

Kernel-based sensitivity analysis on excursion sets

Christophette Blanchet-Scalliet, Noé Fellmann, Céline Helbert, Adrien Spagnol, Delphine Sinoquet

To cite this version:

Christophette Blanchet-Scalliet, Noé Fellmann, Céline Helbert, Adrien Spagnol, Delphine Sinoquet. Kernel-based sensitivity analysis on excursion sets. MASCOT-NUM2023, Apr 2023, Le Croisic, France. hal- 04098720

HAL Id: hal-04098720 <https://hal.science/hal-04098720v1>

Submitted on 17 May 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

[Distributed under a Creative Commons Attribution 4.0 International License](http://creativecommons.org/licenses/by/4.0/)

KERNEL-BASED SENSITIVITY ANALYSIS ON EXCURSION SETS

Christophette Blanchet-Scalliet¹, Noé Fellmann^{1,2}, Céline Helbert¹, Delphine Sinoquet², Adrien Spagnol²

> 1 Institut Camille Jordan, École Centrale de Lyon 2 IFP Énergies Nouvelles

Consortium Industrie Recherche pour l'Optimisation et la QUantification d'incertitude pour les données Onéreuses

Answer: Performing Sensitivity analysis on excursion sets Γ_U using kernel-based methods. We propose a kernel k_{set}

Introduction

Goal: Quantifying the influence of uncertain inputs on feasible sets associated to a constrained robust optimization problem.

 $\boldsymbol{x}^* = \arg \min \mathbb{E}_{\boldsymbol{U}}[f(\boldsymbol{x}, \boldsymbol{U})]$ s.t. $\mathbb{P}_{\boldsymbol{U}}[g(\boldsymbol{x}, \boldsymbol{U}) \leq 0] \geq \alpha$. $\boldsymbol{x} {\in} \mathcal{X}$

 $(U_1, ..., U_p) \mapsto \Gamma = \{x \in \mathcal{X}, g(x, U) \leq 0\}$ **Example:**

 $\Gamma = \{x \in [-5, 5]^2, x_1^2 + 5x_2 - U_1 + U_2^2 - 1 \le 0\}$ $\longrightarrow U_2$ seems more influential than U_1 on the feasible sets.

with which we compute HSIC-ANOVA indices.

With $A\Delta B = A \cup B - B \cap A$ and μ the Lebesgue measure, we define a kernel on closed sets by:

Kernel-based Sensitivity Analysis

With $K = k_{\mathcal{X}} \otimes k_{\mathcal{Y}}$, the Hilbert Schmidt Independence Criterion (HSIC) is given by: $\text{HSIC}_{k_{\mathcal{X}},k_{\mathcal{Y}}}(X,Y) = ||\mu_K(X,Y) - \mu_{k_{\mathcal{X}}}(X) \otimes \mu_{k_{\mathcal{Y}}}(Y)||_2^2$ \mathcal{H}_K $=\mathbb{E}[k_{\mathcal{X}}(X, X')k_{\mathcal{Y}}(Y, Y')]$ $+ \mathbb{E}[k_{\mathcal{X}}(X, X')] \mathbb{E}[k_{\mathcal{Y}}(Y, Y')]$ $- \, 2 \mathbb{E}[\mathbb{E}[k_{\mathcal{X}}(X,X')|X] \mathbb{E}[k_{\mathcal{Y}}(Y,Y')|Y]].$ When K is characteristic (injectivity of the mean embedding), $\text{HSIC}_{k_{\mathcal{X}}, k_{\mathcal{Y}}}(X, Y)) = 0$ iif $X \perp Y$.

 \longrightarrow screening

Assuming that the inputs are independent and that the input kernels are ANOVA,

$$
\text{HSIC}(\boldsymbol{X}, Y) = \sum_{A \subseteq \{1, \dots, d\}} \sum_{B \subseteq A} (-1)^{|A| - |B|} \text{HSIC}(\boldsymbol{X}_B, Y).
$$

HSIC-ANOVA indices [3] are then defined as:

$$
S_i^{\text{HSIC}} := \frac{\text{HSIC}(X_i, Y)}{\text{HSIC}(\mathbf{X}, Y)},
$$

$$
S_{T_i}^{\text{HSIC}} := 1 - \frac{\text{HSIC}(\mathbf{X}_{-i}, Y)}{\text{HSIC}(\mathbf{X}, Y)}
$$
and are suited for ranking (and screening [5]).

HSIC for set-valued outputs

$$
\forall \Gamma_1, \Gamma_2 \in \mathcal{F}(\mathcal{X}), \ k_{set}(\Gamma_1, \Gamma_2) = \exp\left(-\frac{\mu(\Gamma_1 \Delta \Gamma_2)}{2\sigma^2}\right)
$$

.

Proposition 1

 k_{set} is a kernel [1] and is characteristic.

Given an input U_l and an associated ANOVA kernel k_l , the HSIC on sets that we call H_{set} is defined by:

> $\text{H}_{set}(U_l, \Gamma) := \text{HSIC}_{k_l, k_{set}}(U_l, \Gamma)$ = $\mathbb{E} [(k_l(U_l, U_l') - 1)k_{set}(\Gamma, \Gamma')]$.

It can be estimated with its U-statistic:

 $k_h^{\perp/}$ 1/2 h $k_h^{\scriptscriptstyle \mathcal{S}/}$ 3/2 h $k^{\scriptscriptstyle 0\prime}_h$ 5/2 h

$$
\widehat{H_{set}}(U_l, \Gamma) = \frac{2}{n(n-1)} \sum_{i < j}^{n} \left(k_l \left(U_l^{(i)}, U_l^{(j)} \right) - 1 \right) k_{set} \left(\Gamma^{(i)}, \Gamma^{(j)} \right).
$$

 k_{set} is rarely exactly known and requires to be estimated. Given $X^{(1)},...,X^{(m)}$ an iid sample of $X\sim\mathcal{U}(\mathcal{X})$, we propose the estimator: k_i $v_{\textit{se}}$ $\widehat{\mathcal{S}et}(\Gamma^{(i)},\Gamma^{(j)})=e^{-\frac{\mu(\mathcal{X})}{2\sigma^2}}$ $2\sigma^2$ 1 $\frac{1}{m}\sum_{k=1}^m \mathbb{1}_{\Gamma^{(i)}\Delta \Gamma^{(j)}}(X^{(k)}),$

> [2] A. Cousin et al. A two-step procedure for time-dependent reliability-based design optimization involving piece-wise stationary Gaussian processes. 2022.

leading finally to the nested H_{set} estimator:

[3] S. da Veiga. Kernel-based ANOVA decomposition and Shapley effects - Application to global sensitivity analysis. 2021. [4] R. El Amri et al. A sampling criterion for constrained Bayesian optimization with uncertainties. 2021 [5] G. Sarazin et al. Test d'indépendance basé sur les indices HSIC-ANOVA d'ordre total. 2022. [6] D. Sejdinovic. Learning with Approximate Kernel Embeddings. RegML Workshop. 2017.

$$
\widehat{\overline{\mathrm{H}}_{set}}\left(U_l,\Gamma\right)=\frac{2}{n(n-1)}\sum_{i\leq i}^{n}\left(k_l\left(U_l^{(i)},U_l^{(j)}\right)-1\right)e^{-\frac{\mu\left(\mathcal{X}\right)}{2\sigma^2}\frac{1}{m}\sum_{k=1}^{m}\mathbb{1}_{\Gamma^{(i)}\Delta\Gamma^{(j)}}(X^{(k)})}.
$$

The quadratic risk of the nested estimator $\boldsymbol{\mathrm{H}}_{set}$ \mathbf{q}_{set} $_{set}$ verifies:

$$
\mathbb{E}\left(\widehat{\overline{\mathcal{H}}_{set}}\left(U_l,\Gamma\right)-\mathcal{H}_{set}(U_l,\Gamma)\right)^2 \le 2\left(\frac{2\sigma_1^2}{n(n-1)}+\frac{4(n-2)\sigma_2^2}{n(n-1)}+\frac{K^2\sigma_3^2}{m}\right)
$$

HSIC-ANOVA indices on sets are then denoted $S^{\rm H_{\it set}}_{i}$ and $S^{\rm H_{\it set}}_{T_{i}}$ $\overline{T_i}$

.

.

Outlook

- ➤ Testing the indices on industrial applications (as viability kernels, or air pollutant concentration maps) and compared to other indices defined for set-valued output models.
- ➤ Incorporating this method inside a robust optimization methodology: reducing the uncertain input space dimension to get cheaper meta-models.

Toy case 1 [4]

 $\forall x, u \in [-5, 5]^2 \times [-5, 5]^3$ $g_1(x_1, x_2, u_1, u_2, u_3) = -x_1^2 + 5x_2 - u_1 + u_2^2 - 1$

Toy case 2 [2]

 $g_2(x_1,x_2,u_1,u_2,u_p,u_{r_1},u_{r_2})=u_{r_2}-\max_{t\in[0,T]}% \frac{u_1}{\left\| \sum_{i=1}^{K}(p_i-x_i)^2\right\| ^2}$ $t \in [0,T]$ ${\cal Y}''(x_1+u_1, x_2+u_2, u_p;t),$ with $y(x_1 + u_1, x_2 + u_2, u_p; t)$ the solution of the harmonic oscillator defined by: $(x_1 + u_1) \mathcal{Y}''(t) + u_p \mathcal{Y}'(t) + (x_2 + u_2) \mathcal{Y}(t) = \eta(t).$

Input

 k_{σ}

 k_{sob}

kernels:

 $i_i^{\text{H}set}$ for $n=m=100$

References

[1] P. Balança, E. Herbin. A set-indexed Ornstein-Uhlenbeck process. 2012.