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Asymptotic behavior of a plate with non-planar top surface
G. GRISO
Laboratoire Jacques-Louis Lions (LJLL), Sorbonne Université, F-75005 Paris,

email: griso@ljll.math.upmc.fr

Abstract

In this paper we study the asymptotic behaviors of a plate with non-planar top surface in the framework of
linear elasticity. For this plate, we give a decomposition of the displacements. We show that every displacement
of the plate is the sum of a Kirchhoff-Love displacement and a residual displacement that takes into account
the deformations of the fibers of the plate and the shearing. We also prove Korn’s type inequalities.

Résumé
Dans cet article, nous étudions, dans le cadre de ’élasticité linéaire, les comportements asymptotiques d’une plaque dont la surface
supérieure est non plane. Pour cette plaque, nous donnons une décomposition des déplacements. Nous montrons que tout déplacement
de la plaque est la somme d’un déplacement de Kirchhoff-Love et d’un déplacement résiduel qui prend en compte les déformations des
fibres de la plaque et le cisaillement. Nous donnons également des inégalités de type Korn.
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1 Introduction

The first difficulty encountered when studying a plate with a non-planar top surface is the estimation of dis-
placements. The second, as in all problems of linear elasticity of thin structures, is to give a simple expression
to the strain limit tensor. In this paper, we start by extending the result obtained in [2I] for flat plates: namely
that any displacement is the sum of a Kirchhoff-Love displacement and a residual displacement. Here, our proof
uses the result of [2I] and is based on simple geometrical considerations concerning the lateral boundary and the
parameterization of the non-flat part of the plate. This decomposition of a displacement is followed by estimates
of each of its terms using the norm of the strain tensor. When investigating the behavior of the strain tensor of
a sequence of displacements, these estimates allow to obtain a simple expression for the limit strain tensor only
in terms of the limit Kirchhoff-Love displacements and the limit residual displacements. This done, we can give
the asymptotic behavior of a non-planar plate made of an isotropic and homogeneous material and also give the
asymptotic behavior of this type of plate in the framework of reduction of dimension and homogenization.

Plates with rough surfaces are the subject of an important literature. In [5], we find a Korn type inequality for a
rough surface plate and in [I0] a Korn type inequality for a structure made of plates whit non-flat surfaces. The
asymptotic behavior of a plate with a rough surface is studied in [6] [7, §]. Other papers [111 12 14} 7] study
the jonction of a plate with a vertical rod or a family of regularly spaced vertical rods. As a general reference on
elasticity, we refer the reader to [I, [3]. For mathematical modeling of plates we refer to [2, 4, [9] [16] 21]. For the
periodic unfolding method we refer to [16].

This paper is organized as follows:

e In Section [2| we introduce the main notations and the plate {25 with non-flat top surface.

e In Section [3| we recall some results obtained in [21] concerning the displacements of a plate. Any displacement of
a plate of constant thickness is the sum of a Kirchhoff-Love displacement and a residual part (the shearing and the
warping). We also recall the estimates of the terms of this decomposition (see Lemma and Proposition .

o In Section |4 we extend the results obtained in [21I] to non-flat plates.

e In Section [b| we transform the plate 25 into a fixed domain §2 using a dilation in the plate thickness direction.
Then, we introduce the dimension reduction operator I15 which acts on functions defined in €25, this allows to work
with functions defined in Q. In Subsection we consider a sequence of displacements {us }s whose strain tensors

satisfy
lleus)l| 2y < C6°72,



using the limits

In Theorem ﬂ and Lemma we give the asymptotic behavior of the sequence {1 /6%11s (€(U§)) } 5

of the partial derivatives of the terms of the decomposition of us.

In order to solve problems of dimension reduction and homogenization, we introduce a specific operator T.s that
combines dimension reduction and periodic unfolding. The dimension of the periodic cells is €, we are interested
in the case

(¢,8) = (0,0)  and % — 60 € (0,+00). (1.1)

In Subsection we choose a sequence of displacements {u. ¢} ¢ satisfying
le(ue,s)ll 2205 < C87/2. (1.2)

In Theorem We give the asymptotic behavior of the sequence {1 /62T 5 (e(ua(g)) }E s+ In the limit strain tensor
the parameter 6 appears.

e In Section [6] the plate is submitted to applied body forces. We study the linear elasticity problem posed in
the domain 5. The coefficients of Hooke’s law are periodic (period €) and they also vary strongly according to
the thickness of the plate (we make the assumptions ) The applied body forces are chosen in order that
the solution wu. s of the elasticity problem satisfies (1.2). Thanks to the results of Section [5| we obtain the limit
elasticity problem posed in the rescaled and unfolded domain (see Theorem . Then, as usual in homogenization
we introduce the correctors and we give the problem whose solution are the limit membrane displacement /¢ and
the limit bending Z/{g . These fields depend continuously on the parameter 6.

e In Section [7] we partially extend the results of Section [4] to plates with strongly oscillating top surfaces.
e The Appendix (Section [§]) is devoted to the proofs of technical results used in Section

Throughout this paper, we use the Einstein convention of summation over repeated indices. As a rule, the Greek
indices «, 8, o’ and ' take values in {1,2} and the Latin indices ¢, j, k and [ take values in {1,2,3}. The courant
point of R? is denoted 2’ = (z1,22). The courant point of Y is X’ = (X1, X») while the courant point of Y is
X = (X1, Xo, X3).

2 Notations

Denote
e (e1,e2,e3) the usual orthonormal basis of R,
e w a bounded domain in R? with Lipschitz boundary,
e v a subset of Jw with non null measure,
e ¢ a function belonging to W1°°(w) and satisfying
V(2',2) €@® |p(a)) — ¢(2)| < Kolz' — 2|2,  ¢(2) > 2C, Va' € w,
where | - |2 is the euclidian norm in R?, K, and Cy are strictly positive constants
C1 = |9l oo (w)
Y =(0,1)2, Y=Y x (-Cy,Ch),
o Vo =Y x (= Cy,¢(a")) for all 2’ € w,

® SoIme spaces

H),.(Y)={xe€H (Y)|x is l-periodic with respect to X; and X5},

per
Hhero) = {x € B (V)| [ x(X)x" =0},

H?2 (V)= {x e H?(Y) | x and Vx are 1-periodic with respect to X; and X},

per
Hzer,O(Y) = H;ger(y> N H;er,O(Y)’
H;er(y) ={x € H'(Y) | x is l-periodic with respect to X; and X»},
H;eno(y) = {X € Hl(y) | / X(X/,Xg)dX/ =0 fora.e X3¢ (700,01)}.
Y



The plate with a non-planar top surface is the domain
Qs = {x = (z1,m2,23) Ew X R| —0Cy < x5 < 5¢(x1,:c2)}.

We also consider
9075 =w X (_600,500) C Qs

the plate with flat top and bottom surfaces.
The plate Qs (resp. €o.5) is clamped on a part I's (resp. I'gs) of its lateral boundary

L5 = {(z1,22,23) € y xR | —6Cy < 3 < 6¢(w1,72)}, (resp. Tos = x (=8Cp,Cp)).

3 Some reminders on the decomposition of plate displacements

For every u € WP(Qq5)%, 1 < p < 0o, we denote e;;(u) the entries of the strain tensor e(u) of u

(i,5) € {1,2,3}>.

o) = 5 (50 + 52

In [2I] we have proven that any displacement u € W1P(Qg )3, 1 < p < oo, is the sum of a Kirchhof-Love
displaceement and a residual one

ou
m@q—maiuq
= ) e S8 @y | uz)
x . ;
Us (') 2 residual displacement for a.e. x in Qg5 (3.1)

Kirchhoff-Love displacement

u(z) = Ukr(x) + u(x)

where Ugy, and @ belong to W1P(Qq 5)3. We recall that the map u € WHP(Qq5)3 — Uk € WHP(Qg5)? is
continuous and linear (see [21]).
The sum

Uy =Ure1 + Uz e

is the membrane displacement, while Us represents the bending of the mid-surface of the plate. The residual part
u stands for shearing and warping (the deformation of the fibers {a’'} x (—38Cy, dCy), see [13] 21]). The residual
displacement satisfies the following two conditions:

Cos Cod
/ (2, v3)drs = / Ug(z',z3)dzz =0  for a.e. ' € w. (3.2)
—Cos —Coé

We have

Theorem 3.1 (Theorem 6.1 in [21]). Let u be in WP (Qq5)3, 1 < p < co. The fields Uy, = Use1 + Uses, Us and
u satisfy
Uy € WIP(W)2 Us € WHP(w), T € WHP(Q5)°

and the following estimates:

c
leas@m)llrw) < 577 le(@)llr (o,
c
1D*Us | o) < Sz el e, 5),

@l Lo (620,5) + VUl Lo (020,5) < COlle(w)l Lo (0,5)-

The constants do not depend on §.



Lemma 3.1 (Lemma 3.4 in [21]). Suppose that the plate is clamped on Ty 5. Then, we have
Ui =U=0 a.e. on~y

and

s ]| oy < C8 2P le(u) |y s)s I VUslLo(y) < 52%||€(U)||LP(QO,5)~ (3.4)
The constants do not depend on §.

As a consequence of the above theorem and lemma, one has
Proposition 3.1 (Proposition 3.5 in [21]). Let u be a displacement in WP (Qq5), 1 < p < 0o. Assume the plate
clamped on I'ys. Then, we have
C
U llwe ) + IUellwrr@w) + 3lUs[lwzpw) < MHS(U)HM(QO,(;),

luillLr(o.5) + u2llLe(s) + 0llusllLe o s) < Clle(w)llLr.5),

2
8u5 8u3
Oz, <C » (3.5)
a%:l H 0T 1LP(Q0.5) H@:Cg, LP(Qo.5) H ( )”L (Q0,6)>
2
Ous g, C
o1 < < P .
2:21 (H Oz 1Lr (90,5 H O3 1 L (00, 5)) 5 lle(u)llL (Q0.5)

The constants do not depend on 9.

4 Displacements decompositions of the non-planar plate

Let u be a displacement in W1P(Q5)3, 1 < p < oo. The restriction ujq, s 18 a displacement of the plate g s,
we decompose it as (3.1). The Kirchhoff-Love displacement Uk, can also be considered as a displacement of the
plate Qs, so it belongs to W1P(Qs)3. We write

u=Ugyr +u (4.1)

The residual part u belongs to W1?(£25)2, it stands for the deformations of the fibers of the plate §2s.
Note that u = u a.e. in Qg 5.

Theorem 4.1. For every displacement u in WP (Qs)3, 1 < p < oo, the terms U and u of its decomposition given
by (4.1) satisfy

C
Hea,@(um)HLP(w) < 517“6(”)“[/?(95)7

1D%Usllrr < 1075 le)lv (42)
le(W)llzr sy < Clle(u)lzr(as)
and
lullLe sy < C 0 le(u)]Les), (4.3)

IVullLr(s) < Clle(w)l ey

with a constant C independent of §.

Proof. The estimates 1 .2 are the consequences of those in Theorem 3.1] u and the fact that [[e(u)||z2(q, ) <
lle(u)]|2(qy) since Qo5 C Q We have

o*U. o*U.
eu(l) -3 8x23 cl) - = 35E15‘i2
U = 821/1 U
6( KL) elg(Z/{)—.’E 8@‘16 o 22(7/{)—1'3%23 0
2
0 0 0

Since Uk, is a affine function with respect to xg, the estimate (4.2); 2 and the fact that u = u— Uk, lead to (4.2)s.
The proof of (4.3) is postponed in Subsection of the Appendix. O



If the plate is clamped on I'; then we have the following Korn’s type inequalities.

Proposition 4.1. Let u be a displacement in WP (Q5), 1 < p < oco. Assume the plate clamped on T's. Then, we

have
llutllze(as) + lluallzeas) + 0llusllrs) < Clle(w)l|Le(ay)

2
Oug H@u;;
|52 < Clle(®)llzr(@y);
a,[J’Z:l O llLr(9s) 110z liLe(9s) (@) (4.4)
2
Ous Oy, C
279 < = ) .
; (Haza LP(Qs) Haxg LP(Qs) ) ) le(w)lzr )
The constants do not depend on 9.
Proof. Estimates (4.4]) are the consequences of the decomposition (4.1)) of u and the estimates (4.2))-(4.3). O

From now on, in Sections @ and@ every u € WP (Qs)? will be decomposed as the sum of a Kirchhoff-Love
displacement and a residual displacement.

5 Asymptotic behavior of a sequence of displacements
The set of admissible displacements is denoted Dy
Ds = {ue H'(Q)*|u=0 on I's}. (5.1)
We rescale Q5 to € in the e3 direction. We set
0= {(z/,Xg) cwxR| —Cy<Xs< (;S(z/)},
0 =w x (=Coy, C1), QC Q.
We denote

Egﬁ{geZQ |€(§+Y)Cw}, @Eilnterior( U 5(5—&—?)), A =w)\ @e.

§EE.

Definition 5.1 (The dimension reduction operator Ils). For every measurable function v on Qs, we define the
measurable function s(1p) on Q as follows:

Os(y) (2, X3) = (2',0X3)  for ace. (2/,X3) € Q.

For every f € L'(2s) and g € L?(Qs), one has
1
[ pde=s [ i aaxs imslew = gl

Moreover, if f € H(5), one has (« € {1,2})

1, (3f):}6H5(f) I, (af):ang(f)

ors) 0 0Xs Oz Oz e

We recall below the definition of the classical unfolding operator (see [I6, Chapter 1]).

Definition 5.2 (The unfolding operator 7:). For every measurable function g on w, we define the measurable
function Tz(g) onw XY as follows:

g(a [g} +e(Xie1 + Xgeg))

N
Te(g)(’, X7) = for a.e. (2',X') = (v1,22,X1,X2) €@ XY,
0 for a.e. (2',X') = (x1,22,X1,X2) € Ac X Y.

IFor o’ € R2, [2'] € Z2 is the integer par of z.



The unfolding operator with parameters will also be denoted 7-.

Definition 5.3. For every measurable function ¥ on i, we define the measurable function To(¥) on w x Y as
follows:

/

1/1(5 [%:| +€(X1€1 +X2€2),X3)
/ —
Te(W) (@', X) = for a.e. (2, X)=(2',X") = (x1,72, X1, X2, X3) €L X YV,
0 f07” a.e. (l‘l,X) = (.I‘I,X/) = (x1,x2,X17X2,X3) S AE X Y.

Regarding the properties of the unfolding operator 7; with or without parameters, we refer the reader to [16],
Subsections 1.1 and 1.5].
We will denote ¥.5 = 7. o Il the dimension reduction and unfolding operator which acts on measurable function
on Qg.
Note that if ¢ does not depend on x5 then T5(¢p) = T (¢).

5.1 First case: only dimension reduction

Let {us}s be a sequence of displacements belonging to Ds and satisfying
lleus)l| L2y < C6°72. (5.2)

The constant does not depend on 4.
We decompose us (see (4.1))). The terms of its decomposition satisfy (see (4.4), (4.2 and (4.3))

(@) F 0lUs 3]l 12 () < CO2,

(5.3)
[usll 205 < C 872, | Vus|p2g,) < C6°2.
From which and the properties of II5 we obtain
81_[5 ug) 3 aHzS (Ué) 2
I . H ‘ 5, Hi‘ < O, 5.4
s us) 2@ + | =55 | gy = ¢ oz e =€ (5.4)
Denote
H1 (w)={p e H(w)|p=0ae. on v},
H2 (w)={p € H*(w)|p=0and Vi =0ae. on v},
D (w) = Hy(w)? x H3(w),
o
2 2/0)3
W) = {@ € L2Q)° | g5 € L) }
We equip W(2) with the norm
® Q), ® ® H
VB W), [Pl = \/ 19022 @ + |35 e
The strain tensor of a displacement u € H'(€5)?, decomposed as is
0%Us 0%Us
611(1/[) T35 821'% 612(2/{) — X3 85658.%2
e(u) = 8 Ug 6 ng
er2(U) =3 Ox10o 2(U) =3 0x3
0 0 0
1 8113 8u1 (55)
en (4) ez (1) 2<gx1 gxg)
1 U3 Uo
+ a612 (U)a a622 (u)a 5 (8;6184' (97.%'3)
1 /0us Uy 1 /0us U U3
2t ) 2t o) s

The following theorem is proved in [21].



Theorem 5.1 (Theorem 4.2 in [2I]). Let {us}s be a sequence of displacements belonging to Ds and satisfying
lle(us) || 20y < C6°72.

There exist a subsequence of {0}, still denoted {6}, and functions U = (U, Uz, Us) € Dpr(w) and U € W(Q) such
that

1
Us,o = Uy weakly in H; (w) and strongly in L*(w),

52
%Z/{&g —Us  weakly in H?*(w) and strongly in H'(w),
1 ‘ (5.6)
gﬂg(u,;) — U weakly in W(Q),
1 015 (us) o 12(0))3
2 o — 0 weakly in L*(Q)°.
Moreover, one has
1 .
—s(us o) = Uy — Xg% weakly in H*(Q),
52 ’ 3Ia (5'7)
%H(;(’U,(;B) — Uz strongly in H'(Q).

Note that the limit displacement in the rescaled plate €2 is of Kirchhoff-Love type.
For every V = (V1,V2,Vs) € H}(w)? x H2(w) we define the symmetric tensor Ey(V) by

0?Vs3 0?Vs3
en(V) — X3 @ e12(V) — X3 895%8@
E]L{(V) _ Y 0°V3
c2V) =X gm0V~ X g
0 0 0
and for every U € W(Q), the tensor E,,(0) by

1909,
LR
E,(0)=] 0 0o -

20X;3
100, 10U, 0Us

20X 20X; 0X;

Now, we can give the limit of the rescaled strain tensor of the sequence {us}s. As a consequence of Theorem
we have

Lemma 5.1. Let {us}s be the sequence of displacements belonging to Dy introduced in Theorem . One has
1
52
Proof. The displacement II5(us) belongs to H*(2)® and its strain tensor II5(e(us)) is given a.e. in Q by

IIs(e(us)) = Ep(U) + Ey(U) weakly in L*(Q)*2. (5.8)

(922/{573 321/{5,3
611(2/{5) —Xg 587],‘% 612((/[5) —X3 563718332 0)
H5 (e(u(;)) = . (921/{573 _ 821/{5,3
612(1/{5) X3 68x16m2 €99 (U§) X3 ) ax% 0
0 0 0
1/ 0Ts(u 10105 (u (5.9)
€11 (Hg(tlg)) €12 (H5 (u5)) 5 ( g(mlé,?)) + g gg(gl,é))
1 /05 (u 1 0115 (u
+ e12 (s (us)) ez (115 (us)) 5( gif’?’) 5 g;;é))
1(5’115(%,3) 101l (ul,é)) 1 (3H5(u5,3) laﬂé(u2,5)> 1 0115 (us,3)
Then, due to the convergences in Theorem we get . O



5.2 Second case: dimension reduction and homogenization simultaneously

Let {ucs}es be a sequence of displacements belonging to Ds and satisfying
lle(ue,s)l2(as) < C5°/2, (5.10)

The constant does not depend on ¢ and 4.

We decompose u. 5 as . Then, we extend the displacement u. s using the extension operator Ps (see Lemma
in Appendix). The extended displacement Ps(u. s) will be still denoted u. 5. Due to Lemma [8.2] in Appendix,
the estimates 273 and the properties of the reduction of dimension and unfolding operators, we have

1Fes (e )| 2wy + [[VxTes(es)]] L2y < CO° (5.11)

The constant does not depend on ¢ and §.
Below, we proceed simultaneously to the dimension reduction and the homogenization of the sequence {uz ¢}e s.
From now on, we assume that
€
(e,9) — (0,0) and 5 0 € (0,400).
We denote

Q={@ X)ewx Y| —CO<X3<¢($/)},

W(Q) = {m € L3(Q)® | Vx'0 € L2 ()33
and U is 1-periodic with respect to X; and Xg}.

We endow W () with the norm

VO EeW®),  [Bllwe) = /191 q) + IVx D22 q)-
For every 0 € W(Q), we define the 3 x 3 symmetric tensor E? (0) € L2(02)3*3 by
OB * *
80X,
1 8%2 8%1 8%2
EC (D)= | Z(+2 + —— 2
W= 3 (axl * 8X2> 9X, .
1,003 001\ 1/0U3 00, 0U3
Z 0 Z
3(ax +iax) 2o Hiax) fox
and the function M () by
1

M) (') = V(2" X)dX, for a.e. 7’ € w.

(ZS(ZJ) + CO Vot
M () belongs to L?(w)3, the measure of YV, is ¢(a’) + Co. The operator M is continuous and linear from W(£2)
into L?(w)3.

Theorem 5.2. Let {u.s}cs be a sequence of displacements belonging to Ds and satisfying (5.10). There exist
a subsequence of {e,6}, still denoted {e,d}, and functions U = (U, Uz, Us) € Dp(w) and b € W(Q) satisfying
M) =0 a.e. inw such that

1
Ue 50 — Us  weakly in H.(w) and strongly in L*(w),

o (5.12)
~Ue 53 —Us  weakly in H?(w) and strongly in H(w),

)
Moreover, one has
1 oUs . 2 1
5 Tes(Ue5.0) —> Ua — Xz strongly in L*(w; H' (Y)),
(15 Oza (5.13)
gieg(ua,g,g) — Us  strongly in L*(w; H(Y)).



Furthermore i

52

Proof. There exist a subsequence of {e,0}, still denoted {e,d} and functions U = (Uy, Us, Us) € Dps(w), U, €

ﬁQ(wﬁ;)H;efO(};)Q);’ Us € L*(w;HZ,, ((Y))? and 4 e LQ(w;Héer(J}))g such that convergences (5.12) hold and
a,B)e{l,2

Tes(e(ue,s)) = En(U) + E° (81) weakly in L*(w x Y)**3. (5.14)

5%7—5(%’5*’”) —U,, weakly in L*(w; H(Y))?,
1 (Uesmy Oy  OlUn  rpiong
—7: = — Kkl L7 (Q),
77 D ) e T ox, Veklyin ()
1
5 5<U€,5’3) — Us strongly in L*(w; H*(Y)), (5.15)
% E(%) N weakly in L?(w x Y),
T To
1 /0% 55 s 02Us )
= D7) kly in L Y
5 E(amaax ) ooy T oX.0x, Veaklyin Li(wxY),
B B B
and
T (i ) ~{l weakly in L2 3
e 5ales weakly in L*(w x Y)°,
1 Oucs\ 0 1 . od i 9 3
5355(5 Oz ) = ﬁ%&(ﬁu&é) X, weakly in L*(w x V), (5.16)
1du.s\ 0 1 ol R 5
5‘166(673 6x3 ) = T&Seé(af?)ngﬁ) 87)(3 Wea.kly in L (UJ X y) .
Now, we have
o, U,
e11(Ues) — X3 az‘é?’ e12(Ue,5) — X3 661186;2 0)
1
Tes(e(ue,s)) = B O*Us s B 0*Us 3
e12(Us5) — X3 56:510352 ea(Ue5) — X306 02 0
0 0 0
ia(zsé(ue,é,l) i (a(seé(ue,éﬂ) + a(zeé(us,é,l)) 1(16356(’46,5,3) la‘zsé(us,é,l))
2e 8X1 2e (9X1 8X2 2\e 8X1 ) 8X3
i (6{366(115,6,1) + azsé(us,5,2)> lassé(us,éﬂ) l(laisé(us,éﬁ) la‘zsé(ulé))
2¢e 6X2 6X1 ) 8X2 2\e 6X1 1) an
1(18165('“8,5,3) + lagsé(us,é,l)) 1(13{3:66(115,6,3) + la(ssé(ul&)) 18156(115,5,3)
2\e 8X1 ) an 2\e 8X1 ) 8X3 1) 8X3
We divide by 4% and pass to the limit using (5.15) and (5.16))2,3. This gives
~ 02Us . 82Us
(Uy) — Xy =23 (Uy) — Xy — D3
. e11,x' (Um) 3 X2 e12,x' (Unm) 3 OX,0X, 0)
7{355 6(“5,6) - EM(Z/[) + -~ 821:{\ -~ 321/7
62 ( ) e12,x'(Unm) — X3 &3(783)(2 €22, x' (Um) — X3 875’ 0
1 2
0 0 0
73111 * *
0X,
1 1 (9’:12 61011 8112 : 2 3x3
+ | o= =1 = weakly in L“(w x Y .
6| 2 (aoxl a)gz) X, - yin Liwx )
1 /043 oLy 1 /043 19)10% 043
§<8X1 +98X3> i(axg +08X3) eaxg
-~ 1/0U,  OUp
h an.x Up) = = )
where eqg x'(Un) 2(8X3 8Xa) Set

o (n olls ~ s ~ 1, .
U= (Z/{l —Xgai)(l)el + (Z/{2 _X3(97)(2)62 —|—9L{3€3 + g(ﬂ—M(ﬂ))



Observe that M(ﬁ) = 0 a.e. in w. This leads to (b.14). Convergences (b.13)) are the consequences of (5.12]) and
the properties of T.5. O

Lemma 5.2. For every function B € W(Q), one has (a € {1,2})

< 005 05 0
0>1, HVXSUOCHM(Q) + 9” L2() Han ‘ LQ(Q) HE )HL2(Q) (5.17)
0% '
R e R ! Cllen @l
=~ Xa L2(Q) an Lz(ﬂ) || HL
The constant does not depend on 6.
Proof. Consider the domains Y,/, ' € w. Note that
X (—C(),Co) C Yy CY X (—Co,cl) vz’ € w.
Proceeding as in [I6, Chapter 11] we obtain that for every ¥ € H,,,.(V2)? (a € {1,2})
81/;3 O3 0
[9xallyay,) + v P55 e, < CIEL® e, -
oY 0( '
—_— £,
Hf)XCY ’ L2(Y,) H 0XsllLz(y, ) H )HLz(JJ(m’))

where H!  (V,)? is the subspace of H(),/)? containing the periodic functions with respect to X; and X,. The

per
constant C' does not depend on # and z’.

Now, let B be in W(Q) N C (@ x V)3. We apply the above result to the function (a2, -) € H}.,. (Vo). This leads
to (5.17). Then, a density argument gives the result for every function in W(£2). O

Corollary 5.1. For every 6 € (0,+00) and for every ¥ € H),,(Vor)* we have

1Vl < (04 )L @)] oy, (5.19)

The constant does not depend on 6 and x'.
Lemma 5.3. There exist two strictly positive constants ¢ and C, independent of 0, such that for every V =

(Vim, V3) € H ()% x H2(w) and B € W() satisfying M(B) =0 a.e. in w, we have

(Il + Vsl s o) < B3 V) + B ) zacan

< OVl @) + Vsl a2 () + (14 0)1D] 11 () ) -

(5.20)

Proof. First, due to the periodicity of the fields ‘ﬁm and @3, we have

1Ex (V) + EL (D) 72(6) = IEM ()72 (@) + I1EL (D) 720

Then, since the components of Fj;(V) are affine functions with respect to X3, there exist two strictly positive
constants ¢p; and Cpy such that

enr 22: (leas W22 + "61‘82;;5'
a,f=1 :

)

2
<NE W) Ee) < Cut Y (lleasWVnlFaq + |
a,B=1

82V3 ‘
0x,0zg

;(w)) '

Then, the boundary conditions together with the Poincaré inequality yield

c(IVmlla @y + 1Vsluz2w) < IEvW)llrz@) < C(IVmlla ) + Vsl p2w))-
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From the definition of the matrix E¢, (@), there exists a constant C,, independent of § such that

Now, (5.19)) leads to

0 . .
WHVX‘Z](x’, M2,y < C||ES (1) (2, Ne2,) for a.e. ' € w.

Observe that for every o’ € w, the domains ), are star-shaped with respect to balls whose radii are inf{1/2,2Cy}
and have a diameter less than 2+2C;. Hence, [I3, Proposition 2.2] gives the following Poincaré-Wirtinger inequality

1B(',-) = M(D) (@) | 2(y,) < CIVXDB(, )12y, for ae. @/ €w
where the constant does not depend on 2’ € w.
Thus
0
Bl < CIEL®)z2ia

Finally we obtain (5.20]). O

6 The linear elasticity problem in ()5

For 1 <14,5,k,1 <3, let a;;j be in L°°(Y) and satisfy the symmetry conditions
aijkl(X) = ajikl(X) = aklij(X) for a.e. X € y,
as well as the coercivity condition
QijklTij Tkl 2 €O TijTij a.e. in Y (6.1)
for every symmetric matrix 7 = (7;;) of order 3, where ¢y is a strictly positive constant.
The coefficients afj’il of the Hooke tensor are then given by
!/

4 i X3
ZM( z) = aijkl({?}, F) for a.e. x € Qs

where {2’} is the fractional part of xﬂ
The constitutive law of the materials is the relation between the strain tensor and the stress tensor,

o*fj?‘s(v) = afji‘,scl er1(v), Yo € Dy. (6.2)

For simplicity, we consider only applied body forces fs.
The displacement u. 5 € D5 is the solution of the following elasticity problem:

£,0

0, (ue,s) €s5(v dz:/ fs-vdx
| e esar= | 6
Y € Ds.

We make the assumption that the applied body forces f5 are of the form
fs(z) = (62 fa(@') + 0x3g90(2))eq + 83 f3(x')es  for a.e. x € Qs, (6.4)

where f = (fi, f2. f5) is in L*(w)® and g = (g1, g2) in L2(w)®.
Now, for every u € Ds decompose as (4.1]) one has

o ou
[ gy Uinde =5 [ gt (04 Copa fgjga (¢° + Cida
53 2 / 64 au3 2 2 /
T3 wgaua(ﬁb —E/Wfa%@ — Cg)dz
+(54/ fals (qb-‘rCo)d.%'/

| [ s -wda] < 08 (Il + lglles o) le(w) lz2qen-
5

2Remind that for a.e. ' € R?, we have o’ = [2'] + {2’} with [z/] € Z2? and {2/} € Y.
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From the estimates (3.5)) and those above, we obtain an upper bound of the right-hand side of (6.3

| [ s uda] < 08P (17200 +llliee) e 2oy
5

Applying the above estimate for u = u. s taken as test function in (6.3)), gives
le(ues)ll 205y < C82 (£l 2wy + gl 2(w))- (6.5)

6.1 The unfolded limit problem

In this subsection, we will investigate the asymptotic behavior of the sequence {u. 5}. s, the solution to problem

63).

Theorem 6.1. Let u. s be the solution to problem (6.3)). There exist U® = UL, U, UT) € Dps(w) and 1 e W(Q)
satisfying M(4%) =0 a.e. in w such that (a € {1,2})

U 5.0 — U strongly in Hi(w),

52
1
gu&&g —~ U weakly in H*(w) and strongly in H'(w),
1 ous (6.6)
5—2555(115,5@) — Ul - Xgﬁ strongly in L*(w; H'())),
%Sgg(usﬁgvg) —UY  strongly in L*(w; H()))
and L
52%e (e(ue,s)) — EarU®) + ES(81°) strongly in L*(£2)>*°. (6.7)
The pair (U?,41°) € Dy (w) x W(R) is the unique solution to
/ it (Ba i3 U°) + B2, (60)) (Ear (V) + B2 (D)) da'dX
Q
1 oV ,
— [ rv@rcoi — 5 [ g5 @+ o (63)
1 10)% ~
45 [ Ve -1 52) @ = CRraa’ ¥V D) € D) x W(E),
The solution to the above problem satisfies the following estimate:
0 ~
UGN £ ) + US| 2 () + 18wy < C(I1flr2w) + 119l 2w))- (6.9)
1+6

The constant C' does not depend on 6.

Proof. Step 1. First of all, the convergences.

There exist a subsequence of {¢, §}, still denoted {e,6}, and U = (U, U, UJ) € Dps(w), U e W(€) such that the
convergences (5.12))-(5.13)) and (5.14) hold (see Theorem [5.2]).

Step 2. The limit problem.

Let V be in Dy (w) and B € H'(w x Y)> N W(Q) such that ¥ = 0 on v x YV and M(B) = 0. We choose as test
displacement

/

_ 1 ’ 8V3 ’ ’ 3V3 ’ / 333 ’ X T3
vesle) = 55 [ (M) —aa g (a") Jer + (Wala') a2 () Jer + Va(a'hes +6°B (o {71 F) |
for a.e. x in Qs.
A straightforward calculation gives

5% os(e(ve,5)) — Eam(V) + E2 (W)  strongly in L(£2)**3

12



and 1 oy
/ fs- veadx—>/f V(o Cods' — 3 [ a5
o, 3] 9%z,

+3 [ @vs fa8V3)<¢ Ry,

Taking v, s as test displacement in , then transforming with ¥.5 and passing to the limit using the convergences
and those above regarding tlle test displacement lead to WiE\h the pair (V, QA])

Then, since the space of the fields U in H!(w x Y)3 N W(€2) such that ¥ = 0 on v x ) is dense in W(£2), problem
is satisfied for every 2 in W().

Step 8. Uniqueness of the solution of problem .

From the inequalities in Lemma we get that the bilinear form over Dz (w) x W(€2)

(¢° + CF)da

((V,ﬁ% (V\A@)) S (ID)M(w) X W(Q))2 — /ﬂ aijkl (EM’”(V) + Ez) Jij (ﬁ)) (EM,kl(W) + Efu,kl(ﬁ)) d.’E/dX

is coercive and bounded. So, problem admits a unique solution. Hence, the whole sequences in and
converge towards their limits. As a consequence of Lemma we obtain the estimate (6.9)).

Step 4. Strong convergence of the rescaled strain tensor.

Take u. 5 as test displacement in (6.3)), then transform using T.s and divide by 6.
We first have

1 6 1 Z/{ 3 3
Tes(fs) - Tes(ues) da'dX = f U (¢ +1p)da’ — 57 (¢° +¢°)dax

43 [ waut- 155 3“3 )w ).

Oé

lim —
(£:)=(0,0) 6* Jz.x»)ne

Then, the weak lower semi-continuity of the left-hand side of , the convergences (5.15)-(5.16|) together with

(5.14) yield
/ aijit (Ear,ij(U°) + B ij(8°)) (Brraa U°) + B (1)) da’dX
Q
. 1 1 ,
< liminf (/A @ijkl ﬁ‘zaé (eij(ugyg)) 6—2‘355 (ekl(uev(s))dx dX)
(We xY)NQ2

(,6)—(0,0)

1 1
< limsup (/ : Akl gggts(eij(u(g,é)) ﬁigé(ekl(uaﬁ))dx’d)()
We X)Y)N2

(2,6)—(0,0)
1
< limsup — afj’-é(ug,(;)eij(ugﬁ)dx: limsup — f5-uesdx
(.8)—(0,0) 9% Jo, (.8)—(0,0) 0
1 ous 1 ou?
= [ 1w cow — 5 [ ag @+ + 5 [ gtk - 152 ) @ - Craa’

Hence, the above inequalities are equalities. This proves the strong convergence of the strain tensor.

Step 4. Last strong convergences.

From ({3.2)), we obtain

52%5 U. 5) 200/ /CO 5 Tes(eap(ues)) (-, X)dX, ae in w (6.10)

The strong convergence ([6.7) implies

1 .
5208 (Ue5) — eapU?) strongly in L*(w). (6.11)
Hence, the convergence 1 is strong. O
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6.2 The correctors

Denote
1 00 010 000
MYt=1[(0 0 0], MZ2=1(1 0 0], M>2=(0 1 0
000 000 000

and for all 2’ € w

H;er(yx/) = {X € H'(Vw) | x is 1-periodic with respect to X; and Xg}.

Now, we will express the warping 49 in terms of the partial derivatives of Z/{% and Z/lg .

Below, we introduce the warping correctors Xo‘ﬁ , XO‘B belonging to W(£2). They are the solution to the following
p m,0> Xb,

variational problems:
anéa(x’, ) € Hy, (Vor)® such that M(Xffe)(x’) =0 and

/y Aijkl (Mzﬁ + Ez),ij (X:fe)) Eﬁ,u@) dX =0, V@ € H;;er(yﬂf/)s’

s

for a.e. 2’ in w. (6.12)
x;’g(m’, e H (V.)? such that M(Xig)(x') =0 and

per

p

/y @ijkl (X?»M%B + Efu,ij (X?g)) Efu,kl(@) dX =0, Ve Hop(Vor)?

=/

The above problems (6.12]) admit unique solutions. Observe that
Xows = Xowg  and Xpy = x5

Due to Lemma the correctors x;ﬁ Py xag are the restrictions to €2 of functions belonging to L (w; HY(Y))3.
Moreover, we have

120Gl @) | oy + 1L OED @ ) 2y, < € (6.13)
where the constant is independent of 6 € (0, +c0) and 2’ € w.
Thanks to these correctors, we express the field 9. We obtain
op OUY
%0 Oxn 0z’
Now, in order to obtain certain properties of the homogenized problem, we modify the correctors. First, observe

that in the problems given by (6.12), the variable z’ is just a parameter. So, we change the microscopic variable
X € Y, and the open set ), to obtain problems posed in a fixed domain.

U= X%ﬁ,e eap(U’) — x

a.e. in Q. (6.14)

We set
B _ , X3+ Co X3 —¢(a') _ _
N=d s BTt taeyroy YTV R,
and ¥ =0(Co + o(x')).
Th
h af ! Vv af ’ ’ / (;5(:1;'/) — CO
Xm0 (Z' X) = X (ﬁ s X1, Xo, (Co + ¢(")) X5 + f)’
aB % e’ / ’ I z') = C
Xola (@' X) = x5 (21, X1, X, (Co + 6(a) X + %)

where X = (X1, X5, X}) is the courant point in Y.

These new correctors belong to L™ (o.); Hz}er(:))))3 and are the solution to the following variational problems:

Xffﬂ(xl, )€ H,

per

(¥)? such that M(X;%)(x’) =0 and
ar (@) (M + €0 (G0F,)) €8 (W) dX =0, VA € H), . (V)*,

i _ for a.e. 2’ in w (6.15)
Xig(x’, e H;er(y)?’ such that M(ng)(x') =0 and

/y ar (@) (XM + &) (xes)) €o (D) dX =0, VAT € H},,. (V)
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where for every U € H},,.(¥)? the symmetric tensor £)(T) € L*(Y)**3 is given by

er

0, i} .
0X,
— 1,00, 0T o0
VM) = | o( =2 4 =L 2
w(%) 2 (8X1 + aXQ) X, *
170D, 0%, 1700, 0D, 005
5(3}(1 Waxg) 5(5}(2 +ﬁaxg) Vox:
and where
p(z') — C

Tw (2, X) = aijm (Xh Xz, (Co + ¢(2)) X5 + 0) for a.e. (2/,X) in w x Y.

2
These coefficients belong to L™ (w x ) and they satisfy the coercivity condition

ikl TijThl = Co TijTij a.e. in w x Y.

The new correctors satisfy

Hgg(x%%)(x’, ')HL2(y) + Héﬁ(g’g)(z’, ')||L2(y) <C, for a.e. ' € w.

As a consequence of (5.19)) and the above estimates, we have

“aB 1 T 1
||Xmﬂ,19(1'/’ )HHl(y) S C(ﬁ + 5), ||be9(gg/7 )”Hl(y) g 0(19 —+ 5), for a.e. x/ € w.

In the above estimates, the constants do not depend on ¥ and 2’ € w.

6.3 The limit problem in w
Theorem 6.2. The field U € Dy (w) is the unique solution to

) . FEaY)
/w AT eapU) o (V) da’ + / ATt (canl’) g

2716 2
+/Ab,9 OU; Vs da:’:/f-V(¢+C’o)dx’—1/9a%(¢3+03)d93/

Lug) dx’

*eas(V) O0xo Oz

oo’ B 0x,0xg Oxq OTp 3 o
1 8V3 2 2 /
+§\/w(gavaffaaxa)(¢ 700)d1‘, VVGDM(W),

where
,9 0 ! ’ 6 ’ 7
Adbors = / @ijkl (Mf}ﬁ + Ew,ij(XZfe)) (Mglﬁ + Ew,kz(xi,@ ) dX,

b,9 1ol 1l .
Aaﬁa’ﬁ/ :/ aijkl(X3M%'8+Ez;,ij(X;§)) (XSMEI'B +E31,kl(X?,9ﬁ )) dX, a.e inw.

g

b,0 , 0 /3’ 0 ! al
Al = / @ijkl (M?J‘B + Ew,ij(Xzfe)) (X3MZZB + Ew,kl(X?,GB ) dX,

Observe that due to the symmetry conditions of the a;;i;’s, one has

/y @ikl (MZB + Efu,z‘j(Xifa)) (XSM;:zﬁ + EZ,M(X?,(;B ) dX

s

(6.16)

(6.17)

(6.18)

(6.19)

af3,0 « o' B’ o' B’
—/y aijkl(X3Mijﬁ +E3,¢j(xb7§))(Mklﬁ +E§z,kl(Xm7%)) dX.

P

Proof of Theorem[6.4 In (6.8)), we choose as test displacements V € Dy (w) and




Then, we replace e by its value given by (6.14). That gives (6.18]). As usual, thanks to (6.1) and the expressions
(6.19) of the bilinear form in the left-hand side of (6.18)), we get the coercivity and continuity of this bilinear form.

Hence, we have the existence and unicity of the solution to (6.18). O
As a consequence of the estimates , the coefficients Aaﬂa,ﬁ,, Aaﬁ’a’,@’ and Aaﬂa,ﬁ, belong to L (w) More

precisely, we have

Lemma 6.1. As functions of the variables (9,z"), all the coefficients Aaﬁa,ﬁ,, Aiﬁa,ﬁ, and Aggﬁﬂ, belong to

m,0

L>((0,+00) X w). Moreover, for a.e. ¥’ € w the functions 6 — Alperp (@), 0 — Aaga,ﬁ, and 0 — A;”;O?,fy
are Lipschitz continuous on every segment included in (0, +00).

Proof. First, observe that

AT () = /y T, X) (M + €2 (7)) (@, X)) (M, + 21 (x5 (!, X)) dX.

We have similar equalities for the other coefficients.

We have L
oW,
0 0 7
J— / SYYT
YD) — €Y (W) = V- 0 o 2 VAl € H),, (V)% (6.20)
2 X}
o0, 99, 2«?)@3

0X}, 0X} 0X}
Now, starting from (6.15); and taking into account the above equality (6.20) and (5.19)), for a.e. 2’ € w we obtain

/yaz‘jkl(ﬂﬂlv VED i (% - %) (2',-) &y (W) dX
<Cl0 =91 ([1€2 @) o ) IV 0 (', 22 y>+||vf®um>(1+||63’<%><x',->||L2<y>))
<Clo - '[|€2 (@) s (Hvxxmw( Moz +0' + 5 + €2 (e @', M)
Now, choose 2 = (27, — x22,,) (', ), due to and (B.17) this gives

« o ! @ 1
[ 0cns = Xamo ) @' Mgy < €W = FNEL (o7 =X ) @'+ | oy (¥ + 57 )-

Similarly we show that

'\ eF Tam —F —ap 1
€2 (62— o) @y < €10~ T IEL (o — X @ oo (2 5 )

Hence - 1 1
1€20670 = X50) @3 oy < €10 = 194+ + 5 9 19/)

and then . 1 1\2
H(Xmﬁ X’mﬁ/) I/’.)HHl <C‘19 19/‘(19+19,+19+19/) ’

As a consequence, for a.e. ' € w the function 6 — Aa Bor ﬂ,( ') is Lipschitz continuous on every segment included
n (0,+00). In the same way, we prove that

o TaB 1
1€2.067 = X35 @ )| gy < CHO =9 (9 4+ 9" + 19 19/)
[0 (6% , 1 1 2
H(be; Xmﬁﬁ’) @, ')HHl(y) <Ol - 19/‘<19+19 +3 9 + 19/) .

So, the functions 6 — Ai’ga, B and 0 — A;”ﬂbae, g are Lipschitz continuous on every segment included in (0, 4+00).
O
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As immediate consequence of the above lemma, we have

Theorem 6.3. The map 0 € (0,+00) — U’ € Dy(w) is locally Lipchitz continuous for the strong topology of
]D)M(w)

Remark 6.1. As in [16, Chapter 11] we can show that

o the map 0 — U’ admits a limit U° € Dy, (w)ﬂ when 6 goes to 0. This limit corresponds to the case

(e,0) — (0,0) and % — 0.

It can also be obtained if we first homogenize € — 0, & being fixed, and then reduce the dimension § — 0.

o the map 0 — U? admits a limit U® € Dy, (w)lﬂ when 6 goes to +o0o. This limit corresponds to the case

(g,0) — (0,0) and % — +00.

It can also be obtained if we first reduce the dimension 6 — 0, € being fized, and then homogenize € — 0.

6.4 The case of an isotropic and homogeneous material

In this subsection we assume that the plate is made of an isotropic and homogeneous material whose Lamé
constants are X\ and p. In this case, one has

Qijit = A0ijOi + 11(8i1650 + 818 51)

where the d;;’s are the Kronecker symbols.

In this subsection, we denote us the solution to problem (6.3]). We first have the convergences in Theorem and
Lemma (511
Here, we easily obtain

o8l O o8y A ( (aul s

—_—=—=2= 2= 2) + X3A . in Q.
an 8X3 07 8X3 /\—|—2,u 8.131 +6$2>+ 3 Z/[3) a.¢.

The following theorem is a consequence of Theorem and the values of the a;jx’s.

Theorem 6.4. The field U € Dys(w) is the unique solution to

= yz [ [0 =) eap@) eas¥) +veanW)ess)] (& + Coyas
0?Vs 0*Us 2 2N 7.1
2(1 —1/2 /w eaﬁ )m +eap(V) m)(qs — Cp)dx
+m / v(eaald) AVs + eqa (V) AU3) ((;52 — Cg)dx’
. 6.21
/ 822/13 Vs Ay }(QSS + O (6.21)
3(1— V2 w 8:%3@; 02,023 35T 0
1 Vs
%
+§/ (90 Vo = fa3 3)(¢2 - C&)d:v’, VY € Das(w)
2
where E = M is the Young modulus and v = ——— the Poisson constant.
At 20\ + p)

3for the strong topology of D/ (w)
4for the strong topology of Dz (w)
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Moreover, one has

o*U.

1 E 0 Us 3 .
gﬂg(all(u(;)) — T2 [611([/{) — Xng% + V(egg(U) — X3a—x%)} strongly in LQ(Q),
1 E 0 Us 0%Us .

gH(; (0‘22(U5)) — T2 [622([/{) — Xng% + V(eu(l/{) — X5 22 )} strongly in LQ(Q),
1 U .

51k (012(us)) — 2p {612(7/1) - X3 8:016;2} strongly in L*(Q),

1

SH(; (0is(us)) — 0 strongly in L*(2).

7 Complement. The case of a plate with a strongly oscillating top
surface

Let us consider a function ¢ belonging to W1 (w x Y) such that for a.e. 2’ € w the map (X, X3)
o(x', X1, X5) is 1-periodic with respect to X; and X5 and satisfies

lo(z', X") — ¢(2, Z')| < Ko(|2' = 2o+ | X' = Z')5), V(o/,X',2,Z') € (wxY)?,
¢($l7X/) > 20()’ V(ZE/,X/) EwxY, G = ||¢||L°°(w><Y)a

where | - |2 is the euclidian norm in R2, Ky and Cj are strictly positive constants.

Now, the plate whose top surface oscillates strongly is the domain
Qe = {:c = (Il,xg,xg) cwxR | — 500 <x3z < 5¢5(I1,$2)}

with -
(bE(xl»xQ) = d)(xlwaa 717 72)
€ €
Observe that Qg5 C Q5.
As in Section 4} we decompose every displacement u belonging to W1P(Q.s)? as the sum of a Kirchhoff-Love
displacement and a residual displacement

u=Ugr +u

We have

Theorem 7.1. Let u be a displacement in WHP(Q.5)3, 1 < p < oo, decomposed as the sum of a Kirchhoff-Love
displacement and a residual displacement. Assume that there exists a constant C° such that

g <C° and e<1. (7.1)
5

Then, the terms U and u satisfy
C
leasUm)llzew) < 577 le(@)llze(as),

¢ 7.2
1D%Us o) < 575 el o (72
le()llzr(@.5) < Clle(w) o0,
and
[ullzr (0.5 < C 6 lle(w)llLe(a.s), (73)

[Vulle.s) < Clle(u)]lLea.,)

with a constant C independent of € and §.

Proof. The estimates ([7.2)) are proved in the same way as those of Theorem 4.1
Now, for simplicity we suppose that the origin O belongs to w. We transform the plate (2.5 by the dilation x = €z,
z € wi/e = 1/ew. The new plate is

) )
Q5 = {z = (21,22,23) Ewyje X R| — gco <z3< 2‘55(21,22)}
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where
D (2') = P(ez1, €29, 21, 22) Ve = (21,22) €Wy e

and satisfies
|(I)5(Z/) - (bs(t/” S K0(€|Z/ - t/|2 + |Z/ - t|2) S 2K0|ZI - t/|2, V(Z/,t/) S Wi/e-

The plate .5 has a thickness of order /e, the diameter of the domain wy /. is of order 1/e. The proof of (7.3)
follows the same lines as the proof of (4.3)) (see Subsection in the Appendix). O

The question now is: what happens if we replace the assumptions ([7.1]) with the following:

lim é — o007 (7.4)
(6,6)—(0,0) €

The estimates ([7.2]) remain valid. The top surface of the plate is now made by small beams. Below we give an
example.

L
Choose w = (0, L)%, € > 0 such that = € N. Let ¥ be the 1-periodic function defined by

3t ift € [0,1/3),
bt) =41 ift € [1/3,2/3),
3(1—t) ifte([2/3,1].

We define ¢. by " v B
Ge(x1,72) ZQCO‘HJJ(?)dJ(?)» V(x1,22) € @.

Denote
Q(;d =w x (=dCy, 26Cy), 0L = {m = (x1,T2,23) Ew X R | 2§C) < 23 < (5¢5(x1,x2)}.

Since Qg is a plate of thickness 30Cy we have

[ullzey < Colle(u)lliru,),  [IVulliaag) < Clle(w)lir @)

The constant does not depend on . The domain QY; is made of thin beams whose lengths are ¢ and thickness of
order €. Using the results of [20] we obtain

52
uillze(@.s) + [[U2llLr @y, < C;HB(U)HLP(QE(S), [usll Lz, < Clle(u)llLr )
1)
[VullLr e, < Cg”e(u)”Ll’(ng)-

The constants do not depend on § and «.

8 Appendix

8.1 Simple star-shaped domains
Lemma 8.1. Let Bsg C w be a domain of diameter less than 30 R, star-shaped with respect to to the disc D(O,dRy).
IfRi <R< 20700 then the domain
Dsp = {(l‘l,xg,xg)) € Bsp xR| —0C) < 73 < 6(;5(901,:62)}
is star-shaped with respect to the ball B(O,dR}) where
R} =min {Co, R, }. (8.1)

Dsr has a diameter less than 6(3R + 2C1).
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Proof. Let A = (a1,a2,a3) be in Dsg such that ag > 0 and M = (ml,x27,5¢(x1,x2)) a point on the top surface.
Consider the point Ay of the interval [A, M)

Ay =(1—NA+AM,  Ae[0,1).

One has
6(z") = o((1 = N)a' +A2)| < Ko(1 = N)|2' —d']2, 2’ = (z1,22), o = (a1,a2).

Hence
p(a') = Ko(1 = Nz’ — a'la < (1= N)a' + Az') < o(a") + Ko(1 = N)]a’ — d'a.

The point Ay belongs to Dsg if

(1= Nas + Asg(x') < 36((1 — A)a' + Az').
A sufficient condition to get Ay € Dsg, for all A € [0,1), is

(1= Nas + Adg(z') < d(a') — 0Ko(1 — A)|z’ — d'|2

for all (x’, a') € Bsr x Bsgr. So, the above condition becomes

az < 6¢(z') — Kolz' — d'|2, Va' € Bsg. (8.2)
Suppose az € [0,5Cy], we recall that ¢(z') > 2Cy, hence a sufficient condition is

8Cy < 26C) — 26 RK,.

Condition met.

Obviously, if a3 € [-0C), 0], is satisfied. We have proved that any interval [A, M) from a point A € B(O,R})
to a point M on the top surface is included in Dsg. Similarly, we can prove that any interval [A, M) from a point
A € B(O,0R}) to a point M on the bottom surface is included in Dsr. The lemma is proved. O

Let f be a function belonging to W1>°(—aqg,aq), ag > 0, satisfying
IF() = F() < Kqft =), V(') € [~ag, aol’.

For every x € [—ag, a] and a € (0,2aq) such that —ag < zg < xg + a < ag, the domains D% and D™ (see
Figure (1)) defined by

DI = {(x1,22) ER® | mg < a1 <wmo+a, flzo)— (2K1+1)a<zs < f(z1)},

bottom

8.3
DRetIom = (21 1) € B2 |3 < o1 < w0+ 0, f(o1) < w2 < flao) + 2Ky + Dal}, (8:3)

are star-shaped with respect to balls of radius a/2 (or less) and have a diameter less than (3K; + 2)a.

8.2 Proof of (4.3)

8.2.1 Interior estimates

C
Set Ry = ﬁ Z = (=Ro, Ro)? and
0

S5 = {€€2RVZ2 |0 +0Z Cwh, @y = Interior( | sc+ 57),
¢ess
Q5 = {(3617962,553) Ews xR| —0Cy < z3< 6¢(w1,x2)},
Dose = (66 +0Z) x (—6Co,6Co) C D,
Dse = {($1,£C27.T3) € (55 + 6Z) XR| —0Cy(z1,22) < 23 < (5(;5(961,932)}.

Note that the domain 6§ + 67 is star-shaped with respect to the disc D(d&,dRp).Then, due to Lemma the
domain D; ¢ has a diameter less than §(3Ry+2C1 ) and is star-shaped with respect to the ball B (ef , 0 min { Co, Ro}).
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Now, Theorem 2.3 in [I3] gives a rigid displacement r¢ (r¢(z) = ag +Bg¢ (x —0), z € R?, ag € R?, Beisa 3x 3
antisymmetric matrix with constant entries) such that

IV =)Dy < CFle@p, ) o= TelLpy ) < C 3@ p, .- (8.4)
3Ry + 2C
The constant C* only depends on the ratio #.
mln{Co,Ro}
Hence, we have
88 R3ColBe [ = [Vrel i, ) < 27 (198 + 190 = 1) ). o)
86 R3Colacls = el py o) < 2 (1l py o) + 0 =70, )
where | - | is the Frobenius norm.
Since r¢ is a affine function with respect to x1, 2 and x3, we have
IVrellZo D, ) < C**”VI‘EHZI)/’(‘DO,Q’ el (p, ) < CMrelLo(py - (8.6)
The constant C** only depends on the ratio 6
0
Besides we have ) ,
192 ) < 277 (193 o) + IV = T2, ) o

12, oy < 277 (el ooy o) + 1 = Tell ooy )-

So, (B-4)-(8-5)-(8.6) and then summing the above inequalities (8.7) (£ € Z5) and due to the estimates of & (see
(3-3)3 and remind that u=u in Qg s), we get

19412, 6., < Cle@l a6 < Clle(ll - (8.8)

The constant C only depends on Ky, Cy, C; and obviously on p.

8.2.2 Boundary layer estimates

The domain ws covers a large part of w. One has
dist(ws, Ow) < 30 Rp.

Since the boundary of w is Lipshitz, there exist constants ag and (§ strictly positive and a finite number N of
local coordinate systems (x1p,%2,) in orthonormal frames (On;eln,egn) and Lipschitz continuous maps f,
[—ag,a9] — R, 1 < n < N such that

N

Oow = U {(Im,xzn) ERP | oy, = fulx1n), |T1n] < a0}7

n=1

An,ﬁ = {(1‘1”,1’2") S RP | fn(zln) - 5 < ZTop < fn(zln)v |x1n| < a0}7

N
Aﬁ = U An)g Cw.

n=1

One easily shows that there exists §g > 0 such that
w\@s CAg, V5 €(0,6).
Without loss of generality, we assume that
|fat) — fu()| < Kilt —t|,  Y(t,t) € [-ag,a0]?,  V¥ne{l,...,N.}

Now, set
rr = —ag + kas, kE{O,...,N(;—l} and xn; =ao — a5
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where N5 = [2%]
a

given below by .

Denote

t] € N is the integer part of t € RT. The strictly positive real number as € (0, 2ao] will be
 [t] ger p y P ;

T <Tip < T + ag,

An = n n R?
k6 {(xl von) €R” | fal@1n) = B <won < fal21n),

}, ke{0,...,Ns},

B e ——
Iy
slope K1 A
) O
slopeﬁ//' slope -K1\
[
(3K1+1)a
slope K1 slope K1
—~_ N
—— \
(3K1+1)a

1O

! /

slope -K1

3 . sha Ptop bottom
Figure 1: The two domains D0 = and Dg% ™.

We cover every strip A, k.5 by the domains (see (8.3]))
° Dz?go (see Figure where f is replaced by f,, a by as, xg by x, k € {0, N Ng},
o Diottom (see Figure (1)) where f is replaced by fn — 3, a by as, xo by zx, k € {0,..., N5},
e the remaining parts of the strips
{(@1ns20) € (o, wic+ a5) X R | fulwn) + (K1 + Das = 8 < @an < falan) = (2K + Das |

B —2(2K; + 1)as

are covered by [ ] + squares whose edges have length as.

as
We set 3C 23K, + Ko (3K, +2)K.
0 . 1+ 0 1+ 0

=0 5 o<gs<infls . 8.9

W= BK, 1 2)K, sosm { © T30, 62K + 1)005} (8.9)

Observe that as < 2ag, (3K +2)as = 35% < 36Rp, 2(2K1 + 1)as < B.
0

So, the strip A, ks is covered by domains star-shaped with respect to balls of radii as/2 and whose diameters are

5If this integer is strictly greater than 1, otherwise these parts are empty.
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less than 30 Ry. Each point in A, s belongs to at most two domains of the covering.
Then, proceeding as in Subsection we obtain

I8, 5 < Cle@ s, e Nl o) < C O le@ Do, ) (8.10)

where
Bn)k,g = {(.%‘1,.%‘2,3?3) S An)k,g x R | —0CH < x3 < 5¢($1,x2)}.

The constant C* only depends on K7, Ky, Cy and dg.

Every point contained in A,, 3 belongs to at most two A, 5. Then, summing the above inequalities lead to

V005, o) < 2C [e@nars 6l oy < 2072, (8.11)

where
Bn,g,g = {(1‘1,1‘2,1?3) S Anﬁ x R ‘ — 500 <r3 < 5(}5(56‘1,1‘2)}.

Finally, summing the inequalities (8.8) and (8.11)) give
[VullLo5) < C [le()]l e (s) [ull e (5 < C**6]le(w) e (0s)- (8.12)

The constant does not depend on 4, it depends on N, Ki, Kg, Cy, C1, dp and p.
Note that in the proof of the estimates (4.3]), the dimensional parameters ag, 8 and the diameter of w are not
involved.

8.3 The extension operator Ps

Set _
Q5 =w X (—500,501).

Lemma 8.2. There exist an extension operator Ps from WP (Qs), 1 < p < oo, into Wl’p(ﬁg) such that for all
[ONS Wl’p(Qg)
||'P5(<I>)||L,)(§5) < H(I)HLP(Q(;)y

Hm;&iw(;{))‘ LP(Gs) "37;6715;{’)‘ L (wx (—Co 450)) < Cll@flwrr ),
Ha?ix(f) Lr(Q) s C<HV(I)”LP(Q<S) + %Hq)”LP(QE))

The constant C' is independent of 0.

Proof. Every measurable function ® in s is extended as follows:
Ps(®) (2, 23) = ®(2', 23) for a.e. w3 € (—6Co,6¢(z")),
Ps(®) (', 23) = D(/,266(z') — w3) (1 + W) for ace. x5 € (36(z'), 66(z') + 6Cy),
Ps(®) (2, x3) =0 for a.e. x5 € (d¢(2”) + 6Cp, +o0)

and for a.e. 2’ € w.

By construction Ps(®) = ® a.e. in 5. Then, we consider the restriction of Ps(®) = 0 to the domain Q5. A
straightforward calculations gives the estimates of the lemma. O
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