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Introduction
Goal: Quantifying the influence of uncertain inputs on fea-
sible sets associated to a constrained robust optimization
problem.

x∗ = argmin
x∈X

EU [f (x,U )] s.t. PU [g(x,U ) ≤ 0] ≥ α.

Answer: Performing Sensitivity analysis on excursion sets
ΓU using kernel-based methods. We propose a kernel kset
with which we compute HSIC-ANOVA indices.

(U1, ..., Up) 7→ Γ = {x ∈ X , g(x, U) ≤ 0}
Example:

Γ = {x ∈ [−5, 5]2, x21 + 5x2 − U1 + U 2
2 − 1 ≤ 0}

−→ U2 seems more influential than U1 on the feasible sets.
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Fig. 1: Kernel mean embedding [6]

With K = kX ⊗kY, the Hilbert Schmidt Independence
Criterion (HSIC) is given by:

HSICkX ,kY(X, Y ) = ||µK(X, Y )− µkX(X)⊗ µkY(Y )||2HK

= E[kX (X,X ′)kY(Y, Y
′)]

+ E[kX (X,X ′)]E[kY(Y, Y
′)]

− 2E[E[kX (X,X ′)|X ]E[kY(Y, Y
′)|Y ]].

When K is characteristic (injectivity of the mean em-
bedding),

HSICkX ,kY(X, Y )) = 0 iif X ⊥ Y.

−→ screening

Assuming that the inputs are independent and that
the input kernels are ANOVA,

HSIC(X, Y ) =
∑

A⊆{1,...,d}

∑
B⊆A

(−1)|A|−|B|HSIC (XB, Y ) .

HSIC-ANOVA indices [3] are then defined as:

SHSIC
i :=

HSIC(Xi, Y )

HSIC(X, Y )
,

SHSIC
Ti

:= 1− HSIC(X−i, Y )

HSIC(X, Y )
and are suited for ranking (and screening [5]).

HSIC for set-valued outputs
With A∆B = A ∪B −B ∩ A and µ the Lebesgue measure, we define a
kernel on closed sets by:

∀Γ1,Γ2 ∈ F(X ), kset(Γ1,Γ2) = exp

(
−µ(Γ1∆Γ2)

2σ2

)
.

kset is a kernel [1] and is characteristic.

Proposition 1

Given an input Ul and an associated ANOVA kernel kl, the HSIC on sets
that we call Hset is defined by:

Hset(Ul,Γ) : = HSICkl,kset(Ul,Γ)

= E [(kl(Ul, Ul
′)− 1)kset(Γ,Γ

′)] .

It can be estimated with its U-statistic:

Ĥset (Ul,Γ) =
2

n(n− 1)

n∑
i<j

(
kl

(
U

(i)
l , U

(j)
l

)
− 1

)
kset

(
Γ(i),Γ(j)

)
.

kset is rarely exactly known and requires to be estimated. Given
X (1), ..., X (m) an iid sample of X ∼ U(X ), we propose the estimator:

k̂set(Γ
(i),Γ(j)) = e−

µ(X )

2σ2
1
m

∑m
k=1 1Γ(i)∆Γ(j)

(X(k)),

leading finally to the nested Hset estimator:̂̂
Hset (Ul,Γ) =

2

n(n− 1)

n∑
i<j

(
kl

(
U

(i)
l , U

(j)
l

)
− 1

)
e−

µ(X )

2σ2
1
m

∑m
k=1 1Γ(i)∆Γ(j)

(X(k)).

The quadratic risk of the nested estimator ̂̂Hset verifies:

E

(̂̂
Hset (Ul,Γ)− Hset(Ul,Γ)

)2

≤ 2

(
2σ2

1

n(n− 1)
+
4(n− 2)σ2

2

n(n− 1)
+
K2σ2

3

m

)
.

Proposition 2

HSIC-ANOVA indices on sets are then denoted S
̂̂
Hset

i and S
̂̂
Hset

Ti
.

Outlook
➤ Testing the indices on industrial applications (as viability kernels, or air

pollutant concentration maps) and compared to other indices defined
for set-valued output models.

➤ Incorporating this method inside a robust optimization methodology:
reducing the uncertain input space dimension to get cheaper
meta-models.

Toy case 1 [4]
∀x, u ∈ [−5, 5]2 × [−5, 5]3 g1(x1, x2, u1, u2, u3) = −x21 + 5x2 − u1 + u22 − 1
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Fig. 2: p-value of ̂̂Hset for n = m = 100
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Fig. 3: S
̂̂
Hset
Ti

for n = m = 100

Toy case 2 [2]
g2(x1, x2, u1, u2, up, ur1, ur2) = ur2 − max

t∈[0,T ]
Y ′′(x1 + u1, x2 + u2, up; t),

with Y(x1 + u1, x2 + u2, up; t) the solution of the harmonic oscillator defined by:

(x1 + u1)Y ′′(t) + upY ′(t) + (x2 + u2)Y(t) = η(t).
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Fig. 4: p-value of ̂̂Hset for n = m = 100
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Fig. 5: S
̂̂
Hset
i for n = m = 100
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