that a polluted river network can be interpreted as a permission tree structure. They provide
different allocation rules based on solutions for TU-games with a permission structure. Based on
the polluter pays principle, Gómez-Rúa [2013] propose new allocation rules for sharing the cost
of a polluted river inspired by properties of water taxes. Alcalde-Unzu et al. [2015] consider a
transfer rate that measures the proportion of pollutant transferred from one segment to another.
They show that uncertainty on this transfer rate can be reduced by using information from the
cleaning costs. This allows to define some limits to the liability of agents. Moreover they propose
and characterize the Upstream responsibility rule that takes into account these limits. Although
our model can be related to Ni and Wang [2007] and Dong et al. [2012], our study differs from
them on two points. First, we allow the agents to have multiple amounts of waste. Second, we
explicitly consider that the amounts of waste flow from one point of network to another. This
leads to a cumulative effect of the waste in the cost of maintaining a portion. Such effect is not
taken into account by Dong et al. [2012].

This work can also be related to the literature on transportation of hazardous materials. This
literature mainly focuses on the reduction of threatening incident that may arise from the trans-
portation of hazardous materials. Using an operation research point of view, the problem is more
about routing-scheduling and network design than on cost allocation. A recent survey of network
design problem can be found in Mohri et al. [2021].

This paper is organized as follows. The next section introduces the notation and provides a brief
presentation of directed graphs. Section 3 introduces the hazardous waste transportation problem.
Section 3.1 presents the model, and Section 3.2 discusses the different environmental principles.
Our axiomatic analysis is contained in Section 3.3, while Section 4 develops the cooperative game
approach. Finally, Section 5 concludes.
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2 Preliminaries

Denote by N the set of natural integers containing 0, and fixK ∈ N. Given an integer x ≤ K, denote
by [[0, x]] the set {0, 1, . . . , x} of successive integers from 0 to x, i.e., [[0, x]] = {z ∈ N : 0 ≤ z ≤ x}.

2.1 Directed (tree) graph

A directed graph (henceforth digraph) is a pair g = (N,E) where N is a finite set of nodes
(representing the set of agents) and E ⊆ N × N is a binary irreflexive relation. This binary
relation E induces a collection of ordered pairs, i.e., E ⊆ {(i, i′) ∈ N × N : i 6= i′}. The
pair (i, i′) ∈ E is interpreted as: there exists a directed link from i to i′ in g. For each node
i ∈ N , define U(i) = {i′ ∈ N : (i′, i) ∈ E} the set of direct predecessors of i in g. The set
U−1(i) = {i′ ∈ N : (i, i′) ∈ E} = {i′ ∈ N : i ∈ U(i′)} denotes the set of direct successors of i
in g. Given a digraph g, a (directed) path from i to i′ is a sequence of distinct nodes (i1, . . . , ih)
such that i1 = i and for each t = 1, . . . , h − 1, it+1 ∈ U−1(it), and ih = i′. For each i ∈ N ,
define Û(i) = {i′ ∈ N : there exists a path from i′ to i} as the set of agents located upstream
i in g. Similarly, for each i ∈ N define Û−1(i) = {i′ ∈ N : i ∈ Û(i′)} as the set of agents
located downstream i in g. Given a set of agents S ⊆ N , we denote by U(S) =

⋃
i∈S U(i) and

U−1(S) =
⋃
i∈S U

−1(i) the set of predecessors, respectively successors, of agents in S. Similarly,

for S ⊆ N we denote Û(S) =
⋃
i∈S Û(i) and Û−1(S) =

⋃
i∈S Û

−1(i). For convenience, we denote

ÛS := Û(S) ∪ S, and Û−1S := Û−1(S) ∪ S, and Ûk instead of Û{k}.
Let g = (N,E) be a digraph. A directed path (i1, . . . , ih), with h > 2, is a cycle in g if

(ih, i1) ∈ E. A digraph g is called acyclic if there is no cycle in g. A digraph g is a sink tree
if there is exactly one node id ∈ N such that U−1(id) = ∅, Û(id) = N \ {id}, and for each
i ∈ N \ {id}, |U−1(i)| = 1. Observe that a sink tree is an acyclic directed graph. Denote by E the
collection of all irreflexive digraphs and by E the collection of all directed sink trees.

3 Hazardous waste transportation problem

3.1 The model

Consider a transportation network connecting a finite set of agents N (directly or indirectly) to
a special node d called the delivery node. Such transportation network structure is modeled by a
sink tree g = (N ∪ {d}, E), where d is the sink of the tree. Each element (i, i′) ∈ E is called a
portion. Since g is a sink tree, each agent i ∈ N has exactly one direct successor in g. When no
confusion arises, we simply denote a portion (i, i′) by i. All the notation introduced for sink trees
remain valid for a hazardous waste transportation network.

Each agent i ∈ N is endowed with a given amount of hazardous waste wi ∈ N, 0 < wi ≤ K, to
be treated by a treatment facility. We assume that the treatment facility is located at the delivery
node d. Each agent is able to ship any amount j ≤ wi of waste. However, the actual amount
shipped is wi. Consider the product set W =

∏
i∈N [[0, wi]]. An element s = (si)i∈N ∈ W is

referred to a waste profile, which indicates each agent’s amounts of waste. The profile of maximal
amounts of waste is given by w = (wi)i∈N . Given the set of agents N , the profile of maximal
amounts of waste w, and an amount j ≤ maxi∈N wi, define Q(j) as the set of agents able to ship j
amounts of waste, i.e., Q(j) := {i ∈ N : wi ≥ j}. For any two distinct amounts of waste j, j′ such
that j ≥ j′, we have that Q(j) ⊆ Q(j′). Moreover, given a waste amount j ≤ maxi∈N wi, define
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the j-synchronized waste profile, (j ∧wi)i∈N , in which each agent send the waste amount j. If an
agent is unable to ship j, then it sends its maximal amounts of waste to the treatment facility.

Example 1. Let N = {1, 2, 3, 4, 5} be the set of agents involved in the transport of hazardous
waste and d the delivery node. Consider the hazardous waste transportation network g = (N ∪
{d}, E) where E = {(1, d), (3, 1), (2, 1), (5, 2), (4, 2)}, depicted in Figure 1. The direct successor of
agent 3 is U−1(3) = {1}. The set of direct predecessors of agent 2 is U(2) = {4, 5}. The set of
agents located upstream agent 1 is Û(1) = N \ {1}.

d1

4

5

3

2

Figure 1: Hazardous waste transportation network.

Shipping any amount of waste through a portion incurs a risk, which in turn carries a cost. This
cost is considered as the expense of maintaining the network and mitigating the risks associated
with the amount of waste. For each portion i ∈ N , let Ci : R+ → R+ be the cost function of this
portion. We assume that, for each i ∈ N the cost function Ci is non-negative and non-decreasing
over R+. Moreover, we use the convention Ci(0) = 0 for any i ∈ N . For each portion i ∈ N , it
is assumed that the cost function Ci depends on the total amounts of waste passing through the
portion, i.e., the sum of the waste sent by all agents located upstream i including its own waste.

Thus, the cost of transporting the waste profile w through a portion i is given by Ci(
∑
k∈Ûi

wk). The

total cost of maintaining the network is then given by∑
i∈N

Ci(
∑
k∈Ûi

wk). (1)

Let C be the set of all cost functions. Denote by C = (Ci)i∈N ∈ CN a profile of cost functions. For
each i ∈ N , we denote by C0

i ∈ C the null cost function, i.e., C0
i (x) = 0 for all x ∈ R+. A hazardous

waste transportation problem on a fixed agent set N and delivery node d is then a triplet

(g, w,C) ∈ E ×W × CN .

Let PN = E ×W × CN be the set of all hazardous waste transportation problems on N . Notice
that polluted river network problems, introduced in Dong et al. [2012], can be viewed as a subclass
of hazardous waste transportation problem where wi = 1 for each i ∈ N and each cost function is
a constant function.1

Consider any hazardous waste transportation problem (g, w,C) ∈ PN . The question that arises
is how to allocate the total maintenance cost of the hazardous waste transportation network. An

1We refer the reader to van den Brink et al. [2018] for a recent study of polluted river network problems.
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allocation rule f on PN assigns a non-negative payoff (or cost share) fij(g, w,C) ∈ R+ to each
agent i ∈ N for each of its waste amount 0 < j ≤ wi. Then, for each i ∈ N and each j ≤ wi
the payoff fij(g, w,C) ∈ R+ is interpreted as the variation of payoff when agent i increases its
transported waste from j − 1 to j. Such interpretation is consistent with the fact that agent are
actually shipping the amount wi.

3.2 Principles from environmental legislation

The transport of hazardous waste is regulated by a set of legal rules and statutes established
both at international and national levels. In this section, we present some principles invoked in
the environmental issues and specifically in the transport of hazardous waste. We provide a brief
interpretation of each principle within our model. While some principles can be related to tort law
principles, others are very specific to environmental issues and deserve a specific interpretation.

The prevention principle The prevention principle principle is the most prevalent principle in
environmental law. This principle is at the heart of the preventive approach to the environment,
which aims at anticipating, minimizing and preventing environmental hazards. Indeed, the dam-
age caused by pollution tends to be very expensive and even has irreversible consequences. The
implementation of preventive measures is therefore crucial in the protection of the environment.
Regarding hazardous waste management and transportation, the preventive approach is advocated
by the Basel convention. Notably, the convention requires that anyone involved in the manage-
ment or transportation of hazardous waste to take appropriate measures to prevent any potential
pollution from the hazardous waste. In this sense, the prevention principle is the key principles
underlying our model.

The polluter pays principle The polluter pays principle ensures that those causing pollution
must bear the cost it generates. This principle, introduced by Arthur Cecil Pigou in the 1920’s,
aims at internalizing the external costs generated by polluting activities. It can be thought from two
complementary standpoints. First, this principle has a curative function by making the polluter
liable in case of environmental damage. From this perspective, it can be seen as lying at the
intersection between tort law principles and environmental statutes by assigning the liability of
a damage to the polluter. This principle also has a preventive function, assigning the cost of
prevention and precautionary measures to agents involved in environmentally hazardous activities.
This is reflected in the recommendations on the pollution control made by the OECD or the
European Union.2

Strict liability Strict liability is a legal doctrine according to which an agent is liable regardless
of its intent. Thus, in case of a damage, this legal regime does not require justification of fault or
negligence from the damaging agent. This doctrine is enforced in situations considered as inherently
dangerous. It is required by the Basel convention, the European Environmental liability Directive
(2004/35/EC), or the CERCLA (Superfund act). It complements the polluter-pays principle by
defining the conditions ruling the liability for environmental hazard.3 In our framework, the agents’

2See OECD recommendations 1972, and the Treaty of Functioning of the European Union, Article 192(1).
3We refer the reader to Landes and Posner [1980] for a study in economic analysis of law.
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liability is based on the risk associated with the hazardous waste. Since an agent’s waste causes a
risk to the portion it uses, that agent is liable for that portion.

Joint liability Joint liability is a second legal doctrine ruling situations with combined causes
of damage. According to this doctrine, each agent involved in a damage is responsible for it, and
can therefore be charged for it. In our framework, this principle considers that the agents causing
a risk on the same portion of the network are jointly liable for this portion.

Several liability The several liability doctrine is another legal doctrine that holds an agent
liable in proportion to its contribution to a damage. This doctrine can be found in the Basel
convention asserting that each liable agent is liable in proportion to the contribution made by
its waste to a damage. In our model, this doctrine hold the agents liable in proportion to their
contribution to the risk incurred on the network.

3.3 Axiomatic analysis

In this section, we provide an axiomatic analysis on the class of hazardous waste transportation
problems. We discuss several axioms for allocation rules inspired by the environmental principles
introduced in Section 3.2.

We first consider the Efficiency axiom widely used in axiomatic analysis in economics. This
axiom can be related to a major concern in most of the hazardous waste litigation, which is the
damage remediation.4 In our framework, this concern focuses on paying the cost of maintaining the
network, leaving room for how to allocate this cost among the agents. Accordingly, the Efficiency
axiom requires that the total cost for maintaining the network to be fully borne by all agents.

Efficiency For any (g, w,C) ∈ PN ,∑
i∈N

∑
j≤wi

fij(g, w,C) =
∑
i∈N

Ci(
∑
k∈Ûi

wk).

The second axiom can be thought as limiting an agent’s cost share according to its waste’s
contribution to the risk of damage. In this sense, this axiom is weakly related to the several
liability regime. This liability regime relies on the assumption that there exists a reasonable basis
for determining each agent’s contribution to the risk it causes to the network. In our framework,
since each agent’s waste is of the same nature, we use the waste amounts of each agent to define
such a basis. Accordingly, the axiom of Independence of higher waste amounts axiom requires
that an agent’s payoff for a given amount of waste j does not depend on any amount higher than
j. This axiom is related to the Independence of maximal activity level introduced in Lowing and
Techer [2022]. Regarding hazardous waste transportation problems, this axiom ensures that no
one subsidizes a higher waste amount from any agent (including its own).

Independence of higher waste amounts For any i ∈ N , and any (g, w,C) ∈ PN ,

∀j < wi, fij(g, w,C) = fij(g, (j ∧ wk)k∈N , C).

4For instance, see the hazardous waste litigation in United States v. Mosanto (1988).
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Next, we consider an intuitive axiom that relates an agent’s cost share to its distance from the
delivery node. Relying on the several liability regime, we consider a second basis for determining the
agents’ contribution to the risk on the network. We argue that the greater the number of portions
used to ship a given amount of waste, the greater the risk, and therefore the cost, incurred by the
network. Distance consistency then requires that the farther an agent is from the delivery node,
the higher its cost share for a given waste amount j.

Distance consistency. For any (g, w,C) ∈ PN , any i ∈ N , j ≤ wi and k ∈ Û−1(i) ∩Q(j),

fij(g, w,C) ≥ fkj(g, w,C).

The next axiom is inspired by the polluter pays principle when considering the strict liability
regime. One interpretation of this liability regime (see Posner [1973]) implies that an agent insures
the network against the risk it causes. In our framework, this risk is tied to the portion an agent
uses. Conversely, an agent does not cause any risk on a portion it does not use. The next axiom
is based on the above interpretation of strict liability, taking into account the portions an agent
is liable for. Path consistency requires that an agent’s cost share is independent of the cost of
portions not used by that agent. This axiom is closely related to the axiom of Independence of
upstream costs introduced in Dong et al. [2012] in the context of polluted river problems.

Path consistency. For any i ∈ N and any (g, w,C) ∈ PN , (g, w,C ′) ∈ PN such that for each
h ∈ Û−1i , Ch = C ′h,

∀j ≤ wi, fij(g, w,C) = fij(g, w,C
′).

Actually, Path consistency can be related to several axioms invoked in the literature on cost sharing
problems in networks. To cite a few, one may consider the axioms of: Independence of unused edges
introduced by Bergantiños et al. [2019] in the context of energy networks; Individual independence
of outside changes introduced by Sudhölter and Zarzuelo [2017] in the context of highway problems;
No free riding introduced by Gopalakrishnan et al. [2021] in the context of allocating responsibility
for emissions in a supply chain; Marginal damage independence introduced by Ferey and Dehez
[2016] and Oishi et al. [2022] in the context of liability problems.

The next axiom is based on a fairness principle describing how the cost share of certain agents
vary when only one cost function varies. Under the joint liability regime, each agent located
upstream of a portion is liable for the cost incurred on this portion. However, the extent to which
an agent should be held liable remains to be determined. Upstream solidarity for a cost increase
then requires that agents located upstream of a portion be equally impacted by a cost increase
of this portion. Specifically, the axiom hypothesizes an increase in the marginal cost of a portion
with respect to each amount of waste passing through this portion. Then it requires that the cost
share of each agent responsible for this portion should be equally impacted.

Upstream solidarity for a cost increase For any i ∈ N , any (g, w,C), (g, w,C ′) ∈ PN such
that

∀x ∈ N, Ci(x)− Ci((x− 1) ∨ 0) ≥ C ′i(x)− C ′i((x− 1) ∨ 0),

and, for each k ∈ N \ {i}, Ck = C ′k, it holds that: for each j ∈ [[0,maxl∈Ûi
wl]], and each

l, l′ ∈ Ûi ∩Q(j),
flj(g, w,C)− flj(g, w,C ′) = fl′j(g, w,C)− fl′j(g, w,C ′).
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Upstream solidarity for a cost increase can be seen as a strong application of the principle of
solidarity discussed in Thomson [2016]. Since the agents are jointly liable for a portion, any
change in the cost function has the same impact on each liable agent’s cost share.

Below, we analyze the implication of these axioms. We first show that the combination of
Efficiency and Path consistency implies that the cost share of an agent is null whenever the
maintenance cost of each portion it is liable for is null.

Proposition 1. Let f be an allocation rule on PN . If f satisfies Efficiency and Path consistency,
then for any i ∈ N , any (g, w,C) ∈ PN such that for each k ∈ Û−1i , Ck = C0

k it holds that

∀j ≤ wi, fij(g, w,C) = 0.

Proof. Let f be an allocation rule on PN that satisfies Efficiency and Path consistency. Consider
the waste transportation problem (g, w,C0) ∈ PN . By Efficiency, we have that∑

i∈N

∑
j≤wi

fij(g, w,C
0) = 0.

Since an allocation rule f assigns a non-negative cost share fij(g, w,C) ∈ R+ to each agent i ∈ N
and each 1 ≤ j ≤ wi, it holds that

∀i ∈ N, ∀j ≤ wi, fij(g, w,C
0) = 0.

Consider any i ∈ N and any waste transportation problem (g, w,C) such that for each k ∈ Û−1i ,
Ck = C0

k . By Path consistency, one obtains

∀j ≤ wi, fij(g, w,C) = fij(g, w,C
0) = 0,

the desired result. This concludes the proof of the proposition. �

The next result shows the implication of combining Efficiency and Independence of higher waste
amounts.5

Proposition 2. Let f be an allocation rule on PN . If f satisfies Efficiency and Independence of
higher waste amounts, then

∀j ≤ max
i∈N

wi,
∑

k∈Q(j)

fkj(g, w,C) =
∑
i∈N

(
Ci(
∑
l∈Ûi

j ∧ wl)− Ci(
∑
l∈Ûi

(j − 1) ∧ wl)
)
.

Proof. Let f be an allocation rule as hypothesized and consider any waste amount 0 < j ≤
maxi∈N wi. By Independence of higher waste amounts, we have that

∀i ∈ Q(j), fij(g, w,C) = fij(g, (j ∧ wk)k∈N , C), (2)

∀i ∈ Q(j − 1) fij−1(g, w,C) = fij−1(g, ((j − 1) ∧ wk)k∈N , C). (3)

5This result is related to Proposition 2 in Lowing and Techer [2022].

9



By Efficiency and Independence of higher waste amounts, it holds that

∑
i∈N

j∧wi∑
l=1

fil(g, (j ∧ wk)k∈N , C) =
∑
i∈N

Ci(
∑
l∈Ûi

j ∧ wl) =
∑
i∈N

j∧wi∑
l=1

fil(g, w,C), (4)

∑
i∈N

j−1∧wi∑
l=1

fil(g, ((j − 1) ∧ wk)k∈N , C) =
∑
i∈N

Ci(
∑
l∈Ûi

(j − 1) ∧ wl) =
∑
i∈N

j−1∧wi∑
l=1

fil(g, w,C). (5)

Thus, subtracting (5) to (4), one obtains∑
k∈Q(j)

fkj(g, w,C) =
∑
i∈N

(
Ci(
∑
l∈Ûi

j ∧ wl)− Ci(
∑
l∈Ûi

(j − 1) ∧ wl)
)
,

the desired result. �

Our next result shows that Efficiency, Independence of higher waste amounts, Path consistency,
and Upstream solidarity for a cost increase implies Distance consistency.

Proposition 3. On the class of hazardous waste transportation problems PN , the combination of
Efficiency, Independence of higher waste amounts, Path consistency, and Upstream solidarity for
a cost increase implies Distance consistency.

Proof. The proof of Proposition 3 is relegated in the Appendix.

We now introduce the main result of this section. We show that the combination of Efficiency,
Independence of higher waste amounts, Path consistency and Upstream cost solidarity yields at
most one allocation rule on PN .

Proposition 4. On the class of hazardous waste transportation problems PN , there is at most
one allocation rule satisfying Efficiency, Independence of higher waste amounts, Path consistency
and Upstream cost solidarity.

Proof. Let f be a solution on PN satisfying Efficiency, Independence of higher waste amounts, Path
consistency and Upstream cost solidarity. We show that f is uniquely determined. Take any waste
transportation problem (g, w,C) ∈ PN . For each k ∈ N , define the cost profile λk,C ∈ CN such

that λk,Ck = Ck, and λk,Ci = C0
i for each i ∈ N \ {k}. Observe that, for each waste transportation

problem (g, w,C) ∈ PN , the cost profile C can be written as

C =
∑
k∈N

λk,C .

For each (g, w,C) ∈ PN , set

K(g, w,C) = {k ∈ N : Ck 6= C0
k}. (6)

We proceed by induction on |K(g, w,C)|.
Induction basis. If |K(g, w,C)| = 0, then C = C0. By Efficiency and the definition of an
allocation rule, it holds that

∀i ∈ N, ∀j ≤ wi, fij(g, w,C) = 0.

10



Induction hypothesis. Assume that, for each (g, w,C) such that |K(g, w,C)| = t, where
0 ≤ t ≤ n− 1, f(g, w,C) is uniquely determined.

Induction step. Let (g, w,C) ∈ PN be such that |K(g, w,C)| = t+ 1. Set

T =
⋂

k∈K(g,w,C)

Ûk, (7)

and for each k ∈ K(g, w,C) set
Tk = Ûk \ T . (8)

Observe that, T is such that there is a unique agent k ∈ T such that Ck 6= C0
k . Indeed, if Ck = C0

k

for each agent k ∈ T , then a contradiction arises and k 6∈ K(g, w,C). Any other agent k′ ∈ T is
such that Ck′ = C0

k′ . Two cases have to be considered with respect to T .

Case 1. If T = ∅, then for each agent i ∈ N , there is k ∈ K(g, w,C) such that k ∈ N \ Û−1i . By
Path consistency, it holds that

∀j ≤ wi, fij(g, w,C) = fij(g, w,C − λk,C).

By the induction hypothesis, fij(g, w,C − λk,C) is uniquely determined. Thus, for each i ∈ N and
each j ≤ wi, fij(g, w,C) is uniquely determined.

Case 2. Now, suppose that T 6= ∅. For each agent i ∈ N \ T , there is k ∈ K(g, w,C) such
that k ∈ N \ Û−1i . By applying the same reasoning as in case 1, for each agent i ∈ N \ T and each
j ≤ wi, fij(g, w,C) is uniquely determined.
Consider the subset of agents T . Take any waste amount j ≤ K. We show that any two agents
i, i′ ∈ T ∩Q(j) have the same payoff in (g, w,C) for the waste amount j. Pick any k ∈ K(g, w,C).
Notice that i, i′ ∈ Ûk ∩Q(j). By Upstream solidarity for a cost increase and the induction basis,
it holds that

fij(g, w, λ
k,C)− fij(g, w,C0) = fi′j(g, w, λ

k,C)− fi′j(g, w,C0)

fij(g, w, λ
k,C) = fi′j(g, w, λ

k,C).
(9)

Now pick any other k′ ∈ K(g, w,C), k′ 6= k (if any). Observe that

∀s ∈W, λk
′,C
k′ (

∑
h∈Ûk′

sh)− λk
′,C
k′ (

∑
h∈Ûk′

(sh − 1) ∨ 0) ≥ 0,

and for each h ∈ N \ {k′}, λk,Ch + λk
′,C
h = λk,Ch . By the definition of T , it holds that i, i′ ∈ Ûk′ .

Thus, by Upstream solidarity for a cost increase

fij(g, w, λ
k,C + λk

′,C)− fi′j(g, w, λk,C) = fi′j(g, w, λ
k,C + λk

′,C)− fi′j(g, w, λk,C)

fij(g, w, λ
k,C + λk

′,C) = fi′j(g, w, λ
k,C + λk

′,C),
(10)

where the last equation comes from (9). We apply the same reasoning by adding successively
each λk,C where k ∈ K(g, w,C) to the problem. Therefore, by successive applications of Upstream
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solidarity for a cost increase, it holds that

fij(g, w,
∑

k∈K(g,w,C)

λk,C) = fi′j(g, w,
∑

k∈K(g,w,C)

λk,C)

fij(g, w,C) = fi′j(g, w,C).

(11)

Thus, there exists cj ∈ R+ such that for each i, i′ ∈ T ∩Q(j):

fij(g, w,C) = fi′j(g, w,C) = cj . (12)

Now, we show that for each agent in T ∩Q(j), fij(g, w,C) is uniquely determined.
Since f satisfies Efficiency and Independence of higher waste amounts, by Proposition 2 we have∑

k∈Q(j)

fkj(g, w,C) =
∑
k∈N

(
Ck(

∑
l∈Ûk

j ∧ wl)− Ck(
∑
l∈Ûk

(j − 1) ∧ wl)
)

=
∑

k∈K(w,C)

(
Ck(

∑
l∈Ûk

j ∧ wl)− Ck(
∑
l∈Ûk

(j − 1) ∧ wl)
)
.

Equivalently, one can write∑
i∈(Q(j)∩T )

fij(g, w,C) =
∑

k∈K(w,C)

(
Ck(

∑
l∈Ûk

j ∧ wl)− Ck(
∑
l∈Ûk

(j − 1) ∧ wl)
)

−
∑

l∈Q(j)\T

flj(g, w,C).
(13)

Recall that fij(g, w,C) is uniquely determined for each agent in Q(j) \ T . Therefore, by (9) and
(13), fij(g, w,C) is uniquely determined for each i ∈ T ∩ Q(j). This concludes the proof of the
induction step. �

3.4 The responsibility rule

Below, we propose a methods to allocate the total maintenance cost of the hazardous waste trans-
portation network. The responsibility rule allocates the variation in cost of portion k between
the j and (j − 1)-synchronized waste profiles equally among the agents located upstream of this
portion.

Formally, for each hazardous waste transportation problem (g, w,C) ∈ PN , the responsibility
rule, fR, is given by

∀i ∈ N,∀j ≤ wi,

fRij (g, w,C) =
∑
k∈Û−1

i

Ck(
∑
l∈Ûk

j ∧ wl)− Ck(
∑
l∈Ûk

(j − 1) ∧ wl)

|Ûk ∩Q(j)|
.

(14)

Observe that formula (14) relies on the implicit assumption that each agent’s waste is of the same
nature and therefore has the same impact on a portion. Moreover, one can provide a specific
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allocation process underlying the responsibility rule. Suppose that all agents agree to ship at the
same moment the same amount of waste. Then, the variation of cost generated by this shipment
on each portion is split equally among the agents liable for the portion. The responsibility rule
can be computed by repeating this reasoning for each amount of waste.

The next result shows that the responsibility rule is the unique allocation rule that matches our
interpretation of the environmental principles presented in Section 3.2. Thus, the responsibility
rule ensures that each agent pays a fair part of the cost for maintaining the hazardous waste
network according to its liability for the risk it poses to the network.

Theorem 1. On the class of hazardous waste transportation problems PN , an allocation rule sat-
isfies Efficiency, Independence of higher waste amounts, Path consistency, and Upstream solidarity
for a cost increase if and only if it is the responsibility rule.

Proof. By Proposition 4, we know that there is a unique allocation rule that satisfies Efficiency,
Independence of higher waste amounts, Path consistency, and Upstream solidarity for a cost in-
crease. It remains to show that fR satisfies the axioms invoked in Theorem 1.
Consider any waste transportation problem (g, w,C) ∈ PN . By the definition of fR (see (14)), it
holds that∑

i∈N

∑
j≤wi

fRij (g, w,C) =

maxi∈N wi∑
j=1

∑
i∈Q(j)

fRij (g, w,C)

=

maxi∈N wi∑
j=1

∑
i∈Q(j)

[ ∑
k∈Û−1

i

Ck(
∑
l∈Ûk

j ∧ wl)− Ck(
∑
l∈Ûk

(j − 1) ∧ wl)

|Ûk ∩Q(j)|

]

=

maxi∈N wi∑
j=1

∑
k∈N

[
Ck(

∑
l∈Ûk

j ∧ wl)− Ck(
∑
l∈Ûk

(j − 1) ∧ wl)
]

=
∑
k∈N

Ck(
∑
l∈Û(k)

wl).

This shows that fR satisfies Efficiency.
By the definition of the responsibility rule, the payoff of any agent for its waste amount j does
not dependent of any waste amount higher than j. Therefore, fR satisfies Independence of higher
waste amounts.
Now consider any agent i ∈ N and any two hazardous waste problem (g, w,C) ∈ PN , (g, w,C ′) ∈
PN such that for each k ∈ Û−1i , Ck = C ′k. It holds that

fRij (g, w,C) =
∑
k∈Û−1

i

Ck(
∑
l∈Ûk

j ∧ wl)− Ck(
∑
l∈Ûk

(j − 1) ∧ wl)

|Ûk ∩Q(j)|

=
∑
k∈Û−1

i

C ′k(
∑
l∈Ûk

j ∧ wl)− C ′k(
∑
l∈Ûk

(j − 1) ∧ wl)

|Ûk ∩Q(j)|

= fRij (g, w,C ′),
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which shows that fR satisfies Path consistency.
Next, consider any agent i ∈ N and any (g, w,C), (g, w,C ′) ∈ PN such that

∀s ∈W,

Ci(
∑
k∈Ûi

sk)− Ci(
∑
k∈Ûi

(sk − 1) ∨ 0) ≥ C ′i(
∑
k∈Ûi

sk)− C ′i
∑
k∈Ûi

(sk − 1) ∨ 0),

and, for each k ∈ N \ {i}, Ck = C ′k. Pick any agent l ∈ Ûi. Observe that for any waste amount
j ≤ wl, we have that

fRlj (g, w,C)− fRlj (g, w,C ′) =

Ci(
∑
k∈Ûi

j ∧ wk)− Ci(
∑
k∈Ûi

(j − 1) ∧ wk)

|Ûi ∩Q(j)|

−

C ′i(
∑
k∈Ûi

j ∧ wk)− C ′i(
∑
k∈Ûi

(j − 1) ∧ wk)

|Ûi ∩Q(j)|
,

which does not depend on the chosen l ∈ Ûi. Thus, fR satisfies Upstream solidarity for a cost
increase. This concludes the proof of the theorem. �

Logical independence The axioms invoked in Theorem 1 are logically independent, as shown
by the following alternative allocation rules on PN .

- The allocation rule f defined as: for each (g, w,C) ∈ PN ,

∀i ∈ N, ∀j ≤ wi, fij(g, w,C) = 0,

satisfies all the axioms except Efficiency.

- The allocation rule f defined as: for each (g, w,C) ∈ PN ,

∀i ∈ N, ∀j ≤ wi, fij(g, w,C) =
∑
k∈Ûi

Ck(
∑
l∈Ûk

wl)∑
l∈Ûk

wl
,

satisfies all the axioms except Independence of higher waste amounts.

- The allocation rule f defined as: for each (g, w,C) ∈ PN ,

∀i ∈ N, ∀j ≤ wi, fij(g, w,C) =
∑
k∈N

Ck(
∑
l∈Ûk

j ∧ wl)− Ck(
∑
l∈Ûk

(j − 1) ∧ wl)

|Q(j)|
,

satisfies all the axioms except Path consistency.
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- Take any (g, w,C) ∈ PN . For each i ∈ N and each j ≤ wi fix an arbitrary αij ∈ R++. The
value fα defined as: for each (g, w,C) ∈ PN ,

∀i ∈ N, ∀j ≤ wi,

fαij(g, w,C) =
∑
k∈Û−1

i

αij∑
h∈Ûk∩Q(j) α

hj
×
[
Ck(

∑
k∈Ûk

j ∧ wk)− Ck(
∑
k∈Ûk

(j − 1) ∧ wk)
]
,

satisfies all the axioms except Upstream solidarity for a cost increase.

4 A cooperative game-theoretical interpretation

In this section, we analyze the class of hazardous waste transportation problems by adopting
a cooperative game theoretic approach. We first provide the formal material on multi-choice
cooperative games, then we construct a multi-choice game from a hazardous waste transportation
problem and focus on the multi-choice Shapley value of this game.

4.1 Multi-choice games

Let N = {1, . . . , n} be the finite and fixed set of agents. Each agent i ∈ N has a finite set of
pairwise distinct activity levels Mi := {0, . . . ,mi} such that mi ≤ K. For each agent i ∈ N , the
set Mi is linearly ordered from the lowest activity level 0 (i does not participate) to the maximal
activity level mi. Denote by Q(j) ⊆ N the set of agents able to play the activity level j. Formally,
the set Q(j) is defined as

Q(j) =
{
i ∈ N : mi ≥ j

}
.

Without loss of generality, we assume that Q(1) = N . Let M be the cartesian product
∏
i∈N Mi.

Each element s = (s1, . . . , sn) ∈ M specifies a participation profile for agents and is referred
to as a (multi-choice) coalition. Thus, a coalition indicates each agent’s activity level. Then,
m = (m1, . . . ,mn) ∈ M is the agents’ maximal participation profile that plays the role of the
grand coalition, whereas 0 = (0, . . . , 0) plays the role of the empty coalition. Let s ∈ M be a
multi-choice coalition. We denote by (s−i, k) the coalition where all agents except i play at levels
defined in s while i plays at k ∈Mi. The set M endowed with the usual binary relation ≤ on Rn
induces a (complete) lattice with greatest element m and least element 0. For any two coalitions
a, b ∈ M, a ∨ b and a ∧ b denote their least upper bound and their greatest lower bound over M,
respectively. We use the notation M+

i = Mi \ {0} for each i ∈ N and M+ =
⋃
i∈N ({i} ×M+

i ). A
pair (i, j) ∈ M+ represents an agent and one of its activity levels. A (cooperative) multi-choice
game on N is a pair (m, v) where v :M→ R is a characteristic function, such that v(0) = 0, that
specifies the worth v(s) when agents participate at profile s. Denote by G the set of multi-choice
games (m, v) on N such that mi ≤ K for each i ∈ N . Notice that standard cooperative transferable
utility games (or simply TU-games) can be viewed as a subclass of multi-choice games satisfying
m = (1, . . . , 1).

A payoff vector for the game (m, v) is an element x ∈ R|M+|, where xij ∈ R is the payoff
received by the pair (i, j) ∈ M+. A value f on G is a function that assigns a unique payoff
vector f(m, v) to each (m, v) ∈ G. One solution for multi-choice games is the multi-choice Shapley
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value (see Lowing and Techer [2022]), which assigns to each pair in M+ a weighted average of its
marginal contributions. Formally, the multi-choice Shapley value is defined as, for each (m, v) ∈ G,
each pair (i, j) ∈M+

ϕij(m, v) =
∑

(j−1∧mk)k∈N≤s≤(j∧mk)k∈N

|S(s)|!(|Q(j)| − |S(s)| − 1)!

|Q(j)!

[
v(s+ ei)− v(s)

]
, (15)

where S(s) = {i ∈ N : si > 0} denotes the support of the coalition s. Moreover, Lowing and
Techer [2022] characterize the multi-choice Shapley value by considering the following axioms for
values on G. A value φ on G satisfies:

Efficiency if for each (m, v) ∈ G, ∑
i∈N

∑
j∈M+

i

φij(m, v) = v(m).

Independence of higher activity levels if for each (m, v) ∈ G,

∀(i, j) ∈M+, φij(m, v) = φij((j ∧mk)k∈N , v).

Additivity if for each (m, v), (m,w) ∈ G,

φ(m, v + w, ) = φ(m, v) + φ(m,w).

Null pair if for each (m, v) ∈ G and each null pair (i, j) ∈M+,

φij(m, v) = 0.

Equal treatment for equal pairs if for each (m, v) ∈ G and two distinct equal pairs (i, j)(i′, j) ∈
M+,

φij(m, v) = φi′j(m, v).

Theorem 2 (Lowing and Techer [2022]). A value φ on G satisfies Efficiency, Additivity, In-
dependence of higher activity levels, Null pair, and Equal treatment of equal pairs if and only if
φ = ϕ.

4.2 Hazardous waste transportation game

Consider a waste transportation problem P = (g, w,C) ∈ PN , we define the associated multi-choice
game (w, vP ) where w is the grand coalition and vP : W → R+ is the associated characteristic
function. Let s ≤ w be a profile of hazardous waste. Recall that S(s) is the set of agents that
ship a positive amount of waste in the profile s. The worth vP (s) ∈ R+ then describes the total
maintenance cost whenever the profile s is shipped to the delivery node under the considered
liability regime. Because the polluter pays principle and the strict liability principle (see Section
3.2) hold an agent liable for the costs of downstream portions, we define vP as

∀s ≤ w, vP (s) =
∑

i∈Û−1
S(s)

Ci

(∑
k∈Ûi

sk

)
. (16)
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Observe that the worth of the grand coalition vP (w) is equal to the total cost of maintaining
the hazardous waste transportation network defined by (1). Actually, most properties of the cost
functions Ci are conveyed to the multi-choice game (w, vP ). Since for each i ∈ N, Ci(0) = 0, it
holds that vP (0) = 0. Thus, for each hazardous waste transportation problem P = (g, w,C) ∈ PN ,
the associated multi-choice game (w, vP ) is well-defined. Finally, since each cost function Ci, i ∈ N ,
is non-negative and non-decreasing, it follows that each multi-choice game (w, vP ) is a non-negative
and monotonic game.

Remark 1. Suppose that the maximal waste amount of each agent i ∈ N is wi = 1. Then, the
game (w, vP ) is a TU-game that coincides with the upstream oriented game associated with a
polluted river network problem introduced in Dong et al. [2012]. Following van den Brink et al.
[2018], given P = (g, w,C) ∈ PN , one can interpret the network g as a permission structure.
Moreover, van den Brink et al. [2018] shows that the upstream oriented game associated with a
polluted river network problem coincides with the dual of a TU-game with permission structure.
However, the definition of the dual of a multi-choice game remains debatable. Thus, it is not so
clear that the same relation holds for the whole class PN .6

The next result states that the responsibility rule coincides with the multi-choice Shapley value
ϕ.

Theorem 3. For each hazardous waste transportation problem P = (g, w,C) ∈ PN and its asso-
ciated multi-choice game (w, vP ), it holds that

fR(P ) = ϕ(w, vP ).

Proof. Let P = (g, w,C) ∈ PN be any hazardous waste transportation problem. For each k ∈ N ,

define λk,C = (λk,Ci )i∈N the profile of cost functions such that λk,Ck = Ck, and λk,Ci = C0
i for each

i 6= k. Observe that, for each (g, w,C) ∈ PN , the cost profile C can be written as

C =
∑
k∈N

λk,C .

Fix any k ∈ N and consider the multi-choice game (w, ukP ), where ukP is the characteristic function
defined as

∀s ≤ w, ukP (s) =
∑

i∈Û−1
S(s)

λk,Ci (
∑
l∈Ûi

sl),

=

{
λk,Ck (

∑
l∈Ûk

sl) if k ∈ Û−1S(s),
0 otherwise.

Notice that for each P = (g, w,C) ∈ PN and each (w, vP ), it holds that

vP =
∑
k∈N

ukP .

6For a recent study of multi-choice games with a permission structure, we refer the reader to Lowing [2022].
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By computing the multi-choice Shapley value of the multi-choice game (w, ukP ), one can make the

following observations. For each i ∈ N \ Ûk and each j ≤ wi, the pair (i, j) ∈M+ is a null pair in
(w, ukP ). Since the multi-choice Shapley value satisfies the null pair axiom, it holds that

∀i ∈ N \ Ûk,∀j ≤ wi, ϕij(w, u
k
P ) = 0.

Moreover, any two pairs (i, j), (i′, j), such that i, i′ ∈ Ûk ∩Q(j), are equal pairs in (w, ukP ). Since
the multi-choice Shapley value satisfies Equal treatment of equal pairs, we have that for each
j ≤ maxi∈N wi

∀i, i′ ∈ Ûk ∩Q(j), ϕij(w, u
k
P ) = ϕi′j(w, u

k
P ).

Finally, since the multi-choice Shapley value satisfies Multi-efficiency, for each j ≤ maxi∈N wi it
holds that ∑

i∈Ûk∩Q(j)

φij(w, u
k
P ) = ukP ((j ∧ wk)k∈N )− ukP (((j − 1) ∧ wk)k∈N )

= λk,Ck

(∑
l∈Ûk

j ∧ wl
)
− λk,Ck

(∑
l∈Ûk

(j − 1) ∧ wl
)
.

By definition of λk,Ck and Equal treatment of equal pairs, we have that

φij(w, u
k
P ) =



Ck(
∑
l∈Ûk

j ∧ wl)− Ck(
∑
l∈Ûk

(j − 1) ∧ wl)

|Ûk ∩Q(j)|
if i ∈ Ûk ∩Q(j),

0 otherwise.

(17)

Recall that, for each P ∈ PN and multi-choice game (w, vP ), it holds that

vP =
∑
k∈N

ukP .

Since the multi-choice Shapley value satisfies Additivity, one concludes that

∀i ∈ N, ∀j ≤ wi, ϕij(w, vP ) =
∑
k∈Û−1

i

Ck(
∑
l∈Ûk

j ∧ wl)− Ck(
∑
l∈Ûk

(j − 1) ∧ wl)

|Ûk ∩Q(j)|

= fRij (g, w,C).

This concludes the proof of the theorem. �

5 Conclusion

In this paper, we study the problem of sharing the maintenance cost of a hazardous waste trans-
portation network modeled by a directed sink tree. We propose an axiomatic analysis on the
class of hazardous waste transportation problems. Specifically, we propose several axioms related
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to environmental law principles. This allows us to precise the liability of each agent regarding
the risk it causes to the network, and to characterize a specific cost sharing method called the
responsibility rule. We also show that this method coincides with the multi-choice Shapley of an
appropriate multi-choice game.

This work can be extended in several directions. First, it should be noticed that the delivery
node, d, is exogenously given and does not belong to the agent’s set. Relaxing this hypothesis
would mean to choose a location for the treatment facility among the set of agents. However, due
to the nature of the treatment facility, the agents may be reluctant to host it. This gives rise to a
so-called NIMBY problem that has been studied by Shapley and Shubik [1969], and Ambec and
Kervinio [2016], using cooperative game theory. From a different viewpoint, Sakai [2012] conducts
an axiomatic study for sharing the cost associated with a NIMBY facility. To the best of our
knowledge, no work has addressed the cost allocation of a NIMBY facility in a network structure
using the axiomatic method. We suggest that such work can be conducted by adapting our model.

Another interesting direction for further research would be to study how the implementation of
the responsibility rule may affect the incentive for agents to decrease their generation of waste. This
could be an important aspect in meeting the goals of environmental law regarding environmental
preservation.

6 Appendix

Proof of Proposition 3

Let f be an allocation rule on PN as hypothesized. Take any waste transportation problem
(g, w,C) ∈ PN . For each k ∈ N , define the cost profile λk,C ∈ CN such that λk,Ck = Ck, and

λk,Ci = C0
i for each i ∈ N \ {k}. Take a waste amount j ≤ maxi∈N wi such that |Q(j)| ≥ 2, and fix

two agents i, k ∈ N such that: i ∈ Q(j) and k ∈ Û−1i ∩Q(j). By Path consistency, we have that

fkj(g, w,C) = fkj(g, w,
∑

h∈Û−1
k

λh,C),

fij(g, w,C) = fij(g, w,
∑

h∈Û−1
i

λh,C).
(18)

We show that fij(g, w,
∑

h∈Û−1
i
λh,C) ≥ fkj(g, w,

∑
h∈Û−1

k
λh,C). To do so, consider the waste

allocation problems (g, w,C0) ∈ PN and (g, w, λk,C) ∈ PN . Observe that, for each h ∈ N \ {k},
λk,Ch = C0

h. Moreover, since λk,Ck is a non-decreasing function, it holds that

∀s ∈W, λk,Ck (
∑
h∈Ûk

sh)− λk,Ck (
∑
h∈Ûk

(sh − 1) ∨ 0) ≥ C0
k(
∑
h∈Ûk

sh)− C0
k(
∑
h∈Ûk

(sh − 1) ∨ 0)

⇐⇒ λk,Ck (
∑
h∈Ûk

sh)− λk,Ck (
∑
h∈Ûk

(sh − 1) ∨ 0) ≥ 0.
(19)

Therefore, by Upstream solidarity for a cost increase one obtains

fkj(g, w, λ
k,C)− fkj(g, w,C0) = fij(g, w, λ

k,C)− fij(g, w,C0).
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By Proposition 1, fkj(g, w,C
0) = fij(g, w,C

0) = 0. Thus, one obtains

fkj(g, w, λ
k,C) = fij(g, w, λ

k,C).

We apply the same reasoning by adding successively each λh,Ch where h ∈ Û−1k to the problem.
Then, by successive applications of Upstream solidarity for a cost increase it holds that

fkj(g, w,
∑

h∈Û−1
k

λh,C) = fij(g, w,
∑

h∈Û−1
k

λh,C).
(20)

Thus, by (18) and (20), we know that

fkj(g, w,C) = fkj(g, w,
∑

h∈Û−1
k

λh,C) = fij(g, w,
∑

h∈Û−1
k

λh,C).

It remains to show that

fij(g, w,C) = fij(g, w,
∑

h∈Û−1
i

λh,C) ≥ fij(g, w,
∑

h∈Û−1
k

λh,C).

By Independence of higher waste amounts, this can be written as

fij(g, (j ∧ wk)k∈N , C) = fij(g, (j ∧ wk)k∈N ,
∑

h∈Û−1
i

λh,C) ≥ fij(g, (j ∧ wk)k∈N ,
∑

h∈Û−1
k

λh,C).

Consider the directed path from i to k denoted by (i1, . . . , it), where i1 = i and it = k. Pick
it−1 ∈ Û−1i \ Û−1k located just upstream k on the path from i to k. Consider the hazardous
waste problem (g, (j ∧ wk)k∈N ,

∑
h∈Û−1

k
λh,C + λit−1,C). Observe that, for each h′ ∈ N \ {it−1},

λ
it−1,C
h′ = C0

h′ . Since λ
it−1,C
it−1

is non-decreasing, by Upstream solidarity for a cost increase, there is

c
it−1

j ∈ R such that:

∀l ∈ Ûit−1 ∩Q(j),

flj(g, (j ∧ wk)k∈N ,
∑

h∈Û−1
k

λh,C + λit−1,C)− flj(g, (j ∧ wk)k∈N ,
∑

h∈Û−1
k

λh,C) = c
it−1

j . (21)

We now show that c
it−1

j ≥ 0. Since f satisfies Efficiency and Independence of higher waste amounts,
by Proposition 2 we have that∑

l∈Q(j)

flj(g, (j ∧ wk)k∈N ,
∑

h∈Û−1
k

λh,C + λit−1,C) =
∑

h∈Û−1
k

λh,Ch (
∑
a∈Ûh

j ∧ wa)

+ λ
it−1,C
it−1

(
∑

a∈Ûit−1

j ∧ wa)

− (
∑

h∈Û−1
k

λh,Ch (
∑
a∈Ûh

(j − 1) ∧ wa)

+ λ
it−1,C
it−1

(
∑

a∈Ûit−1

(j − 1) ∧ wa)),

(22)
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and ∑
l∈Q(j)

flj(g, (j ∧ wk)k∈N ,
∑

h∈Û−1
k

λh,C) =
∑

h∈Û−1
k

λh,Ch (
∑
a∈Ûk

j ∧ wa)

−
∑

h∈Û−1
k

λh,Ch (
∑
a∈Ûk

(j − 1) ∧ wa).
(23)

Observe that, for l ∈ Q(j) \ Ûit−1 we have λ
it−1,C
l′ = C0

l′ , where l′ ∈ Û−1l . This implies that∑
h∈Û−1

k
λh,Cl′ +λ

it−1,C
l′ =

∑
h∈Û−1

k
λh,Cl′ . Therefore, by applying Path consistency to l ∈ Q(j)\ Ûit−1

one obtains

flj(g, (j ∧ wk)k∈N ,
∑

h∈Û−1
k

λh,C + λit−1,C) = flj(g, (j ∧ wk)k∈N ,
∑

h∈Û−1
k

λh,C).

From this observation, and subtracting (22) and (23), one obtains∑
l∈Ûk′∩Q(j)

flj(g, (j ∧ wk)k∈N ,
∑

h∈Û−1
k

λh,C + λk
′,C)− flj(g, (j ∧ wk)k∈N ,

∑
h∈Û−1

k

λh,C)

= λk
′,C
k′ (

∑
a∈Ûh′

j ∧ wa)− λk
′,C
k′ (

∑
a∈Ûh′

(j − 1) ∧ wa)

= |Ûk′ ∩Q(j)| × ck′j ,

(24)

where the last equality comes from (21). Since λ
it−1,C
it−1

is non-decreasing, it holds that ck
′
j ≥ 0.

Therefore,

∀l ∈ Ûit−1 ∩Q(j), flj(g, (j ∧ wk)k∈N ,
∑

h∈Û−1
k

λh,C + λit−1,C) ≥ flj(g, (j ∧ wk)k∈N ,
∑

h∈Û−1
k

λh,C).

In particular, it holds that

fij(g, (j ∧ wk)k∈N ,
∑

h∈Û−1
k

λh,C + λit−1,C) ≥ fij(g, (j ∧ wk)k∈N ,
∑

h∈Û−1
k

λh,C).

Repeating the same reasoning by considering each agent that belongs to the path from i to k, one
obtains

fij(g, (j ∧ wk)k∈N ,
∑

h∈Û−1
i

λh,C) ≥ fij(g, (j ∧ wk)k∈N ,
∑

h∈Û−1
k

λh,C). (25)

Thus, by (18), (20), (25), and Independence of higher waste amounts, one concludes that

fij(g, w,C)
(18)
= fij(g, w,

∑
h∈Û−1

i

λh,C)
(25)

≥ fij(g, w,
∑

h∈Û−1
k

λh,C)
(20)
= fkj(g, w,C),

the desired result. �
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J. Alcalde-Unzu, M. Gómez-Rúa, and E. Molis. Sharing the costs of cleaning a river: the upstream
responsibility rule. Games and Economic Behavior, 90:134–150, 2015.

S. Ambec and Y. Kervinio. Cooperative decision-making for the provision of a locally undesirable
facility. Social Choice and Welfare, 46(1):119–155, 2016.

G. Bergantiños, J. González-Dı́az, and Á. M. González-Rueda. The Shapley rule for loss allocation
in energy transmission networks. In E. Algaba, V. Fragnelli, and J. Sánchez-Soriano, editors,
Handbook of the Shapley Value, pages 369–392. CRC Press, 2019.

B. Dong, D. Ni, and Y. Wang. Sharing a polluted river network. Environmental and Resource
Economics, 53(3):367–387, 2012.

S. Ferey and P. Dehez. Multiple causation, apportionment, and the Shapley value. The Journal
of Legal Studies, 45(1):143–171, 2016.
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