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Bayesian Estimation of Thermal Properties Using
Periodically Pulsed Photothermal Radiometry: A Focus on
Interfacial Thermal Resistances between Layers

Clément Chassain,* Andrzej Kusiak, Kevin Krause, Marine Garcia,

and Jean-Luc Battaglia

Pulsed periodic photothermal radiometry (PPTR) allows the investigation of
multilayered samples with layer thicknesses of a few hundred nanometers over a
duration of a few nanoseconds. The link between theoretical calculations and
experimentation is made using a Bayesian approach based on the Metropolis—
Hastings algorithm. The accuracy of the PPTR method requires precise cali-
bration to provide an accurate proper emission measurement. Furthermore, the
normalization time needs to be optimized through sensitivity analysis. Without
this sensitivity analysis, it is impossible to simultaneously estimate the interfacial
thermal resistances in a multilayered sample. The method is tested on multi-
layered samples composed of platinum (Pt), titanium nitride (TiN), silicon nitride
(SiN), and silicon (Si). The parameters identified are interfacial thermal resis-

tances between Pt-TiN and TiN-SiN.

1. Introduction

Thermal characterization of thin multilayered samples is neces-
sary for many domains, such as electronics, thermal protection
coatings, and machining tools. Many experimental techniques
based on the perturbation of the sample in a homogeneous initial
state have been developed."? Among them, the 3w technique is
a contact method allowing the absolute measurement of the
temperature and the heat flux that is particularly well adapted
to low-temperature measurements. Comparatively, contactless
methods are better suited to high-temperature characterizations.
The photothermal methods such as the thermoreflectance in the
visible spectrum (VIS)**! and infrared radiometry techniques
(IR)*'* enable the measurement of relative variations in tem-
perature and heat flux. This is due to the difficulty in calibrating
the measurement tools and their related uncertainties. All mea-
surement methods require a comparison between a model of the
experiment and the experimental data; this comparison is the
foundation of inverse methods. Inverse methods are based on
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optimization techniques''*' that aim to

reduce the gap between the theoretical eval-
uation and the experimental measurement.
In this work, the interfacial thermal
resistance is determined for an amorphous
SizN4 (SiN) film deposited on a silicon
wafer substrate with a platinum optical-
to-thermal transducer and a titanium
nitride adhesive layer. In addition, the ther-
mal conductivity for the SiN layer is identi-
fied. The experimental measurements
are performed by pulsed photothermal
radiometry with front-face configurations
(FF-PPTR). The FF-PPTR method has been
described in the literature” and some
relevant additional information regarding
the IR detector model and photothermal sig-
nal processing is provided. The Markov
chain Monte Carlo (MCMC) optimization method* 2" is used
for parameter identification. One key step in the process presented
in this study is the use of theoretical models from the physics of
condensed matter to set the initial value of the unknown param-
eters. The minimal thermal conductivity model will inform a first
estimate of the thermal conductivity of amorphous SiN. On the
other hand, the diffuse mismatch model (DMM)'*'/ leads to a first
estimate of the interfacial thermal resistances. Finally, the
experimental signal normalization is optimized to increase the
sensitivity of the sought parameters and to enhance the linear
independency of their associated sensitivity funtions.

2. Experimental Section
2.1. The FF-PPTR Setup

The pulsed photothermal radiometry setup with the front-face
configuration (FF-PPTR) has been described and used in
previous works."””! The setup, schematically described in
Figure 1, was composed of a coherent,atrix Q-switch Nd:YAG
diode-pumped laser (1064 nm wavelength) delivering continu-
ous pulses with a duration of T,=40ns. The repetition rate
was f, = 1/T, = 10kHz. A very small part (<2%) of the beam
was sent to a fast amplified photodiode (THORLABS DET10), with
1 ns rise time, to monitor the pulse time waveform. The distance
covered by the laser to reach the sample was about 0.8 m, and the
beam radius at the sample surface was ry = 1.75 mm (<3 mrad
divergence). Two parabolic mirrors were placed to collect the



Argon
IR coated parabolic mirror

151
1 h
Sample :
L=l
Furnace
- N Laser source

et emission

N
—

Reference photodiode

Picoscope 9000

IR, Kolmar, 20 Mhz

Laser YAG, 1064nm, 40 ns

Figure 1. Experimental setup for pulsed front-end radiometry where the excitation is a sequence of N pulses repeated at the frequency f, = 1/T..

proper emission from the heated area toward a fast photovoltaic
infrared detector (Kolmar KMPV11). This sensor was composed of
an integrated high-frequency HgCdTe semiconducting element
working within the 2-12 ym wavelength range. This active photo-
sensitive element was squared with edge length A; = 1 mm. The
signal from the IR sensor was amplified using a transimpedance
amplifier working from DC up to 20 MHz. The window of the
infrared detector was coated with germanium (Ge) to filter the dif-
fused reflection of the laser and was also cooled by an external
water flow system, The signals from both the photodiode and
the IR detector amplifier were recorded using a Picoscope 9000
(16 bits, 50Q input impedance) triggered by an external source
(TTL output of Agilent 33220A function generator). The sample
under investigation was placed in an oven with the rear face main-
tained at a controlled temperature from room temperature to
800 °C. Oxidation of the sample was prevented by flowing argon
gas through the oven cavity.

The IR detector and the photodiode both had a cutoff fre-
quency and a delay. Those parameters used in a low-pass delayed
filter denote Fr, for the IR detector and FTPfor the photodiode.

2.2. Sample Description

The sample was a stack of layers composed of a thick silicon
nitride (SiN) amorphous layer deposited on a eg; = 750 pm-thick
silicon substrate. Four values of the SiN thickness were investi-
gated, namely, eg =[200-300] nm. To convert the laser pulse
into a surface heat source, the SiN was coated with an optical-
to-thermal transducer constituted of a 30 nm-thick platinum
layer with an interstitial 10 nm TiN layer between Pt and SiN
in order to improve the adhesion. An additional advantage of
the Pt layer was to limit the oxidation and evaporation of the
stack, The values reported in the literature for the thermophysical
properties of the materials constitutive of the stack are given in

Figure 2.
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Figure 2. a) Schematic representation of the sample under investigation;
b) thermophysical properties of the materials involved within the
stack****') The standard deviations have been calculated considering
2% deviation on the parameters.

3. Mathematical Model
3.1. Impulse Response

Consider a sample as a stack of N, contiguous layers. The radius r,
of the heated area by the laser at the surface of the sample is larger
that the expected heat penetration depth during the pulse repetition
period T'. In such a case, the heat transfer can be considered as 1D.
It is also important to note that, given the very short characteristic
diffusion times, heat losses by convection at the surface can be
neglected. Therefore, the Laplace transform of the impulse
response relating the heat flux to the surface temperature®* is
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where p is the Laplace variable. The coefficdients B and D are
calculated using the quadrupole method”? as
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where (a,, k;, ¢) are, respectively, the thermal diffusivity, the ther-
mal conductivity, and the thickness of each layer for i = 1, N, and
Yi= \/pja: The variable Ry (1 < j < N, + 1) in Equation (2) is
the interfacial thermal resistance at interface j. The resistances Ry,
and Ry . can be used to simulate resistance at the surface and

between the sample and the furnace, respectively.
The relative temperature variation captured by the detector for
a laser pulse is expressed as

AT,(t) = 7 '(A8,(p)) (3)

where #~1() denotes the inverse Laplace transform. Taking into
account the transfer functions Fr, and FTrof the IR detector and

the photodiode respectively, it is

88, (p) = Hip)Fx, (p)Fr, (p) Fr, (p) (6)

where F; denotes the Laplace transforms of the pulse transient
waveform. The inverse Laplace transform is performed using the
De Hoog algorithm.**l Knowing the response of a single pulse, it
is possible to express the response for a train of pulses
(Dirac comb). Using the convolution product between
Equation (5) and a Dirac comb, the following is established.

AT(t) = AT, () = I{t) = AT, (t) » [ f B(t — nT,)] 7)

H=-—o0

which finally results in

M
AT(t) = Y _AT,(t+nT,), for 0= T, (8)
a

The value of the upper limit M of the series in Equation (8)
depends on the repetition frequency f,, the thermal conductivity,
and the diffusivity of the materials (specifically the substrate for
the investigated configuration). Considering a Si substrate and a
low repetition frequency (10 kHz), it can be shown that increas-
ing M from 0 to 10000 leads to a change that is less than 1% in
AT(t). Therefore, it is worthwhile to take M = 0 in Equation (8)
for further calculations.

3.2. Transfer Functions of the Detector and the Photodiode

According to the acquisition sampling frequency and the inves-
tigated time range of the measured signal (some hundreds of
nanoseconds), the cutoff frequency f. of the infrared detector
amplifier as well as the delay 74 of the HgCdTe photosensitive
element have to be accurately measured. These two parameters
are involved in the transfer function of the detector that is estab-
lished as a delayed first-order low-pass filter.

Fr,(p) = exp(—z4p) /(1 + p/2xf ) (9)

The delay 7, is connected with the electronic band transition
duration that is required for the absorbed photons to be con-
verted in a current. On the other hand, the cutoff frequency
depends mainly on the photosensitive element size. In other
words, the larger the element size, the lower the cutoff frequency.
The two parameters 74 and f; are identified by implementing the
FF-PPTR on a 5 mm-thick pure tungsten (99%) pellet with diam-
eter of 1cm and thermal properties k=184 Wm "K',
p=19000kgm *, and C, =130]KKg '. Using the Nelder-
Mead simplex method®*! to minimize the gap between the mea-
sured signal and the theoretical response from relation (8), values
of rg =23 £ 3sand f, = 10 + 1 MHz are determined. The sim-
ulated response with the identified values of 74 and f; is reported
in Figure 3 along with the experimental data. For information,
the simulated responses based on higher values of f are reported
in the figure. Regarding the photodiode, the transfer function of
the photodiode is also a delayed low-pass filter with a cutoff fre-
quency of 350 MHz and a delay of 1 ns. Both these parameters
are given by the manufacturer.
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Figure3. Measured signal when implementing the FF-PPTR on a tungsten
pellet (gray dots). The simulated response from Equation (8) based on the
identified values of 4 and f_ (blue line) fits the measured data. Simulated
responses based on higher values of f_ are reported in the figure for com-
parison (red and yellow lines).



3.3. Photothermal Pulse Waveform

The shape of the laser pulse, measured with the fast photodiode,
is shown in Figure (4). Clearly, the laser pulse waveform cannot
be described as a Gaussian pulse, Then, to better describe the
laser source time distribution, a mapping with gate functions
is used. Therefore, the Laplace transform of the photothermal
pulse waveform is expressed as

Fy (p) = ZA‘.[exp(Fa’, 1p) —exp(—ap))/p (10)
J

4, Parameter Identification Procedure

4.1. Normalization and Sensitivity Analysis

The target parameters are the thermal conductivity of the deposit
ksin, the interface resistance Rp, iy, and the interface resistance
Rrinssin- The interface resistance Rg;y,s; is considered known
and is allowed to vary around its theoretical values with a
standard deviation of 10%.

The energy of a pulse and the quantity absorbed by the
transducer is unknown; therefore, it is impossible to measure
the absolute variation of temperature in an accurate way.
Thus, it is essential to introduce the relative temperature varia-
tion with respect to its value at a particular time t,. The relative
temperature variation is thus expressed as
ATx(t) = 210 (11)
T(t;)

=

The maximum of AT(f) is generally used as the quantity for
this normalization. However, in order to be able to identify the
desired experimental parameters, it is necessary that the sensi-
tivity functions relative to each parameter are linearly indepen-

dent. The sensitivity of ATy(t) to a parameter of interest
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Figure 4. Laser pulse measured by the fast photediode and the associated
transfer function enable a simple inverse Laplace transform calculation.

a = {ksin, Rpysine Rronysint is calculated from the finite differ-
ence expression

dAT () AT x(H)gin1e — ATn(t),

sT_
"= 0.1

(12)

The time ¢, for the normalization will thus be chosen in order to
obtain the best independence between the sensitivity functions.
The sensitivity functions as well as their ratio are plotted for a
500 nm-thick deposit and a 200 nm-thick deposit in Figure (5)
and (6) respectively. As shown on the figures the time chosen
is crucial in order to have good sensitivity to our parameters. If
the thermal response is normalized by its maximum (which is
located at t; = 5.1077 s), the sensitivity to the parameters would
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Figure 5. a) Sensitivities to the conductivity ks, of the 500 nm-thick
deposit, to the first interface resistance Ry 1y, to the second interface
resistance Ry s, and to the third interface resistance Rgy, s calculated
from the values Table (1) and Equation (8). b) Ratio of the sensitivity func-
tions for a 500 nm-thick deposit for t, 5 x 107" s,
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Figure 6. a) Sensitivities to the conductivity kss of the 200 nm-thick
deposit, to the first interface resistance Ry, 1y, to the second interface
resistance Ry s, and to the third interface resistance Ry s calculated
from the values in Table (2) and Equation (8). b) Ratio of the sensitivity
functions for a 200 nm-thick deposit for t; 3 x 10 7s.

be greatly reduced and almost negated in certain cases. Even more
important, choosing a suited normalization time can help to
reduce the linear dependency of the sensitivity functions between
the parameters. The effect of the normalization on the ratio of the
sensitivity functions is shown in Equation (12).
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Figure (5) and (6) also show that ¢t; varies regarding the thick-
ness of the deposit, which means that for every thickness this
sensitivity analysis needs to be conducted in order to optimize
the identification of the parameters,

4.2. Expected Values from Theoretical Physics

The theoretical thermal conductivity of the amorphous SiN can
be calculated using the minimal thermal conductivity model.”®
The interfacial thermal resistances can also be calculated from
the DMM.”" Those theoretical results will be used as initial
and prior values within the MCMC method. Since those theoret-
ical values are expected to be quite close to the true values, the
implementation of the delayed rejection adaptive metropolis
(DRAM) algorithm is proposed for faster computation than
the Metropolis—Hastings algorithm.

4.3. The Diffuse Mismatch Model (DMM)

The DMM""is used to calculate the value of interfacial thermal
resistance at a perfect interface between two layers. This model is
suitable with the diffuse scattering of phonons at both sides of
the interface when temperature is high enough. Considering that
the thermal equilibrium and the transmission of the phonon
through the interface is not dependent on the incidence angle,
then it is possible to express the interfacial thermal resistance
between the layer 1 and the layer 2 as

k% T 0y, /T xte¥ -
i (Zm g/ (Td) .

where kg is the Boltzmann constant and T is the temperature.
The change of variable x = hw /kg T has been realized and the
Debye temperature is expressed as Op = fim,, /ky. Moreover,
v; (with j = (L, T, T)) is the velocity of the phonons in different
directions, L is the longitudinal direction, and T are the two trans-
verse ones. The transmission coefficient « is defined in such a
case as

-2 -2
v ; + 2vr3

(15)

T2 =5 2 2 2
v+ 2upy v+ 2ug)

As said previously, this calculated value assumes perfect inter-
face with perfect adhesion between the two layers. It means that
bad chemical adhesion, delamination, or rugosities are not con-
sidered with the DMM model. It has been shown that the con-
tribution of anharmonic processes can be non-negligible.”””!
Thus the DMM computations can diverge greatly from the exper-
imental values. The parameters used for the computations are
reported in Table (1) and the results of the DMM calculations
are reported in Table (2).

4.4. Minimum Thermal Conductivity
The thermal conductivity can be calculated from the Boltzmann

transport equations (BTE)"* assuming Debye approximation >
Considering the phonon velocity v; for the branches i and the Debye



Table 1. Parameters used for the DMM,*?“*l v is the transverse phonon
velocity, V| is the longitudinal phonon velocity, and ®p, is the Debye
temperature.

Vi [ms ) Vi[ms ) Vi [ms | 8o [¥)
Pt 4174 1750 1750 225
TiN 102 5110 5110 580
SN, 9100 5200 5200 637
Si 3480 5860 5860 692

Table 2. Results of the DMM. The standard deviations have been
calculated considering a 10% deviation on the phonon velocities.

Rpyjrae [m* KW ) Rrnsa [m* KW Rsmys [m KW )

(173 £ 0.04) x 10°% (216 +0.22) x 10 ¢ (1.74 + 0.05) x 10°*

temperature ©p; = v;(h/kg)(6a*n)"*, Cahill and Pohl®™ pro-
posed an expression for the minimum thermal conductivity.

' 3 2 pep T K
BN CANEMECTIE N I I L 2
[ (6) kg N ;“(&)L T (16)

with the change of variable x = fim/ky T. For the amorphous SiN
layer, it is found Ky, = 1.19 £ 0.13Wm 'K, the parameters
used for the phonon velocities and the Debye temperature reported
in Table 1 and with the density that is pgy = 2290 kgm >, It has
been shown that the mean free path of phonon masters the thermal
transport within the bulk for dielectrics.*” It has also been shown
that, for phonons having a mean free path greater than the
thickness of the medium they propagate through, phonon wave
localization can happen'® thus, lowering the thermal conductivity
of the material. This means that for low temperatures and low film
thicknesses, the experimental value can greatly diverge from the
theoretical one. In such cases, another computation of the initial
guess may be better suited.

4.5. The Markov Chain Monte Carlo Method (MCMC)

The DMM and the BTE calculations are coupled to a Bayesian
approach such as the MCMC method, precisely the
Metropolis-Hastings algorithm."®?% The theoretical calcula-
tions are used as starting points for the minimization method
and will be used for the prior information such as the lower
and upper bounds that the parameters can take as well as their
variance.

The Monte Carlo method is based on two foundations, the law
of large numbers and the central limit theorem. The first of these
two theorems expresses the fact of having a large number of sam-
ples from a distribution of random variables, and then the aver-
age of these samples provides the expected value. The second one
informs that a sum of identical and independent random varia-
bles trends towards a random variable with normal distribution,
which also means that the confidence intervals can be calculated.
The Metropolis-Hastings algorithm comes into play as a sampler

of the random variables X,, while offering a Bayesian inference to
their sampling. The steps of the algorithm can be listed as fol-
lows: 1) Define starting points P, for the parameters you seek;
2) Sample a candidate P* from a candidate proposal distribution
q(P*|P,); 3) Compute the ratio of the posterior probability den-

) N _ ALY e P gl P Py,
sities. a(P*|P,) = fyirisriqrpy 4) Generate a random value

U= U(0,1), which is uniformly distributed in (0,1); 5) If
U< alP|pP,), set P, =P, 6) If Uz=a(P|P,), set
P,,y = P, and 7) Return to step 2.

The proposal distribution g(P,|P*) is arbitrarily chosen for
each parameter, it follows a normal distribution with a mean
equal as the value of the current candidate P and a standard devi-
ation corresponding to 5% of its actual value. The a priori prob-
ability density x( P) is a normal distribution with upper and lower
bounds’ set [A; B] arbitrarily, with a mean y determined by DMM
and BTE and with a standard deviation & corresponding to 10% of
its mean. The likelihood distribution #(Y|P) is a distribution
directly proportional to the squared error between the measure-
ments and our model.

Since decreasing the thickness of the deposit increases the
correlation between sensitivity function, priors for the lowest

Table 3. Parameters used for the a priori normal distributions in the
MCMC method for the 500 nm-thick deposit. A and B are the sampling
boundaries, p is the mean, and o is the standard deviation.

A B W a
alkan) —00 +00 0 +00
2(Rpy 1) —00 +00 0 +00
=(Ryassn} -0 +o0 0 +0o0
®(Rea sl —o0 +o0 1.74e-9 1.74e-10

Thermogram for different deposit thicknesses
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Figure 7. Experimental measurements of multilayered samples by pulsed
photothermal radiometry for Si;N, deposits of different thicknesses. The
model plot with the optimal parameter values found by MCMC is also
reported.



deposit thicknesses will be established based on the results of the
identification of the parameters on the 500 nm-thick deposit
sample. The parameters used to identify the properties of the
500 nm-thick deposit sample via MCMC are reported in
Table (3).

To improve the efficiency of the resulting MCMC estimates,
the DRAM,* which is a combination of the delayed rejection
(DR)"*®! and the adaptive metropolis (AM) algorithm,"*”! is used.
The DR allows that upon rejection, instead of advancing to the
next iteration and retaining the current position, a second stage
move is proposed. To propose a second candidate, the first
candidate proposal distribution is scaled down (reducing the
standard deviation of the said distribution). The second candidate
is accepted if the sample from U(0,1) is inferior to the
probability «; ;.

Table 4. Experimental parameters identified by the MCMC method using
the Metropolis—Hastings algorithm. The parameters are derived from the
average of all samples drawn by MCMC.

keoe IWm K] Riynne (MKW Rupgsn [MPKWT] Ry, [mKW)

aa (PP, P) = T

P )P )gi(P|P)
#(YIP,)a(P)g(P|P,) .
@ (P[P P = (PP
41 (P [Py, P)[1 = (P[P,

Three possible additional stages are used, one where ¢ is
down-scaled by a factor of 5, then by 4, and then by 3. It is pos-
sible to repeat until satisfactory or upscale the candidate proposal
distribution instead of downscaling. The AM is used to change
the standard deviation of the candidate proposal distribution of
each parameter based on how the Markov chain behaves. Every N
iteration, the standard deviation of g is replaced by the standard
deviation from the last N samples of the chain.

P {om,. forn < N (18)

sg*a(Xg, Xy ... Xy) + sly, forn = N

Here I; denotes the d-dimensional identity matrix. The

500 1122002  (7.80+1.20)10°% (401=169) %10 174x107° parameter s; only depends on the dimension d of the state space
400 118001 (1008406910 * (3864078 x10F  1.74x 107 and is chosen such as s;= (2.4)2/d.** There are numerous ways
300 1194001 (1061 £069)10°° (265%067) %10 173 x 107 to combine DR and AM into DRAM; in this work, the candidate
200 1452002  (91£083)10° (.655040)x10-* 173107 proposal' dlstnlz'vutmn is first modified according to AM and then
the DR is applied.
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Figure 8. Optimal parameters identified for 30000 iterations from the MCMC method with the Metropolis—Hastings algorithm for a Si;N,4 deposit with
thickness of 500 nm. The model plot from these optimal parameters and the parameters in Table 4 are plotted Figure 7. The values for all the thicknesses

are reported Table 4.
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Figure 9. Markov chains for 30000 iterations from the MCMC method with the Metropolis-Hastings algorithm for Si;N, deposit with thickness of
500 nm.
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Figure 10. Pairwise scatter plots for 30000 iterations from the MCMC method with the Metropolis-Hastings algorithm for Si;N, deposit thickness of
500 nm.



5. Results

The study was performed on the four deposition thicknesses and
with 30000 iterations each for the Metropolis—Hastings algo-
rithm. The identified optimal parameters that were used for
the model are plotted in Figure (7) and reported in Table (4).
The repartitions of the samples drawn during the algorithm
are shown Figure ((8). The Markov chains and the pairwise scat-
ter plots are displayed in Figure (9) and in (10) respectively. The
convergence of the algorithm is shown, thanks to the steady state
of the Markov chains. It is also shown on the pairwise scatterplots
that the parameters have no influence on each other since the
shape they describe follows no linear trend.

Considering the weighted average of the results over all the
sample thicknesses leads to kgy =1.23+£0.16Wm 'K,
Rpyrin = (966 £1.23) x 10" m’ KW', and  Rpysin =
(347 = 0.61) x 10°5m*KW ', The thermal conductivity of
the SiN is close to the theoretical value since the model developed
by Cahil and Pohl is accurate for high density and fully amor-
phous materials, which is the case of the SiN. As expected,
the first resistance Rp,rn has a higher estimated value than
the one computed because of weak chemical adhesion; that is
not taken into account in the DMM. Regarding the second resis-
tance Ry, the high estimated value of this parameter com-
pared to the theoretical one may be attributed to the crystalline
phase hypothesis used for the DMM computations. In fact, the
DMM assumes a crystalline arrangement which is not the case
for SiN. In such a case, the phonons going through the interface
will greatly slow down, leading to an increase of the interfacial
thermal resistance. The average values of the samples drawn by
MCMC for the parameters are shown in Table (4).

6. Conclusion

In this articles, we were able to show that periodic pulsed photo-
thermal radiometry is a reliable method for investigating the
physical properties of thin multilayered samples. It has been
shown that considering all influencing factors, such as the trans-
fer function of the detector and the source, is important for the
accuracy of the method. In addition, a robust technical solution
to the identification of the first interface resistance is presented
by coupling with theoretical calculations, such as the DMM and
the minimum thermal conductivity model, to the DRAM MCMC
optimization method. The method has been illustrated on four
samples of different thicknesses where the results all converge to
the same values and are in agreement with other measurements,
the literature or the theoretical values. It was also shown that the
sensitivity analysis regarding the normalization time is key for an
optimal identification of the parameters. In fact, by choosing an
adequate normalization time we were able to reduce the linear
dependence of the sensitivity functions, allowing us to identify
three parameters at once. This strong result might be an impor-
tant tool in the domain of inverse methods, especially in thermal
science, where it may be possible to reduce the ill-posed character
of the problems we face.

Moreover, with a sensor having a higher cut-off frequency and
taking into account the future progress of the instrumentation, it
is very likely that in the future we will be able to obtain valuable

information delivered by thermal diffusion at very short times
with greatly increased accuracy.
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