
HAL Id: hal-04098829
https://hal.science/hal-04098829v1

Submitted on 16 May 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Experience feedback using Representation Learning for
Few-Shot Object Detection on Aerial Images

Pierre Le Jeune, Mustapha Lebbah, Anissa Mokraoui, Hanene Azzag

To cite this version:
Pierre Le Jeune, Mustapha Lebbah, Anissa Mokraoui, Hanene Azzag. Experience feedback using Rep-
resentation Learning for Few-Shot Object Detection on Aerial Images. 20th International Conference
on Machine Learning and Applications (ICMLA) 2021, Dec 2021, Pasadena (virtual), United States.
�hal-04098829�

https://hal.science/hal-04098829v1
https://hal.archives-ouvertes.fr

Experience feedback using Representation Learning
for Few-Shot Object Detection on Aerial Images

Pierre Le Jeune
COSE & LIPN & L2TI

Université Sorbonne Paris Nord
pierre.le-jeune@cose.fr

Mustapha Lebbah
LIPN

Université Sorbonne Paris Nord
mustapha.Lebbah@lipn.univ-paris13.fr

Anissa Mokraoui
L2TI

Université Sorbonne Paris Nord
anissa.mokraoui@univ-paris13.fr

Hanene Azzag
LIPN

Université Sorbonne Paris Nord
azzag@lipn.univ-paris13.fr

Abstract—This paper proposes a few-shot method based on
Faster R-CNN and representation learning for object detection
in aerial images. The two classification branches of Faster R-
CNN are replaced by prototypical networks for online adap-
tation to new classes. These networks produce embeddings
vectors for each generated box, which are then compared
with class prototypes. The distance between an embedding
and a prototype determines the corresponding classification
score. The networks are trained in an episodic manner. A new
detection task is randomly sampled at each epoch, consisting
in detecting only a subset of the classes annotated in the
dataset. This strategy encourages the network to adapt to
new classes as it would at test time. In addition, several
ideas are explored to improve the proposed method such as
a hard negative examples mining strategy and self-supervised
clustering for background objects. The performance of our
method is assessed on DOTA, a large-scale remote sensing
images dataset. The experiments conducted provide a broader
understanding of the capabilities of representation learning.
It highlights in particular some intrinsic weaknesses for the
few-shot object detection task. Finally, some suggestions and
perspectives are formulated according to these insights.

Index Terms—Faster R-CNN, Few-shot learning, Object
detection, Remote sensing images, Representation learning.

I. Introduction
Object detection is a key problem in computer vision. It

consists in finding all occurrences of objects belonging to
a predefined set of classes in an image and classify them.
Its applications range from medical diagnosis to aerial in-
telligence through autonomous vehicles. Object detection
methods automate repetitive and time-consuming tasks
performed by human operators until now. In the context of
Remote Sensing Images (RSI), detection is used for a wide
variety of tasks such as environmental surveillance, urban
planning, crops and flock monitoring or traffic analysis.

Deep learning and especially convolutional neural net-
works (CNNs) outperform previous methods on most
computer vision tasks and object detection is no exception.
Plenty of methods have been introduced to address this
challenge. Among them, Faster R-CNN [1] and YOLO [2]
may be the most well-known and studied. These methods
perform well when provided with sufficient annotated

data. Yet, this condition is often unmet in practice and
the creation of large dataset for detection requires both
time and expertise preventing the deployment of such
methods for many use cases. Another limitation to the
widespread deployment of detection techniques is the lack
of adaptability. This is critical for some applications which
need to detect different objects from one usage to another.
Aerial intelligence is an example of such application: each
mission may have its specific objects of interest and
therefore a detection model must be adaptable on the
fly. The overall objective of this work is to be deployed
on vertical aerial images. Yet, large-scale dataset of such
images, annotated for object detection, are rare. Few-
Shot Learning (FSL) techniques have been introduced
to address these issues and deal with limited data. Its
principle is to learn general knowledge from a large
dataset so that it can generalize efficiently (i.e. quickly and
from limited data) on new classes. There exist different
approaches for this task, among those transfer learning
and meta-learning are the most well-known.

This work introduces a new few-shot learning method
for object detection and evaluates its performance on aerial
images. It detects objects from only a few examples of
a class and without any fine-tuning. The main idea is
inspired from prototypical networks [3] which learn an
embedding function that maps images into a represen-
tation space. The classic Faster R-CNN framework is
modified to perform few-shot detection based on this idea.
Both classification branch in Region Proposal Network
(RPN) and in Fast R-CNN are replaced by prototypical
networks to allow fast online adaptation. In addition, a few
improvements are introduced on the prototypical baseline
in order to fix its weaknesses.

This paper begins with an overview of the scientific
literature on object detection, few-shot learning and their
intersection. Then, the prototypical Faster R-CNN ar-
chitecture is presented in detail alongside with several
improvements on our baseline. Next, the potential of the
proposed modifications throughout a series of experiences

is demonstrated. Finally, the approach is critically dis-
cussed, and it is asked whether representation learning is
suitable for object detection.

II. Related work
A. Object detection

During the last decade, CNN have made impressive
progresses in most computer vision tasks, and object
detection is no exception. Among the various methods
proposed, two categories emerge. One-stage method with
a trade-off on speed and two-stages methods which focus
on accuracy. YOLO [2] and Faster R-CNN [1] are the most
well-known techniques for each category respectively.

As our work is mainly based on Faster R-CNN, its
functioning is described in details. It is made of two stages:
a Region Proposal Network (RPN) and a prediction head
described in [4]. The RPN is a fully convolutional network,
it outputs an objectness score oa for each anchor a. This
score represents the likeliness of having an object within
the corresponding patch in the image. In addition, the
RPN outputs box shifts bR

a . The regressions, combined
with the anchors sizes and positions, give the actual boxes
coordinates in the image. Then, the best scoring boxes
are selected to be fed to the prediction head. This head
computes refined coordinates bH

j and classes scores cj for
each box. Following this, a post-processing step filters out
small, low-scoring and redundant boxes.

The training of this method is straightforward, each
network has two losses, one for the regression branch and
one for the classification as described below:

LR
reg(b

R
i , b̂

R
i) = SmoothL1Loss(bR

i , b̂
R
i), (1)

LR
obj(oi, ôi) = ôi log(oi) + (1− ôi) log(1− oi), (2)

LH
reg(b

H
j , b̂

H
j) = SmoothL1Loss(bH

j , b̂
H
j), (3)

LH
cls(cj , ĉj) = − log(cj), (4)

where SmoothL1loss is a slight modification to L1 loss
function so that the network is less penalized from small
regression errors. Hats denote ground truth values.

B. Few-shot learning
Few-shot learning corresponds to learning a task in a

limited data setting. Specifically, a task is defined as K-
shots, N -ways learning when the training set only contains
K examples for each of its N classes. In FSL literature, it
is common to introduce the query and support sets for a
given task. The support contains the available examples:
K images for each of the N classes of the task.

There exists different techniques to tackle low data
regime. Transfer learning is one of them. It consists in
training a network on a large-scale dataset (source do-
main) and then fine-tuning it on the few examples (target
domain) available for the actual task. These methods
require re-training each time a new class is added. In
the case of aerial surveillance, this is not suitable as the
adaptability must be almost immediate.

Meta-learning is another one. It can be understood as
learning the learning process. Two models, a teacher and
a student, are learned at the same time. The teacher helps
the student to learn quicker and perform well on different
tasks with few data available. For instance, the teacher
network can be trained to directly output weight updates
of the student as described in [5]. Another approach is to
output only initial weights for the student as in [6]. While
these techniques are promising, they do not scale very well
for large networks as the teacher must be substantially
larger than the learner.

Another drawback is that most meta-learning methods
require a fine-tuning step to be deployed on a specific task.
Some exceptions are based on representation learning (or
metric learning). Prototypical networks [3] is a pioneer
work in using this for FSL. The principle is to train a
network to output an abstract representation from an
input image. Before inference, a prototype for each class
is computed by the embedding network, from the support
images. During inference, the query images are embedded
and the distance between their representations and the
prototypes determine the classification scores. In [3], this
is done with a linear classifier, but other choices can be
made. Relation networks [7] proposes another network to
compute the class scores from the image representation
and the prototypes. These methods are usually trained
by randomly sampling tasks at each epoch, just as other
meta-learning methods. This succession of new tasks helps
the network to generalize well and improves its accuracy
on unseen classes.

C. Few-shot object detection
The previous section focused only on classification tasks.

Detection is a harder problem and so is FSL. That explains
why the combination of both was only studied recently.
One early work on this problem is Low-Shot Transfer
Detector [8]. It leverages transfer learning in order to
refine a pre-trained detection network on a small dataset.
A regularization loss is introduced to prevent forgetting
the base classes. Similarly, [9] proposes to first pre-train a
Faster R-CNN on a base dataset and then fine-tune only
the last classification and regression layers with the new
classes.

Even if RepMet [10] focuses mostly on few-shot classifi-
cation, authors have shown that their method can also be
applied for detection. Their approach is mainly based on
metric learning. During base training, they learn alongside
the network’s weights a set of representatives for different
classes. Classes scores are computed from the distance
between an embedding and the representatives as in [3].

Most recent work focuses on meta-learning in order to
solve Few-Shot Object Detection (FSOD). For instance,
reference [11] trains a one stage detector along with
a meta features extractor. This extractor computes a
reweighting vector for each class from the support set.
When a query image is passed through the detector,

Fig. 1: Architectural view of prototypical Faster R-CNN. Embedding vectors for each of the possible box locations is generated by the RPN.
These are compared with class prototypes to output objectness scores. The same process occurs in the second stage to produce classes
scores.

the features maps are channel-wise multiplied with the
reweighting vectors to produce class-specific maps. These
maps are then passed to the detector’s head. Each map
is responsible for detecting objects of the corresponding
class. A similar class-attention mechanism, but inside the
RPN network is proposed in [12]. In the second stage
they use multi-relation heads that combine support set
information and query image features in multiple ways
inside the classification branch. Different methods for com-
bining support information with the query features exist,
e.g. [13] creates a graph between the support vectors and
the query embeddings. Then a recurrent layer processes it
in order to provide attention between regions of interest
and support set images. Alike this, [14] processes a graph,
whose final nodes are the reweighting vectors, with a graph
convolution network.

With regard to FSOD on remote sensing images, very
few methods exist. To the best of our knowledge, only
two works have been published on this topic. Reference
[15] improves on [11] by adding multi-scale features and
predictions. It is crucial for tackling RSI as object size can
vary greatly. The second one, as described in [13], makes
use of a two-stages detector and compute reweighting
vectors with a GRU relation module. Both of the methods
provide benchmark on VHR-10 dataset [16], yet the
number of novel classes and the different base/novel classes
splits are different, making the comparison difficult.

III. Proposed method
To deal with FSOD, prototypical Faster R-CNN is

introduced. It is a modified version of Faster R-CNN
based on metric learning. The key idea is to replace
the classification branches in both stages by prototypical
networks. This is related to RepMet [10] that learns
representatives only in the second stage. Yet it fixes one
major flaw of RepMet, the RPN. Once trained, the RPN
specializes on classes seen during training. This means

that objects from new classes are filtered out by the RPN,
preventing the second stage to detect them. It has a low
recall on unseen classes. This is especially not desirable in
FSL. Instead, the RPN should be able to adapt to new
classes. Our method is an attempt to fill this shortcoming.

First, a few notations are introduced. Let C = [1, N] be
the set of all classes. In the case of n-ways k-shots learning,
each task consists in detecting objects among n classes
with k examples per class. At each episode a new detection
task i is randomly sampled: Ci ⊂ C with |Ci| = n.
Then, data are sampled from the whole dataset to form a
support and a query sets: Si = {(x1, t1), ..., (xnk, tnk)} and
Qi = {(x1, t1), ..., (xnk′ , tnk′)}. For detection, each image
xj comes with a set of annotations tj which contains the
location and label of all objects in the image. Annotations
that do not belong to the episode classes are discarded.
To build the support set, for each class c ∈ Ci, we select
images containing objects of class c and disregard all other
objects (i.e. their annotations are not included in the
support set but the image is not masked, so they are
still visible). If there are more than one object c in the
image, only one is selected.

A. Prototypical Faster R-CNN
We propose to change the output dimension of the clas-

sification branches in both the RPN and the head. That
way, instead of producing a classification (or objectness)
score per box, these networks output embedding vectors.
Each vector represents the information contained inside
the corresponding box. The computation of the represen-
tations is straightforward. Features at several scales are
extracted by the backbone (denoted f). These features
are then fed to the RPN that computes representation
vectors for each location in the features maps (i.e. each
corresponding to an anchor). A 2-layers CNN (shared with
the regression branch) is applied on each feature maps,
then a RoI Align operation extracts same-size features

for each anchor. Finally, a 2-layers MLP maps these
features into the embedding space. The dimension of the
representation is r = 128 and is kept fixed in all our
experiments. We call the RPN embedding pipeline g such
that (f ◦ g)(xj) = zj is the set of all anchors’ embeddings
for image xj .

For the second stage, the best scoring boxes produced
by the RPN are selected. Their corresponding features are
cropped with RoI Align and fed to a 4-layers MLP that
outputs embedding vectors as well. Note that the 2 first
layers of the head’s MLP are shared with the regression
branch. As for the RPN, let h be the encoding function
of the head: (f ◦ h)(xj) = z̃j . Fig. 1 illustrates the whole
representation pipeline and how the network computes the
different scores.

Classes prototypes are computed from the support
images, with the same network, except that only the
example’s box is used for feature pooling. When multiple
examples are available for a class, their embeddings are
averaged to build one prototype per class: pi,c for the RPN
and p̃i,c for the head.

Assuming that each class is represented by a Gaussian
distribution centered on its prototype and given the
embeddings of an image and the prototypes, the likelihood
for each class is computed as follows:

p(xj,a|yj,a = c) = exp
(−d(zj,a, pc)

2

2σ2

)
, (5)

where xj,a refers to the crop of image xj with anchor
a and yj,a is its corresponding label (yj,a ∈ Ci ∪ {∅},
with ∅ representing the background class). d is a distance
measure over the representation space. In our experiments,
d is the Euclidean distance. σ = 0.5 is the variance of the
distribution and is fixed. This likelihood computation is
the same for the RPN and the head. However, in the head,
the likelihood of the background class is also computed:

p(xj,a|∅) = 1−max
c∈Ci

p(xj,a|c). (6)

From this, we derive the objectness score in the RPN
and the classification (including background) scores in the
head:

oj,a = max
c∈Ci

p(xj,a|c), p(c|xj,a) =
p(xj,a|c)∑

c∈Ci∪{∅}
p(xj,a|c)

.

(7)
The training is done episodically, sampling a random
subset of classes Ci ⊂ C at each epoch. The embedding
network is trained using the same loss functions as Faster
R-CNN (see (1)–(4)). The loss is computed on the query
set and between each update of the network, the proto-
types are recomputed from the same support set. Once all
query images have been seen by the network, a new task
is sampled. In our experiments, the query set contains 5
images for each of its n classes. The optimization is done
with Adam optimizer and a learning rate of 1e − 4. The

backbone network is pretrained on ImageNet and its first
layers are kept frozen during training.

B. Iterative improvements
In order to improve the performance of our model, a

few improvements are described on top of the baseline.
1) Hard example mining: One issue encountered with

the baseline was the detection of all training classes
regardless of support examples. This is class memorization.
Although this improves performance for training classes,
it produces lots of false positive detections. In order to
address this, we propose to sample hard negative examples
to encourage the network to detect support classes only.
The main idea is to take advantage of the annotations
for classes not selected in the current task to find hard
negative examples, i.e. classes that the network could have
memorized from previous tasks. With a new task at each
epoch, it is likely that the network still produces detection
for objects annotated in one of the previous epochs if it
does not rely on the support information. Therefore, these
annotations can be used to find examples that should be
considered as background for the current task only, in
contrast with background examples that do not contain
any class of the dataset (i.e. easy negative examples).

2) Moving average prototypes: Another issue with the
baseline is that the prototypes can change abruptly, either
when the network is updated or when the support set
changes. This makes the training unstable. In order to
prevent such rapid modification of the prototypes, an
exponential moving average is introduced to smooth the
modification. Hence, p̄

(t+1)
c = αpc + (1 − α)p̄

(t+1)
c with

α = 0.1 in our experiments. p̄(t)c is the averaged prototype
for class c at iteration t, while p

(t)
c is the prototype

computed from the support set, for class c at iteration
t (as described in section III-A).

3) Background clustering: Lastly, the baseline shows
poor separation of unseen classes embeddings. This leads
to poor performance on novel classes at test time. In
order to solve this, an inspiration is drawn from [17].
At each iteration, they fit a K-means on the learned
representations. This gives pseudo-labels to train the
network for classification in a self-supervised manner.
Similarly, we propose to fit a K-means on the negative
embeddings (i.e. representing boxes not matched by any
ground truth object). From the resulting pseudo-labels a
contrastive loss function is computed.

IV. Results and experiments
In order to assess the performance of our method, one

dataset is chosen: DOTA [18]. It has 16 different classes
and contains 400k annotated objects distributed in 2800
RSI.

The experimental protocol is as follows: three classes
are reserved for evaluation and two different splits were
randomly selected. The network is trained episodically
with the remaining classes for 30k iterations. Training

TABLE I: Mean average precision over 5 runs on DOTA
dataset with 95% confidence interval. Results are given
for two different train/test classes split. Split A: {0, 1, 4},
Split B: {7, 11, 13} (only test classes are given).

Split A Split B
k Train Test Train Test
1 0.275 ± 0.01 0.047 ± 0.02 0.415 ± 0.03 0.08 ± 0.01
3 0.352 ± 0.02 0.024 ± 0.01 0.392 ± 0.03 0.101 ± 0.02
5 0.390 ± 0.01 0.038 ± 0.01 0.434 ± 0.02 0.121 ± 0.01
10 0.384 ± 0.02 0.041 ± 0.01 0.414 ± 0.03 0.101 ± 0.02

more improves the performance on training classes, but
the network starts to overfit and performs far worse on test
classes. Hence, early stopping, to preserve generalization
on new classes. The networks are evaluated on both the
base and novel classes to assess both the learning and
the generalization capabilities. For each experiment, mean
average precision (mAP) is provided, computed according
to PASCAL VOC [19], with different number of shots: 1,
3, 5 and 10.

A. Results on DOTA
Table I contains the mean average precision reported on

DOTA dataset with our best model, according to section
IV-B. The results are reported as the mean over 5 runs
with 95% confidence intervals. We choose two different
train/test classes split randomly. From this, it can be
seen that performance on test classes is far below the
train classes. This is expected since no supervision is
available during training for these objects. It is interesting
to see that the more examples (i.e. shots) are given to the
network for a class, the better it performs. This may be
explained as more shots provide a better approximation
of the cluster’s center. Yet this pattern is not always
observed, for instance with training classes of split B, the
performance is stable with respect to the number of shots.
This could happen when a single class is represented by
two separate clusters. Having multiple representations for
one class increase the chance of sampling representation
from different clusters. Hence, the average can be outside
both clusters. Nevertheless, it can be seen from Fig. 2 that
the prototypes are often not located at the center of their
cluster and averaging is often a right strategy to improve
performance.

It can also be seen that the increase of performance
stagnates with the number of shots. Important gain is
reported between 1, 3 and 5 shots but no significant
improvement from 5 to 10. A relatively low number
of examples is able to approximate correctly the class
prototype. Increasing this number does not improve the
positioning of the centers any more and can even be
harmful as discussed above.

More broadly, the performance is quite low both for base
and novel classes and this does not meet our objectives. In
comparison, Faster R-CNN trained in a supervised manner
on the complete dataset achieved around 0.7 mAP. It

would be unfair to directly compare this value with the
performance of our network as it was mainly designed for
adaptability. Yet the performance loss on training classes
is quite large.

No other method proposed benchmark on DOTA
dataset for FSOD and the very few works [13], [15] in
this field did not provide their code, thus comparison was
not possible.

B. Ablation study
In order to validate the hypothesis formulated in III-B,

an ablation study is conducted. The results of this analysis
can be found in Table II. They only partially validate this
hypothesis. On the one hand, the introduction of hard
examples mining and moving average prototypes improves
consistently the test mAP in the one-shot setting. On
the other hand, background clustering reduces greatly
the performance on train classes, while achieving similar
results on test classes. According to this analysis, we
choose to fix our architecture with hard example mining
and the moving average as it combines best train and
test performance. Yet, those conclusions must be taken
carefully since the variability between different runs is
high and the performance gains are small.

TABLE II: Ablation study on improvements described in
section III-B. Each row corresponds to the addition on top
of the baseline. HEM corresponds to hard example mining,
MA to moving average prototypes and BC to background
clustering. Once again results are provided for different
numbers of shots, both for train and test classes. Bold
scores correspond to highest mAP for each k, either for
train or test classes.

k shots 1 3 5 10

Baseline Train 0.355 0.359 0.343 0.304
Test 0.021 0.027 0.038 0.041

+ HEM Train 0.312 0.356 0.412 0.343
Test 0.04 0.023 0.033 0.026

+ HEM + MA Train 0.265 0.339 0.37 0.351
Test 0.069 0.035 0.042 0.059

+ HEM + MA + BC Train 0.133 0.145 0.182 0.148
Test 0.043 0.041 0.047 0.026

V. Discussions and perspective
From these results, one question arises: is represen-

tation learning a suitable choice for object detection?
Representation learning methods are competitive with
state-of-the-art for few-shot classification, but seem to
be inappropriate for few-shot detection. This may be
because detection task requires distinguishing between
more closely related images. When a trained RPN classifies
two overlapping patches of an image, it may produce
completely different outputs whether it contains an object
entirely or not. Yet, the two patches are visually similar
and must be close in the embedding space. This implies
a small margin across the RPN decision boundary. Fig.
2a, where threadlike structures can be seen, illustrates

this well. These patterns are made of embeddings from
close overlapping patches within the same input image.
This prior spatial organization at initialization may be
the cause of the low performance of our method. For
few-shot classification, there is no such prior organizing
the representation space as two different images cannot
belong to the same larger image. Hence, the structures
and colors are not as similar as those of two close patches
for object detection. Fig. 2 shows that training is able
to overcome this and organizes the space into semantic
clusters. Yet this only happens for training classes, for
which strong supervision is available during training. For
test classes, the weak supervision available is not enough
to build a semantically-aware structure: the test classes
representations are mixed together and with negative
examples representations (in black in Fig. 2).

Results provided in section IV-A are computed on a
test set, whose images were not seen during training. Yet,
mAP both on base and novel classes is tracked during
training on images already seen by the network. It shows a
large improvement compared to what is reported in table I
(around 0.65 mAP on train classes and 0.2 on test classes).
This strong overfitting showcases the lack of generalization
of our method. It may be explained by a simple reason.
Objects only represent a small part of the patch for
object detection. Hence, much information is embedded
in the representation alongside with the relevant semantic
information. The position of the embedding is partially
controlled by the background and the network can easily
learn correlation between background and semantic, mak-
ing it easy to detect objects correctly in previously seen
images. This is especially true for small objects. In Fig.
2b, classes 1, 9 and 10 represent small vehicles and have
the largest clusters. Their embeddings have much more
variance than the other classes and therefore detection is
harder. In comparison, classes 5, 6 and 14 respectively
represent basketball court, running track and soccer field.
Their clusters are much tighter. Of course, this could also
occur for classification but in practice the background
variety is far smaller and represents a smaller portion of
the image. Hence, it produces tighter clusters and better
class separation. It can also be seen from Table I that the
performance on split A (containing small vehicles) is worse
than on split B. Such a large difference between the splits
suggests that the evaluation protocol is not well-suited
for this problem. More splits should be used in order
to assess generalization on all classes and performance
metrics should be reported per class.

In order to leverage strong supervision, one could try
self-supervised methods. It has recently been shown that
these methods, e.g. [17] can learn generic representations
that generalize for many visual tasks, in particular in
low-data regime. It would be interesting to investigate
further these methods for few-shot object detection, this
is planned as future work. In addition, we plan to try
methods based on attention mechanism instead of rep-

(a) Before training (b) After training

Fig. 2: TSNE visualization on the embedding space, before and after
training. Training organizes this space semantically and reduces the
threadlike patterns representing close patches in the input image.
Yet this is not completely solved for unseen classes during training.

resentation learning as our experiments highlight some
weaknesses of the latter. Attention mechanisms, have
recently shown great performance for plenty of tasks
including few-shot object detection. Finally, a change
of the underlying detection architecture is required as
modifications in Faster R-CNN can be cumbersome (due
to its two stages and the generation of anchors boxes).
Instead, FCOS [20], which is a one-stage and anchor-less
detector, is probably better suited.

VI. Conclusion

In a nutshell, a novel method is proposed for few-
shot object detection based on representation learning.
These early results do not meet our expectations in
terms of performance. Yet the insights generated in this
study allow to understand the strength and weaknesses
of representation learning for few-shot object detection
task. This will be helpful for future research. Ongoing
work is focusing on improving these results using simpler
architecture like FCOS.

Acknowledgment

The authors would like to thank COSE for their close
collaboration and the funding of this project.

References

[1] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster
r-cnn: Towards real-time object detection with region proposal
networks. Advances in neural information processing systems,
28:91–99, 2015.

[2] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali
Farhadi. You only look once: Unified, real-time object detection.
In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 779–788, 2016.

[3] Jake Snell, Kevin Swersky, and Richard Zemel. Prototypical
networks for few-shot learning. In I. Guyon, U. V. Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and
R. Garnett, editors, Advances in Neural Information Processing
Systems, volume 30. Curran Associates, Inc., 2017.

[4] Ross Girshick. Fast r-cnn. In Proceedings of the IEEE
international conference on computer vision, pages 1440–1448,
2015.

[5] S Ravi H Larochelle. Optimization as a model for few-
shot learning. In 5th International Conference on Learning
Representations, ICLR 2017, Toulon, France, April 24-26, 2017,
Conference Track Proceedings, 2017.

[6] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic
meta-learning for fast adaptation of deep networks. In Inter-
national Conference on Machine Learning, pages 1126–1135.
PMLR, 2017.

[7] Flood Sung, Yongxin Yang, Li Zhang, Tao Xiang, Philip HS
Torr, and Timothy M Hospedales. Learning to compare:
Relation network for few-shot learning. In Proceedings of the
IEEE conference on computer vision and pattern recognition,
pages 1199–1208, 2018.

[8] Hao Chen, Yali Wang, Guoyou Wang, and Yu Qiao. Lstd: A
low-shot transfer detector for object detection. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 32,
2018.

[9] Xin Wang, Thomas E. Huang, Trevor Darrell, Joseph E Gon-
zalez, and Fisher Yu. Frustratingly simple few-shot object
detection. July 2020.

[10] Leonid Karlinsky, Joseph Shtok, Sivan Harary, Eli Schwartz,
Amit Aides, Rogerio Feris, Raja Giryes, and Alex M Bronstein.
Repmet: Representative-based metric learning for classification
and few-shot object detection. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages
5197–5206, 2019.

[11] Bingyi Kang, Zhuang Liu, Xin Wang, Fisher Yu, Jiashi Feng,
and Trevor Darrell. Few-shot object detection via feature
reweighting. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 8420–8429, 2019.

[12] Qi Fan, Wei Zhuo, Chi-Keung Tang, and Yu-Wing Tai. Few-shot
object detection with attention-rpn and multi-relation detector.
In CVPR, 2020.

[13] Zixuan Xiao, Jiahao Qi, Wei Xue, and P. Zhong. Few-shot
object detection with self-adaptive attention network for remote
sensing images. IEEE Journal of Selected Topics in Applied
Earth Observations and Remote Sensing, 14:4854–4865, 2021.

[14] Geonuk Kim, Hong-Gyu Jung, and Seong-Whan Lee. Few-
shot object detection via knowledge transfer. In 2020 IEEE
International Conference on Systems, Man, and Cybernetics
(SMC), pages 3564–3569.

[15] Xiang Li, Jingyu Deng, and Yi Fang. Few-shot object detection
on remote sensing images. IEEE Transactions on Geoscience
and Remote Sensing, pages 1–14, 2021.

[16] Gong Cheng, Peicheng Zhou, and Junwei Han. Learning
rotation-invariant convolutional neural networks for object de-
tection in vhr optical remote sensing images. IEEE Transactions
on Geoscience and Remote Sensing, 54(12):7405–7415, 2016.

[17] Mathilde Caron, Piotr Bojanowski, Armand Joulin, and
Matthijs Douze. Deep clustering for unsupervised learning of
visual features. In Proceedings of the European Conference on
Computer Vision (ECCV), pages 132–149, 2018.

[18] Gui-Song Xia, Xiang Bai, Jian Ding, Zhen Zhu, Serge Belongie,
Jiebo Luo, Mihai Datcu, Marcello Pelillo, and Liangpei Zhang.
Dota: A large-scale dataset for object detection in aerial images.
In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 3974–3983, 2018.

[19] Mark Everingham, Luc Van Gool, Christopher KI Williams,
John Winn, and Andrew Zisserman. The pascal visual object
classes (voc) challenge. International journal of computer vision,
88(2):303–338, 2010.

[20] Zhi Tian, Chunhua Shen, Hao Chen, and Tong He. Fcos: Fully
convolutional one-stage object detection. In Proceedings of
the IEEE/CVF International Conference on Computer Vision,
pages 9627–9636, 2019.

