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Abstract

A numerical investigation of active mixing of yield
stress fluids using a mixer recently proposed in Ref.
[El Omari et al(2021)El Omari, Younes, Burghelea, Castelain, Moguen, and Le Guer]
and tested experimentally with Newtonian fluids
[Younes et al(2022)Younes, Moguen, El Omari, Burghelea, Le Guer, and Castelain]
is presented is presented. As the Bingham number (defined by the
ratio of the yield stress to the viscous stress) is increased past a crit-
ical value Bncrit

bulk ≈ 5, a dramatic decrease of both the efficiency of
the mixing process and of the homogeneity of the final mixture is
observed. Further physical insights into this observation are obtained
by a systematic analysis of the space-time dynamics of the flow fields
in both Eulerian and Lagrangian frames. The numerical results show
that the cascade of the passive scalar fluctuations from the wave
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numbers associated to the integral scale at which the passive scalar
is injected down to the diffusive scale is obstructed by the emergence
of a supplemental space scale associated to the characteristic size
of the un-yielded material elements. The study is complemented by
the discussion of two plausible solutions for alleviating the dramatic
loss of mixing efficiency induced by the viscoplastic fluid behavior. .

Keywords: yield stress materials, laminar chaotic advection, mixing, Finite
Time Lyapunov exponents

1 Introduction

Yield stress materials represent a distinct class materials that do not flow
(or ”yield”) unless subjected to a critical stress called ”yield stress”. Such
materials commonly referred to in the daily life as ”pasty materials” are char-
acterized by a physically complex microscopic scale structure that tends to
resist deformation prior to yielding.

The macroscopic yield stress behavior may emerge from a variety of distinct
chemical identities and micro-structural configurations. Thus, one commonly
observes a similar macroscopic yield stress behavior in materials with signifi-
cantly different microscopic structures such as emulsions, foams, colloidal gels,
physical gels, suspensions of micro-algae, mud, cement, magma etc. These
materials which seem homogeneous at the macroscopic scale and exhibit an
yield stress behavior can be composed of several phases (the emulsions for
example) which makes their macroscopic behavior very sensitive to various
physico-chemical parameters (e.g. temperature, pH). According to the bib-
liographic database Scopus, during the past two decades the interest in the
physics of yield stress materials has increased exponentially with time. There
exist at least two important reasons underlying this fact. First, from a practical
standpoint, such materials are relevant to a number of key modern industrial
sectors including (but not limited to) food, oil field, cosmetic, pharmaceuti-
cal, construction. Second, from a fundamental standpoint, understanding the
physical behavior of yield stress materials in a broad sense posses formidable
challenges that can only be addressed via an inter-disciplinary approach, i.e.
by combining tools of several distinct research fields: fluid mechanics, rhe-
ology, nonlinear dynamics and critical phenomena, chemical physics, applied
mathematics etc.

The current progress in understanding the flows of yield
stress materials has been systematically described in several
review papers, [Nguyen and Boger(1992), Bonn and Denn(2009),
Balmforth et al(2014)Balmforth, Frigaard, and Ovarlez, Coussot(2014),
Bonn et al(2017)Bonn, Denn, Berthier, Divoux, and Manneville,
Frigaard(2019)].
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A problem that is fundamental to fluid mechanics and of an undisputed
practical relevance relates to the efficient mixing of two viscous fluid streams.
To our best knowledge, the efficient mixing of yield stress materials is cur-
rently a largely unexplored area which sets the global motivation of the present
contribution.

The mixing of Newtonian fluids may occur mainly due to three mechanisms
which, while physically different, they all break the time reversal symmetry (in
either an Eulerian or a Lagrangian frame of reference) in the flow. The first and
perhaps the most natural is the molecular diffusion. This mechanism is often
not very effective particularly in the cases when the species to be mixed have
a large molar mass and/or the mixing is expected to take place over extended
space scales as is the case for the vast majority of practical applications. It
is rather obvious that in the case of yield stress materials this mechanism
is practically switched off. A second physical mechanism able to break the
time-reversal symmetry of the flow relates to the inertial turbulence: in large
Reynolds number flows the inertial nonlinearity leads to the emergence of sec-
ondary flows that are able to mix efficiently two distinct fluid streams. In the
case when the mixing of yield stress materials is envisaged, this mechanism
too may turn un-practical for at least two reasons. First, triggering an inertial
nonlinearity in highly viscous materials with yield stress requires significant
energy inputs which is certainly undesirable for many processing operations.
Second, as most of the yield stress materials are “soft” from a textural view-
point, triggering inertial instabilities is associate to large Reynolds stresses
that may presumably lead to mechanical degradation of the soft structure thus
altering the properties of the final mixture.

A third physical mechanism able to break the time reversal symmetry and
trigger mixing in the flow is the so called “laminar chaotic advection”.

Laminar chaotic advection is a physical phenomenon that allows complex
trajectories of passive particles to be obtained for a relatively simple regular
flow even at very low Reynolds number. This particular feature of chaotic
laminar flows makes them more attractive than their inertial counterpart, in
terms of energy consumption as it requires no significant inertial contributions.
[Aref(1984)] was the first to establish the link between the ability of dynamical
systems to produce chaotic trajectories and the use of this property for fluid
mixing. Almost at the same time, [Ottino(1989)] linked the stretching and
folding properties of fluid elements (filaments in 2D, sheets in 3D) to the notion
of chaotic fluid mixing. From a fluid mechanics standpoint, while discussing
the possibility of triggering the laminar chaotic advection, it is necessary to
distinguish 2D flows from 3D flows.

The equations of motion of particles of coordinates (x, y) advected by a 2D
(planar) incompressible flow field (vx, vy) have a Hamiltonian simplectic form:

vx =
dq

dt
=
∂H
∂p

, (1)
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vy =
dp

dt
= −∂H

∂q
, (2)

q = x, p = y, H (q, p) = Ψ (x, y) , (3)

where the Hamiltonian H is just the stream function Ψ. Although generally
credited to [Aref(1984)], the Hamiltonian approach to fluid mechanics pre-
dates his discovery of the laminar chaotic by roughly four decades and goes
back to the un-published theory of turbulence of Lars Onsager. Thus, Lars
Onsager modelled turbulent flows by a system of N interacting vortices and
writing the Hamiltonian of the system in terms of stream function allowed
him to extensively use tools of non equilibrium thermodynamics and derive
an expression for the turbulent spectrum of velocity (independently from
A.N. Kolmogorov). An enlightening and systematic historical review of the
un-published work of Lars Onsager on inertial turbulence including extracts
from his hand written or typed notes/correspondence may be found in Ref.
[Eyink and Sreenivasan(2006)].

For a time-independent streamfunction Ψ = Ψ (x, y) the fluid particles fol-
low streamlines that are frozen in time and their trajectories are regular. The
system is said to be ”integrable” in this case. On the contrary, when the stream-
function is time dependent Ψ = Ψ (x, y, t), the Hamiltonian system becomes
generally non-integrable and individual particle trajectories can become
chaotic in a Lagrangian frame of reference. For 2D flows it is thus necessary to
introduce an unsteady forcing (time dependence) of the flow in order to obtain
chaotic advection. One way to trigger laminar chaotic advection is to impose a
time dependent flow forcing at the walls (e.g. a time periodic forcing). For a 3D
flow, the additional degree of freedom brought by the third dimension removes
the unsteadiness constraint needed to generate chaotic trajectories . This is
the case of the 3D herringbone mixer proposed by Stroock and coworkers,
[Stroock et al(2002)Stroock, Dertinger, Ajdari, Mezić, Stone, and Whitesides].
In an unsteady 2D flow the fluid particles have the possibility to ”jump” from
one streamline to another. It is therefore legitimate to question the possibility
of obtaining chaotic trajectories during flows of yield stress materials where
yielded material elements typically coexist with un-yielded ones.

Another distinctive feature of flows in a regime of laminar chaotic
advection relates to their spatial smoothness. Thus, mixing by lam-
inar chaotic advection is directly related to the so called Batchelor
regime of mixing observed in the viscous-convective range of wave
numbers, kK < k < kB , [Batchelor(1959), Kraichnan(1968)]. Here
kK and kB are the Kolmogorov and the Batchelor wave numbers,
respectively. In spite of its undisputed relevance to the mixing prob-
lem, there exist rather few theoretical ([Duplat and Villermaux(2008),
Fereday et al(2002)Fereday, Haynes, Wonhas, and Vassilicos,
Fereday and Haynes(2004)]) and experimental
([Jullien et al(2000)Jullien, Castiglione, and Tabeling, Jullien(2003),
Burghelea et al(2004a)Burghelea, Segre, Bar-Joseph, Groisman, and Steinberg,
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Burghelea et al(2004b)Burghelea, Segre, and Steinberg, Burghelea(2005)])
studies of the Batchelor regime of mixing. The flow fields corresponding to
the Batchelor regime of mixing are spatially smooth and random in time. The
chaotic mixing realised by such flows is characterised by an exponential decay
of the variance of the passive scalar with time and an algebraically decaying
spectrum of the passive scalar fluctuations, P ∝ k−1.

As compared to the much better documented Newtonian case briefly dis-
cussed above, the presence of yield stress adds several layers of complexity to
the mixing problem. While in a solid state, material elements practically do
not mix. Thus, in order for the mixing to occur in yield stress materials, such
materials need to yield first. This means that the yielding behavior and the
mixing can not be easily decoupled. A second layer of complexity relates to
the fact that for most flow configurations of a mixing device, the stress dis-
tribution is spatially in-homogeneous: various regions of the flow are typically
subjected to different stresses. Thus, generally speaking, the yielding process is
expected to be spatially in-homogeneous, i.e solid and fluid material elements
co-exist within the same mixing device. Third, even in an yielded state, the
viscoplastic material elements are typically rather viscous (with apparent vis-
cosities ranging from a hundred to a thousand times that of the pure water)
and, as already discussed for the Newtonian case, efficient mixing protocols
need to be proposed in such case.

The subject of chaotic laminar advection or chaotic mixing
in yield stress fluids has been little discussed in the litera-
ture. To our knowledge, only few studies exist: a study of
[Arratia et al(2006)Arratia, Kukura, Lacombe, and Muzzio] who have inves-
tigated the mixing of shear-thinning fluids with yield stress in a classical
3D stirred tank, that of which deals with and that of the research group
of P. Jop, [Wendell et al(2013)Wendell, Pigeonneau, Gouillart, and Jop,
Boujlel et al(2016)Boujlel, Pigeonneau, Gouillart, and Jop] which deals with
an 2D experimentally study of the rate of chaotic mixing in viscoplastic fluids
by using a rod-stirring protocol in a rotating tank and a more recent one of
[Lester and Chryss(2019)] that explores experimentally the topological mix-
ing of viscoplastic non-Newtonian materials in a 3D continuous flow. While
there seems to exist a general consensus on the fact that the presence of yield
stress inhibits the chaotic mixing, the physical mechanisms underlying this
fact remain elusive.

In a broad sense, the central scope of the present contribu-
tion relates to understanding the dynamics of the active mixing
of yield stress materials via laminar chaotic advection in a
rotating arc-wall mixer initially introduced numerically in Ref.
[El Omari et al(2021)El Omari, Younes, Burghelea, Castelain, Moguen, and Le Guer]
and experimentally in Ref. [Younes et al(2022)Younes, Moguen, El Omari, Burghelea, Le Guer, and Castelain].
The tested fluids were Newtonian.

Several fundamental aspects concerning the mixing of the yield stress
materials by laminar chaotic advection will be addressed through the paper:
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1. The role of yield stress on the space-time dynamics of a passive tracer in
the presence of low molecular diffusion (the large Péclet number limit). A
particular attention will be devoted to assessing the relationship between
the mixing efficiency and the yield stress.

2. The role of yield stress on the Eulerian flow structure and the dynamics of
solid and fluid material elements.

3. The coupling between the yield stress behavior and the Lagrangian
dynamics of the flow.

The paper is organised as follows. The numerical setup is described in
Sec. 2. The results of the numerical simulations are discussed in Sec. 3. The
dramatic role of the yield stress on the efficiency of the mixing process is high-
lighted in Sec. 3.1. An Eulerian characterisation of the space-time dynamics
of the random flows for various magnitudes of the yield stress is presented
in Sec. 3.2. The Eulerian flow characterisation is complemented by a system-
atic Lagrangian analysis in terms of statistics of particle trajectories, residence
times and maps of the Finite Time Lyapunov exponents, Sec. 3.3. Finally, two
distinct solutions able to alleviate the dramatic loss of the efficiency of the mix-
ing process due to the viscoplastic behavior of the fluid are discussed in Sec. 4.
The paper closes with a summary of the main conclusions of the study, Sec. 5.

2 Numerical setup

2.1 Flow geometry, problem formulation

The rotating arc-walls mixer initially introduced in a recent contribution,
[El Omari et al(2021)El Omari, Younes, Burghelea, Castelain, Moguen, and Le Guer]
is schematically represented (in scale) in Fig. 1. It consists of a plane channel
of total length L = 5 and the width W = 1, equipped with three rotating arc-
walls. The arc-walls have a radius R = 0.36 and are centred in the points O1−3.
Each arc-wall protrudes within the main channel by the distance ∆ = R.

To induce mixing by laminar chaotic advection, an oscillatory forcing is
imposed onto each of the three rotating arc-walls with angular velocities Ωk =
Ω0
k cos (ft+ δk), k ∈ {1, 2, 3}. The length of the “active” mixing zone, defined

by the distance between the centres O2,3 of the cylinders C2,3, is L0 = 1.5.
The centre O1 of the top cylinder C1 is located at the middle distance between
the centres of the bottom arc-walls C2,3. The two arc-walls C2,3 located on
the bottom of the flow channel (see Fig. 1) rotate identically with Ω0

2 = Ω0
3 =

Ω0 and δ2 = δ3 = π/4, whereas the top cylinder C1 rotates with the same
amplitude Ω0

1 = Ω0 but in an opposite direction δ1 = −π/4. For the bulk of
the simulations reported herein, the amplitude Ω0 of the angular velocity of
the rotating arc-walls was fixed at Ω0 = 150. Occasionally, the amplitude of
forcing was increased in order to explore solutions of increasing the mixing
efficiency ; see Sec. 4.2.

The flow is considered incompressible and governed by the Navier-Stokes
equation coupled to the advection-diffusion equation that describes the
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Fig. 1 Schematic representation of the channel equipped with three rotating arc-walls (in
scale).

dynamics of the passive scalar C to be mixed:

∇ · v = 0, (4)

ρ∂tv + ρ(v · ∇)v = −∇p+∇ · [2η (γ̇)D (v)] , (5)

∂tC = D∇2C − v · ∇C. (6)

Here, v = (vx, vy), ρ, t, p represent velocity, density, time and pressure;

D(v) = 1
2

[
(∇v) + (∇v)

T
]

is the rate deformation tensor, γ̇ its second invariant, η (γ̇) is the effective
viscosity, and D is the molecular diffusivity of the passive scalar C.

A regularized Herschel-Bulkley constitutive relationship is used, following
[Papanastasiou(1987)]:

η (γ̇) = K0γ̇
N−1 + τy

1− e−mγ̇

γ̇
, (7)

where K0 stands for the consistency, τy for the yield stress, N for the power law
index and m for the regularisation parameter. For all the numerical simulations
reported herein, the regularisation parameter was maintained constant at m =
1200, and the consistency was K0 = 1.

The governing equations (4)-(6) above are supplemented by no-slip bound-
ary conditions at the static and moving walls. Through the inlets I1,2 of the
flow channel, two identical fluid streams to be mixed are evenly injected at a
constant bulk velocity U0. For all simulations reported herein, the bulk veloc-
ity is fixed at U0 = 2. At the initial time t0 = 0, the interface between the two
fluid streams is placed at the position y = 0 (see Fig. 1).

To define the non-dimensional groups governing the viscoplastic flow and
the mixing problem, we follow [Thompson and Soares(2016)]. With the bulk
velocity U0 as reference velocity and the width channel W as reference length
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(see Fig. 1), a bulk Reynolds number is defined as

Rebulk =
ρU2

0

τy +K0

(
2U0

W

)N . (8)

By varying the rheological properties of the fluids (mainly the yield stress
τy) while maintaining a constant bulk velocity U0, the bulk Reynolds number
Rebulk was varied in the interval [0.0514, 1]. The bulk Bingham number, which
quantifies the balance between the yield stress and viscous stress in the mean
flow is defined as

Bnbulk =
τy

K0

(
2U0

W

)N . (9)

By varying the yield stress τy and maintaining a constant power law index at
N = 0.75, the bulk Bingham number was varied in the range Bnbulk ∈ [0, 26.5].

The competition between advection and diffusion during the mixing process
is quantified by the bulk Péclet number defined as

Pebulk =
U0W

D
. (10)

where D is the molecular diffusion coefficient of the passive scalar. The Péclet
number was fixed at Pebulk = 2 × 106 for all the cases we have studied. This
is indeed a large value and the technical ability of reaching it in a reliable
manner will be detailed in Sec. 2.3.

Next, by introducing a velocity scale related to the external forcing gen-
erated by the rotating arc-walls denoted by Uf = RΩ0, a Reynolds number
associated to the strength of the external forcing may be defined in a similar
manner as the bulk Reynolds number Rebulk as

Ref =
ρU2

f

τy +K0

(
2Uf

W

)N . (11)

The ratio

K =
Uf
U0

(12)

represents the strength of the external forcing relative to the mean flow
velocity, and may be understood as a quantitative measure of the energy
injected into the hydrodynamic system in order to achieve efficient mixing. The
largest value of the Reynolds number associated to the external forcing was
Remax

f = 26.8, meaning that the forcing might introduce some mild inertial
effects particularly in the vicinity of the rotating arc-walls.

As the characteristic rates of shear are typically larger within the “active”
mixing region located in between the rotating arc-walls, a Bingham number



Springer Nature 2021 LATEX template

Active chaotic mixing of yield stress fluids in an open channel flow 9

related to the external forcing is defined as

Bnf =
τy

K0

(
2Uf

W

)N . (13)

This Bingham number is clearly smaller than the bulk Bingham number
(Bnf < Bnbulk), indicating that one expects within the “active” mixing regions
to find un-yielded material blobs with sizes smaller than that of the central un-
yielded plug observed at the outlet of the mixer. The forcing Bingham number
was varied in the range Bnf ∈ [0, 2.24]. For simplicity, we chose to index the
various data sets discussed through the paper in terms of the bulk Bingham
number Bnbulk.

Of particular relevance to this study is the bulk Strouhal number that
relates the characteristic time scale of the main flow to that of the external
forcing:

Stbulk =
W

TU0
. (14)

Here, T stands for the period of rotation of the arc-walls, T = 2π/f with f
the frequency. For all the simulations described herein, T = 0.5. Consequently,
the Strouhal number was fixed through all the simulations reported herein,
Stbulk = 1. Also, the forcing ratio was fixed at K = 27.

Based on both the theoretical arguments and
the numerical simulation results presented in Ref.
[El Omari et al(2021)El Omari, Younes, Burghelea, Castelain, Moguen, and Le Guer],
this choice of non-dimensional numbers is consistent with an efficient mix-
ing for the Newtonian case to which we will systematically refer to as the
“reference” case. However, we note here that neither the stirring protocol
nor the geometry of the mixer were identical to those illustrated in Ref.
[El Omari et al(2021)El Omari, Younes, Burghelea, Castelain, Moguen, and Le Guer].
Yet, the phenomenological conditions for efficient mixing derived in Ref.
[El Omari et al(2021)El Omari, Younes, Burghelea, Castelain, Moguen, and Le Guer]
in terms of Pebulk, Stbulk and K remain valid as they are rather general and
independent on the exact details of the stirring protocol and exact geometrical
dimensions of the stirring elements.

2.2 Numerical method

To solve numerically the flow problem described in Section 2.1, we use the
open source flow solver Gerris which was presented in Refs. [Popinet(2003),
Popinet(2009), Popinet(2015)]. The 2D domain is discretized using square
finite volumes organised hierarchically as a quad-tree, which allows for dynam-
ical local grid adaptation (refinement or coarsening). This feature is highly
suitable in order to properly capture the stretching and folding experienced by
the fluid due to the cylinder rotations, as well as to highlight the role of the
diffusion and the dynamic of the solid material elements. Three refinement cri-
teria are used for the grid adaptation: a criterion based on the local value of the
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vorticity, a criterion based on the local gradient of the concentration C, and
a criterion allowing to refine near the solid zones. A cell of the grid is refined
whenever at least one of the three criteria is satisfied. The variables v, p and C
are co-located at the centre of each finite volume. Their values at the computa-
tional cell centre are interpreted as surface-average values for this discretization
cell. The pressure is obtained by means of a multilevel Poisson solver, where
the multilevel hierarchy of the quad-tree is used to accelerate the resolution by
multigrid V-cycling. The code uses a second order accurate staggered-in-time
discretization, combined by fractional-step projection method that satisfies the
incompressibility constraint at the end of each time step. A conservative for-
mulation is used to evaluate the advection term of eqs. (5) and (6) which are
solved with a second-order upwind numerical scheme. The viscous terms are
treated implicitly with a Crank-Nicolson scheme. The time step is dynamically
adapted to satisfy the CFL condition CFL ≤ 0.75 within each computational
cell. The overall code (Gerris) is second-order accurate in both space and time.

The presence of solid boundaries (duct walls and rotating cylinders) if
treated by volume-of-fluid approach. At these wall boundaries, a Dirichlet-type
condition is applied for the velocity, and a Neumann condition is applied for
the transport of the tracer concentration i.e. ∂nC = 0 (n being the wall normal
direction). A similar boundary condition is applied for the pressure. At the
inlet, Dirichlet boundary conditions are used for the velocity and the tracer,
with prescribed values, and Neumann boundary condition is applied to the
pressure (∂np = 0). The prescribed values or profiles are given in the previous
Section. At the outlet, a prescribed value was applied for pressure p = 0, and
Neumann boundary condition is applied for the other variables: ∂n(v, C) = 0.

2.3 Diffusion length and mesh size

Through this study, we are interested in the high Péclet number limit where
the mixing is primarily driven by laminar chaotic advection rather than by
the molecular diffusion. Such case is rather difficult to properly capture in
numerical simulations as it implicitly requires very fine meshing in the vicinity
of the passive scalar interfaces. A characteristic length relevant to the degree
of fineness of the spatial discretization near the interface is the diffusion length
ldiff defined with the characteristic advection time tadv = L/Umax for a fluid
particle to cross the mixing zone,

ldiff = 2
√
Dtadv = 2

√
DL
Umax

. (15)

Here, Umax stands for the maximal velocity across the width of the channel
at the outlet which, in the viscoplastic cases, corresponds to the speed of the
solid plug 1.

1Note that, as the flow develops downstream, Umax is generally larger than the inlet speed U0

but, of course, of the same order of magnitude.
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We obtain the non-dimensional diffusion length the value ldiff = 3.16×10−3,
and the requirement for a characteristic mesh size to be smaller than ldiff

leads to a total number of grid elements for the entire domain of the order of
1 035 000. We consider such a fine grid too costly for the large number of simu-
lations needed for comparison to the results obtained from the conditions. The
analytical solution for the transverse profile of the passive scalar distribution
at the end of the mixer is given by:

C(y) =
[
1 + Erf

( y
σ

)] 1

2
(16)

Here Erf(·) stands for the error function and the dispersion coefficient σ

is related to the “effective” diffusion coefficient Deff , σ = 2
√
Deffx
U0

. By the

“effective” diffusion coefficient we understand here a value that encompasses
both the molecular diffusive effects and the artificial diffusive effects inherently
introduced by limited mesh size in the vicinity of the passive scalar interface.

If the mesh size is sufficiently small in the vicinity of the passive scalar
interface then the effective diffusion coefficient obtained by fitting the trans-
verse profiles of the concentration according to Eq. 16 should be comparable in
magnitude to the molecular diffusion coefficient, i.e. Deff

D ≈ 1. The comparative
results of the transverse profiles of the passive scalar concentration obtained
for various levels of mesh refinement using non-adaptive meshing and adaptive
meshing are summarised in Fig. 2(a). For the cases of regular grids, the mesh
size is constant and related to the level of refinement, ∆y = W/2LEVEL. The
full lines in each panel of Fig. 2(a) are nonlinear fitting functions according
to the analytical solution for the transverse distribution of the passive scalar,
Eq. 16. The first three panels from the top present the results obtained for a
regular (non adaptive) grid with various sizes ∆ymin decreasing from the top
to the bottom. The dependence of the effective diffusion coefficient obtained
by fitting each concentration profile illustrated in Fig. 2(a) by the analytical
solution defined by Eq. 6 on the minimal mesh size ∆ymin is shown in Fig. 2(b).

It is rather clear from the mesh study summarized in Fig. 2 that the only
level of refinement of the regular grid able to resolve the interface of the pas-
sive scalar is 8 (which gives ∆ymin = 0.0039). Such fine mesh is, however,
very expensive from a computational standpoint and, consequently, unprac-
tical. This difficulty may be circumvented by resorting to adaptive meshing
instead of a regular one which is a unique feature of the Gerris flow solver,
[Popinet(2003)]. Three distinct types of grid adaptivity are simultaneously
employed through this study. First, for the reasons detailed above, we use
adaptive meshing in the vicinity of the passive scalar interface. Second, as the
external forcing of the flow locally generates strong vorticity, we adapt the
mesh based on the the local magnitude of the vorticity. This is important for
properly resolving the flow kinematics (particularly the dynamics around the
hyperbolic and elliptical points) which is of key relevance to understanding



Springer Nature 2021 LATEX template

12 Active chaotic mixing of yield stress fluids in an open channel flow

(a)

(b)

Fig. 2 (a) Transverse profiles of the passive scalar concentration C at the exit of the mixer
obtained for various values of the smallest mesh size ∆ymin indicated in the top inserts.
The case illustrated in the bottom panel refers to the adaptive meshing technique - see
text for description. The full lines in each panel are nonlinear fitting functions according
to the analytical solution (see text for the description/discussion). (b) Dependence of the

effective diffusion coefficient normalised by the molecular diffusion coefficient Deff
D on the

mesh size in the vicinity of the passive scalar interface, ∆ymin computed for regular mesh
(black squares) obtained from the data sets presented in the top three sub-panels of Fig.
2(a) and the adaptive mesh (red circle) obtained from the data set presented in the bottom
panel of Fig. 2(a).

the dynamics of mixing process. Third, as we aim to understand the dynam-
ics of the mixing process in relation to the viscoplastic nature of the fluids, we
need to properly identify the yield surfaces at each time instant and ultimately
the characteristic sizes of the un-yielded material elements. For this purpose,
an extra mesh adaptivity controlled by the local value of the viscosity was
employed.

The adaptive grid obtained by combining all three criteria stated above is
illustrated in Fig. 3. We have purposely chosen for illustration the highest yield
stress case investigated (Bnbulk = 26.5) and a mild shear thinning (N = 0.75)
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Fig. 3 Illustration of the adaptive grid during a simulation of the mixing process at large
bulk Bingham number, Bnbulk = 26.5. The dense grid points coloured in yellow mark the
interface of the passive scalar while those marked in red mark the yield surface (see text for
description). The dense black grid points have resulted from the vorticity based dynamic
mesh adaptivity.

in order to exemplify the identification of the yield surfaces. The grid points
coloured in yellow mark the interface of the passive scalar while those coloured
in red the yield surface.

For all the numerical results reported herein the same adaptive meshing
has been used.

3 Results

3.1 Role of yield stress on the space-time dynamics of
the mixing process

Prior to studying the coupling between the yield stress behavior and the
mixing process, we briefly discuss in the following a reference case where both
fluids are Newtonian (Bnbulk = 0, N = 1). Both the in-flow conditions (Rebulk,
Pebulk) and the external forcing conditions (Stbulk, K) are purposely chosen
(using both the theoretical predictions and numerical results presented in Ref.
[El Omari et al(2021)El Omari, Younes, Burghelea, Castelain, Moguen, and Le Guer])
such that efficient mixing is observed at the outlet of the mixer. Spatial
distributions of the passive scalar concentration C obtained for the reference
Newtonian case at several time instants scaled by the period of the forcing
are illustrated in Fig. 4.

As already stated, this test case was purposely chosen to obtain efficient
mixing. Consequently, a rather homogeneous mixture is obtained after roughly
ten periods of rotation of the arc-walls. To assess the space-time dynamics of
the mixing process it is convenient to build space-time diagrams by recording
the profile of the concentration along a fixed line orthogonal to the mean flow
direction x. We illustrate in Fig. 5(a) space-time diagrams built for the New-
tonian case at the centre of the mixer (i.e. at an axial position corresponding
to the centre of the top rotating arc-wall) - top panel and at the exit of the
mixer - bottom panel. Using the space-time diagrams one can define a mix-
ing indicator in the form of a time series of the variance of the passive scalar
distribution along the spatial coordinate,

Cstd(t) =
〈

(C(y, t)− Cav(t))
2
〉0.5

y
(17)
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Fig. 4 Mixing patterns for the Newtonian case (Bnbulk = 0, N = 1) at several time instants
indicated in the top inserts.

with Cav(t) = 〈C(y, t)〉y and 〈·〉y denoting the average along the y direction.
Time series of the mixing indicator Cstd obtained for the Newtonian case at
the centre (the circle) and at the exit of the mixer (the square) are illustrated
in Fig. 5(b). Regardless the axial position of observation, the mixing indicator
Cstd oscillates around a steady state value with a periodicity set by the period-
icity of the external forcing, T . Two important details distinguish the passive
scalar evolution within the central part from that observed at its exit. First,
the steady state value Cav

std of the fluctuations of the Cstd is clearly smaller at
the exit of the mixer than at its centre which indicates a progressively bet-
ter mixing as the two fluids advance downstream. Second but equally relevant
from a practical perspective, the magnitude of the fluctuations of the mixing
indicator around its steady state value δCstd which, bearing in mind the Tay-
lor’s frozen flow hypothesis, may be interpreted as a crude (but yet meaningful)
measure of the homogeneity of the mixing process: at the centre of the mixer
the mixing is very in-homogeneous whereas a significantly more homogeneous
mixing is observed at the exit of the mixer. The characteristic time scale td
associated to the mixing process may be estimated by noting that the mixing

indicator Cstd depends exponentially on time, Cstd(t) = Cav
std+Ae

t−ta
td - the full

line in Fig. 5(b). Such an exponential decay of the passive scalar variance is a
hallmark of the so called “Batchelor regime of mixing” realised in temporally
random and spatially smooth flows, [Batchelor(1959), Kraichnan(1968)].

Of particular relevance in understanding the topology of the mixing pat-
terns is the analysis of the mixing boundary layers. Indeed, after a close
inspection of the space time diagram acquired at the exit of the mixer (bottom
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(a)

(b)

Fig. 5 (a) Space time plots obtained for the Newtonian case (Bnbulk = 0, N = 1) at
the centre of the mixer (top panel) and at the exit of the mixer (bottom panel). (b) Time
series of the mixing indicator Cstd obtained for the Newtonian case (Bnbulk = 0, N = 1)
at the centre of the mixer (circle) and at the exit of the mixer (square). The full line is an
exponential fitting function.

panel in Fig. 5(a)) one notes that within narrow regions located in the prox-
imity of the top/bottom boundaries of the channel no mixing occurs: within
these regions called mixing boundary layers the passive scalar gets trapped
and the effects of the periodic forcing are no longer felt. To identify the mixing
boundary layers we focus on the dependence of the power of the concentra-
tion fluctuations defined as Pf on the transverse coordinate y. Corresponding
to each value of the vertical coordinate y = y0 the power Pf of the fluctua-
tions is obtained by computing the Fourier power spectrum of the time series
C(t)|y=y0 and averaging it over the entire frequency domain.

The analysis of the mixing boundary layer for the Newtonian case is sum-
marised in Fig. 6. The transverse profile of the power of the fluctuations of
the passive scalar fluctuations Pf (y) computed over the last five periods of the
mixing process (see the space-time plot in panel (a) of Fig. 6) are illustrated
in panel (b) of Fig. 6). The edges of the top and bottom mixing boundary lay-
ers may be identified by the positions where the power of fluctuations starts
to increase significantly. The flow region characterised by large values of Pf
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Fig. 6 Illustration of the mixing boundary layer for the Newtonian case (Bnbulk = 0,
N = 1): (a) Space time diagram of the passive scalar distribution during the last 5 periods
of the mixing. (b) Transverse profile of the average spectral power of the fluctuations of the
passive scalar Pf . In both panels the horizontal dotted lines mark the edges of the top and
bottom mixing boundary layers.

Fig. 7 Mixing patterns for largest yield stress explored (Bnbulk = 26.5, N = 0.75) at
several time instants indicated in the top inserts.

will be further referred to as the bulk of the flow. Within the mixing of the
boundary layers the magnitude of the passive scalar fluctuations is significantly
smaller than in the bulk of the flow, Fig. 6(b).

We now turn our attention to the mixing in the presence of yield stress
(Bnbulk = 26.5) and a mild shear thinning behavior (N = 0.75).

The distributions of the passive scalar computed at several time instants
are illustrated in Fig. 7. In this case, the mixing is very poor and limited
to narrow regions locating in the close vicinity of the rotating arc-walls. The
spatial distributions of the passive scalar consist of a periodic alternation of
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(a)

(b)

Fig. 8 (a) Space time plots of the passive scalar C obtained for the highest yield stress
case (Bnbulk = 26.5, N = 0.75) at the centre of the mixer (top panel) and at the exit of the
mixer (bottom panel). (b) Time series of the mixing indicator Cstd obtained for the highest
yield stress case (Bnbulk = 26.5, N = 0.75) at the centre of the mixer (circle) and at the
exit of the mixer (square). The full line illustrates a failed attempt to fit exponentially the
time series of the mixing indicator at the channel exit.

un-mixed fluid patches along the mean flow direction. The relevant space scales
associated to this passive scalar space distribution are mainly set by the mean
flow speed and the time scale at each the external forcing is imposed, T . The
dramatic effect of the yield stress on the mixing efficiency becomes even clearer
if one plots space-time diagrams, Fig. 8(a). At the centre of the mixer a saw
tooth space-time pattern is observed - top panel in Fig. 8(a). This is most
probably due to the presence of un-yielded material units within the central
zone of the mixer which prevent the formation of the hyperbolic flow region
that promotes mixing. The relationship between the yielded/un-yielded zones
and the flow kinematics will be explored in more detail in Secs. 3.2 and 3.3.

At the exit of the mixer the space-time plot reveals a time periodic alter-
nation of the two fluids with some very weak mixing that may be observed in
the proximity of the channel boundaries - bottom panel in Fig. 8(a).

Consequently, the time series of the mixing indicator Cstd reveals both a
poor level of mixing reflected by the large value of steady state value Cav

std
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Fig. 9 Illustration of the mixing boundary layer for the largest yield stress case (Bnbulk =
26.5, N = 0.75) (a) Space time diagram of the passive scalar distribution during the last 5
periods of the mixing (b) Transverse profile of the average spectral power of the fluctuations
of the passive scalar Pf . In both panels the horizontal dotted lines mark the edges of the
top and bottom mixing boundary layers.

and a strongly in-homogeneous evolution of the passive scalar reflected by
the large variance δCstd. Unlike in the Newtonian case, the time series of the
concentration variance can no longer be well fitted by an exponential decay
function which is another indicator that the yield stress behavior prevents the
efficient stretching and folding of material elements responsible for the time-
exponential decay of the passive scalar in a temporally random and spatially
smooth flow. We may conclude this part by noting that the loss of mixing
efficiency is dramatic for this large value of the Bingham number, Bnbulk =
26.5, and in the presence of a mild shear thinning, N = 0.75.

As compared to the Newtonian case illustrated in Fig. 6, the boundary
layers observed in the presence of yield stress are thinner, Fig. 9. Also and
equally interesting is that in this case the transverse profile of the power Pf
of the passive scalar fluctuations exhibits fewer local peaks - panel (b) in Fig.
9. This indicates that the passive scalar decay (manifested through the local
power of fluctuations) is carried on in this case within a narrower range of
space scales. This remark corroborates well with the loss of mixing efficiency
we observe at high Bingham numbers.

To summarize the analysis of the mixing boundary layers we present in Fig.
10 the dependence of the width of the top and bottom layers on the Bingham
number Bnbulk. As the Bingham number is gradually increased, the width of
both the top and bottom boundary layers decreases.

To understand the impact that a gradual increase of the bulk Bingham
number has on the mixing efficiency we present in Fig. 11 space-time plots
constructed at the exit of the mixer similar to those illustrated in the bottom
panels of Figs. 5(a), 8(a) for various Bingham numbers indicated in the top
inserts. For all cases the power law index is fixed N = 0.75 except for the
Newtonian case (the top panel) where N = 1.

For all data sets illustrated in Fig. 11 the flow conditions (Pebulk, inflow
speed U0) and forcing conditions (Stbulk, K) are identical. Due to the gradual
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Fig. 10 Dependence of the width of the top and bottom mixing boundary layers on the
Bingham number Bnbulk.

increase of the yield stress both the bulk Reynolds number Rebulk and the
Reynolds number associated to the forcing Ref decrease gradually.

As the bulk Bingham number increases (from the top to the bottom) a
gradual change in both the space and time scales of the passive scalar distribu-
tions marking the gradual transition from good mixing to critically poor one
is observed.

To sum up the discussion on the role of the Bingham number on the mixing
efficiency and its homogeneity we present in Fig. 12 the dependence of the
steady state value Cav

std of the time series of the variance of the concentration
for all the cases investigated. Both the colours and the sizes of the symbols in
Fig. 12 related to the degree of homogeneity of the mixture indicated by δCstd.
It is rather clear that for fixed flow conditions (inflow speed U0, bulk Péclet
number Pebulk, bulk Strouhal number Stbulk and forcing amplitude K) the
mixing efficiency decreases abruptly starting from a critical Bingham number
Bncbulk ≈ 5. Beyond this onset, both the mixing efficiency and the degree of
homogeneity of the mixture remain roughly unchanged but, from a practical
standpoint, are clearly unsatisfactory.

Quite interestingly on the other hand is that for Bnbulk = 3.5 the mixing
efficiency is practically identical to that obtained for the Newtonian case. This
fact may be due to the presence of shear thinning (N = 0.75).

The non-monotonic variation of the mixing efficiency with the bulk Bing-
ham number observed for Bnbulk > Bncbulk in Fig. 12 is counter-intuitive and
needs a separate discussion. The evolution of the passive scalar within the
boundary of the flow is significantly different from that in the bulk. Below
the critical Bingham number Bnc ≈ 5 a good mixing is observed in the bulk
of the flow, Fig. 6(a). On another hand, the behavior in the boundary layer
is quite different. A careful inspection of the same figure reveals rather poor
mixing (the top and bottom parts of the space-time diagram) in the vicinity
of the channel’s walls in the form of layers of un-mixed fluids. As the Bing-
ham number is increased past the critical Bingham number Bnc, un-mixed
fluid regions appear in the bulk of the flow as well, Fig. 9(a). These un-mixed



Springer Nature 2021 LATEX template

20 Active chaotic mixing of yield stress fluids in an open channel flow

Fig. 11 Panorama of the space-time diagrams of the passive scalar C at the exit of the
mixer obtained for several bulk Bingham numbers Bnbulk indicated in the top inserts.
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Fig. 12 Dependence of the mixing efficiency defined as the variance of the passive scalar
concentration at the exit of the mixer, Cstd, on the bulk Bingham number Bnbulk. Both the
color and the relative size of the symbols map the fluctuations δCstd of the mixing indicator
Cstd around its dynamical steady state value.

regions are very different from the un-mixed regions observed near the bound-
aries as they are due to the appearance of solid (unyielded) material blobs that
travel downstream. While by the way we have defined the mixing indicator
Cavstd it is clear that both the bulk and boundary layer behaviors contribute to
the overall mixing efficiency, these two contributions evolve differently when
the Bingham number is gradually increased. Thus, for Bn ≥ Bnc, two phenom-
ena with opposite tendencies are observed. First, the width of the un-mixed
(homogeneous) boundary layers decreases monotonically with Bnbulk, Fig. 10.
This leads to a temporary decrease of Cavstd(t) or, in other words, an appar-
ent increase in the overall mixing efficiency observed in Fig. 12 in the range
Bnbulk ∈ [5, 15]. Simultaneously with this, un-yielded blobs are equally present
in the bulk of the flow. As it will be demonstrated later through paper (in con-
nection to the upcoming Fig. 22), the average size of these un-yielded blobs
increases monotonically with Bnbulk. For Bnbulk ≥ 15 the contribution of the
boundary layers to the overall mixing efficiency is overcome by the bulk behav-
ior simply because in this range of Bingham numbers the overall width of the
boundary layers becomes systematically smaller than the average size of the
un-yielded which finally explains the up-turn of the mixing efficiency observed
around Bnbulk ≈ 15 in Fig. 12.

3.2 Role of the yield stress on the space-time dynamics
of the flow fields: an Eulerian description

On an intuitive basis, one expects that the dramatic loss of mixing efficiency
observed while the bulk Bingham number is gradually increased past a critical
value Bncbulk ≈ 5 originates from dramatic changes of the space-time dynamics
of the flow fields triggered by the presence of the yield stress. It therefore
appears natural to systematically describe the flow structure in an Eulerian
frame of reference at various bulk Bingham numbers and attempt to correlate
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the findings/conclusions with the space-dynamics of the passive scalar detailed
in Sec. 3.1. To this we dedicate the present section.

3.2.1 Flow structure

We focus first on the time averaged profiles of each velocity component
observed at the outlet of channel, Fig. 13. The numerical data are averaged
during the last five periods of the mixing process, 15T ≤ t ≤ 20T .

In all cases we have studied the magnitude of the axial component, Fig.
13(a), is significantly larger than that of the transverse velocity, Fig. 13(b).
This means that, in all the cases we study, the mixing is mainly carried on
within the central part of the mixer (the ”active” mixing zone located in
between the rotating arc-walls) while towards its outlet the mixing can be
slightly improved solely by the molecular diffusion which, due to the high
value of the Péclet, is not very effective. For the Newtonian reference case
(Bnbulk = 0, N = 1) the transverse profile is nearly parabolic (note that, due
to the presence of the external forcing, at the exit of the channel the transverse
component vy of the velocity is not zero). As the bulk Bingham number is
gradually increased a central plug in the transverse profile of the axial velocity
develops, Fig. 13(a). It is equally instructive to note that for Bnbulk > 0 no
fluctuations of the axial velocity (highlighted by the shaded regions) may be
observed meaning that while advancing downstream past the ”active” mixing
the flow patterns are practically ”frozen”.

The dependence of the widths of the yielded zones observed in the prox-
imity of the walls (or the viscoplastic boundary layers) at the outlet of the
mixing channel on the bulk Bingham number Bnbulk is presented in Fig.
13(c). For low values of the bulk Bingham number a slight asymmetry of the
top/bottom viscoplastic boundary layers due to the asymmetry of the exter-
nal forcing (we have two rotating arc-walls on one side of the channel and only
one on the opposite side) is observed. At large bulk Bingham numbers, how-
ever, this asymmetry vanishes indicating once more that at the channel outlet
the flow patterns are ”frozen” and the effect of the forcing is no longer felt.
The width of the viscoplastic boundary layers decays algebraically with the
bulk Bingham number, Wvpbl ∝ Bn−0.39±0.015

bulk - the full line in Fig. 13(c). This
scaling relationship is rather close to the one proposed by Piau and Debiane

Wvpbl ∝ Bn
− N

N+1

bulk = Bn−0.428
bulk , [Piau and Debiane(2004)].

It is interesting at this point to compare the width of the top/bottom
viscoplastic boundary layers to those of the mixing boundary layers illustrated
in Fig. 10 and discussed in Sec. 3.1. We note that, regardless the value of
the bulk Bingham number, the width of the viscoplastic boundary layer is
roughly twice larger than that of the mixing boundary layers. This indicates
that, whereas in the Newtonian case the boundary layers for the passive scalar
are controlled by the magnitude of the bulk Péclet number, in the viscoplastic
case they are controlled by the bulk Bingham number, Bnbulk.

We now turn our attention to the dependence of the Eulerian flow topol-
ogy on the bulk Bingham number and correlate the changes in the flow
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(a) (b)

(c)

Fig. 13 (a) Time averaged transverse profiles of the axial velocity
〈vx(x = L, y, t)〉15T≤t≤20T at the outlet of the channel. (b) Time averaged transverse pro-

files of the transverse velocity 〈vy(x = L, y, t)〉15T≤t≤20T at the outlet of the channel. In
each panel the highlighted areas indicate the level of fluctuations of the velocity component
around its mean. The vertical bars overlapped onto the curves mark the edges of the central
un-yielded plug. Except for the Newtonian data set, the power law index is N = 0.75.
The symbols refer to the value of the Bingham number: square - Bnbulk = 0, N = 0.75,
down triangle - Bnbulk = 5, left triangle - Bnbulk = 3.5, circle - Bnbulk = 7, right triangle
- Bnbulk = 10.6, plus - Bnbulk = 14.1, star - Bnbulk = 15.9, pentagram - Bnbulk = 21.2,
hexagon - Bnbulk = 26.5. (c) Dependence of the width of the yielded zones (or viscoplastic
boundary layers) observed at the channel outlet on the bulk Bingham number Bnbulk. The
full line is a power law fitting function, Bn−0.39±0.015

bulk . The shaded area highlights the
confidence bounds of the power law fit. In each subplot the color map indicates the value
of Bnbulk.

kinematics with the evolution of the mixing efficiency as the bulk Bingham
number is increased. A practically convenient way of describing the Eule-
rian flow topology is to illustrate the streamlines. We first illustrate in Fig.
14 streamlines computed for the Newtonian reference case at several time
instants ranging in between t = 15T and t = 16T . The rationale behind this
choice is two-fold. First, as illustrated in Fig. 5(b) a dynamical steady state
of the mixing is observed only for t > 15T . Second, as the periodic forcing
induces a time periodic behavior of the flow fields it is sufficient to discuss the
topology solely during a period T of the external forcing. One can notice that
the flow topology is different at each time instant depending on the velocity
of the rotating arc-walls as well as on their sense of rotation. At each time
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instant one observes elliptic points highlighted in Fig. 14 by full circles. The
elliptic flow regions are formed due to the rotation of the arc-walls. Within
these regions the fluid is re-circulated and one can expect that the striations
of the passive scalar distributions illustrated in Fig. 4 are thus generated. As
the time progresses one can notice the destruction of the re-circulating regions
previously formed and the emergence of new re-circulation zones. This alter-
nating destruction and re-formation of the elliptical regions leads to crossing
of the streamlines which locally enhances the mixing process. In the vicinity
of the static channel walls one can observe the formation of parabolic points
highlighted by stars in Fig. 14. This is due to the non-slip boundary conditions,
[Gouillart et al(2008)Gouillart, Dauchot, Dubrulle, Roux, and Thiffeault,
Younes(2020), Younes et al(2022)Younes, Moguen, El Omari, Burghelea, Le Guer, and Castelain].
In panel (e) one observes a hyperbolic point highlighted by a square. The
alternation of hyperbolic and elliptical flow regions is a hallmark of laminar
chaotic advection and is responsible for the stretching and folding of fluid
elements which ultimately translates into efficient mixing.

In order to understand the impact of the yield stress behavior on the flow
topology we present in Fig. 15 streamlines computed for the largest yield stress
case investigated at the same time instants illustrated for the Newtonian case.
As compared to the Newtonian case, several striking differences are observed.
First, the elliptical zones observed in the vicinity of the rotating arc-walls are
significantly smaller in size and sometimes (e.g. in panels (b-d)) not observed
at all. This can be intuitively explained by the presence of yield stress which
inhibits the stretching and folding of the fluid elements. At this point one can
only speculate that un-yielded material elements may exist at certain time
instants within the “active” flow region which ultimately leads to inefficient
mixing. A more systematic description of the dynamics of the solid and fluid
material units will be given in Sec. 3.2.4.

One can summarise the observations described in this section by noting
that the presence of the yield stress significantly alters the Eulerian topology
of the flow fields mainly by inhibiting the stretching and folding of the material
elements which corroborates well with the loss of the mixing efficiency observed
upon a gradual increase of the bulk Bingham number Bnbulk in Sec. 3.1.

The process of chaotic advection in the flow is driven by a local alternation
of shear, extension and rigid body rotation in the flow. Each of these three
basic flow types is influenced by both the forcing protocol and the rheological
behavior of the material. It is therefore interesting to quantify the relative
contribution of each basic flow type during flows at various Bingham numbers.

The relative contributions of the shear, extension and rigid body rotation
to the chaotic flow may be quantitatively assessed by the defining the non-
dimensional flow parameter λ defined implicitly via [Fuller and Leal(1981)]:

∇v = γ̇

 0 1 0
λ 0 0
0 0 0

 (18)
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Fig. 14 Illustration of flow topology for the Newtonian reference case at several time
instants indicated in the top inserts. The colour map refers to the magnitude of the flow
speed U . The colour bounds have been purposely chosen to highlight features within the
”active” flow region. The symbols highlight the special points of the flow: squares- hyper-
bolic points, circles - elliptical points, stars - parabolic points.

Here γ̇ stands for the second invariant of the rate of strain tensor and can be
computed from individual velocity fields U = (ux, uy) according to:

γ̇ = (2D : D)
1/2
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(19)
Explicitly, the flow type parameter λ may be written in terms of the second

invariant of the rate of deformation tensor γ̇ and the vorticity ω:
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Fig. 15 Illustration of flow topology for the largest yield stress case investigated (Bnbulk =
26.5, N = 0.75) at several time instants indicated in the top inserts. The colour map refers
to the magnitude of the flow speed U . The colour bounds have been purposely chosen to
highlight features within the ”active” flow region. The symbols highlight the special points
of the flow: squares- hyperbolic points, circles - elliptical points, stars - parabolic points.

λ =
γ̇ − ω
γ̇ + ω

(20)

where ω =
∂uy

∂x −
∂ux

∂y is the magnitude of the vorticity.
A pure straining flow corresponds to λ→ 1, a pure shear flow corresponds

to λ→ 0 and the rigid body rotation corresponds to λ→ −1.
The analysis of the coupling between the flow type and the bulk Bing-

ham number is summarized in Fig. 16. The dependence of the space and time
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(a) (b)

Fig. 16 (a) Illustration of time averaged flow type parameter 〈λ(x, y, t)〉t computed for
various bulk Bingham numbers detailed in the top inserts. (b) Dependence of the space and
time averaged flow type parameter 〈λ(x, y, t)〉x,y,t on the bulk Bingham number Bnbulk.

averaged flow parameter 〈λ(x, y, t)〉x,y,t is presented in Fig. 16(a) As the bulk
Bingham number Bnbulk is gradually increased, several tendencies in the dis-
tributions of the flow type parameter may be noticed. Regardless the value of
the Bingham number, the regions of the flow close to the solid boundaries of
the channel are dominated by shear. At zero Bingham, extensional zones are
visible within the active flow region contained in between the rotating arc-
walls. As the Bingham number is increased, a rigid body rotational component
becomes visible in these zones. We believe this effect relates to the emergence
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of solid material elements which do not deform but undergo a rigid body rota-
tion. A systematic analysis of the sizes of these blobs will be presented in the
upcoming Sec. 3.2.4 in connection to Fig. 20.

The dominance of a certain flow type be quantitatively assessed by mon-
itoring the space and time averaged flow type parameter 〈λ(x, y, t)〉x,y,t, Fig.
16(b). It is clear from this plot that the overall effect of the gradual increase
of the Bingham number is a monotonic decrease of the extensional flow com-
ponent which gets gradually replaced by the shear and the rigid body body
translation.

3.2.2 Eulerian time correlations for various bulk Bingham
numbers

As we have seen in Sec. 3.1 that the dynamics of the passive scalar in the bulk
of the flow differs significantly from that observed within the boundary layers,
we shall focus on the temporal auto-correlations of the flow fields and of the
passive scalar within both the bulk of the flow and in the boundary layers and
the relationship between the characteristic times of correlation and the bulk
Bingham number Bnbulk.

As a statistical measure of the mixing we compute the time auto-correlation
functions of the passive scalar fluctuations for each value y of transverse
coordinate:

F (y, τ/T ) =
〈C ′ (y, t/T )C ′ (y, (t+ τ) /T )〉15≤t/T≤20

Cstd(y)2
(21)

where C ′ (y, t) = C (y, t) − 〈C(y, t)〉15≤t/T≤20 and Cstd(y) is the standard
deviation of the concentration fluctuations at the transverse position y com-
puted over the last five periods of the mixing process. The correlation functions
defined by Eq. 21 are computed using the last five periods of the space-time
diagrams presented in Fig. 11 for each bulk Bingham number Bnbulk explored
through the paper.

We illustrate in Fig. 17 time correlations averaged within the mixing bound-
ary layers (the full lines) and within the bulk of the flow (dashed lines). For this
computation we have used the space-time plots previously presented in Figs.
5, 8 for the Newtonian reference case and for the highest yield stress explored
(Bnbulk = 26.5, N = 0.75). As a reminder, the extent of the mixing boundary
layer for each Bnbulk was determined according to the procedure detailed in
Sec. 3.1 and illustrated in Figs. 6, 9.

For both cases illustrated in Fig. 17, the passive scalar fluctuations are
longer correlated within the mixing boundary layer (full lines) than in the
bulk of the flow (dashed lines). The strongly oscillating tails of the correlation
functions relate to the oscillatory nature of the external forcing. Next, using
the averaged bulk/boundary correlation functions, we assess the corresponding
correlation times τc as the first zero crossing marked by the full symbols in
Fig. 17.
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(a) (b)

Fig. 17 Time auto-correlation functions of the passive scalar fluctuations averaged within
the mixing boundary layers (full lines) and within the bulk of the flow (dashed lines) com-
puted for the reference Newtonian case - panel (a) and for the highest yield stress case
explored, Bnbulk = 26.5, N = 0.75 - panel (b). In both panels the full symbols mark the
first zero crossing of the auto-correlation functions which defines the characteristic time of
correlation of the passive scalar fluctuations.

Fig. 18 Dependence of the correlation times of the passive scalar fluctuations computed in
the bulk of the flow (blue circles) and within the boundary layers (orange squares) on the
bulk Bingham number Bnbulk.

We summarise the discussion of the temporal correlations of the passive
scalar fluctuations in Fig. 18 where we display the dependence of correlation
times computed within the bulk of the flow (squares) and within the boundary
layers (circles) on the bulk Bingham number Bnbulk.

Within the mixing boundary layer the correlation times are practically
insensitive to the bulk Bingham numbers - the squares in Fig. 18. The bulk
correlation times, however increase with Bnbulk reaching a plateau for high
values of the yield stress. This corresponds to the progressive decrease of the
mixing efficiency triggered by the presence of the yield stress illustrated in Fig.
12.

3.2.3 Spatial spectra of passive scalar fluctuations

The efficient mixing of a passive tracer in a hydrodynamic system relates to
the progressive generation of small spatial scales of the distributions of the
passive scalar by successive stretching and folding of fluid elements or, in other
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words, to a cascade of passive scalar fluctuations 2 from the large (integral)
scale down to the small (diffusive) scale. In the Fourier space this translates
into a progressive decay of the power of the spatial fluctuations of the passive
scalar concentration from small wave numbers corresponding to the integral
scale at each the passive scalar is injected to high wave numbers which, in the
case of efficient mixing, eventually reach the diffusive range.

We illustrate in Fig. 19 comparative computations of the spatial spectra
of the fluctuations of the passive scalar for the reference Newtonian case -
the curve labelled by a square, and for the highest yield stress case studied
(Bnbulk = 26.5, N = 0.75) - the curve labelled by a circle. For the reference
Newtonian case a power law scaling P ∝ k−1 indicated by the dashed line
in Fig. 19 is observed within a narrow band of wave numbers k ∈ [20, 75].
This algebraic scaling behavior is consistent with the Batchelor regime of mix-
ing and originates from the temporal randomness and the spatial smoothness
of the flow fields. For larger wave numbers a steeper decay of the spectrum
of fluctuations is observed. A similar result has been reported by Jullien
and her coworkers [Jullien et al(2000)Jullien, Castiglione, and Tabeling] and
by [Jullien(2003)] and was attributed to the presence of the Taylor dispersion
that alters the spatial distribution of the passive scalar fluctuations.

In the presence of yield stress a strikingly different spatial spectrum of the
passive scalar observed. Within the narrow band of wave numbers where a
power law decay was observed in the Newtonian case a sharp peak is observed
in the presence if yield stress - the curve labelled by a circle in Fig. 19. This
observation is consistent with the spatial periodicity of the passive scalar dis-
tributions observed along the horizontal direction for the yield stress case
illustrated in Fig. 7.

On a purely intuitive basis so far, one can solely associate the emergence
of the local maximum the power spectrum of the passive scalar fluctuations
in the presence of the yield stress to an additional characteristic space scale
associated to the viscoplastic behavior.

To put this hypothesis to a test, we focus in the upcoming section on the
space-time dynamics of the un-yielded materials being transported past the
”active” mixing zone.

3.2.4 Space-time dynamics of the yielded/un-yielded
material elements at various Bingham numbers

While advancing downstream within the mixing channel, the material elements
are yielded only partially and, at each axial position downstream, solid and
fluid material elements coexist. As illustrated and discussed in Sec. 3.2.1, at the
exit channel the central part of the flow is dominated by a rigid plug with a size
that increases gradually as the bulk Bingham number is increased. Un-yielded
flow regions do exist within the central part of the mixer in the vicinity of the
arc-walls but their characteristic sizes are smaller than that of the central plug

2Not to be confused with the concept of turbulent energy cascade which is a hallmark of the
inertial turbulence and does not make the object of the current investigation.
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Fig. 19 Spatial power spectra of the fluctuations of the passive scalar computed for the
Newtonian reference case (the data set marked by a square) and for the largest yield stress
case investigated. The dashed line is a guide for the eye, k−1. The physical meaning of the
spectral bounds kmin, kmax indicated by the vertical arrows will be clarified in Sec. 3.2.4.

observed at the channel outlet. This can be seen in Fig. 3 which exemplifies
the adaptive grid and the detection of the yield surfaces highlighted in red.
This is because the maximal local rates of strain induced within the ”active”
mixing region by the external forcing are significantly larger that the strain
rate at the exit of the channel, γ̇central = Kγ̇outlet.

We focus in the following on the statistics of the sizes of the un-yielded
blobs located within the central region of the flow (meaning that we disregard
in this analysis the central plug formed at the channel’s outlet which has been
discussed already in Sec. 3.2.1 and illustrated in Fig. 13).

The additional mesh adaptivity based on the local value of the viscosity
(see Fig. 3 and the description in Sec. 2.3) allows one to identify from each
flow field the un-yielded zones defined by values of the local viscosity satisfying
η ≥ 100 and build up the statistics of their sizes solely accounting for the last
five periods of the simulation.

We focus in the following on the statistics of sizes of such un-yielded
blobs located within the ”active” mixing zone located in between the rotating
arc-walls. We illustrate several instantaneous distributions of such un-yielded
elements in Fig. 20.

By a simple visual inspection of the data presented in Fig. 20 one may
note that the size of the un-yielded material blobs is smaller than that of the
of the central plug observed near the outlet and detailed in Figs. 13(a), 13(c).
This was expected as the forcing Bingham number is smaller than the bulk
Bingham number Bnf ≤ Bnbulk meaning that the yielding process is more
effective within the ”active” mixing zone than near the channel outlet. Near the
channel inlet, a rigid plug is periodically formed (e.g. at t/T = 15 and t/T =
16) and destroyed (e.g. at t/T = 15.5 and t/T = 16.5). On the other hand,
the central plug observed at the channel outlet changes much less during the
mixing process. This is due to the fact that the ”active” mixing zone is closer
to the channel inlet than to the channel outlet. The periodicity in the dynamics
of the un-yielded plugs is due to the periodicity of the external forcing imposed
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t/T=15.0

t/T=15.501

t/T=16.002

t/T=16.503

Fig. 20 Illustration of un-yielded zones at Bnbulk = 26.5 and several time instants indicated
in the top inserts. The solid blobs located within the ”active” mixing zone and accounted
for in the size statistics are highlighted by a red contour while the others are highlighted by
a yellow contour.

by the motion of the arc-walls. We exemplify in Fig. 21 the probability density
function (pdf) of the sizes ∆R of the un-yielded blobs located in ”active”
mixing zone for the highest yield stress case investigated, Bnbulk = 26.5. The
characteristic size of each un-yielded blob has been computed using its area
A and perimeter P as ∆R = 4A

P . The statistics of the un-yielded blob sizes
have been computed on an ensemble of 5016 blobs detected during the last five
periods of the mixing process. We observe an exponential tail of the pdf (see
the full line in Fig. 21) but we do not have a clear theoretical understanding
of this observation. The average size of the un-yielded blobs for this value of
the bulk Bingham number is ∆Rav = 0.071, the median ∆Rmedian = 0.03 and
the maximum blob size is ∆Rmax = 0.44. The statistics of the blob sizes allow
one to the define the two wave numbers highlighted by the vertical arrows in
Fig. 19: kmin = 2π

∆Rmax , kav = 2π
∆Rav .

The analysis of the spectra of fluctuations of the passive scalar concen-
tration presented in Sec. 3.2.3 combined with the analysis of the statistics of
sizes of the un-yielded material elements passing through the ”active” mixing
region allows one to decode the physical picture of the dramatic loss of the
mixing efficiency triggered by the presence of yield stress as follows.

The presence of un-yielded blobs brings into the hydrodynamic problem
additional characteristic space scales related to the sizes of these blobs. In the
Fourier space, this translates into the emergence of a band of wave numbers
[kmin kav] where the cascade of passive scalar from the integral scale (defined
by the width W of the mixer) towards the diffusive range is truncated. This
truncation of the energy transport of the passive scalar fluctuations from large



Springer Nature 2021 LATEX template

Active chaotic mixing of yield stress fluids in an open channel flow 33

0.0 0.1 0.2 0.3 0.4
R

100

101

102

103

pd
f

Fig. 21 Probability density function of the sizes ∆R of the un-yielded blobs located in
”active” mixing zone. The data refer to the highest yield stress case investigated, Bnbulk =
26.5. The line is a guide for the eye, e−13∆R.
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Fig. 22 Dependence of the averaged size of the un-yielded blobs observed during the last
five periods of the mixing process within the ”active” mixing zone on the bulk Bingham
number Bnbulk. The shaded area marks the standard deviation of the blob sizes around the
mean value.

scales to small scales ultimately leads to the dramatic loss of mixing detailed
in Sec. 3.1.

To conclude the analysis of the statistics of the sizes of un-yielded material
elements, we present in Fig. 22 the dependence of the average blob size ∆Rav

on the bulk Bingham number Bnbulk. The shaded region indicates the standard
deviation ∆Rstd of the blob sizes around their mean value. As Bnbulk is grad-
ually increased, both the average blob size ∆Rav and the standard deviation
∆Rstd increase.

3.3 Lagrangian description of the flows at various
Bingham numbers

The key physics underlying the mixing process triggered by the periodic forcing
of the rotating arc-walls relates to stretching and folding of material elements
down to spatial scales that are sufficiently small so the molecular diffusion
may be effective in mixing. To better understand the interplay between the
mixing and the yield stress behavior we turn our attention in this section to a
Lagrangian frame analysis of the flow at various bulk Bingham numbers.
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3.3.1 Statistics of the residence times

The most straightforward Lagrangian frame analysis of the flow relates to
assessing the statistical distribution of the residence times of fluid particles
within the flow channel. The residence time of a particle is defined as the time
spent by the particle inside within the mixing channel [Nauman(2008)]. In the
absence of laminar chaotic advection, the ensemble average of the residence
times is controlled by the characteristic advection time ta = L

Umax
. In the

presence of laminar chaotic advection triggered by the periodic forcing of the
flow, there will exist fluid particles that spend within the mixing channel a
time significantly longer than the advection time ta. We are interested in the
following in understanding how the yield stress effects quantified by the bulk
Bingham number Bnbulk influence the statistical distribution of the residence
times.

To assess the statistics of the distribution of residence times we follow sev-
eral steps. First, we consider N = 132 867 particles evenly distributed (along a
regular grid) within the flow channel at t = 0. The Lagrangian trajectories of
each particle are obtained using the velocity fields v by numerical integration:{

ẋ(t) = v [x(t), t] ,

x(0) = x0,

where x is the position vector of the particle.
It is of particular importance here to account in the Lagrangian statistics

for all the time steps which, bearing in mind that we deal with an open channel
flow, can only be done be feeding back at the channel inlet the particles exiting
the mixer which is equivalent to a periodic Lagrangian boundary condition. We
present in Fig. 23 instantaneous positions of such Lagrangian tracers at several
time instants (scaled by the period T of the external forcing) indicated in the
top inserts. The false colour map was added for the clarity of the visualisation
and refers to the axial position x of the tracers at t = 0 (see top panel).
Second, to compute the statistical distributions of residence times, we focus on
the dynamics of a small subset of Lagrangian tracers initially located within
a narrow band of width ∆x = 0.1 near the channel inlet (x = −0.5) and
construct the statistical ensemble of residence times by computing the time
each particle needs to exit the channel. As the exiting particles are continuously
fed back through the channel inlet, we are able to account in the statistics of
the residence times for all the time steps of the simulation which we believe it
is crucial for a reliable statistical description of the residence times. For each
particle that is fed back through the channel inlet the timer is reset to zero
and the total time the particle spends within the channel is measured once
more. This procedure allows to one build a statistically relevant ensemble of
the residence times and ultimately compute the probability distributions of
the residence times in the flow during the entire mixing process. We illustrate
in Fig. 24 probability distributions of the residence times computed according
to the procedure described above for various bulk Bingham numbers Bnbulk



Springer Nature 2021 LATEX template

Active chaotic mixing of yield stress fluids in an open channel flow 35

Fig. 23 Instantaneous positions of Lagrangian tracers evenly distributed within the mixing
channel at t = 0 at different time instants indicated in the top inserts. The false color map
refers to the axial position x of the initial tracers. The data refer to the reference Newtonian
case, Bnbulk = 0, N = 1.

indicated in the top inserts. The residence times are scaled by the period
of the forcing, tres/T . The vertical dotted lines in each panel indicate the
normalised advection time, ta

T = L
UmaxT

. For the Newtonian reference case
(Bnbulk = 0, N = 1) a broad distribution of residence times spanning an
interval of roughly twelve periods of rotation is observed. Some particles spend
within the mixing channel a time as long as 12 periods of rotation of the arc-
walls which corroborates well with the good mixing observed in this case (see
Fig. 5). As the Bingham number is gradually increased the tracers spend a
significantly shorter time within the mixer and the statistical distribution of
residence times narrows, Fig. 24. This corresponds to the dramatic loss of both
the mixing efficiency and homogeneity of the mixture illustrated in Fig. 12.
Quite interesting on the other hand is that, for a small value of the Bingham
number (Bnbulk = 3.5) and in the presence of a mild shear thinning behavior
N = 0.75 one still obtains a broad distribution of residence times. As compared
to the Newtonian reference case, the range t/T ∈ [7, 11] of the histogram
is now filled in more or less uniformly which is a signature of changes in
the flow kinematics induced by the shear thinning behavior. This observation
corroborates well with the good mixing behavior illustrated in Fig. 12 for this
value of Bnbulk.
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Fig. 24 Histograms of the residence times for various bulk Bingham numbers Bnbulk indi-
cated in the top inserts. In each panel the vertical dashed line marks the reduced advection
time ta/T .

As the the bulk Bingham number is increased past the critical value
Bncrit

bulk ≈ 5 which corresponds to the transition to poorly mixing flow states
the pdf’s of the residence time narrow progressively and their peak is shifted
towards low values of tres/T . Corresponding to these flow states, in average, the
particles spend a significantly shorter time within the mixing channel (of the
order of tres/T ≈ 4) than in the case of a fully developed chaotic flow. This is a
first indication that the presence of yield stress inhibits the chaotic Lagrangian
frame dynamics. A more systematic analysis of this issue is presented in the
upcoming section.
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3.3.2 Analysis of the Finite Time Lyapunov Exponents
(FTLE′s)

A quantitative measure of the degree of chaos of a hydrodynamic system
is given by the largest Lyapunov exponent initially introduced by Dr. Alek-
sandr Mikhailovich Lyapunov (in a context seemingly unrelated to the chaotic
dynamics of a hydrodynamic system) as a tool of studying the stability of solu-
tions of ordinary differential equations describing the trajectories of rotating
rigid bodies (with astronomy related applications in mind), [Lyapunov(1885)].

Given two fluid particles initially located at the positions x0 and x0 + δx0

the Lyapunov exponents LE are defined by the logarithmic rate of separation
of their trajectories with time:

LE = lim
t→∞

lim
||δx0||→0

1

t
log
||δx(t)||
||δx0||

(22)

where ||δx(t)|| is the distance between particles observed at the time instant t.
In practical cases when one needs to assess the degree of chaos of a hydro-

dynamic system based on the analysis of either experimentally measured or
numerically computed flow fields the original definition of the Lyapunov expo-
nents given by Eq. 22 is difficult to use in a physically meaningful manner: the
infinite time limit can not be attained and nor can be infinitely small parti-
cle separations x0. A second (and perhaps the most prohibitive) difficulty in
employing the original definition of the LE′s given by Eq. 22 relates to the
finite size of the hydrodynamic system we investigate. Thus, within a finite
time, initially close fluid particles might reach the viscoplastic boundary lay-
ers and get trapped within for long time. In this case the physical meaning of
the logarithmic rate of separation becomes elusive and extra caution is needed
while analysing such data.

A practical approach able to circumvent these difficulties is the Finite Time
Lyapunov Exponents approach which, in a nutshell, consists of monitoring
the rates of separation of a set of tracers initially located at the positions
x0 during finite times and perform an appropriate statistical analysis which
would asymptotically yield the LE’s. The first step of this approach consists
of computing the flow map defined by:

F t
t0 : x0 7→ xt(t0,x0), (23)

where the finite time t− t0 is chosen in relation to a characteristic time scale
of the hydrodynamic system (the period of the external forcing in our case).

The right Cauchy-Green strain tensor is defined as:

Ct
t0(x0) =

[
∇F t

t0(x0)
]T ∇F t

t0(x0), (24)

where T denotes the transpose. The eigenvalues λi(x0; t0, t) (i = 1, 2) of
Ct
t0(x0), denoted by λi(x0) for the simplicity of the notation satisfy:
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0 < λ1(x0) ≤ 1 ≤ λ2(x0), (25)

The finite-time Lyapunov exponents (FTLE) at a given position x0 over
the time interval [t0, t] is defined as

Λtt0(x0) =
1

|t− t0|
log
√
λ2(x0). (26)

If t > t0 the Λtt0(x0) is referred to as “forward” FTLE while if t < t0 as
“backward” FTLE.

To compute the spatial distributions of FTLE′s we use the algorithms
developed within the group of Professor George Haller and their Matlab imple-
mentation, [Onu et al(2015)Onu, Huhn, and Haller]. Here we summarise only
briefly the main steps of the Haller approach. The first step consists of com-
puting the flow map according to Eq. 23. This is done by computing the
trajectories of the particles located at the positions x0 at the time instant t0
during the time interval [t0, t] via numerical integration of the flow fields. For
all FTLE’s calculations illustrated herein we have used a fixed integration time,
ti = |t− t0| = T/4. Next, using the flow map we compute the right Cauchy-
Green strain tensor according to Eq. 24 and its eigenvalues λ1,2. Finally, the
FTLE’s are computing according to Eq. 26.

We exemplify for the Newtonian reference case (Bnbulk = 0, N = 1) com-
putations of the spatial distributions of the forward (top panel) and backward
(bottom panel) FTLE′s in Fig. 25. We have purposely chosen for the illus-
tration of these computations the time instant t/T = 15.67 which, as we are
going to illustrate in the upcoming Fig. 27, corresponds to a maximum of the
space averaged FTLE′s.

For comparison, we illustrate in Fig. 26 distributions of the FTLE′s com-
puted at the same time instant as for the Newtonian case for the highest
yield stress case explored so far, (Bnbulk = 26.5, N = 0.75). Corresponding to
the plug flow observed at the channel outlet the FTLE′s are practically zero
except for the narrow regions located near the channel boundaries which relate
to the viscoplastic boundary layers highlighted in Fig. 13(c). This once more
indicates that after advancing past the ”active” mixing region the flow pat-
terns are practically frozen. Yet the most striking differences with respect to
the reference Newtonian case are observed within the ”active” mixing region.
In the viscoplastic case the FTLE′s within this region are significantly smaller
than in the Newtonian case and the deformation is localised in the vicinity of
the rotating arc-walls. This observation corroborates well with the observation
of un-yielded material blobs within ”active” mixing region exemplified in Fig.
20. Thus, one may conclude that the presence of such un-yielded material ele-
ments depletes the Lagrangian chaotic behavior which ultimately translates
into the drastic decrease of the mixing efficiency illustrated in Fig. 12 and
described in Sec. 3.1.

The computation of the spatial distributions of the FTLE’s allows one to
compute the maximum (over space) FTLE’s Λmax and the space averaged
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Fig. 25 Example of computations of the spatial distributions of the forward (top panel)
and backward (bottom panel) FTLE′s at t/T = 15.67. The data refer to the Newtonian
reference case (Bnbulk = 0, N = 1).
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Fig. 26 Example of computations of the spatial distributions of the forward (top panel)
and backward (bottom panel) FTLE′s at t/T = 15.67. The data refer to the largest yield
stress case explored (Bnbulk = 26.5, N = 0.75).

value Λav at each time instant during the last five periods of the mixing process
t ∈ [15T, 20T ]. These quantities may be regarded as an indicator of the degree
of chaos in the hydrodynamic system. We illustrate time series of Λmax and
Λav computed for the Newtonian reference case (Bnbulk = 0, N = 1) in Fig. 27.

The dependence of the maximum (over the field of the field of view) and
the space averaged Lyapunov exponents averaged during the five periods of
the mixing process is shown in Fig. 28.

Corresponding to Bnbulk = 3.5 one observes the largest values of Λmax and
Λav. This corroborates well with the good mixing observed for this value of the
bulk Bingham number in Fig. 12. As the bulk Bingham number is increased
past this value a monotonic decrease of the FTLE’s is observed which relates
to the loss of the mixing efficiency. Quite interestingly, a linear decay of the
space and time averaged FTLE’s with the bulk Bingham number is observed
in Fig. 28(a). We do not have a clear theoretical explanation of this result.
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Fig. 27 Top: Time series of the space averaged FTLE′s, Λav . Bottom: Time series of the
maximum (over space) FTLE’s, Λmax. In both panels the square marks the forward FTLE
time series while the circle the backward one. The data refer to the Newtonian reference
case (Bnbulk = 0, N = 1).

4 On the possibility of increasing the mixing
efficiency at high Bingham numbers

The results detailed in Sec. 3.1 indicate a significant role of the yield stress on
the efficiency of the mixing process. This is mainly due to dramatic changes
in the flow kinematics triggered by the presence of un-yielded material ele-
ments which, for the highest bulk Bingham number Bnbulk we have explored
are not entirely yielded even in the central region of the flow where the stir-
ring is the most effective. Moreover, even the material elements partially yield
within the central part of the mixer, they quickly return to an un-yielded state
while being transported little further downstream meaning that, when pos-
sible, the mixing process is mainly carried on within the central part of the
mixer. From a practical perspective, we believe it is interesting to explore pos-
sibilities of alleviating the dramatic loss of mixing efficiency triggered by yield
stress behavior. To this aspect we dedicate the current section.

4.1 On the possibility of increasing the mixing efficiency
by the addition of a fourth stirring element

A first (and undoubtedly rather naive) solution is to add to the mixer a fourth
rotating arc-wall on the same channel side as the top rotating arc-wall shown
in Fig. 1. This is schematically illustrated in Fig. 29. As a forcing protocol,
this fourth arc-wall will follow the motion of its closest neighbour located on
the top side of the channel. Adding a fourth active element without modifying
the forcing protocol (neither the forcing amplitude K nor St) is not expected
to trigger inertial instabilities and, consequently, its contribution to the global
energetic cost associated to the mixing process remains reasonable.

The results on the mixing using the 4 rotating arc-walls variant of the mixer
and the highest yield stress (Bnbulk = 26.5, N = 0.75) are summarised in Fig.
30. These results need to be compared to those obtained for the 3 rotating
arc-wall configuration illustrated in Fig. 8.
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Fig. 28 (a) Dependence of the maximum (over space) Lyapunov exponent averaged over the
last five periods of the mixing process on the bulk Bingham number Bnbulk. (b) Dependence
of the spaced averaged Lyapunov exponent averaged over the last five periods of the mixing
process on the bulk Bingham number Bnbulk.

Fig. 29 Schematic representation of the 4 rotating arc-walls mixer (in scale).

As compared to the result obtained with the three rotating arc-walls
configuration, the addition of a fourth rotating arc-wall leads to a modest
improvement in the mixing efficiency in the sense that the steady state value
of the mixing indicator now drops to Cav

std = 0.285 from Cav
std = 0.3, Fig. 30(b).

A more significant advantage of adding a fourth rotating arc-wall relates to
the overall homogeneity of the mixture. Whereas for the initial configuration



Springer Nature 2021 LATEX template

42 Active chaotic mixing of yield stress fluids in an open channel flow

(a)

(b)

Fig. 30 (a) Space time plots obtained for the highest yield stress case (Bnbulk = 26.5,
N = 0.75) at the centre of 4 rotating arc-walls mixer (top panel) and at its exit of the mixer
(bottom panel). (b) Time series of the mixing indicator Cstd obtained for the highest yield
stress case (Bnbulk = 26.5, N = 0.75) at the centre of the mixer of the 4 rotating arc-walls
mixer (circle) and at the exit of the mixer (square). The full line is an exponential fitting
function.

it was obtained δCstd = 0.045 we now obtain δCstd = 0.032 meaning the
homogeneity of the mixture increased by roughly 25%.

4.2 On the possibility of increasing the mixing efficiency
increasing the strength of the external forcing

An alternative solution to improving the poor mixing observed in the pres-
ence of the yield stress consists of gradually increasing the strength of the
external forcing, (the amplitude Ω0 of the rotating drums) while keeping the
initial geometric configuration and the main flow parameters unchanged. This
method should be employed with caution as it leads to an increase of the forc-
ing Reynolds number Ref and trigger inertial instabilities which would lead to
a drastic increase of the flow resistance which, from an energetic standpoint,
is undesirable in the context of practical applications.

To test this idea, we have gradually increased the forcing amplitude from
K = 16 (the value used through the bulk of the paper which corresponds to
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Fig. 31 Space-time diagrams of the mixing process at the exit of the mixer for various forc-
ing schemes summarised in the top inserts (see the text for the description of the numerical
setting). The bottom panel refers to the reference Newtonian case already discussed through
the manuscript.

Ref = 45 for the reference Newtonian case and Ref = 10.5 for the largest yield
stress case investigated through the paper) to K = 62. As we are interested
here only in the largest yield stress case investigated Bnbulk = 26.5, the largest
forcing Reynolds number is Ref = 116.

To quantitatively assess the improvement of the mixing obtained by
increasing the strength of the stirring, we present in Fig. 31 the corresponding
space time diagrams acquired at the exit of the mixer. For reference, the bot-
tom space time diagram corresponds to the Newtonian case already discussed
through the paper.

The time series of the mixing indicator corresponding to all the cases
illustrated in Fig. 31 are displayed together in panel (a) of Fig. 32.

The dependence of the plateau value Cav
std of the time series of the mixing

indicator on the forcing Reynolds number Ref is presented in panel (b) of Fig.
32.

As the forcing Reynolds number is gradually increased above the value
Ref ≈ 50 a better is observed in terms of both the plateau value of the time
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Fig. 32 (a) Time series of the mixing indicator Cstd obtained at the exit of the mixer for
the forcing schemes illustrated in Fig.31: (b) Dependence of the mixing efficiency parameter
Cav

std on the forcing Reynolds number Ref . The corresponding forcing Bingham numbers Bnf

are indicated in the text annotations. The shaded regions highlight the level of fluctuations
of the mixing indicator around its dynamical steady state value, δCstd. (c) Dependence of
the averaged size of yielded blobs ∆Rav on the forcing Reynolds number Ref for a fixed
bulk Bingham number Bnbulk = 26.5 and a fixed bulk Reynolds number Rebulk = 0.05.
The full line is a linear fit. In panels (a, b) the symbols refer to the parameters of the
external forcing: square - K = 16, Bnf = 3.3, Ref = 10.5, left triangle - K = 24, Bnf = 2.4,
Ref = 21.8, circle - K = 53, Bnf = 1.35, Ref = 86, star - K = 62, Bnf = 1.17, Ref = 116,
up triangle - K = 16, Bnf = 0, Ref = 45.

series of the mixing indicator and its level of fluctuations around its mean,
already stated through the paper is an indicator of the homogeneity of the
mixture. Quite interestingly, increasing Ref past Ref ≈ 80 does not seem to
improve the mixing any further.

Further insights into the increase of the mixing efficiency and the homo-
geneity of the mixture upon increasing the forcing Reynolds number may be
gained by monitoring the size ∆Rav of the solid blobs averaged over the last
five periods of the mixing process within the ”active” mixing region, panel
(c) of Fig. 32. A monotonic and roughly linear decrease of average size of un-
yielded blobs ∆Rav with Ref is observed. Thus, upon a graduate increase of
the forcing strength, the spectral peak which blocks the energy transfer from
the integral scale to the diffusive scales illustrated in Fig. 19 tends to vanish
corresponding to a full yielding of the material in ”active” mixing region which
explains why the efficient mixing is gradually restored.

5 Conclusions, outlook

A systematic numerical study of the impact of vis-
coplastic rheological behavior on the active mixing within
a rotating arc-walls channel recently proposed in Ref.
[El Omari et al(2021)El Omari, Younes, Burghelea, Castelain, Moguen, and Le Guer]
by laminar chaotic advection is presented. The central finding of the paper
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detailed in Sec. 3.1 is that the presence of yield stress drastically alters the
spatial distributions of the concentration of the passive scalar Figs. 4, 7 as well
as the space-time dynamics of the concentration distributions Figs. 5(a), 8(a).

As the yield stress effects are gradually increased past a critical value of
the bulk Bingham number Bncbulk ≈ 5 while maintaining the same flow condi-
tions (inflow speed, Pe, forcing ratio K) and stirring protocol an abrupt and
significant decrease of both the mixing efficiency and the homogeneity of the
mixture is observed, Fig. 12. The non-monotonic behavior of the mixing effi-
ciency may be understood in terms of a competition between two phenomena
with opposite trends observed when Bnbulk is gradually increased: the mono-
tonic decrease of the width of the mixing boundary layer, Fig. 10 and the
monotonic increase of the average sizes of the un-yielded blobs, Fig. 22.

To explore the physical reasons underlying this observation a detailed
characterisation of the flows at various bulk Bingham numbers Bnbulk was per-
formed in both an Eulerian Sec. 3.2 and a Lagrangian frame of reference Sec.
3.3.

The first part of the Eulerian flow description aims understanding the
relationship between the flow topology and the yield stress behavior of the
material. At the channel outlet a central rigid plug with a size that increases
as Bnbulk increases is observed, Fig. 13. Two observations are of particu-
lar relevance here. First, at the channel outlet the time averaged cross flow
velocity is significantly smaller than the time averaged axial velocity. Second,
while fluctuations of the small cross-flow velocity component may be observed,
no fluctuations of the axial component are visible. These observations indi-
cate that in the presence of yield stress the material elements are “frozen”
after passing through the “active” flow region. Thus, if some mixing may be
triggered in the flow in the presence of yield stress, this may solely happen
within “active” flow region. As illustrated in Fig. 13(c) widths of the top and
bottom viscoplastic boundary layers observed at the channel outlet follow a

power law scaling with the bulk Bingham number (∝ Bn
− N

N+1

bulk = Bn−0.428
bulk )

Bnbulk in a good agreement with theoretical predictions of Piau and Debiane,
[Piau and Debiane(2004)].

Through the second part of the Eulerian description of the flow fields
we have focused on the Eulerian flow topology qualitatively assessed by the
stream lines. Whereas for the reference Newtonian case illustrated in Fig.
14 the flow topology is consistent with an efficient stretching and folding of
material elements which ultimately lead to efficient mixing, in the yield stress
case illustrated in Fig. 15 one can note that these dynamics are significantly
altered: the parabolic points get significantly closer to rotating arc-walls, the
characteristic size of the elliptic zones decreases and the hyperbolic point is
now barely visible. These observations provide a first set of physical insights
into the mechanisms responsible for the loss of mixing efficiency triggered by
the yield stress behavior in terms of a dramatic change of the flow structure
within the “active” mixing region.
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A discussion of the Eulerian correlation functions of the passive scalar
fluctuations is presented in Sec. 3.2.2. The passive scalar fluctuations are longer
correlated within the mixing boundary layers than in the bulk of the flow, Fig.
17. The characteristic times of correlations are practically insensitive to Bnbulk

within the mixing boundary layers but increase up to a plateau value within
the bulk of the flow, Fig. 18. This increase is directly related to the decrease
of the mixing efficiency observed upon increasing Bnbulk, Fig. 12.

A key element in understanding the physics underlying the dramatic loss
of the mixing efficiency in the presence of yield stress comes from the analysis
of the spatial spectra of the fluctuations of the passive scalar concentration
summarised in Fig. 19. The efficient mixing observed in the Newtonian case
relates to an algebraic decay of the power spectrum, P ∝ k−1. Bearing in mind
that the flows are spatially smooth and random in time, this algebraic scaling
is a hallmark of the so-called Batchelor regime of mixing [Batchelor(1959)]. In
the presence of yield stress such spectral decay region is no longer observed
and a sharp peak of the power is observed within this range of wave numbers.
Whereas it was obvious from the illustrations presented in Fig. 7 that this peak
relates to a spatial periodicity (along the x axis) of the passive scalar distri-
butions understanding the physical natures of the bounds kmin, kav required
an additional analysis.

By taking full advantage of the adaptive grid capabilities of the Gerris flow
solver and adding an additional refinement of the computational grid based on
the local value of the viscosity, we have detected at each time step the yield sur-
face Fig. 20 which allowed one to compute the probability density functions of
the sizes of un-yielded material elements, Fig. 21 and finally monitor the depen-
dence of the time averaged un-yielded blob size to the bulk Bingham number,
Fig. 22. This additional analysis helped ”deciphering” the physical origins of
the spectral bounds kmin, kav of the spectrum presented in Fig. 19: kav is set
by the time averaged size of the un-yielded blobs kav = 2π/∆Rav whereas kmin

is set by the maximal size of the un-yielded blobs, kmin = 2π/∆Rmax.
The Lagrangian flow description detailed in Sec. 3.3 brings additional

insights into the mixing problem we study. Through the first part of the
Lagrangian analysis (Sec. 3.3.1) we have focused on the statistics of the res-
idence times of a set of evenly distributed tracers by the flow, Fig. 23. As
the bulk Bingham number is gradually increased, the probability distributions
of the residence times narrow which indicates that the yield stress behaviors
inhibits the laminar chaotic advection of the tracers, Fig. 24.

A more rigorous Lagrangian frame analysis of the flow is presented in Sec.
3.3.2 in terms of computations of the space time dynamics of the FTLE’s. As
compared to the Newtonian reference case illustrated in Fig. 25, the spatial
distributions of both the forward and the backward FTLE’s is substantially
different in the presence of yield stress, Fig. 26. Due to the presence of the
un-yielded plug observed at the channel outlet in the presence of yield stress,
no deformation is observed: both the forward and the backward FTLE’s are
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practically zero. As compared to the reference Newtonian case the most dra-
matic differences are observed within the “active” mixing region: the FTLE’s
remain large only within narrow regions located in the vicinity of the rotat-
ing arc-walls whereas within the central part of the mixer (where the efficient
mixing is expected to carried on) they are nearly zero. This corroborates well
with the significant changes observed in the flow topology in Fig. 15 which
in turn originates from the presence of un-yielded blobs within the ”active”
mixing region, Fig. 20.

Due to the oscillatory forcing of the flow both the spatial average and the
maxima of the FTLE are time periodic, Fig. 27. As the Bingham number is
gradually increased past the critical bulk Bingham number Bncbulk correspond-
ing to the loss of mixing efficiency both the time averaged maximal (over the
field of view) FTLE 〈Λmax〉 and the space-time averaged FTLE (which may be
regarded as global indicators of the degree of chaos of the hydrodynamic sys-
tem) decrease, Fig. 28. The central message of the Lagrangian frame analysis
is that the presence of yield stress inhibits the chaotic nature of the flow.

Finally, two rather basic solutions able to alleviate to some extent the loss
of mixing efficiency triggered by the yield stress are discussed in Sec. 4. The
first attempt consisted of adding a fourth stirring element while maintaining
the same flow conditions and deliberately focusing on the highest yield stress
investigated (Bnbulk = 26.5, N = 0.75), Sec. 4.1. The improvement of the mix-
ing efficiency defined by the plateau value Cav

std of the time series of the mixing
indicator obtained by the addition of a fourth stirring element is minimal but
the overall homogeneity of the mixture defined by the level of fluctuations
δCstd of the mixing indicator is improved, Fig. 30.

A more efficient solution of increasing the mixing efficiency is discussed in
Sec. 4.2 and consists of gradually increasing the strength of the external forcing
K. This method should employed with a fair amount of caution as it leads
to an increase of the forcing Reynolds number Ref which may trigger inertial
instabilities adding thus a penalty on the energetic efficiency of the mixer.

As the Ref is gradually increased in the range Ref ∈ [10, 120] a roughly
three-fold increase of the mixing efficiency is observed, Fig. 32((a,b)). This
improvement is directly related to the size of the un-yielded material elements
passing through the ”active” mixing which decreases (more or less linearly)
with Ref , Fig. 32((c)).

In closing, this study might open new avenues along two distinct tracks.
Along a fundamental line, we believe it may trigger further theoretical studies
on the coupling between yield stress rheological behavior and laminar chaotic
advection. From a practical perspective, this study may trigger further engi-
neering developments able to alleviate the dramatic loss of mixing associated
with the yield stress behavior.
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