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EVALUATION OF THE 1-D HYPERBOLIC QUADRATURE METHOD OF

MOMENTS FOR NON-EQUILIBRIUM FLOWS

Frédérique Laurent1 and Rodney O. Fox2

Abstract. When considering moment methods for the resolution of the free-transport term of the
1-D kinetic equation, the hyperbolic quadrature method of moments (HyQMOM) closure introduced
in [12] leads to a globally hyperbolic system of conservation equations. Here, the HLL scheme used for
its resolution is first proved to be realizable, i.e., allows computed moments to remain moments of a
positive measure, exploiting a new property shown for the closure. Then, the accuracy of HyQMOM
is evaluated for two test cases from the literature. The first is related to rarefied gas dynamics, where
the internal structure of stationary shock waves is simulated for non-equilibrium cases. The second is
related to the description of a population of inertial particles, where two populations cross each other
without interacting.

Résumé. En considérant les méthodes de moments pour la résolution du terme de transport libre de
l’équation cinétique 1-D, la fermeture de la méthode de quadrature des moments hyperbolique (HyQ-
MOM) introduite dans [12] conduit à un système globalement hyperbolique d’équations de conservation.
Dans cet article, on prouve d’abord que le schéma HLL utilisé pour sa résolution est réalisable, c’est
à dire qu’il permet aux moments calculés de rester des moments d’une mesure positive, en exploitant
une nouvelle propriété montrée pour la fermeture. Ensuite, la précision de HyQMOM est évaluée pour
deux cas tests de la littérature. Le premier est lié à la dynamique des gaz raréfiés, où la structure
interne des ondes de choc stationnaires est simulée pour les cas hors équilibre. Le second est lié à la
description d’une population de particules inertielles, où deux populations se croisent sans interagir.

Introduction

Several applications can be described by a kinetic-type equation for a velocity distribution function (VDF).
We can cite, for example, a gas with the Boltzmann equation, or a population of particles evolving in a gas
flow with the generalized population balance equation [20]. In some cases, only a few moments of the velocity
distribution, of order less than 2 or even 1, are sufficient to describe the system. This is the case for a gas
near to the Maxellian equilibrium, i.e., when its Knudsen number is small enough. It is also the case for a
population of particles with a small enough Stokes number [1, 7], the particle Stokes number being the ratio
between the relaxation time of the particle velocity to the gas velocity and a characteristic time scale of the
gas phase. Outside of these cases, e.g., moderately rarefied gases or a moderate-Stokes-number population of
particles, moment methods can still be interesting compared to direct-simulation Monte-Carlo [3], which can be
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expensive. However, higher-order moments need to be used to describe the non-equilibrium effects for gas [21,22]
or particle trajectory crossing for populations of non-interacting particles [8, 30].

In general, high-order moment methods have unclosed terms. Thus, considering the free-transport term of
the 1-D Boltzmann equation or of the 1-D generalized population balance equation, the equation for the kth-
order moment contains an unclosed spatial flux depending on the (k + 1)th-order moment. Broadly speaking,
the closure of the latter can be accomplished (as proposed by Grad [15]) using a perturbative solution for the
VDF valid near the equilibrium distribution, or using a non-perturbative reconstruction of the VDF such as
entropy maximization [19,24].

Regardless of the method used to derive it, at least four properties of the obtained closure are desirable: (1)
the moment set augmented by the predicted moments is realizable (i.e., they are moments on R of a positive
measure), (2) the closure is well defined for any realizable moment set and its computation is affordable, (3)
the moment system derived from the kinetic equation is globally hyperbolic, and (4) the equilibrium state is
captured. The first property is automatically verified as soon as the closure is defined through the reconstruction
of a positive VDF from the moments, but not the others. Regarding methods in the literature, these properties
are rarely all satisfied. Grad’s method satisfies them only for moments close to the ones of the Maxwellian
distribution. Entropy maximization has good mathematical properties [19], but is costly to compute and it is
not defined for some realizable moment sets along the so-called “Junk line” [18]. However, an affordable closure
close to it was developed for the case of moment sets including moments up to fourth order [21]. Another
example is the Gaussian–EQMOM closure [4], which leads to an hyperbolic system. However, both of these
examples suffer from the same definition problem as the entropy maximization along the Junk line. Finally,
the quadrature method of moment (QMOM) [9,23], used in the context of particle populations, is only weakly
hyperbolic [5, 17].

Recently, the hyperbolic quadrature method of moments (HyQMOM) [12] was designed to satisfy all the
previously cited properties, reformulated and extended to arbitrary even-order moments on R using the method
of [11]. The closure for the (2n + 1)th-order moment is directly computed from the moments up to order 2n,
without any VDF reconstruction, but ensuring the realizability of the augmented moment vector. This closure
is possible for any realizable moment vector and an efficient algorithm allows to compute it. Moreover, the
resulting moment system is globally hyperbolic (this was shown for n ≤ 9 and postulated for higher values of n)
and captures the equilibrium state. However, in the original paper, a HLL scheme was used to solve the moment
equations, but its realizability was not proved, i.e., the capability of the scheme to always lead to realizable
moments when starting from realizable moments.

To date, HyQMOM has only been tested for the resolution of the 1-D free-transport term. If the behavior
of the simulated moments was good, especially when increasing the considered moment set, the absence of
source terms made this test case very difficult. Here, more realistic configurations are simulated, taken from the
literature. In the context of rarefied gas dynamics, the internal structure of stationary shock waves is simulated
for non-equilibrium cases [21, 22]. Furthermore, in the context of particle populations, the 1-D version of the
crossing-jets test case described in [28] is also considered, where two populations of inertial particles evolve in
a gas with a significant strain rate and cross each other due to their inertia.

The remainder of this paper is then organized as follows. First, the HyQMOM closure is reviewed in the
context of the 1-D free-transport equation. An additional property is also included, allowing then to prove in
a second section, the realizability of the HLL scheme, which is used for the transport part of the equations.
Finally, in the two following sections, the behavior of HyQMOM is studied for the two considered test cases.

1. Review of HyQMOM for the 1-D transport equation

We consider the following kinetic equation for the velocity density function (VDF) f(v; t, x), in 1-D, without
source terms:

∂tf + v∂xf = 0. (1)
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Some source terms will be added in the result sections, depending on the application. In this section, after
reviewing realizability based on orthogonal polynomials theory, the corresponding moment system is introduced
and the HyQMOM closure is detailed, as well as its properties.

1.1. Moments and realizability definition

In this work, the moments of f are considered:

Mk(t, x) :=

∫
R
vkf(v; t, x)dv, k ∈ N. (2)

Since it will be useful for the results part, let us also introduce the central and standardized moments. As soon
as f is not zero (and then M0 > 0), the central moments are

Ck(t, x) :=
1

M0

∫
R

(v − u)kf(v; t, x)dv, k ∈ N, (3)

where u = M1/M0 is the mean velocity and in such a way that C0 = 1 and C1 = 0. They are the moments of
v 7→ 1

M0
f(v+ u; t, x). If, in addition, f has a nonzero variance, i.e., C2 > 0, the standardized moments can also

be introduced:

Sk(t, x) :=
Ck

C
k/2
2

, k ∈ N, (4)

in such a way that S0 = 1, S1 = 0 and S2 = 1. They are the moments of v 7→
√
C2

M0
f(u+ v

√
C2; t, x).

An arbitrary vector (M0,M1, . . . ,MN )t is not necessarily a moment vector of a non-negative function. Here
moments of Radon measures are considered. The notion of realizability we use here is given in the following
definition.

Definition 1.1. (M0,M1, . . . ,MN )t is said to be a realizable moment vector iif there exists a Radon measure
dµ such that (M0,M1, . . . ,MN )t =

∫
R(1, v, . . . , vN )tdµ(v).

The set of all realizable moment vectors is called moment space. If a vector belongs to the interior of the
moments space, it is said to be a strictly realizable moment vector.

The problem of the existence of such a measure dµ supported on R, which is also the realizability character-
ization of (M0,M1, . . . ,MN )t, is called the Hamburger truncated one-dimensional moment problem.

1.2. Orthogonal polynomials and realizability characterization

The one-dimensional moment problem is linked to the theory of orthogonal polynomials (see, for example,
[14, 25]). For M = (M0, . . . ,M2n)t, one can define the linear functional 〈·〉 on the space R[X]2n of the real
polynomial function of degree smaller than 2n by

〈Xk〉 = Mk, for k ∈ {0, 1, . . . , 2n}. (5)

This also allows to define the following bilinear functional on R[X]n: (p, q) 7→ 〈pq〉. The strict realizability
of the moments is equivalent to the definite positivity of this bilinear functional (see for example [25]), whose
matrix in the basis of monomial polynomials is a Hankel matrix, in such a way that the strict realizability is
characterized by the positivity of some Hankel determinants. Moreover, for a given strictly realizable moment
vector, there are several possible corresponding measures. For a realizable moment vector at the boundary of
moment space, some of these Hankel determinants are zero and the corresponding measure is unique, with a
support having at most N/2 points.
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For a strictly realizable moment vector M, (., .) is thus a scalar product. We can then define the family
of monic orthogonal polynomials Qk, deg(Qk) = k, for this scalar product: 〈QkQm〉 = 〈Q2

k〉δkm. This family
satisfies the following three-term recurrence relation [14]:

Qk+1 = (X − ak)Qk − bkQk−1 (6)

with Q−1 = 0 and Q0 = 1. The coefficients ak and bk are given by the formulas:

ak =
〈XQ2

k〉
〈Q2

k〉
, bk =

〈Q2
k〉

〈Q2
k−1〉

. (7)

Moreover, there is a one-to-one relation between (b0, a0, . . . , bn−1, an−1, bn) and M, when setting b0 = M0, and
the Chebyshev algorithm [6, 14, 29] allows to compute them from the moments. This algorithm just uses (6)
and the orthogonality of the Qk [29] to compute recursively the quantities 〈XiQj〉.

It can be seen from (7) that, if M is strictly realizable, then bk > 0 for k = 0, . . . , n. In fact, the following
Theorem can be shown [25].

Theorem 1.2. Let ak and bk be some reals for k = 0, . . . , n. Let Qk be monic polynomials with deg(Qk) = k,
for k = 0, . . . , n, defined by (6) with Q−1 = 0 and Q0 = 1. Then, there exists a linear functional 〈·〉 on R[X]2n
defining a scalar product (p, q) 7→ 〈pq〉 on R[X]n for which (Qk)k=0,...,n is orthogonal iif bk > 0 for k = 0, . . . , n.
Moreover, in this case, M = (〈X0〉, . . . , 〈X2n〉)t is a strictly realizable moment vector.

This means that there is an equivalence between the strict realizability of M and the positivity of the bk
computed from the moments by the Chebychev algorithm.

1.3. Moment equations and the HyQMOM closure

The 1-D moment system for the moment vector M := (M0,M1, . . . ,M2n)t with n ∈ N has the form

∂tM + ∂xF(M) = 0 (8)

with flux vector F(M) := (M1,M2, . . . ,M2n+1)t. Given a realizable moment vector M, HyQMOM provides
a closure, denoted M2n+1(M) [12]. In general, HyQMOM does not use a reconstructed VDF to define the
closure. However, the generalized quadrature moment of methods (GQMOM) can be used with the moments
(M,M2n+1(M)) to find an N -node quadrature approximation for integrals involving the VDF where N ≥ n+1
is arbitrary [10]. This provides a closure for any source term in integral form.

Instead of writing directly M2n+1(M) from M, the coefficients of the three-term recurrence relation of
orthogonal polynomials are used. Then, choosing M2n+1 is equivalent to choosing an and the Chebychev
algorithm still makes the link between them.

However, for HyQMOM, the global hyperbolicity of the system in (8) is sought. Thus, let us consider the
Jacobian matrix of the system J(M) = DF

DM (M) and its characteristic polynomial P2n+1. The HyQMOM closure
was designed in such a way that the system is globally hyperbolic, i.e., J is diagonalizable with real eigenvalues.
For that, a closure was sought to obtain a characteristic polynomial of the form P2n+1 = Qn[(X − αn)Qn −
βnQn−1]. In [12], the following theorem was then proved for n ≤ 9, but the result is conjectured to still be true
for larger values of n.

Theorem 1.3 (HyQMOM Closure - Hyperbolicity). Let us assume that M is strictly realizable.
For all n ∈ {1, 2, . . . , 9}, the characteristic polynomial P2n+1 of the Jacobian matrix of system (8) can be written
as

P2n+1 = QnRn+1, Rn+1 = (X − αn)Qn − βnQn−1 (9)
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if and only if the coefficients αn and βn and the closure for M2n+1, defined through the coefficient an, are related
to the recurrence coefficients (ak)k∈{0,...,n−1} and (bk)k∈{0,...,n} by

an = αn =
1

n

n−1∑
k=0

ak, βn =
2n+ 1

n
bn.

Moreover, the n + 1 roots of Rn+1 are real-valued and bound and separate the n (real) roots of Qn, in such a
way that the system (8) is strictly hyperbolic.

This then allows system (8) to be globally hyperbolic, with good behavior of the eigenvalues of the Jacobian
matrix of the flux when the moment vector tends to the boundary of the moment space, i.e., when bn tends to
zero (see section 1.5).

Moreover, the roots of Qn and Rn+1 are the eigenvalues of the following two Jacobi matrices, Jn and Kn+1

respectively:

Jn=


a0

√
b1√

b1 a1

√
b2

. . .
. . .

. . .√
bn−2 an−2

√
bn−1√

bn−1 an−1

 , Kn+1 =



a0

√
b1√

b1 a1

√
b2

. . .
. . .

. . .√
bn−1 an−1

√
2n+1
n bn√

2n+1
n bn an


.

(10)

Indeed, as seen in [14], the recurrence relation (6) can be written, for Pk = Qk/
√∏k

i=1 bi:√
bk+1Pk+1 = (X − ak)Pk −

√
bkPk−1, k = 0, . . . , n− 1,

in such a way that, for P = (P0, . . . , Pn−1)t, one has XP = JnP + Qn/
√∏n−1

i=1 bien, with en = (0, . . . , 0, 1)t.

And the same kind of result is shown for Rn+1, given by (9), using βn instead of bn in the definition of Pn.
Let us denote λmin(M) and λmax(M) the minimal, respectively maximal, root of the characteristic polyno-

mial P2n+1 associated to the moment vector M. They are, in fact, the minimal, respectively maximal, root of
Rn+1 and then the minimal, respectively maximal, eigenvalues of Kn+1. These eigenvalues of this symmetric
tridiagonal matrix are computed by the implicit QL method, using a routine of EISPACK [13].

1.4. Additional property of the HyQMOM closure

Let us add a new result giving an interesting property of a measure that corresponds to the HyQMOM
closure.

Theorem 1.4 (Property of a representing measure). Let us assume that the M is strictly realizable. Then, there
exists a Radon measure µ of support included in [λmin(M), λmax(M)] such that M =

∫
R(1, v, . . . , v2n)tdµ(v),

where λmin(M) and λmax(M) are the minimal and maximal roots of the characteristic polynomial P2n+1 asso-
ciated with M.

Proof. The moment vector augmented by the HyQMOM closure (M,M2n+1(M)) is strictly realizable and a
corresponding measure µ can be taken as the Gauss quadrature, i.e., µ is the sum of n+ 1 weighted Dirac delta
functions such that (M,M2n+1(M)) =

∫
R(1, v, . . . , v2n, v2n+1)tdµ(v). The abscissas of this quadrature, i.e., the

points of the support of µ, are then the zeros of Qn+1 = (X − an)Qn − bnQn−1 [14]. However,

Qn+1 −Rn+1 =
n+ 1

n
bnQn−1.
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The first and last zeros of Rn+1 are λmin(M) and λmax(M). Since the zeros of Rn+1 separate the zeros of Qn,
which separate the zeros of Qn−1 [14], the zeros of Qn+1 are contained in [λmin(M), λmax(M)]. Indeed, for
x > λmax(M), Qn−1(x) is positive and then Qn+1(x) > Rn+1(x) > 0. And for x < λmin(M), Qn−1(x) is of the
same sign as Rn+1(x) and then Qn+1(x) cannot be zero. �

1.5. Link with the QMOM closure

In the QMOM closure [23], an even number of moments is considered M := (M0,M1, . . . ,M2n−1)t and the
equations are closed by using the corresponding Gauss quadrature. When applied to (1), this means that a
closure M2n(M) is provided for the moment of order 2n in such a way that (M,M2n(M)) is at the boundary
of moment space, i.e., its only corresponding measure has a finite support with at most n points.

There is a one-to-one relation between (b0, a0, . . . , bn−1, an−1) and M, when setting b0 = M0. Then, choosing
M2n is equivalent to choosing bn and for QMOM, the choice is bn = 0. Moreover, the characteristic polynomial
P2n of the Jacobian matrix J of the corresponding system for the moments is P2n = Q2

n [5, 17] and the system
is only weakly hyperbolic.

We can then remark that for the HyQMOM closure, when bn tends to zero, the moment set corresponds
to a unique measure, which is the Gaussian quadrature, thus imposing the values of higher-order moments.
Moreover, the characteristic polynomial P2n+1 tends to (X − an)Q2

n and the eigenvalues of the system then
tend to the ones of the QMOM system (plus an), leading to a good limiting behavior for the system. This, and
the ability to prove that the eigenvalues are real and distinct, were the main reasons for the choice of the form
of the target characteristic polynomial.

2. Realizability of the HLL scheme

To solve the transport part of system (8), a first-order HLL scheme is used [16, 27]. Indeed, the structure
of the solution of the Riemann problem is not known, but the eigenvalues can be easily computed from the
coefficients ak and bk, by computing the eigenvalues of the matrices defined by (10). Moreover, their minimal
and maximal values λmin(M) and λmax(M) always belong to the eigenvalues of the second matrix. The aim
of this section is to show that this scheme is realizable under some CFL-like conditions, i.e., that it ensures the
realizability of the obtained moments.

Let us introduce a spatial discretization in cells [xj−1/2, xj+1/2] of size ∆x and a temporal discretization tp.

This finite-volume scheme provides an approximation Mp
j of the mean value of M in the jth cell and at time

tp, through the recurrence relation:

Mp+1
j = Mp

j −
∆t

∆x

[
Fpj+1/2 −F

p
j−1/2

]
. (11)

The HLL scheme uses an approximated Riemann solver, where only one intermediate state is considered. Thus,

considering the Riemann problem between Mp
j and Mp

j+1, we introduce the smallest propagation speed S
j+1/2
L

and the largest propagation speed S
j+1/2
R , given by

S
j+1/2
L = min{λmin(Mp

j ), λmin(Mp
j+1)}, S

j+1/2
R = max{λmax(Mp

j ), λmax(Mp
j+1)}. (12)

The approximated solution of the Riemann problem is then
Mp

j if x
t ≤ S

j+1/2
L ,

M∗
j+1/2 if S

j+1/2
L ≤ x

t ≤ S
j+1/2
R ,

Mp
j+1 if x

t ≥ S
j+1/2
R ,

with M∗
j+1/2 =

S
j+1/2
R Mp

j+1 − S
j+1/2
L Mp

j − F(Mp
j+1) + F(Mp

j )

S
j+1/2
R − Sj+1/2

L

(13)
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and the flux is given by

Fpj+1/2 =


F(Mp

j ) if 0 ≤ Sj+1/2
L ,

F∗j+1/2 if S
j+1/2
L ≤ 0 ≤ Sj+1/2

R ,

F(Mp
j+1) if 0 ≥ Sj+1/2

R .

(14)

There are three equivalent ways of writing F∗j+1/2, obtained by a space and time integration of (8):

F∗j+1/2 =
1

S
j+1/2
R − Sj+1/2

L

[
S
j+1/2
R F(Mp

j )− S
j+1/2
L F(Mp

j+1) + S
j+1/2
L S

j+1/2
R (Mp

j+1 −Mp
j )
]

(15)

= F(Mp
j ) + S

j+1/2
L

(
M∗

j+1/2 −Mp
j

)
(16)

= F(Mp
j+1) + S

j+1/2
R

(
M∗

j+1/2 −Mp
j+1

)
. (17)

For the computations, an equivalent flux formula can be used [28]:

Fpj+1/2 =
1

2

[
F(Mp

j+1) + F(Mp
j )
]
− 1

2

∣∣∣Sj+1/2
L

∣∣∣ (M∗
j+1/2 −Mp

j

)
− 1

2

∣∣∣Sj+1/2
R

∣∣∣ (Mp
j+1 −M∗

j+1/2

)
, (18)

The realizability of this scheme was shown in [28] for the case n = 1, where the closure corresponds to a Gaussian
distribution. Here, a more general result is shown in a quite similar way.

Theorem 2.1 (Realizability of HLL). The scheme defined by (11) with (14) for the HyQMOM flux F is

realizable if ∆t ≤ ∆x
λ+−λ− , where λ+ = max

{
0,
(
λmax

(
Mp

j

))
j

}
and λ− = min

{
0,
(
λmin

(
Mp

j

))
j

}
.

Proof. Let us assume that the Mp
j are strictly realizable for any j and let us prove that the Mp+1

j are then
also realizable. In Theorem 1.4, it was shown that there exists a Radon measure µj of support included in

[λmin(Mp
j ), λmax(Mp

j )] and corresponding to the moment vector augmented by the closure (Mp
j ,M2n+1(M)).

First, let us prove that M∗
j+1/2 is realizable. It can be written:

M∗
j+1/2 =

1

S
j+1/2
R − Sj+1/2

L

[∫
R

(
S
j+1/2
R − v

)
(1, v, . . . , v2n)tdµj+1(v) +

∫
R

(
v − Sj+1/2

L

)
(1, v, . . . , v2n)tdµj(v)

]
.

The supports of µj and µj+1 are included in [S
j+1/2
L , S

j+1/2
R ]. Then, on their supports S

j+1/2
R −v and v−Sj+1/2

L

are positive and M∗
j+1/2 is realizable.

Next, let us then consider the different cases. If 0 ≤ S
j+1/2
R and S

j−1/2
L ≤ 0, then let us use the following

values for the fluxes:

Fpj+1/2 = F(Mp
j ) +

(
S
j+1/2
L

)− (
M∗

j+1/2 −Mp
j

)
, Fpj−1/2 = F(Mp

j ) +
(
S
j−1/2
R

)+ (
M∗

j−1/2 −Mp
j

)
where for any y, we define y+ = max{0, y} and y− = min{0, y}. Then

Mp+1
j =

[
1− ∆t

∆x

(
S
j−1/2
R

)+

+
∆t

∆x

(
S
j+1/2
L

)−]
Mp

j −
∆t

∆x

(
S
j+1/2
L

)−
M∗

j+1/2 +
∆t

∆x

(
S
j−1/2
R

)+

M∗
j−1/2,

and it is realizable as soon as 1− ∆t
∆x

(
S
j−1/2
R

)+

+ ∆t
∆x

(
S
j+1/2
L

)−
≥ 0.

If 0 > S
j+1/2
R and S

j−1/2
L > 0, then Fpj+1/2 = F(Mp

j+1), Fpj−1/2 = F(Mp
j−1), so that

Mp+1
j = Mp

j +
∆t

∆x

∫
R
(−v)(1, v, . . . , v2n)tdµj+1(v) +

∆t

∆x

∫
R
v(1, v, . . . , v2n)tdµj−1(v).
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Figure 1. Stationary shock. Normalized density (left) and dimensionless heat flux (bottom)
for Ma = 2 (left), Ma = 4 (middle) and Ma = 8 (right): solution of the BGK equation (black
solid line) and HyQMOM system with n = 2 (blue dash-dot line) and n = 3 (red solid line).

Since v < 0 on the support of µj+1 and v > 0 on the support of µj−1, Mp+1
j is realizable.

If 0 ≤ Sj+1/2
R and S

j−1/2
L > 0, then let us use the following values for the fluxes:

Fpj+1/2 = F(Mp
j ) +

(
S
j+1/2
L

)− (
M∗

j+1/2 −Mp
j

)
, Fpj−1/2 = F(Mp

j−1).

Then

Mp+1
j =

[
1 +

∆t

∆x

(
S
j+1/2
L

)−]
Mp

j −
∆t

∆x

(
S
j+1/2
L

)−
M∗

j+1/2 +
∆t

∆x

∫
R
v(1, v, . . . , v2n)tdµj−1(v).

Similarly, as for the previous cases, it can be shown that Mp+1
j is realizable as soon as 1 + ∆t

∆x

(
S
j+1/2
L

)−
≥ 0.

Finally, if 0 > S
j+1/2
R and S

j−1/2
L ≤ 0, it can be proved in the same way that Mp+1

j is realizable as soon as

1− ∆t
∆x

(
S
j−1/2
R

)+

≥ 0.

Then, for all cases, the condition 1− ∆t
∆xλ

+ + ∆t
∆xλ

− ≥ 0 is sufficient, which concludes the proof. �

3. Stationary shock simulation

In the context of rarefied gas dynamics, it is interesting to investigate the behavior of the HyQMOM closure
by simulating the internal structure of stationary shock waves in non-equilibrium cases [21, 22]. Here, not
considering the model error caused by the collision operator, a very simple and common collision model is
chosen: the BGK or relaxation collision operator [2]. Thus, the following Riemann problem will be simulated,
written here in dimensionless form:

∂tf + v∂xf =
fM − f

Kn
, f(v; 0, x) = f0(v;x) = fL(v)1R−

∗
(x) + fR(v)1R+(x), (19)
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Figure 2. Stationary shock. Orbits of velocity moments (S3, S4) corresponding the transition
and internal structure for stationary shock-wave solutions with shock Mach numbers of Ma = 2
(left), Ma = 4 (middle) and Ma = 8 (right): solution of the BGK equation (black solid line)
and HyQMOM system with n = 2 (blue dash-dot line) and n = 3 (red solid line).

where Kn is the Knudsen number, i.e., the dimensionless characteristic relaxation time to the equilibrium
distribution fM , which is the Gaussian distribution with the same moments of order 0, 1 and 2 as f . On
the left, the initial condition fL is a Gaussian distribution of dimensionless density ρL = 1, mean velocity
uL =

√
3Ma and variance TL = 1, where Ma is then the Mach number on the left (the speed of sound is

√
3T

for the corresponding 1-D Euler equations). On the right, fR is also a Gaussian distribution, of dimensionless
density ρR, mean velocity uR and variance TR. These values are, satisfying the Rankine–Hugoniot relations for
the 1-D Euler equations:

ρR =
2Ma

Ma2 + 1
, uR =

√
3

2

Ma2 + 1

Ma
, TL =

(3Ma2 − 1)(Ma2 + 1)

4Ma2 . (20)

This initial distribution represents the shock obtained for a very small Knudsen number, corresponding to the
equilibrium distribution fM . However, the Knudsen number is here chosen as Kn = 0.05, high enough so that
the solution deviates from this distribution. A stationary solution is attained for a large enough time, that we
will try to approximate with HyQMOM. Three cases are considered: Ma = 2, Ma = 4 and Ma = 8.

A reference solution for (19) is computed by discretizing both the physical space and velocity. A large enough
support is considered for the velocity to obtain very good accuracy for the moments of f , up to order 4: the
moments of the initial condition outside this interval are smaller than 10−6. A large enough spatial domain is
also considered so that there is no influence of the boundary conditions: [−5, 5] for Ma = 2, [−7, 7] for Ma = 4,
[−11, 11] for Ma = 8. Then, a MUSCL scheme is used for the flux computations, coupled with an explicit Euler
method for the source term. A refined uniform discretization is considered for good accuracy with 2000 cells
in the spatial direction and 200 for the velocity. The simulations are done until time t = 15, after which the
solution no longer evolves.

The system for the corresponding moment vector M = (M0,M1, . . . ,M2n)t is

∂tM + ∂xF(M) =
Me −M

Kn
, (21)

where the flux F(M) is given by the HyQMOM closure, with n ∈ {2, 3, 4, 5} and Me = (Me
0 ,M

e
1 , . . . ,M

e
2n)t

are the moments of the equilibrium Gaussian distribution fM , in such a way that Me
k = Mk for k = 0, 1, 2. For

its numerical resolution, the considered spatial domain is the same as for the reference solution and a refined
discretization with 8000 cells is used, to ensure spatial convergence. The HLL flux is used, coupled with an
implicit Euler method for the source term so that the CFL condition does not need to be modified to ensure
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Figure 3. Stationary shock. Normalized density (top) and dimensionless heat flux (bottom)
for Ma = 2 (left), Ma = 4 (middle) and Ma = 8 (right): solution of the BGK equation (black
solid line) and HyQMOM system with n = 4 (blue dash-dot line) and n = 5 (red solid line).

the realizability. Indeed, the numerical scheme is then written

Mp+1
j = Mp

j −
∆t

∆x

[
Fpj+1/2 −F

p
j−1/2

]
+ ∆t

Mep+1
j −Mp+1

j

Kn
, (22)

where Mep+1
j is the moment vector of the Gaussian distribution with the same moments of order 0 to 2 as Mp+1

j .

Thus, we first compute the moment vector obtained by the transport M∗
j = Mp

j − ∆t
∆x

[
Fpj+1/2 −F

p
j−1/2

]
. This

gives the first three components of Mp+1
j , allowing to compute Mep+1

j . Then, (22) can be written

Mp+1
j = M∗

j + ∆t
Mep+1

j −Mp+1
j

Kn
, ⇒ Mp+1

j =

(
M∗

j +
∆t

Kn
Mep+1

j

)
/

(
1 +

∆t

Kn

)
.

This allows to compute Mp+1
j as a convex combination of the moment vectors M∗

j and Mep+1
j , thus implying

its realizability.
The solution of HyQMOM with n = 1 is not shown, since the corresponding equations are the 1-D Euler

equation and the initial solution is then the stationary solution of the system. In Figure 1, for the reference
solution and HyQMOM simulations with n = 2 and n = 3, the normalized density M0−ρL

ρR−ρL and the dimensionless

heat flux S3 are represented as functions of x/λ, where the dimensionless mean free path is λ = 16Kn
5
√

2π
, considering

the same formula as in [21]. It can be seen that, for the considered Mach numbers, the HyQMOM closure with
n = 2 is sufficient to accurately predict the density, but not the heat flux in the left part of the shock. The
solution with this closure is however more accurate than the solution of the Navier–Stokes equations represented
in [21], which was not able to accurately describe the density or the heat flux, not even in the right part of
the shock. These equations, obtained from a Chapman-Enskog expansion in Knudsen, show their limitations
in this non-equilibrium configuration, while moments methods allow to go further from the equilibrium case.
The HyQMOM solution with N = 2 is also less accurate than the simulations with the interpolated maximum
entropy closure of [21, 22], which uses the same number of moments, but the computations with HyQMOM
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Figure 4. Stationary shock. Orbits of velocity moments (S3, S4) corresponding to the tran-
sition and internal structure for stationary shock-wave solutions with shock Mach numbers of
Ma = 2 (left), Ma = 4 (middle) and Ma = 8 (right): solution of the BGK equation (black solid
line) and HyQMOM system with n = 4 (blue dash-dot line) and n = 5 (red solid line).

are much easier to do, since it avoids the singularity of the flux near the Junk line [18] and the corresponding
arising numerical difficulties [22]. The HyQMOM closure can be also used with a higher number of moments
and HyQMOM results are improved by using n = 3, with very good accuracy in the case Ma = 8. In Figure 2,
the orbits (S3, S4) are also represented for the same simulations. This describes the structure of shock waves
and its non-equilibrium behaviour for the reference solution, that is tried to be reproduced with the HyQMOM
simulations. It shows the accuracy of HyQMOM with n = 3, especially in the case Ma = 8.

In order to observe the convergence of HyQMOM when the number of moments increases, results for n = 4
and n = 5 are also presented: the normalized density and the dimensionless heat flux in Figure 3 and the orbits
(S3, S4) in Figure 4. In particular, we can see the excellent agreement with the reference solution for HyQMOM
with n = 5.

4. Crossing-jets simulations

We reproduce here a 1-D version of the crossing-jets test case described in [28], in such a way that our spatial
direction x corresponds to the coordinate y of [28] and our time t to the coordinate x of [28]. This is possible
because in [28], all the systems evolve at a constant velocity in the x direction and a steady state is attained on
the considered domain. Crossing jets are challenging to treat with moment methods because at crossing points
the distribution function is strongly bimodal even when away from such points it is nearly Gaussian.

Here, we consider two populations of particles, also called sprays, in a gas, subject to a Stokes drag force.
These particles have all the same size, characterized by their Stokes number St, the ratio of the characteristic
relaxation time to the gas velocity and the characteristic time of the gas. This number is proportional to the
particle surface area. These sprays are initially located in the symmetric intervals [−xb,−xa] and [xa, xb], with
0 < xa < xb and have an initial Gaussian velocity distribution with variance σ and zero mean. Let us remark
that in [28], the injected particles have no velocity in the y direction, which can be seen as the case σ = 0.
Then, here, an agitation can be considered in this direction, as can be generated in turbulent flows.

The strain rate of the gaseous carrier field will generate particle trajectory crossing. Indeed, the gas velocity
is vg(x) = −εx, where ε is the dimensionless strain rate and the particles are inertial enough (St > 1

4ε ) to induce
crossing: they are first set in motion by the gas, and then slowed down, but not fast enough to prevent them
from passing the point x = 0.

Then, the NDF f(v; t, x) of the particles satisfies the following equation, in its dimensionless form:

∂tf + v∂xf + ∂v

(
vg(x)− v

St
f

)
= 0, f(v; 0, x) = f0(v;x), (23)
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Figure 5. Number density (M0) for the analytical solution of the crossing jets with σ = 0
(left) and σ = 0.001 (right).

with the initial condition f0(v;x) = λ(x)gσ(v), where

λ(x) = ϕ

(
x− xa
xb − xa

)
+ ϕ

(
x+ xb
xb − xa

)
, ϕ(x) = 16x2(1− x)21[0,1](x), gσ(v) =

1√
2πσ

exp

(
− v

2

2σ

)
.

In the numerical examples below, we take xa = 0.3, xb = 0.7, σ = 0 or σ = 10−3, ε = 1, and St = 20. In the
case σ = 0, gσ corresponds in fact to a Dirac distribution.

4.1. Analytical solution

An analytical solution to (23) can be found by the method of characteristics. (See examples in Figure 5.)
Then, let us define the characteristics (X,U)(t; s, x, u), which are the solution of

dt(X,U)(t; s, x, u) =

(
U(t; s, x, u),

vg(X(t; s, x, u))− U(t; s, x, u)

St

)
, (X,U)(s; s, x, u) = (x, u). (24)

Denoting ω =
√

4εSt−1
2St and µ(t) = sin(ωt)

2ωSt + cos(ωt), it is easy to see that

(
X
U

)
(t; s, x, u) = e−

t−s
2St

(
µ(t− s) sin(ω(t−s))

ω

−ε sin(ω(t−s))
ωSt µ(s− t)

)(
x
u

)
. (25)

Since µ(t)µ(−t) = 1− ε sin(ωt)2

ω2St , the Jacobian J(t; s, x, u) of the transformation (x, u) 7→ (X,U)(t; s, x, u) is

J(t; s, x, u) = exp

(
− t− s

St

)
.

The solution of (23) is given by f(v; t, x) = J(0; t, x, v)f0(U(0; t, x, v);X(0; t, x, v)), i.e.,

f(v; t, x) = e
t
St gσ

(
e

t
2St

[
ε sin(ωt)

ωSt
x+ µ(t)v

])
λ

(
e

t
2St

[
µ(−t)x− sin(ωt)

ωSt
v

])
. (26)

Moreover, for any function Φ(v, x), one has, with the analytical solution,

〈Φ, f〉 ≡
∫∫

Φ(v, x)f(v; t, x)dvdx =

∫∫
Φ(U(t; 0, x, v);X(t; 0, x, v))f0(v;x)dvdx.
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Then, with Φ(v, x) = vk 1
∆x1[xj−1/2,xj+1/2](x), one obtains the mean value of the kth-order moment on the cell

[xj−1/2, xj+1/2]:

mk,j(t)=

∫∫ 1[xj−1/2,xj+1/2]

(
e

−t
2St

[
µ(t)x+ sin(ωt)

ωSt v
])

∆x

(
e

−t
2St

[
−ε sin(ωt)

ωSt
x+ µ(−t)v

])k
λ(x)gσ(v)dxdv. (27)

Let us remark that the analytical solution given by (26) goes from a Gaussian distribution in v when sin(ωt) = 0
(|µ(t)| = 1) to a compact support distribution in v when µ(t) = 0. To accurately compute the moments mk,j

given by (27), a Gauss–Hermite quadrature with 400 abscissas is then used for the velocity integral when
|µ(t)| ≥ 0.35, whereas, when |µ(t)| < 0.35, Gauss–Legendre quadratures are used on [xa, xb] and [−xb,−xa] for
the spatial integral, with 2N+3 abscissas on each interval. In each case, the integration over the other direction
is analytical. In the case σ = 0, the Gauss–Hermite quadrature just need one abscissa.

In the case σ = 0, let us remark that X(t; 0, x, 0) = µ(t)e
−t
2St also gives the position of the particles initially

at x. They all cancel when µ(t) = 0: the trajectories of the particles cross at the same points. In fact, the
analytical solution is a mono-kinetic distribution (i.e., a Dirac delta function in v) at each point and for any
t, except when µ(t) = 0, where the distribution is then concentrated at x = 0 with a continuous velocity
distribution. This fact makes this case quite difficult to simulate using moment methods.

4.2. Results with HyQMOM

The equation for the kth-order moment, k ∈ {0, . . . , 2n}, is

∂tMk + ∂xMk+1 = k
vg(x)Mk−1 −Mk

St
, (28)

where M2n+1(M) is closed with HyQMOM. To solve this system, a Strang splitting [26] is used: the drag term
is solved for half a time step, then the transport during a time step and finally the drag term for half a time
step. Moreover, the drag operator can be solved analytically, assuming that the gas velocity is constant in each
cell j, since it is a system of linear ODEs of the form: dtM = A(xj)M. The matrix exponential exp(A(xj)t)
could be used for that, but numerical error can then lead to unrealizable moments when the moment vector
is initially close to the boundary of the moment space. That is why, instead, a quadrature is used, associated
to the moment vector completed by the closure (M0,M1, . . . ,M2n,M2n+1(M))t. Let us call wpi and vpi , with
i ∈ {1, . . . , n + 1}, the weights and abscissas corresponding to this moment vector at time tp in cell j. Then,

assuming Mk(t) =
∑N
i=1 w

p
i (vi(t))

k, there is the following equivalence:{
dtMk = k

vg(xj)Mk−1−Mk

St ,

Mk(tp) =
∑N
i=1 w

p
i (vpi )k

k ∈ {0, . . . , 2n} ⇔
{

dtvi =
vg(xj)−vi

St ,
vi(t

p) = vpi
i ∈ {1, . . . , n+ 1}.

Thus, after a time step, the weights are unchanged, wp+1
i = wpi and the abscissas are given by

vp+1
i = vg(xj) + (vpi − vg(xj)) exp

(
−∆t

St

)
. (29)

Since the moments at step p+ 1 are written
∑N
i=1 w

p+1
i (vp+1

i )k, they are more likely numerically realizable.
Moreover, in most of the domain, there are no particles so that the moments are zero and in the case σ = 0,

moments are at the boundary of the moment space in a part of the domain (i.e., b2 is zero). To manage this,
without introducing any small moments or an artificial velocity dispersion in all the domain, the HyQMOM
closure algorithm is slightly modified, allowing very small modifications of the moments through a projection:
considering a small quantity ε, the moment vector is set to zero if M0 < ε and when computing the bj , the

moment vector is considered at the boundary of the moment space if there exists k ≤ n such that
∏k
j=0 bj < ε.
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Figure 6. Number density (M0) for the crossing jets using HyQMOM with σ = 0 (left) and
σ = 0.001 (right): n = 2 (first row), n = 3 (second row), n = 4 (third row).

(Recall that on this boundary, the exact distribution consists of k Dirac delta function.) In this last case, bj and
aj are set to zero for j ≥ k and the moments are computed from the aj and bj through the reverse Chebychev
algorithm. In practice ε = 10−16. This induces a small change of the moments of order greater than 2k. The
use of this procedure is necessary because the Jacobian of the transformation of the aj and bj to the moments
is the product of the bj , thus leading to important errors on the inverse transformation as soon as this product
becomes too small. In practice, this procedure places an upper limit on the number of moments needed to
describe the distribution, since, for a Gaussian distribution of variance σ, the values of the bk are bk = kσ.

Results for M0 with σ = 0 and σ = 0.001 for n = 2, 3, 4 are presented in Figure 6 for HyQMOM and in
Figure 7 for QMOM. These can be compared to the analytical results in Figure 5. It can be seen that HyQMOM
produces better results than QMOM. Recall that QMOM uses one less moment as compared to HyQMOM.
For the case n = 3, at the first crossing point (x = 0) QMOM produces a nonzero weight with zero velocity
that propagates towards the right, increasing in magnitude at each crossing. This behavior is not observed with
HyQMOM, even for n = 2, where a possible reconstruction is a sum of three Dirac distribution, one at v = 0,
due to symmetry at the crossing points. With QMOM, such behavior is observed whenever n is an odd integer,
the worst case being with n = 1 where all the weight lands on the double eigenvalues v = 0 at the first crossing
point, producing a delta shock. In contrast, with n = 1 HyQMOM has three distinct eigenvalues so that no delta
shock is produced. The results of this last case are not presented here since the closure then corresponds to a
Gaussian reconstruction, like in [28] where this crossing-jet test case was introduced. Moreover, we can remark
that, in the case σ = 0, a small part of the density stay at x = 0 after the third crossing for the HyQMOM
simulation with N = 4. This is probably due to the accumulation of numerical errors in this hard test case.

Of the two presented, the case with σ = 0.001 is clearly more difficult to reproduce with moment methods.
Nonetheless, the HyQMOM results are superior to QMOM, which produces distinct “packets of particles”
moving with the (repeated) eigenvalues of the moment system. Similar, but less pronounced, behavior is
observed with HyQMOM, which is closer to the analytical solution. We should note that increasing n with
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Figure 7. Number density (M0) for the crossing jets using QMOM with σ = 0 (left) and
σ = 0.001 (right): n = 2 (first row), n = 3 (second row), n = 4 (third row).

HyQMOM eventually leads to moments on the boundary of moment space. However, as noted earlier, this
process occurs smoothly as the simulation progresses and the bj decrease due to fluid drag. In summary,
HyQMOM provides a robust moment closure for 1-D crossing-jets simulations, and yields superior results as
compared to QMOM.

5. Conclusions

In this work, HyQMOM and an associated realizable HLL scheme have been further tested for approximating
solutions to 1-D kinetic equations. Extending prior work on the free-transport equation, which corresponds to
the 1-D Boltzmann equation with infinite Knudsen number, we have shown that HyQMOM with a relatively
small number of moments can accurately capture the first moments of the solution of the kinetic equation for the
stationary shock problem. Interestingly, the HyQMOM solution for larger Mach numbers appears to converge
relatively quickly in terms of the number of moments. In a second example, a highly non-equilibrium particle-
trajectory-crossing case was considered. There, the particle dynamics are driven by the coupling to the gas
phase, which depends on the Stokes number. Due to spatial transport, for sufficiently large Stokes numbers the
VDF exhibits bimodal behavior at crossing points that is difficult to capture with moment methods. HyQMOM
with a relatively small number of moments is shown to well capture the analytical solution. In contrast, QMOM
generates delta shocks due to its weakly hyperbolic nature. Overall, the realizable HLL scheme combined with
the HyQMOM closure provides a robust computational tool for solving 1-D kinetic equations. In future work,
the treatment of nonlinear source terms using GQMOM [10] and multivariate versions of HyQMOM [11] will
be investigated.
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