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Abstract: Anaerobic digestion is a promising method of organic waste valorisation, particularly for
fish farm waste, which has experienced a high growth rate in recent years. The literature contains
predictive mathematical models that have been developed by various authors, allowing the prediction
of the composition of bio-gas production from organic waste. In general, Monod’s kinetic expression
is the basis for describing the enzymatic reaction rates for anaerobic digestion. In this work, several
parameters are taken into account, such as temperature, cell growth inhibition, and other operating
parameters, and systems of differential equations coupling the kinetics and stoichiometry for bio-
reactions are applied to better describe the dynamics. Because of the high number of initial parameters
that need to be defined for the anaerobic digester, the use of this model requires significant resources
and a long calculation time. For this reason, a global sensitivity analysis (GSA) is applied to this
predictive model based on the Sobol index method, in order to identify the most influential key
parameters and the interactions between them. For the digestion of fish waste, it is observed that the
key parameters influencing methane production are the lipid concentration of the waste, temperature,
and hydraulic retention time (HRT).

Keywords: anaerobic digestion; waste; biogas; Sobol index method

1. Introduction

Today, communities worldwide are working on the transition to different forms of
energy. Changing fossil fuel sources for new technologies can lead to a decrease in CO2
emissions and can ensure the supply of energy required to meet incessant and growing
demands, especially in areas where organic matter is available and abundant [1–3], and
this is the goal for numerous research teams. However, despite the efforts made by
these different communities, multiple challenges are still faced in developing secure and
sustainable energy sources, mainly due to intermittency, grid restrictions, curtailment, and
high costs [4].

Renewable energy has been widely studied. According to Zerta et al. [5], in the
year 2030, the main sources of renewable energy will be hydropower, wind, raw waste,
and solar. To better describe the different types of clean energy production technology,
the authors have examined the different models and their parameters for the operation
of photovoltaic panels, which form the main component of solar energy production [6].
Likewise, Ciulla et al. [7] have studied the modelling of the real behaviour of a wind turbine
and the differences that can be found from theoretical approaches. Another interesting
source of energy production is anaerobic digestion (AD), a promising technology that is
becoming more extensively used. AD is an enzyme-catalysed reaction system, and takes
place in a bioreactor used for the transformation of organic molecules (mainly proteins,
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lipids, and carbohydrates) to biogas with an anticipated heating value. For an efficient
waste valorisation, some authors studied the co-digestion of two or more types of waste [8].
This biogas can be treated and upgraded for use in a combined cycle of heat and power
(CHP) to generate heat and electricity. Although the production of bio-methane depends
on the parameters of all the different processing units, the bottleneck and key unit in
the process is the bioreactor [9,10]. AD has been applied as a solution for organic waste
treatment from crops, cattle raising, and the food processing industry [11].

AD is defined by a system of bioreactions in which organic matter is transformed
by the action of microorganisms and the absence of oxygen, producing biogas (a rich
mixture of methane (CH4) and carbon dioxide (CO2)) and other energetic compounds [12].
AD mainly begins with fats, proteins, and carbohydrates, which are reduced into smaller
compounds (acetic acid, butyrate, propionate, hydrogen, and so on) to produce biogas. A
digestate is produced as a secondary product of the process and, after upgrading, can be
used as a fertiliser [13].

The reaction system has been studied by Batstone et al. [14], who developed mathe-
matical approaches for modelling the kinetic system representing these complex enzymatic
reactions. Angelidaki et al. [15] proposed the detailed stoichiometry of the reaction system.
Predictive models have also been developed by Flotats et al. [16] for the estimation of the
potential quantity of methane produced from different feedstocks. These models have
been consolidated using mathematical expressions to take into account the influence of
inhibitors [17] and operating conditions such as temperature and pH [18]. The main objec-
tive of all of this research has been to increase the yield of methane. In an AD system, the
bioreactor is designed based on the hydraulic retention time, a parameter that needs to be
considered to describe the reaction progress. The evolution of these reactions as a function
of time has been presented as a system of differential equations based on the kinetic model
for this process [19,20].

Global sensitivity analysis (GSA) has not been applied to anaerobic digestion as a tool
for analysing nonlinear systems, although authors such as Ochoa et al. [21] have applied
GSA to a bioreactor system for producing bioethanol, and have obtained a ranking of
parameters based on their influence. Recently, Vaneeckhaute et al. [22] proposed the appli-
cation of GSA in a detailed model that included the design of the whole process, from the
inlet solid raw material to gas cleaning and digestate production. Their model considered
the physical phenomena and the global production process based on the concentration of
nutrients in the products, giving an optimised treatment train configuration. Although
the importance of the feedstock has been identified based on these results, no ranking was
proposed in terms of sensitivity to the composition of lipids, proteins, and carbohydrates
as the major molecules of the feedstock. Generally, the methane produced from waste is
often utilized through combustion for power generation. In a previous work of Zhang and
Jiang [23], the GSA method was also used to identify the key parameters influencing the
combustion characteristics of biogas. Applying this method to the entire power generation
process (from biomass, then methane and its combustion, to power generation) could
identify the key parameters influencing methane production and combustion.

Previous studies did focus on evaluating the effect of certain operational parameters
or composition specifications [11,24–26], but they did not take into account the interactions
between different parameters by evaluating all of them at the same time. The results
have been used to define ranges of operation for each parameter evaluated, but have not
considered the relations among the various parameters (not only operational parameters,
but also those related to the composition of the feedstock) [27].

The goal of this work is to identify the key parameters influencing methane production
in the bioreactor and to quantify the interactions between these parameters. This study
focuses on analysing the influence of each parameter on the kinetic model and evaluating
their degree of dependence. Our methodology, which is based on the Sobol index method,
allows the proposition of a ranking of the main parameters in order to increase the yield
of biogas production. In addition, the results of this study provide a quantification of the



Fuels 2022, 3 438

influence of the variation in each parameter evaluated. This study can also be extended to
involve other parameters such as the organic loading rate (OLR), for example. However,
we have limited ourselves to the parameters mentioned above.

2. Kinetic Modelling of Anaerobic Digestion

AD consists of a sequence of four different reactions: hydrolysis, acidogenesis, aceto-
genesis, and methanogenesis. The hydrolysis phase is characterised by turning complex
biopolymers (fats, proteins, and carbohydrates) into smaller compounds (long-chain fatty
acids, amino acids, sugars, and so on), and the enzymes produced by microorganisms
support this reaction. For acetogenesis, valeric acid, butyric acid, and propionic acid are
converted into hydrogen, carbon dioxide, and acetate. In the third phase, acetogenesis,
fatty acids are converted into hydrogen, carbon dioxide, and acetate, and in the final phase
of methanogenesis, hydrogen and carbon dioxide are used by the CO2 methanogens to
produce methane, and acetate is transformed by the action of acetoclastic methanogens
into methane and carbon dioxide [28].

The use of experimental bioreactors at the laboratory scale has contributed to a deep
comprehension of the AD mechanism and allowed authors such as Batstone et al. [14] to
propose mathematical approaches to modelling the kinetic system representing complex
enzymatic reactions. This comprehension has given rise to other studies from the impact of
feedstock composition and the response of the system to the heterogenic concentrations
of the organic matter used. These models have also formed the basis of other technical
models to represent the detailed effects of different inhibitor parameters and the use of a
co-substrate [10].

In order to predict the production of biogas and enhance the yield of methane in different
case studies, a hybrid model based on the kinetic system proposed by Angelidaki et al. [15]
was used, which was improved by taking into account some proprieties from Anaerobic
Digestion Model No. 1 (ADM1) [19]. These proprieties can be summarised as follows:

• The hydrolysis of lipids, carbohydrates, and proteins based on an expression for
enzymatic degradation;

• The proposal of differential equations for describing the dynamic state, following the
stoichiometrics proposed by Angelidaki [15];

• pH variation depending on the acid/base equilibrium.

This hybrid kinetic model describes the system using first-order kinetic reactions, from
the decomposition of lipids, carbohydrates, and proteins to the production of biogas. This
process is composed of the four main steps of hydrolysis, acidogenesis, acetogenesis, and
methanogenesis [29], as described above.

Globally, the rate expression of each compound is based on the kinetic constant for
each reaction. This kinetic constant is a function of the maximum rate for each compound,
taking into account the correction due to the concentration of inhibitors following Monod’s
expression [30,31]. These kinetic constants are then added to the first-order kinetic system.

Monod’s expression is a way to express kinetic systems based on cells growing where
the maximal rate is corrected depending on the concentration of the substrate and its
half-saturation coefficients. The concentration of the inhibitor and its coefficient affect the
expression by decreasing the reaction rate [32]. Molecules used as inhibitors are part of
cells that do not grow above a specific concentration [31] and can be generally described
using the following expression:

µ =
µmax

1 + Ks
S + I

Ki

(1)

where µmax is the maximum achievable specific growth rate (day−1), S is the concentration
of the limiting substrate (g L−1), Ks is the limiting substrate concentration when the specific
growth rate is at half of its maximum value (g L−1), I is the inhibitor concentration (g L−1),
and Ki the inhibition constant (g L−1).
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Table 1 summarises the reaction rate expressions used in the model, based on the
equations reported by Angelidaki et al. [15] for acidogenesis, acetogenesis, and methano-
genesis. However, the hydrolysis step is not considered using the Monod expression; it is
modelled as a first-order equation with a reaction constant that depends on the source of
the waste [33].

Table 1. Rate law expressions for the AD steps [14,15].

Conversion Rate Law (Day−1)

Acidogenesis step (Amino acid degradation) µAA = µAA (max)(T)

(
1

1+
Ks,AA
[AA]

)

Acidogenesis step (Glucose degradation) µcarb = µcarb(max)(T)

(
1

1+
Ks,carb (T)

[Carb]

) 1

1+
Ks,NH3

(T)

[T−NH3]

( 1
1+ [LCFA]

Ki,LCFA

)

Acidogenesis step (Lipolytic degradation) µLipid = µLipid(max)(T)

(
1

1+
Ks,GTO (T)

[GTO]

) 1

1+
Ks,NH3
[T−NH3]

( 1
1+ [LCFA]

Ki,LCFA

)

Acetogenesis step (VFA–Propionate acid,
butyrate acid, valerate acid degradation) µVFA = µVFA(max)(T)

(
1

1+
Ks,acid (T)
[VFA]

) 1

1+
Ks,NH3
[T−NH3]

( 1
1+ [HAc]

Ki,HAc

)(
1

1+ [LCFA]
Ki,LCFA

)

Acetogenesis step (LCFA degradation) µLCFA = µLCFA (max)(T)

(
1

1+
Ks,LCFA
[LCFA] +

[LCFA]
Ki,LCFA

) 1

1+
Ks,NH3
[T−NH3]


Methanogenesis step µHAc = µHAc(max)(T)

(
1

1+
Ks,HAc (T)

[HAc]

) 1

1+
Ks,NH3
[T−NH3]

 1

1+ [NH3]
Ki,NH3

( 1
1+ [LCFA]

Ki,LCFA

)

This model also considers the influence of temperature on the reaction rate via the ex-
pression proposed by Angeldaki et al. [15]; this has a direct influence on the maximum rate
values and the half-saturation coefficients. The influence of temperature on the hydrolytic
step is based on the ADM1 model [33]. In the present work, the kinetic constants and their
dependence on temperature were assumed to correspond to values estimated based on
thermophilic conditions (about 55 ◦C) [34] (for more information, the reader is referred to
Annex 1). The model is not sensitive to changes in temperature due to the thermodynamics
of the reactions, and it is assumed that the user of the model can set the temperature and
control this condition during the entire AD process (Hilkiah et al., 2007).

According to the literature, thermophilic microorganisms are highly sensitive to low-
pH environments [35]. Furthermore, pH is a dynamic specification that depends on the
production and consumption of sub-products, causing variations in the acidification of the
media during the four reaction steps [36]. Inhibition due to the variation in pH is calculated
based on the Michaelis function [37], and is added to the system as a coefficient for each
rate expression following relation (2), which was proposed for the ADM1 model [38] and
describes lower inhibition.

F(pH) =

pH < pHLL

∣∣∣∣e(−3( pH−pHUL
pHUL−pHLL

)
)

pH > pHLL |I = 1
(2)

The kinetic system may be affected by the pH of the feedstock used. The acidity of the
medium can be calculated by the acid/base equilibrium in the liquid phase (Table 2) [39],
and is a dynamic value that has an effect on the global kinetic system [40]. This measure de-
pends not only on the initial pH, but also on the concentration of the different intermediates,
such as volatile fatty acids and acetic acid, according to the steps of the reaction [38].
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Table 2. Acid/base equilibrium reactions included in the model to calculate the pH.

Intermediate Molecule Equilibrium Equilibrium Expression

Ammonium NH3 + H2O↔ NH+
4 + OH− kNH3 =

[NH+
4 ][OH− ]
[NH3]

Acetic acid CH3COOH ↔ H+ + CH3COO− ka,HAc =
[H+ ][CH3COO− ]
[CH3COOH]

Propionic acid CH3CH2COOH ↔ H+ + CH3CH2COO− ka,ac P =
[H+ ][C3 H5O−2 ]

[C3 H6O2]

Butiryc acid CH3CH2CH2COOH ↔ H+ + CH3CH2CH2COO− ka,ac B =
[H+ ][C4 H7O−2 ]

[C4 H8O2]

Valeric acid CH3CH2CH2CH2COOH ↔ H+ + CH3CH2CH2CH2COO− ka,ac V =
[H+ ][C5 H9O−2 ]

[C5 H10O2]

The feedstock composition is specified in terms of the mass fractions of lipids, carbo-
hydrates, and proteins. The kinetic model then follows the stoichiometry defined by [37] to
be given as the concentration of the biogas. This stoichiometry was validated and produces
a quantity of methane based on the biochemical methane potential (BMP).

The gas yield and its composition are calculated in this model as a function of the
operational parameters, based on the numerical solution of the differential equation system
during the time defined as HRT. This leads to the development of the system of differential
equations based on ADM1, as used previously by several authors in the literature [20]. The
variation in the concentration over time for each molecule reacting and/or produced in
the system is expressed in Equation (3). For this work, the liquid phase contained twenty
components, giving twenty differential equations, as follows:

d Xi
dt

=
qliq

Vliq
(Xin,i − Xt,i) +

20

∑
1

ρjvi,j (3)

The flow rate of the feedstock and operational settings such as temperature, pH, and
HRT were considered as the input parameters of the system. In addition, initial conditions
for concentrations and pH were considered. The model was implemented in MatLab®.

In this work, the organic matter is assumed to be the feedstock composed of lipids,
carbohydrates, and proteins as volatile solids (VSs) dissolved in water with the optimal
(specified) concentration of ammonia [18].

The yield of methane produced is normalised under standard conditions (STC) ac-
cording to Equation (4) by considering the amount of VS introduced in the feedstock. This
value leads to optimisation of the amount of methane produced by a unit of raw material,
and each parameter is evaluated and compared in terms of its influence on the production
of methane [41].

yield =
volume o f CH4

VS
(L/kg at STC) (4)

3. Analysis of Parameters
3.1. Global Sensitivity Analysis Method

Sobol’s (1993) method is used to study the influence of different bioreactor inputs on
the output, i.e., the yield of CH4, designated as Y. In the case of the bioreactor, these input
parameters, designated as X, include the acidity of the media; the HRT; the temperature;
and the fractions of lipids, carbohydrates, and proteins.

If the mathematical model can be integrated in the range [0, 1] with k as the number
of input parameters, then it can be decomposed into terms of increasing dimensions [42]
as follows:

f = f0 + ∑
i

fi(xi) + ∑
i

∑
j>i

fij(xi, xj) + · · ·+ f1,2,...,k
(
xi, xj, . . . , xk

)
(5)
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The components fi(xi), fij(xi, xj), . . . are called first-order terms, second-order terms,
and so on, respectively, where

f0 = E(y) =
∫

f (x)dx (6)

E(y|xi) =
∫

f (x)∏
k 6=i

dxk = f0 + fi(xi) (7)

By square integrating each term in Equation (5),

V(y) =
x

. . .
∫

f 2(x)dxi . . . dxn − f 2
0 (8)

Vi1 ...is =
x

. . .
∫

f 2
i1 ...is dxi1 . . . dxis (9)

where V(y) is the unconditional variance and Vi1 ...is represents the conditional variance. By
deriving the so-called ANOVA-HDMR decomposition,

V(y) = ∑
i

Vi + ∑
i

∑
j>i

Vij + · · ·+ V1,2,...,k (10)

Equation (11) is obtained by dividing Equation (10) by V(y), as follows:

1 = ∑
i

Si + ∑
i

∑
j>i

Sij + ∑
i

∑
j>i

∑
l>j

Sijl . . . + S1,2,3,...,k (11)

where Si and Si
TOT can be defined as follows:

Si =
V(E(y|xi))

V(y)
=

Vi
V(y)

(12)

STOT
i =

E(V(y|x−i))

V(y)
=

Vi
TOT

V(y)
(13)

Sint
i = Sij + · · ·+ S1,2,3,...,k = STOT

i − Si (14)

where Si, Sij, Sijl , and STOT
i are the variance of the first expectation outlet variable and

the second-, third-, and total-order sensitivity indices, respectively; Vi = V(E(y|xi)) is the
variance in the expectation of the output parameters Y, conditioned on an input parameter
xi; VTOT

i = E(V(y|x−i)) is the expectation outlet variable variance if all input variables
excluding xi are fixed; and Si

int allows the estimation of the interactions between the input
parameters.

For a more detailed description of Sobol’s method, the reader is referred to (Sobol,
1993; Sobol, 2001).

3.2. Sobol Sequence Method

A quasi-Monte Carlo Sobol sequence fill was chosen as a sampling method to build
the input matrix for the simulations. N samples were used to avoid a reduction in accuracy.

The indices are defined by subtracting Equation (15) from Equation (17), according to
Saltelli et al. (2010), as follows:

V(y) =
(

1
N

) N

∑
j=1

f (A)j
2 − f0

2 (15)

V(E(y|xi)) =

(
1
N

) N

∑
j=1

f (B)j

(
f (AB

(i))j − f (A)j

)2
, i = 1, . . . , k (16)
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E(V(y|x−i)) =

(
1

2N

) N

∑
j=1

(
f (A)j − f (AB

(i))j

)2
, i = 1, . . . , k (17)

where N is the sample size and A, B, and AB are matrices of N quasi-random values for the
k input parameters. The ith column of matrix B forms the matrix AB, and the other k − 1
columns come from matrix A. Three vectors (N × 1) for the model output are obtained:
yA = f (A), yB = f (B), and yAB = f (AB

(i)).
The values of the sensitivity indices (Si, Si

int, and Si
TOT) represent the variation in the

model output due to the model input i. The influence of an input parameter on an output
parameter can be neglected if Si, Si

int, or Si
TOT are lower than 5% (Di Maggio et al., 2010).

4. Results and Discussion
4.1. Validation of the Model Based on the Experimental Results

In order to validate the mathematical model, the results from this work were compared
with the results from the literature under the same operating conditions (temperature = 55 ◦C,
HRT = 50 days) and for the same waste composition. It should be noted that few works in
the literature give the details of the gas yield, its composition, the composition of the waste,
and the operating conditions. Figure 1 shows the yield of methane predicted by the model
developed in this study, the yield of methane calculated using the theoretical approach [43],
and the yield of methane produced experimentally [26]. This figure shows that the model
predicts the flow of methane better than the theoretical approach, with an error of less than
6%.
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Figure 1. Model validation with a theoretical approach [43] and experimental [26] results.

4.2. GSA Results

GSA was applied to the kinetic model in order to analyse the influence of the waste
composition and operational conditions on methane yield. Three parameters were consid-
ered regarding the operational conditions (pH, HRT, and temperature) and three parameters
concerning the waste composition (lipids, proteins, and carbohydrates). Table 3 shows the
range of evaluation for each input.

Under these operating conditions, Figure 2 shows that the HRT influenced the methane
yield with a sensitivity of about 26.3% and the temperature of the media by about 27.5%.
For the waste concentration, the concentration of lipids has the highest global Sobol in-
dex (37.2%), followed by 7.7% for the concentrations of carbohydrates. The effect of the
concentration of proteins can be neglected as their Sobol indices were lower than 5%.
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Table 3. Parameters and their ranges considered for the GSA for the bioreactor.

Parameter Lower Limit Upper Limit Reference

Operating parameter

HRT (day) 1 60 [26]

Acidity (pH) 6.5 8.5 [26]

Temperature (K) 318.15 338.15 [11]

Substrate composition

Lipids (g·L−1) 0 10 [44]

Carbohydrates (g·L−1) 0 10 [44]

Proteins (g·L−1) 0 10 [44]
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The results of this analysis show that the ranking of the main parameters influencing
the methane yield is lipid concentration > temperature > HRT. Their interactions can also
be neglected, as the interaction sensitivity indices, Sint, were about 4%.

4.3. Analysis of HRT as an Influential Operating Parameter

The operational parameters can be evaluated separately to identify the optimal region
of operation. For this purpose, the yield of methane as a function of the HRT was evaluated
at a temperature of 55 ◦C for the same feedstock (i.e., the concentrations of lipids, carbohy-
drates, and proteins were kept constant), as shown in Figure 3. In this case, the behaviour
of the system was highly influenced by the HRT. The yield of CH4 increased with the
increasing HRT to its optimal value and then formed a plateau, meaning that an optimal
region of HRT could be established. Although an apparent maximum was achieved at a
value of 46 days, 95% of the production could be achieved in half the time (i.e., 23 days).
This result could be used to reduce the time or the size of the installation for a new process.
Efforts towards optimisation can be made using these key parameters to improve the yield
of CH4. Moreover, the HRT can be used as the manipulated variable to balance the changes
in the other operational variables.
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4.4. Case Study: Influence of Different Main Parameters

An additional test to observe the effect of the key parameters is shown in Figure 4.
Methane production was compared among different cases for food waste, using the com-
position studied by [26], for anaerobic digestion at 55 ◦C, but with changes to the key
parameters, as shown in Table 4. The simulated cases include as their input different
changes in the key parameters as compared with the adjustment of each key parameter.
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Table 4. Input values for case studies.

Case 1 Case 2 Case 3

Operating
parameters

HRT (Day) 24.3 24.3 46.3

pH 7.0 7.0 7.0

Temperature (◦C) 50 55 55

Composition of
feedstock

Lipid (g·L−1) 4.7 4.7 4.7

Carbohydrates (g·L−1) 0.0 0.0 0.0

Protein (g·L−1) 4.0 4.0 4.0
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The efficiency of each case was evaluated according to Equation (18). A theoretical
approach representing the maximum yield was found to give a value of 0.673 L/g for
VS [43]. The yield for the different cases is presented as a percentage of the maximal
potential in Figure 4.

E f f iciency =
Predicted yield (case 1, 2 or 3)

Theoretical yield
(

0.673 L
g

) (18)

The results obtained for the first case are due to the use of unfavourable random
conditions as inputs. Case 2 shows improved results by making the first adjustment over
the temperature, while in Case 3, the adjustment is carried out to the HRT. As shown in
Figure 4, Case 2 achieves the optimal value of methane yield. In Case 3, the yield increases
by about 3% as compared with Case 2, but this configuration requires higher resources in
terms of time and space for the reaction; however, it is shown that half of the HRT could
achieve a similar result in terms of improving the media temperature (relative to Case 2).
A local sensitivity analysis could be applied to the other parameters so as to increase the
yield of the anaerobic digestion for a specific feedstock.

5. Conclusions

It is essential for designers of anaerobic reactors to identify the key parameters of
anaerobic digestion. It appears that biogas production from organic waste is dependent
on operating parameters. The objective of this study is to develop a mathematical model
for the prediction of fish waste digestion. A global sensitivity analysis was applied to
this prediction model, based on the Sobol index method, in order to identify the most
influential parameters and interactions, because ranking the most influential parameters is
important for the design and operation of an anaerobic reactor. The results obtained by
applying GSA to a nonlinear model for anaerobic digestion show that the lipid content is
the most influencing parameter, with a total Sobol index of 37.2%, followed by the effect of
temperature and HRT with almost the same index (27.5% and 26.3%, respectively). These
three parameters are identified as the key parameters for predicting the performance of
methane production. The correct selection of the key operational parameters improves
the performance of anaerobic digestion, increasing the production from 53% to 94% and
ensuring robustness in the reaction in the case of changes to the other parameters. The
effect of pH is negligible here because of the small pH range selected in this study. Usually,
the pH varies between 6.5 and 8.5 in the literature in order to ensure a considerable activity
of the microorganisms. An increase in the acidity of the media can promote an inhibition
and a drop in the biogas production. Moreover, it is very important to keep watch over the
HRT, because a high HRT can imply an increase in the acidity of the media.
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Nomenclature

AA Amino acids
ac B Butyric acid
ac P Propionic acid
ac V Valeric acid
AD Anaerobic digester
ADM1 Anaerobic Digestion Model No.1
Carb Carbohydrate
DST Decision support tool
GSA Global sensitivity analysis
GTO Glycerol trioleate
HAc Acetic acid
HRT Hydraulic retention time (day)
i Concentration for component i (g·L−1)
ka,i Equilibrium constant for the component i (day−1)
Ki,i Inhibitor concentration coefficient due to component i (day−1)
Ks,i Half saturation coefficient for component i (g·L−1)
LCFA Long chain fatty acids
pHLL pH Lower Limit for 50% inhibition (according to ADM1 model)
qliq Liquid flow rate (L·s−1)
S Subtract concentration (g·L−1)
Si First-order sensitivity index
Si

int Interaction sensitivity index
Si

TOT Total sensitivity index
STC Standard thermodynamic conditions (293.15K, 101.325 kPa)
VFA Volatile fatty acids (wt%)
Vliq Liquid volume (L)
VS Volatile solids (wt%)
Xin,i Initial concentration of component i (g·L−1)
Xt,i Concentration time t for the component i (g·L−1)
νi,j Stoichiometric coefficients for component i on the reaction j
ρj Kinetic rate equation (g·L−1·s−1)
pHUL Upper limit for pH
µi, Reactional rate for component i (day−1)
µi,max Maximal reactional rate for component i (day−1)
µmax Maximal reactional rate (day−1)
[T-NH3] Total ammonia concentration (g·L−1)
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