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EVALUATION OF THE 1-D HYPERBOLIC QUADRATURE METHOD OF MOMENTS FOR NON-EQUILIBRIUM FLOWS

When considering moment methods for the resolution of the free-transport term of the 1-D kinetic equation, the hyperbolic quadrature method of moments (HyQMOM) closure introduced in [12] leads to a globally hyperbolic system of conservation equations. Here, the HLL scheme used for its resolution is first proved to be realizable, i.e., allows computed moments to remain moments of a positive measure, exploiting a new property shown for the closure. Then, the accuracy of HyQMOM is evaluated for two test cases from the literature. The first is related to rarefied gas dynamics, where the internal structure of stationary shock waves is simulated for non-equilibrium cases. The second is related to the description of a population of inertial particles, where two populations cross each other without interacting.

 conduit à un système globalement hyperbolique d'équations de conservation. Dans cet article, on prouve d'abord que le schéma HLL utilisé pour sa résolution est réalisable, c'est à dire qu'il permet aux moments calculés de rester des moments d'une mesure positive, en exploitant une nouvelle propriété montrée pour la fermeture. Ensuite, la précision de HyQMOM est évaluée pour deux cas tests de la littérature. Le premier est lié à la dynamique des gaz raréfiés, où la structure interne des ondes de choc stationnaires est simulée pour les cas hors équilibre. Le second est lié à la description d'une population de particules inertielles, où deux populations se croisent sans interagir.

Introduction

Several applications can be described by a kinetic-type equation for a velocity distribution function (VDF). We can cite, for example, a gas with the Boltzmann equation, or a population of particles evolving in a gas flow with the generalized population balance equation [START_REF] Marchisio | Computational Models for Polydisperse Particulate and Multiphase Systems[END_REF]. In some cases, only a few moments of the velocity distribution, of order less than 2 or even 1, are sufficient to describe the system. This is the case for a gas near to the Maxellian equilibrium, i.e., when its Knudsen number is small enough. It is also the case for a population of particles with a small enough Stokes number [START_REF] Balachandar | Turbulent dispersed multiphase flow[END_REF][START_REF] De Chaisemartin | Eulerian models and numerical simulation of turbulent dispersion for polydisperse evaporating sprays[END_REF], the particle Stokes number being the ratio between the relaxation time of the particle velocity to the gas velocity and a characteristic time scale of the gas phase. Outside of these cases, e.g., moderately rarefied gases or a moderate-Stokes-number population of particles, moment methods can still be interesting compared to direct-simulation Monte-Carlo [START_REF] Bird | Molecular gas dynamics and the direct simulation of gas flows[END_REF], which can be expensive. However, higher-order moments need to be used to describe the non-equilibrium effects for gas [START_REF] Mcdonald | Affordable robust moment closures for CFD based on the maximum-entropy hierarchy[END_REF][START_REF] Mcdonald | Towards realizable hyperbolic moment closures for viscous heat-conducting gas flows based on a maximum-entropy distribution[END_REF] or particle trajectory crossing for populations of non-interacting particles [START_REF] De Chaisemartin | Eulerian models for turbulent spray combustion with polydispersity and droplet crossing[END_REF][START_REF] Yuan | Conditional quadrature method of moments for kinetic equations[END_REF].

In general, high-order moment methods have unclosed terms. Thus, considering the free-transport term of the 1-D Boltzmann equation or of the 1-D generalized population balance equation, the equation for the k thorder moment contains an unclosed spatial flux depending on the (k + 1) th -order moment. Broadly speaking, the closure of the latter can be accomplished (as proposed by Grad [START_REF] Grad | On the kinetic theory of rarefied gases[END_REF]) using a perturbative solution for the VDF valid near the equilibrium distribution, or using a non-perturbative reconstruction of the VDF such as entropy maximization [START_REF] Levermore | Moment closure hierarchies for kinetic theories[END_REF][START_REF] Müller | Rational Extended Thermodynamics[END_REF].

Regardless of the method used to derive it, at least four properties of the obtained closure are desirable: (1) the moment set augmented by the predicted moments is realizable (i.e., they are moments on R of a positive measure), [START_REF] Bhatnagar | A model for collision processes in gases. i. small amplitude processes in charged and neutral one-component systems[END_REF] the closure is well defined for any realizable moment set and its computation is affordable, (3) the moment system derived from the kinetic equation is globally hyperbolic, and (4) the equilibrium state is captured. The first property is automatically verified as soon as the closure is defined through the reconstruction of a positive VDF from the moments, but not the others. Regarding methods in the literature, these properties are rarely all satisfied. Grad's method satisfies them only for moments close to the ones of the Maxwellian distribution. Entropy maximization has good mathematical properties [START_REF] Levermore | Moment closure hierarchies for kinetic theories[END_REF], but is costly to compute and it is not defined for some realizable moment sets along the so-called "Junk line" [START_REF] Junk | Domain of definition of Levermore's five-moment system[END_REF]. However, an affordable closure close to it was developed for the case of moment sets including moments up to fourth order [START_REF] Mcdonald | Affordable robust moment closures for CFD based on the maximum-entropy hierarchy[END_REF]. Another example is the Gaussian-EQMOM closure [START_REF] Chalons | Multivariate Gaussian extended quadrature method of moments for turbulent disperse multiphase flow[END_REF], which leads to an hyperbolic system. However, both of these examples suffer from the same definition problem as the entropy maximization along the Junk line. Finally, the quadrature method of moment (QMOM) [START_REF] Fox | A quadrature-based third-order moment method for dilute gas-particle flow[END_REF][START_REF] Mcgraw | Description of aerosol dynamics by the quadrature method of moments[END_REF], used in the context of particle populations, is only weakly hyperbolic [START_REF] Chalons | Beyond pressureless gas dynamics: quadrature-based velocity moment models[END_REF][START_REF] Huang | Stability analysis of quadrature-based moment methods for kinetic equations[END_REF].

Recently, the hyperbolic quadrature method of moments (HyQMOM) [START_REF] Fox | Hyperbolic quadrature method of moments for the one-dimensional kinetic equation[END_REF] was designed to satisfy all the previously cited properties, reformulated and extended to arbitrary even-order moments on R using the method of [START_REF] Fox | Conditional hyperbolic quadrature method of moments for kinetic equations[END_REF]. The closure for the (2n + 1) th -order moment is directly computed from the moments up to order 2n, without any VDF reconstruction, but ensuring the realizability of the augmented moment vector. This closure is possible for any realizable moment vector and an efficient algorithm allows to compute it. Moreover, the resulting moment system is globally hyperbolic (this was shown for n ≤ 9 and postulated for higher values of n) and captures the equilibrium state. However, in the original paper, a HLL scheme was used to solve the moment equations, but its realizability was not proved, i.e., the capability of the scheme to always lead to realizable moments when starting from realizable moments.

To date, HyQMOM has only been tested for the resolution of the 1-D free-transport term. If the behavior of the simulated moments was good, especially when increasing the considered moment set, the absence of source terms made this test case very difficult. Here, more realistic configurations are simulated, taken from the literature. In the context of rarefied gas dynamics, the internal structure of stationary shock waves is simulated for non-equilibrium cases [START_REF] Mcdonald | Affordable robust moment closures for CFD based on the maximum-entropy hierarchy[END_REF][START_REF] Mcdonald | Towards realizable hyperbolic moment closures for viscous heat-conducting gas flows based on a maximum-entropy distribution[END_REF]. Furthermore, in the context of particle populations, the 1-D version of the crossing-jets test case described in [START_REF] Vié | On the anisotropic Gaussian velocity closure for inertial-particle laden flows[END_REF] is also considered, where two populations of inertial particles evolve in a gas with a significant strain rate and cross each other due to their inertia.

The remainder of this paper is then organized as follows. First, the HyQMOM closure is reviewed in the context of the 1-D free-transport equation. An additional property is also included, allowing then to prove in a second section, the realizability of the HLL scheme, which is used for the transport part of the equations. Finally, in the two following sections, the behavior of HyQMOM is studied for the two considered test cases.

Review of HyQMOM for the 1-D transport equation

We consider the following kinetic equation for the velocity density function (VDF) f (v; t, x), in 1-D, without source terms:

∂ t f + v∂ x f = 0. ( 1 
)
Some source terms will be added in the result sections, depending on the application. In this section, after reviewing realizability based on orthogonal polynomials theory, the corresponding moment system is introduced and the HyQMOM closure is detailed, as well as its properties.

Moments and realizability definition

In this work, the moments of f are considered:

M k (t, x) := R v k f (v; t, x)dv, k ∈ N. (2) 
Since it will be useful for the results part, let us also introduce the central and standardized moments. As soon as f is not zero (and then M 0 > 0), the central moments are

C k (t, x) := 1 M 0 R (v -u) k f (v; t, x)dv, k ∈ N, (3) 
where u = M 1 /M 0 is the mean velocity and in such a way that C 0 = 1 and C 1 = 0. They are the moments of v → 1 M0 f (v + u; t, x). If, in addition, f has a nonzero variance, i.e., C 2 > 0, the standardized moments can also be introduced:

S k (t, x) := C k C k/2 2 , k ∈ N, (4) 
in such a way that S 0 = 1, S 1 = 0 and S 2 = 1. They are the moments of v →

√ C2 M0 f (u + v √ C 2 ; t, x
). An arbitrary vector (M 0 , M 1 , . . . , M N ) t is not necessarily a moment vector of a non-negative function. Here moments of Radon measures are considered. The notion of realizability we use here is given in the following definition.

Definition 1.1. (M 0 , M 1 , . . . , M N ) t is said to be a realizable moment vector iif there exists a Radon measure dµ such that (M 0 , M 1 , . . . , M N ) t = R (1, v, . . . , v N ) t dµ(v). The set of all realizable moment vectors is called moment space. If a vector belongs to the interior of the moments space, it is said to be a strictly realizable moment vector.

The problem of the existence of such a measure dµ supported on R, which is also the realizability characterization of (M 0 , M 1 , . . . , M N ) t , is called the Hamburger truncated one-dimensional moment problem.

Orthogonal polynomials and realizability characterization

The one-dimensional moment problem is linked to the theory of orthogonal polynomials (see, for example, [START_REF] Gautschi | Orthogonal Polynomials: Computation and Approximation[END_REF][START_REF] Schmüdgen | The Moment Problem[END_REF]). For M = (M 0 , . . . , M 2n ) t , one can define the linear functional • on the space R[X] 2n of the real polynomial function of degree smaller than 2n by

X k = M k , for k ∈ {0, 1, . . . , 2n}. (5) 
This also allows to define the following bilinear functional on R[X] n : (p, q) → pq . The strict realizability of the moments is equivalent to the definite positivity of this bilinear functional (see for example [START_REF] Schmüdgen | The Moment Problem[END_REF]), whose matrix in the basis of monomial polynomials is a Hankel matrix, in such a way that the strict realizability is characterized by the positivity of some Hankel determinants. Moreover, for a given strictly realizable moment vector, there are several possible corresponding measures. For a realizable moment vector at the boundary of moment space, some of these Hankel determinants are zero and the corresponding measure is unique, with a support having at most N/2 points.

For a strictly realizable moment vector M, (., .) is thus a scalar product. We can then define the family of monic orthogonal polynomials

Q k , deg(Q k ) = k, for this scalar product: Q k Q m = Q 2 k δ km .
This family satisfies the following three-term recurrence relation [START_REF] Gautschi | Orthogonal Polynomials: Computation and Approximation[END_REF]:

Q k+1 = (X -a k )Q k -b k Q k-1 (6) 
with Q -1 = 0 and Q 0 = 1. The coefficients a k and b k are given by the formulas:

a k = XQ 2 k Q 2 k , b k = Q 2 k Q 2 k-1 . (7) 
Moreover, there is a one-to-one relation between (b 0 , a 0 , . . . , b n-1 , a n-1 , b n ) and M, when setting b 0 = M 0 , and the Chebyshev algorithm [START_REF] Chebyshev | Sur l'interpolation par la méthode des moindres carrés[END_REF][START_REF] Gautschi | Orthogonal Polynomials: Computation and Approximation[END_REF][START_REF] Wheeler | Modified moments and Gaussian quadratures[END_REF] allows to compute them from the moments. This algorithm just uses [START_REF] Chebyshev | Sur l'interpolation par la méthode des moindres carrés[END_REF] and the orthogonality of the Q k [START_REF] Wheeler | Modified moments and Gaussian quadratures[END_REF] to compute recursively the quantities X i Q j .

It can be seen from ( 7) that, if M is strictly realizable, then b k > 0 for k = 0, . . . , n. In fact, the following Theorem can be shown [START_REF] Schmüdgen | The Moment Problem[END_REF].

Theorem 1.2. Let a k and b k be some reals for k = 0, . . . , n. Let Q k be monic polynomials with deg(Q k ) = k, for k = 0, . . . , n, defined by [START_REF] Chebyshev | Sur l'interpolation par la méthode des moindres carrés[END_REF] with Q -1 = 0 and Q 0 = 1. Then, there exists a linear functional

• on R[X] 2n defining a scalar product (p, q) → pq on R[X] n for which (Q k ) k=0,...,n is orthogonal iif b k > 0 for k = 0, . . . , n.
Moreover, in this case, M = ( X 0 , . . . , X 2n ) t is a strictly realizable moment vector.

This means that there is an equivalence between the strict realizability of M and the positivity of the b k computed from the moments by the Chebychev algorithm.

Moment equations and the HyQMOM closure

The 1-D moment system for the moment vector M := (M 0 , M 1 , . . . , M 2n ) t with n ∈ N has the form

∂ t M + ∂ x F(M) = 0 (8) 
with flux vector F(M) := (M 1 , M 2 , . . . , M 2n+1 ) t . Given a realizable moment vector M, HyQMOM provides a closure, denoted M 2n+1 (M) [START_REF] Fox | Hyperbolic quadrature method of moments for the one-dimensional kinetic equation[END_REF]. In general, HyQMOM does not use a reconstructed VDF to define the closure. However, the generalized quadrature moment of methods (GQMOM) can be used with the moments (M, M 2n+1 (M)) to find an N -node quadrature approximation for integrals involving the VDF where N ≥ n + 1 is arbitrary [START_REF] Fox | The generalized quadrature method of moments[END_REF]. This provides a closure for any source term in integral form. Instead of writing directly M 2n+1 (M) from M, the coefficients of the three-term recurrence relation of orthogonal polynomials are used. Then, choosing M 2n+1 is equivalent to choosing a n and the Chebychev algorithm still makes the link between them.

However, for HyQMOM, the global hyperbolicity of the system in ( 8) is sought. Thus, let us consider the Jacobian matrix of the system J(M) = DF DM (M) and its characteristic polynomial P 2n+1 . The HyQMOM closure was designed in such a way that the system is globally hyperbolic, i.e., J is diagonalizable with real eigenvalues. For that, a closure was sought to obtain a characteristic polynomial of the form

P 2n+1 = Q n [(X -α n )Q n - β n Q n-1 ]
. In [START_REF] Fox | Hyperbolic quadrature method of moments for the one-dimensional kinetic equation[END_REF], the following theorem was then proved for n ≤ 9, but the result is conjectured to still be true for larger values of n.

Theorem 1.3 (HyQMOM Closure -Hyperbolicity). Let us assume that M is strictly realizable. For all n ∈ {1, 2, . . . , 9}, the characteristic polynomial P 2n+1 of the Jacobian matrix of system (8) can be written as

P 2n+1 = Q n R n+1 , R n+1 = (X -α n )Q n -β n Q n-1 (9) 
if and only if the coefficients α n and β n and the closure for M 2n+1 , defined through the coefficient a n , are related to the recurrence coefficients (a k ) k∈{0,...,n-1} and (b k ) k∈{0,...,n} by

a n = α n = 1 n n-1 k=0 a k , β n = 2n + 1 n b n .
Moreover, the n + 1 roots of R n+1 are real-valued and bound and separate the n (real) roots of Q n , in such a way that the system ( 8) is strictly hyperbolic. This then allows system (8) to be globally hyperbolic, with good behavior of the eigenvalues of the Jacobian matrix of the flux when the moment vector tends to the boundary of the moment space, i.e., when b n tends to zero (see section 1.5).

Moreover, the roots of Q n and R n+1 are the eigenvalues of the following two Jacobi matrices, J n and K n+1 respectively:

J n =        a 0 √ b 1 √ b 1 a 1 √ b 2 . . . . . . . . . b n-2 a n-2 b n-1 b n-1 a n-1        , K n+1 =          a 0 √ b 1 √ b 1 a 1 √ b 2 . . . . . . . . . b n-1 a n-1 2n+1 n b n 2n+1 n b n a n          . (10) 
Indeed, as seen in [START_REF] Gautschi | Orthogonal Polynomials: Computation and Approximation[END_REF], the recurrence relation ( 6) can be written, for

P k = Q k / k i=1 b i : b k+1 P k+1 = (X -a k )P k -b k P k-1 , k = 0, . . . , n -1,
in such a way that, for P = (P 0 , . . . , P n-1 ) t , one has

XP = J n P + Q n / n-1 i=1 b i e n
, with e n = (0, . . . , 0, 1) t . And the same kind of result is shown for R n+1 , given by ( 9), using β n instead of b n in the definition of P n .

Let us denote λ min (M) and λ max (M) the minimal, respectively maximal, root of the characteristic polynomial P 2n+1 associated to the moment vector M. They are, in fact, the minimal, respectively maximal, root of R n+1 and then the minimal, respectively maximal, eigenvalues of K n+1 . These eigenvalues of this symmetric tridiagonal matrix are computed by the implicit QL method, using a routine of EISPACK [START_REF] Garbow | Eispack -a package of matrix eigensystem routines[END_REF].

Additional property of the HyQMOM closure

Let us add a new result giving an interesting property of a measure that corresponds to the HyQMOM closure.

Theorem 1.4 (Property of a representing measure). Let us assume that the M is strictly realizable. Then, there exists a Radon measure µ of support included in

[λ min (M), λ max (M)] such that M = R (1, v, . . . , v 2n ) t dµ(v)
, where λ min (M) and λ max (M) are the minimal and maximal roots of the characteristic polynomial P 2n+1 associated with M.

Proof. The moment vector augmented by the HyQMOM closure (M, M 2n+1 (M)) is strictly realizable and a corresponding measure µ can be taken as the Gauss quadrature, i.e., µ is the sum of n + 1 weighted Dirac delta functions such that (M, M 2n+1 (M)) = R (1, v, . . . , v 2n , v 2n+1 ) t dµ(v). The abscissas of this quadrature, i.e., the points of the support of µ, are then the zeros of [START_REF] Gautschi | Orthogonal Polynomials: Computation and Approximation[END_REF]. However,

Q n+1 = (X -a n )Q n -b n Q n-1
Q n+1 -R n+1 = n + 1 n b n Q n-1 .
The first and last zeros of R n+1 are λ min (M) and λ max (M). Since the zeros of R n+1 separate the zeros of Q n , which separate the zeros of Q n-1 [START_REF] Gautschi | Orthogonal Polynomials: Computation and Approximation[END_REF], the zeros of

Q n+1 are contained in [λ min (M), λ max (M)]. Indeed, for x > λ max (M), Q n-1 (x) is positive and then Q n+1 (x) > R n+1 (x) > 0. And for x < λ min (M), Q n-1 (x)
is of the same sign as R n+1 (x) and then Q n+1 (x) cannot be zero.

1.5. Link with the QMOM closure

In the QMOM closure [START_REF] Mcgraw | Description of aerosol dynamics by the quadrature method of moments[END_REF], an even number of moments is considered M := (M 0 , M 1 , . . . , M 2n-1 ) t and the equations are closed by using the corresponding Gauss quadrature. When applied to [START_REF] Balachandar | Turbulent dispersed multiphase flow[END_REF], this means that a closure M 2n (M) is provided for the moment of order 2n in such a way that (M, M 2n (M)) is at the boundary of moment space, i.e., its only corresponding measure has a finite support with at most n points.

There is a one-to-one relation between (b 0 , a 0 , . . . , b n-1 , a n-1 ) and M, when setting b 0 = M 0 . Then, choosing M 2n is equivalent to choosing b n and for QMOM, the choice is b n = 0. Moreover, the characteristic polynomial P 2n of the Jacobian matrix J of the corresponding system for the moments is [START_REF] Chalons | Beyond pressureless gas dynamics: quadrature-based velocity moment models[END_REF][START_REF] Huang | Stability analysis of quadrature-based moment methods for kinetic equations[END_REF] and the system is only weakly hyperbolic.

P 2n = Q 2 n [
We can then remark that for the HyQMOM closure, when b n tends to zero, the moment set corresponds to a unique measure, which is the Gaussian quadrature, thus imposing the values of higher-order moments. Moreover, the characteristic polynomial P 2n+1 tends to (X -a n )Q 2 n and the eigenvalues of the system then tend to the ones of the QMOM system (plus a n ), leading to a good limiting behavior for the system. This, and the ability to prove that the eigenvalues are real and distinct, were the main reasons for the choice of the form of the target characteristic polynomial.

Realizability of the HLL scheme

To solve the transport part of system (8), a first-order HLL scheme is used [START_REF] Harten | On upstream differencing and Godunov-type schemes for hyperbolic conservation laws[END_REF][START_REF] Toro | Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction[END_REF]. Indeed, the structure of the solution of the Riemann problem is not known, but the eigenvalues can be easily computed from the coefficients a k and b k , by computing the eigenvalues of the matrices defined by [START_REF] Fox | The generalized quadrature method of moments[END_REF]. Moreover, their minimal and maximal values λ min (M) and λ max (M) always belong to the eigenvalues of the second matrix. The aim of this section is to show that this scheme is realizable under some CFL-like conditions, i.e., that it ensures the realizability of the obtained moments.

Let us introduce a spatial discretization in cells [x j-1/2 , x j+1/2 ] of size ∆x and a temporal discretization t p . This finite-volume scheme provides an approximation M p j of the mean value of M in the j th cell and at time t p , through the recurrence relation:

M p+1 j = M p j - ∆t ∆x F p j+1/2 -F p j-1/2 . ( 11 
)
The HLL scheme uses an approximated Riemann solver, where only one intermediate state is considered. Thus, considering the Riemann problem between M p j and M p j+1 , we introduce the smallest propagation speed S j+1/2 L and the largest propagation speed S j+1/2 R , given by

S j+1/2 L = min{λ min (M p j ), λ min (M p j+1 )}, S j+1/2 R = max{λ max (M p j ), λ max (M p j+1 )}. ( 12 
)
The approximated solution of the Riemann problem is then

     M p j if x t ≤ S j+1/2 L , M * j+1/2 if S j+1/2 L ≤ x t ≤ S j+1/2 R , M p j+1 if x t ≥ S j+1/2 R , with M * j+1/2 = S j+1/2 R M p j+1 -S j+1/2 L M p j -F(M p j+1 ) + F(M p j ) S j+1/2 R -S j+1/2 L (13)
and the flux is given by

F p j+1/2 =      F(M p j ) if 0 ≤ S j+1/2 L , F * j+1/2 if S j+1/2 L ≤ 0 ≤ S j+1/2 R , F(M p j+1 ) if 0 ≥ S j+1/2 R . ( 14 
)
There are three equivalent ways of writing F * j+1/2 , obtained by a space and time integration of (8):

F * j+1/2 = 1 S j+1/2 R -S j+1/2 L S j+1/2 R F(M p j ) -S j+1/2 L F(M p j+1 ) + S j+1/2 L S j+1/2 R (M p j+1 -M p j ) (15) = F(M p j ) + S j+1/2 L M * j+1/2 -M p j (16) = F(M p j+1 ) + S j+1/2 R M * j+1/2 -M p j+1 . ( 17 
)
For the computations, an equivalent flux formula can be used [START_REF] Vié | On the anisotropic Gaussian velocity closure for inertial-particle laden flows[END_REF]:

F p j+1/2 = 1 2 F(M p j+1 ) + F(M p j ) - 1 2 S j+1/2 L M * j+1/2 -M p j - 1 2 S j+1/2 R M p j+1 -M * j+1/2 , (18) 
The realizability of this scheme was shown in [START_REF] Vié | On the anisotropic Gaussian velocity closure for inertial-particle laden flows[END_REF] for the case n = 1, where the closure corresponds to a Gaussian distribution. Here, a more general result is shown in a quite similar way.

Theorem 2.1 (Realizability of HLL). The scheme defined by ( 11) with ( 14) for the HyQMOM flux F is realizable if ∆t ≤ ∆x λ + -λ -, where λ + = max 0, λ max M p j j and λ -= min 0, λ min M p j j .

Proof. Let us assume that the M p j are strictly realizable for any j and let us prove that the M p+1 j are then also realizable. In Theorem 1.4, it was shown that there exists a Radon measure µ j of support included in [λ min (M p j ), λ max (M p j )] and corresponding to the moment vector augmented by the closure (M p j , M 2n+1 (M)). First, let us prove that M * j+1/2 is realizable. It can be written:

M * j+1/2 = 1 S j+1/2 R -S j+1/2 L R S j+1/2 R -v (1, v, . . . , v 2n ) t dµ j+1 (v) + R v -S j+1/2 L (1, v, . . . , v 2n ) t dµ j (v) .
The supports of µ j and µ j+1 are included in [S 

F p j+1/2 = F(M p j ) + S j+1/2 L - M * j+1/2 -M p j , F p j-1/2 = F(M p j ) + S j-1/2 R + M * j-1/2 -M p j
where for any y, we define y + = max{0, y} and y -= min{0, y}. Then

M p+1 j = 1 - ∆t ∆x S j-1/2 R + + ∆t ∆x S j+1/2 L - M p j - ∆t ∆x S j+1/2 L - M * j+1/2 + ∆t ∆x S j-1/2 R + M * j-1/2 ,
and it is realizable as soon as 1 

-∆t ∆x S j-1/2 R + + ∆t ∆x S j+1/2 L - ≥ 0. If 0 > S j+1/2 R and S j-1/2 L > 0, then F p j+1/2 = F(M p j+1 ), F p j-1/2 = F(M p j-1 ), so that M p+1 j = M p j + ∆t ∆x R (-v)(1, v, . . . , v 2n ) t dµ j+1 (v) + ∆t ∆x R v(1, v, . . . , v 2n ) t dµ j-1 (v).
F p j+1/2 = F(M p j ) + S j+1/2 L - M * j+1/2 -M p j , F p j-1/2 = F(M p j-1 ).
Then

M p+1 j = 1 + ∆t ∆x S j+1/2 L - M p j - ∆t ∆x S j+1/2 L - M * j+1/2 + ∆t ∆x R v(1, v, . . . , v 2n ) t dµ j-1 (v).
Similarly, as for the previous cases, it can be shown that M p+1 j is realizable as soon as 1

+ ∆t ∆x S j+1/2 L - ≥ 0. Finally, if 0 > S j+1/2 R and S j-1/2 L
≤ 0, it can be proved in the same way that M p+1 j is realizable as soon as

1 -∆t ∆x S j-1/2 R + ≥ 0.
Then, for all cases, the condition 1 -∆t ∆x λ + + ∆t ∆x λ -≥ 0 is sufficient, which concludes the proof.

Stationary shock simulation

In the context of rarefied gas dynamics, it is interesting to investigate the behavior of the HyQMOM closure by simulating the internal structure of stationary shock waves in non-equilibrium cases [START_REF] Mcdonald | Affordable robust moment closures for CFD based on the maximum-entropy hierarchy[END_REF][START_REF] Mcdonald | Towards realizable hyperbolic moment closures for viscous heat-conducting gas flows based on a maximum-entropy distribution[END_REF]. Here, not considering the model error caused by the collision operator, a very simple and common collision model is chosen: the BGK or relaxation collision operator [START_REF] Bhatnagar | A model for collision processes in gases. i. small amplitude processes in charged and neutral one-component systems[END_REF]. Thus, the following Riemann problem will be simulated, written here in dimensionless form: where Kn is the Knudsen number, i.e., the dimensionless characteristic relaxation time to the equilibrium distribution f M , which is the Gaussian distribution with the same moments of order 0, 1 and 2 as f . On the left, the initial condition f L is a Gaussian distribution of dimensionless density ρ L = 1, mean velocity u L = √ 3Ma and variance T L = 1, where Ma is then the Mach number on the left (the speed of sound is √ 3T for the corresponding 1-D Euler equations). On the right, f R is also a Gaussian distribution, of dimensionless density ρ R , mean velocity u R and variance T R . These values are, satisfying the Rankine-Hugoniot relations for the 1-D Euler equations:

∂ t f + v∂ x f = f M -f Kn , f (v; 0, x) = f 0 (v; x) = f L (v)1 R - * (x) + f R (v)1 R + (x), (19) 
ρ R = 2Ma Ma 2 + 1 , u R = √ 3 2 Ma 2 + 1 Ma , T L = (3Ma 2 -1)(Ma 2 + 1) 4Ma 2 . ( 20 
)
This initial distribution represents the shock obtained for a very small Knudsen number, corresponding to the equilibrium distribution f M . However, the Knudsen number is here chosen as Kn = 0.05, high enough so that the solution deviates from this distribution. A stationary solution is attained for a large enough time, that we will try to approximate with HyQMOM. Three cases are considered: Ma = 2, Ma = 4 and Ma = 8. A reference solution for ( 19) is computed by discretizing both the physical space and velocity. A large enough support is considered for the velocity to obtain very good accuracy for the moments of f , up to order 4: the moments of the initial condition outside this interval are smaller than 10 -6 . A large enough spatial domain is also considered so that there is no influence of the boundary conditions: [-5, 5] for Ma = 2, [-7, 7] for Ma = 4, [-11, 11] for Ma = 8. Then, a MUSCL scheme is used for the flux computations, coupled with an explicit Euler method for the source term. A refined uniform discretization is considered for good accuracy with 2000 cells in the spatial direction and 200 for the velocity. The simulations are done until time t = 15, after which the solution no longer evolves.

The system for the corresponding moment vector M = (M 0 , M 1 , . . . , M 2n ) t is

∂ t M + ∂ x F(M) = M e -M Kn , (21) 
where the flux F(M) is given by the HyQMOM closure, with n ∈ {2, 3, 4, 5} and M e = (M e 0 , M e 1 , . . . , M e 2n ) t are the moments of the equilibrium Gaussian distribution f M , in such a way that M e k = M k for k = 0, 1, 2. For its numerical resolution, the considered spatial domain is the same as for the reference solution and a refined discretization with 8000 cells is used, to ensure spatial convergence. The HLL flux is used, coupled with an implicit Euler method for the source term so that the CFL condition does not need to be modified to ensure the realizability. Indeed, the numerical scheme is then written

M p+1 j = M p j - ∆t ∆x F p j+1/2 -F p j-1/2 + ∆t M e p+1 j -M p+1 j Kn , ( 22 
)
where M e p+1 j is the moment vector of the Gaussian distribution with the same moments of order 0 to 2 as M p+1 j .

Thus, we first compute the moment vector obtained by the transport M * j = M p j -∆t ∆x F p j+1/2 -F p j-1/2 . This gives the first three components of M p+1 j , allowing to compute M e p+1 j . Then, [START_REF] Mcdonald | Towards realizable hyperbolic moment closures for viscous heat-conducting gas flows based on a maximum-entropy distribution[END_REF] can be written

M p+1 j = M * j + ∆t M e p+1 j -M p+1 j Kn , ⇒ M p+1 j = M * j + ∆t Kn M ep+1 j / 1 + ∆t Kn .
This allows to compute M p+1 j as a convex combination of the moment vectors M * j and M e p+1 j , thus implying its realizability.

The solution of HyQMOM with n = 1 is not shown, since the corresponding equations are the 1-D Euler equation and the initial solution is then the stationary solution of the system. In Figure 1, for the reference solution and HyQMOM simulations with n = 2 and n = 3, the normalized density M0-ρ L ρ R -ρ L and the dimensionless heat flux S 3 are represented as functions of x/λ, where the dimensionless mean free path is λ = 16Kn 5 √ 2π , considering the same formula as in [START_REF] Mcdonald | Affordable robust moment closures for CFD based on the maximum-entropy hierarchy[END_REF]. It can be seen that, for the considered Mach numbers, the HyQMOM closure with n = 2 is sufficient to accurately predict the density, but not the heat flux in the left part of the shock. The solution with this closure is however more accurate than the solution of the Navier-Stokes equations represented in [START_REF] Mcdonald | Affordable robust moment closures for CFD based on the maximum-entropy hierarchy[END_REF], which was not able to accurately describe the density or the heat flux, not even in the right part of the shock. These equations, obtained from a Chapman-Enskog expansion in Knudsen, show their limitations in this non-equilibrium configuration, while moments methods allow to go further from the equilibrium case. The HyQMOM solution with N = 2 is also less accurate than the simulations with the interpolated maximum entropy closure of [START_REF] Mcdonald | Affordable robust moment closures for CFD based on the maximum-entropy hierarchy[END_REF][START_REF] Mcdonald | Towards realizable hyperbolic moment closures for viscous heat-conducting gas flows based on a maximum-entropy distribution[END_REF], which uses the same number of moments, but the computations with HyQMOM are much easier to do, since it avoids the singularity of the flux near the Junk line [START_REF] Junk | Domain of definition of Levermore's five-moment system[END_REF] and the corresponding arising numerical difficulties [START_REF] Mcdonald | Towards realizable hyperbolic moment closures for viscous heat-conducting gas flows based on a maximum-entropy distribution[END_REF]. The HyQMOM closure can be also used with a higher number of moments and HyQMOM results are improved by using n = 3, with very good accuracy in the case Ma = 8. In Figure 2, the orbits (S 3 , S 4 ) are also represented for the same simulations. This describes the structure of shock waves and its non-equilibrium behaviour for the reference solution, that is tried to be reproduced with the HyQMOM simulations. It shows the accuracy of HyQMOM with n = 3, especially in the case Ma = 8.

In order to observe the convergence of HyQMOM when the number of moments increases, results for n = 4 and n = 5 are also presented: the normalized density and the dimensionless heat flux in Figure 3 and the orbits (S 3 , S 4 ) in Figure 4. In particular, we can see the excellent agreement with the reference solution for HyQMOM with n = 5.

Crossing-jets simulations

We reproduce here a 1-D version of the crossing-jets test case described in [START_REF] Vié | On the anisotropic Gaussian velocity closure for inertial-particle laden flows[END_REF], in such a way that our spatial direction x corresponds to the coordinate y of [START_REF] Vié | On the anisotropic Gaussian velocity closure for inertial-particle laden flows[END_REF] and our time t to the coordinate x of [START_REF] Vié | On the anisotropic Gaussian velocity closure for inertial-particle laden flows[END_REF]. This is possible because in [START_REF] Vié | On the anisotropic Gaussian velocity closure for inertial-particle laden flows[END_REF], all the systems evolve at a constant velocity in the x direction and a steady state is attained on the considered domain. Crossing jets are challenging to treat with moment methods because at crossing points the distribution function is strongly bimodal even when away from such points it is nearly Gaussian.

Here, we consider two populations of particles, also called sprays, in a gas, subject to a Stokes drag force. These particles have all the same size, characterized by their Stokes number St, the ratio of the characteristic relaxation time to the gas velocity and the characteristic time of the gas. This number is proportional to the particle surface area. These sprays are initially located in the symmetric intervals [-x b , -x a ] and [x a , x b ], with 0 < x a < x b and have an initial Gaussian velocity distribution with variance σ and zero mean. Let us remark that in [START_REF] Vié | On the anisotropic Gaussian velocity closure for inertial-particle laden flows[END_REF], the injected particles have no velocity in the y direction, which can be seen as the case σ = 0. Then, here, an agitation can be considered in this direction, as can be generated in turbulent flows.

The strain rate of the gaseous carrier field will generate particle trajectory crossing. Indeed, the gas velocity is v g (x) = -x, where is the dimensionless strain rate and the particles are inertial enough (St > 1 4 ) to induce crossing: they are first set in motion by the gas, and then slowed down, but not fast enough to prevent them from passing the point x = 0.

Then, the NDF f (v; t, x) of the particles satisfies the following equation, in its dimensionless form: with the initial condition f 0 (v; x) = λ(x)g σ (v), where

∂ t f + v∂ x f + ∂ v v g (x) -v St f = 0, f (v; 0, x) = f 0 (v; x), (23) 
λ(x) = ϕ x -x a x b -x a + ϕ x + x b x b -x a , ϕ(x) = 16x 2 (1 -x) 2 1 [0,1] (x), g σ (v) = 1 √ 2πσ exp - v 2 2σ .
In the numerical examples below, we take x a = 0.3, x b = 0.7, σ = 0 or σ = 10 -3 , = 1, and St = 20. In the case σ = 0, g σ corresponds in fact to a Dirac distribution.

Analytical solution

An analytical solution to ( 23) can be found by the method of characteristics. (See examples in Figure 5.) Then, let us define the characteristics (X, U )(t; s, x, u), which are the solution of d t (X, U )(t; s, x, u) = U (t; s, x, u), v g (X(t; s, x, u)) -U (t; s, x, u) St , (X, U )(s; s, x, u) = (x, u).

Denoting ω =

√ 4 St-1 2St
and µ(t) = sin(ωt) 2ωSt + cos(ωt), it is easy to see that

X U (t; s, x, u) = e -t-s 2St µ(t -s) sin(ω(t-s)) ω -sin(ω(t-s)) ωSt µ(s -t) x u . (25) 
Since µ(t)µ(-t) = 1 -sin(ωt) 2 ω 2 St , the Jacobian J(t; s, x, u) of the transformation (x, u) → (X, U )(t; s, x, u) is

J(t; s, x, u) = exp - t -s St .
The solution of ( 23) is given by f (v; t, x) = J(0; t, x, v)f 0 (U (0; t, x, v); X(0; t, x, v)), i.e.,

f (v; t, x) = e t St g σ e t 2St sin(ωt) ωSt x + µ(t)v λ e t 2St µ(-t)x - sin(ωt) ωSt v . (26) 
Moreover, for any function Φ(v, x), one has, with the analytical solution, Φ, f ≡ Φ(v, x)f (v; t, x)dvdx = Φ(U (t; 0, x, v); X(t; 0, x, v))f 0 (v; x)dvdx.

Then, with Φ(v, x) = v k 1 ∆x 1 [x j-1/2 ,x j+1/2 ] (x), one obtains the mean value of the k th -order moment on the cell [x j-1/2 , x j+1/2 ]:

m k,j (t)= 1 [x j-1/2 ,x j+1/2 ] e -t 2St µ(t)x + sin(ωt) ωSt v ∆x e -t 2St -sin(ωt) ωSt x + µ(-t)v k λ(x)g σ (v)dxdv. ( 27 
)
Let us remark that the analytical solution given by ( 26) goes from a Gaussian distribution in v when sin(ωt) = 0 (|µ(t)| = 1) to a compact support distribution in v when µ(t) = 0. To accurately compute the moments m k,j given by ( 27), a Gauss-Hermite quadrature with 400 abscissas is then used for the velocity integral when |µ(t)| ≥ 0.35, whereas, when |µ(t)| < 0.35, Gauss-Legendre quadratures are used on [x a , x b ] and [-x b , -x a ] for the spatial integral, with 2N + 3 abscissas on each interval. In each case, the integration over the other direction is analytical. In the case σ = 0, the Gauss-Hermite quadrature just need one abscissa.

In the case σ = 0, let us remark that X(t; 0, x, 0) = µ(t)e -t

2St also gives the position of the particles initially at x. They all cancel when µ(t) = 0: the trajectories of the particles cross at the same points. In fact, the analytical solution is a mono-kinetic distribution (i.e., a Dirac delta function in v) at each point and for any t, except when µ(t) = 0, where the distribution is then concentrated at x = 0 with a continuous velocity distribution. This fact makes this case quite difficult to simulate using moment methods.

Results with HyQMOM

The equation for the k th -order moment, k ∈ {0, . . . , 2n}, is

∂ t M k + ∂ x M k+1 = k v g (x)M k-1 -M k St , (28) 
where M 2n+1 (M) is closed with HyQMOM. To solve this system, a Strang splitting [START_REF] Strang | On the construction and comparison of difference schemes[END_REF] is used: the drag term is solved for half a time step, then the transport during a time step and finally the drag term for half a time step. Moreover, the drag operator can be solved analytically, assuming that the gas velocity is constant in each cell j, since it is a system of linear ODEs of the form: d t M = A(x j )M. The matrix exponential exp(A(x j )t) could be used for that, but numerical error can then lead to unrealizable moments when the moment vector is initially close to the boundary of the moment space. That is why, instead, a quadrature is used, associated to the moment vector completed by the closure (M 0 , M 1 , . . . , M 2n , M 2n+1 (M)) t . Let us call w p i and v p i , with i ∈ {1, . . . , n + 1}, the weights and abscissas corresponding to this moment vector at time t p in cell j. Then, assuming M k (t) = N i=1 w p i (v i (t)) k , there is the following equivalence:

d t M k = k vg(xj )M k-1 -M k St , M k (t p ) = N i=1 w p i (v p i ) k k ∈ {0, . . . , 2n} ⇔ d t v i = vg(xj )-vi St , v i (t p ) = v p i i ∈ {1, . . . , n + 1}.
Thus, after a time step, the weights are unchanged, w p+1 i = w p i and the abscissas are given by

v p+1 i = v g (x j ) + (v p i -v g (x j )) exp - ∆t St . (29) 
Since the moments at step p + 1 are written

N i=1 w p+1 i (v p+1 i
) k , they are more likely numerically realizable. Moreover, in most of the domain, there are no particles so that the moments are zero and in the case σ = 0, moments are at the boundary of the moment space in a part of the domain (i.e., b 2 is zero). To manage this, without introducing any small moments or an artificial velocity dispersion in all the domain, the HyQMOM closure algorithm is slightly modified, allowing very small modifications of the moments through a projection: considering a small quantity , the moment vector is set to zero if M 0 < and when computing the b j , the moment vector is considered at the boundary of the moment space if there exists k ≤ n such that k j=0 b j < . (Recall that on this boundary, the exact distribution consists of k Dirac delta function.) In this last case, b j and a j are set to zero for j ≥ k and the moments are computed from the a j and b j through the reverse Chebychev algorithm. In practice = 10 -16 . This induces a small change of the moments of order greater than 2k. The use of this procedure is necessary because the Jacobian of the transformation of the a j and b j to the moments is the product of the b j , thus leading to important errors on the inverse transformation as soon as this product becomes too small. In practice, this procedure places an upper limit on the number of moments needed to describe the distribution, since, for a Gaussian distribution of variance σ, the values of the b k are b k = kσ.

Results for M 0 with σ = 0 and σ = 0.001 for n = 2, 3, 4 are presented in Figure 6 for HyQMOM and in Figure 7 for QMOM. These can be compared to the analytical results in Figure 5. It can be seen that HyQMOM produces better results than QMOM. Recall that QMOM uses one less moment as compared to HyQMOM. For the case n = 3, at the first crossing point (x = 0) QMOM produces a nonzero weight with zero velocity that propagates towards the right, increasing in magnitude at each crossing. This behavior is not observed with HyQMOM, even for n = 2, where a possible reconstruction is a sum of three Dirac distribution, one at v = 0, due to symmetry at the crossing points. With QMOM, such behavior is observed whenever n is an odd integer, the worst case being with n = 1 where all the weight lands on the double eigenvalues v = 0 at the first crossing point, producing a delta shock. In contrast, with n = 1 HyQMOM has three distinct eigenvalues so that no delta shock is produced. The results of this last case are not presented here since the closure then corresponds to a Gaussian reconstruction, like in [START_REF] Vié | On the anisotropic Gaussian velocity closure for inertial-particle laden flows[END_REF] where this crossing-jet test case was introduced. Moreover, we can remark that, in the case σ = 0, a small part of the density stay at x = 0 after the third crossing for the HyQMOM simulation with N = 4. This is probably due to the accumulation of numerical errors in this hard test case.

Of the two presented, the case with σ = 0.001 is clearly more difficult to reproduce with moment methods. Nonetheless, the HyQMOM results are superior to QMOM, which produces distinct "packets of particles" moving with the (repeated) eigenvalues of the moment system. Similar, but less pronounced, behavior is observed with HyQMOM, which is closer to the analytical solution. We should note that increasing n with HyQMOM eventually leads to moments on the boundary of moment space. However, as noted earlier, this process occurs smoothly as the simulation progresses and the b j decrease due to fluid drag. In summary, HyQMOM provides a robust moment closure for 1-D crossing-jets simulations, and yields superior results as compared to QMOM.

Conclusions

In this work, HyQMOM and an associated realizable HLL scheme have been further tested for approximating solutions to 1-D kinetic equations. Extending prior work on the free-transport equation, which corresponds to the 1-D Boltzmann equation with infinite Knudsen number, we have shown that HyQMOM with a relatively small number of moments can accurately capture the first moments of the solution of the kinetic equation for the stationary shock problem. Interestingly, the HyQMOM solution for larger Mach numbers appears to converge relatively quickly in terms of the number of moments. In a second example, a highly non-equilibrium particletrajectory-crossing case was considered. There, the particle dynamics are driven by the coupling to the gas phase, which depends on the Stokes number. Due to spatial transport, for sufficiently large Stokes numbers the VDF exhibits bimodal behavior at crossing points that is difficult to capture with moment methods. HyQMOM with a relatively small number of moments is shown to well capture the analytical solution. In contrast, QMOM generates delta shocks due to its weakly hyperbolic nature. Overall, the realizable HLL scheme combined with the HyQMOM closure provides a robust computational tool for solving 1-D kinetic equations. In future work, the treatment of nonlinear source terms using GQMOM [START_REF] Fox | The generalized quadrature method of moments[END_REF] and multivariate versions of HyQMOM [START_REF] Fox | Conditional hyperbolic quadrature method of moments for kinetic equations[END_REF] will be investigated.
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 1 Figure 1. Stationary shock. Normalized density (left) and dimensionless heat flux (bottom) for Ma = 2 (left), Ma = 4 (middle) and Ma = 8 (right): solution of the BGK equation (black solid line) and HyQMOM system with n = 2 (blue dash-dot line) and n = 3 (red solid line).
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 2 Figure 2. Stationary shock. Orbits of velocity moments (S 3 , S 4 ) corresponding the transition and internal structure for stationary shock-wave solutions with shock Mach numbers of Ma = 2 (left), Ma = 4 (middle) and Ma = 8 (right): solution of the BGK equation (black solid line) and HyQMOM system with n = 2 (blue dash-dot line) and n = 3 (red solid line).
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 3 Figure 3. Stationary shock. Normalized density (top) and dimensionless heat flux (bottom) for Ma = 2 (left), Ma = 4 (middle) and Ma = 8 (right): solution of the BGK equation (black solid line) and HyQMOM system with n = 4 (blue dash-dot line) and n = 5 (red solid line).
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 4 Figure 4. Stationary shock. Orbits of velocity moments (S 3 , S 4 ) corresponding to the transition and internal structure for stationary shock-wave solutions with shock Mach numbers of Ma = 2 (left), Ma = 4 (middle) and Ma = 8 (right): solution of the BGK equation (black solid line) and HyQMOM system with n = 4 (blue dash-dot line) and n = 5 (red solid line).
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 5 Figure 5. Number density (M 0 ) for the analytical solution of the crossing jets with σ = 0 (left) and σ = 0.001 (right).
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 6 Figure 6. Number density (M 0 ) for the crossing jets using HyQMOM with σ = 0 (left) and σ = 0.001 (right): n = 2 (first row), n = 3 (second row), n = 4 (third row).
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 7 Figure 7. Number density (M 0 ) for the crossing jets using QMOM with σ = 0 (left) and σ = 0.001 (right): n = 2 (first row), n = 3 (second row), n = 4 (third row).