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ABSTRACT
The Reverse JPEG Compatibility Attack can be used for steganalysis
of JPEG images compressed with Quality Factor 100 by detecting
increased variance of decompression rounding errors. In this work,
we point out the dangers associated with this attack by showing
that in an uncontrolled environment, the variance can be elevated
simply by using a different JPEG compressor. If not careful, the
steganalyst can wrongly misclassify cover images. In order to deal
with the diversity associated to the devices or softwares generating
JPEGs, we propose in this paper to build a deep learning detector
trained on a huge dataset of downloaded images. Experimental
evaluation shows that such a detector can provide operational false
alarms as small as 10−4, while still correctly classifying 90% of stego
images. Furthermore, it is shown that this performance is directly
applicable to other image datasets. As a side product, we indicate
that the attack is not applicable to images developed with a specific
JPEG compressor based on the trunc quantization function.
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1 INTRODUCTION
In a classical steganographic scenario, Alice (the steganographer)
and Bob (the receiver) are two communicating parties secretly ex-
changing messages through ordinary-looking media, such as digital
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images. There is additionally an eavesdropper, Eve, who observes
their communication channel and tries to detect any suspicious
activity. Alice modifies the ordinary cover images to carry a secret
message, producing a stego image, in a way that is statistically un-
detectable by Eve. According to Kerckhoffs’s principle, it is assumed
that Eve knows which steganographic algorithm, and the size of
the secret messages. Additionally, the source of images Alice is us-
ing for communication is also assumed known, where the source
represents the parameters used to develop images. This includes
a camera model, the camera settings, and possible pre-processing
operations, such as downsampling, sharpening, JPEG compression,
etc. Eve can therefore create her own stego images and use them
to train a supervised binary detector, which can tell her whether
an image from Alice is a cover or not. However, as with any binary
classifier, two types of errors can occur when making a decision:
a false alarm (false positive) - misclassifying a genuine cover im-
age as a stego, or a missed detection (false negative) - erroneously
classifying a stego image as an unmodified cover. These errors are
often quantified by their respective probabilities for a given deci-
sion threshold, probability of false alarm 𝑃FA, and probability of
missed detection 𝑃MD. For practical reasons1, the operational con-
text should focus on very small 𝑃FA while, generally speaking, this
is often not considered among academic works. Detectors with such
“operational” false alarms can then consequently be used by law
enforcement agencies for image steganalysis, even after inspecting
a large number of images.

Unfortunately, steganalysis detectors suffer greatly from the so-
called Cover-Source Mismatch (CSM) [10, 12, 13], which is caused
by a discrepancy between the source of images used for training
the detector and the source of testing images of interest [9]. Be-
cause this CSM phenomenon affects all supervised learning-based
detectors, an operational false alarm can hardly be achieved. In this
work, we aim to exploit a cover model of JPEG images, which is
potentially general enough to be robust with respect to the CSM.
This model has been introduced in the Reverse JPEG Compatibility
Attack (RJCA) [5], where it is shown that decompression rounding
errors of a JPEG image compressed with Quality Factor (QF) 100
follow a wrapped Gaussian distribution. More importantly, virtu-
ally any steganography transforms this distribution into a uniform
one, which leads (in a controlled environment) to incredibly accu-
rate steganalysis. However, the detectors trained in the controlled
environment only provide empirical false alarm rates without any
guarantees on other cover sources. While detectors with achievable

1A forensic analyst is usually reluctant to accuse innocent people.
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theoretical bounds on false alarms have already been studied, the
corresponding detectors suffer from a rather big missed detection
rate [14].

In this work, we focus on the false alarm rates of machine learn-
ing detectors and the effect of the CSM on them. We point out that
the assumptions made in the original RJCA work do not always
hold true in an operational environment and greatly depend upon
the JPEG compressor. First, we comment upon the effect of the
compressor on the decompression errors and discuss their differ-
ences. We then build empirical detectors, while evaluating their
false alarm rates in the presence of the CSM. We show that an oper-
ational detector providing a very small false alarm rate 𝑃FA = 10−4,
with a probability of (stego) detection 𝑃D ∼ 90% can be obtained. Al-
though the error rates are transferable to other image sources, there
exists an image source, related to the trunc quantization function,
in which the detector cannot accurately decide whether stegano-
graphy has been used or not. In these cases, it is recommended to
use other steganalysis methods.

The rest of the paper is organized as follows: Section 2 reminds
the reader of the Reverse JPEG Compatibility Attack and introduces
different JPEG compressors. In Section 3, we describe the dataset
and two types of detectors used to assess the false alarm rates. The
experimental results are presented in Section 4. Finally, the paper
is concluded in Section 5.

2 DECOMPRESSION ERRORS
2.1 Preliminaries
Boldface symbols are reserved for matrices and vectors. Rounding
𝑥 to the nearest integer will be denoted [𝑥]. Similarly, ⌈𝑥⌉ and ⌊𝑥⌋
will denote flooring and ceiling operations. For better readability,
we strictly use 𝑖, 𝑗 to index pixels and 𝑘, 𝑙 to index DCT coefficients.
Denoting by 𝑥𝑖 𝑗 , 0 ≤ 𝑖, 𝑗 ≤ 7, an 8 × 8 block of uncompressed,
integer-valued pixels, they are first shifted by −128 to be zero-
mean, a step we omit in this work as it does not have an effect on
the quantities of interest. Then they are transformed during JPEG
compression to DCT coefficients

𝑑𝑘𝑙 = DCT𝑘𝑙 (x) =
7∑︁

𝑖, 𝑗=0
𝑓
𝑖 𝑗

𝑘𝑙
𝑥𝑖 𝑗 , 0 ≤ 𝑘, 𝑙 ≤ 7,

and quantized 𝑐𝑘𝑙 = Q(𝑑𝑘𝑙/𝑞𝑘𝑙 ), 𝑐𝑘𝑙 ∈ {−1024, . . . , 1023}, where
𝑞𝑘𝑙 are the quantization steps in a luminance quantization matrix,
Q(·) is a rounding operation, and

𝑓
𝑖 𝑗

𝑘𝑙
=
𝑤𝑘𝑤𝑙

4 cos 𝜋𝑘 (2𝑖 + 1)
16 cos 𝜋𝑙 (2 𝑗 + 1)

16 ,

𝑤0 = 1/
√
2, 𝑤𝑘 = 1, 0 < 𝑘 ≤ 7, are the discrete cosines. The

quantized DCT coefficients are then losslessly run-length encoded
within every 8 × 8 DCT block using entropic coding.

During decompression, the above steps are reversed. For a block
of quantized DCTs 𝑐𝑘𝑙 , the corresponding block of non-rounded
pixels after decompression is

𝑦𝑖 𝑗 = DCT−1𝑖 𝑗 (c · q) =
7∑︁

𝑘,𝑙=0
𝑓
𝑖 𝑗

𝑘𝑙
𝑞𝑘𝑙𝑐𝑘𝑙 , 𝑦𝑖 𝑗 ∈ R.

To obtain the final decompressed image, 𝑦𝑖 𝑗 are rounded to inte-
gers [𝑦𝑖 𝑗 ]. Note that typically, the integer pixels [𝑦𝑖 𝑗 ] are obtained
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Figure 1: Probability density function of the Wrapped Gauss-
ian distribution N𝑊 (0, 𝑠) for different values of 𝑠.

straight from the unquantized DCT coefficients 𝑑𝑘𝑙 by fast integer-
based inverse DCT operation.

The decompressed pixels can be alternatively expressed as:

𝑦𝑖 𝑗 = 𝑥𝑖 𝑗 + DCT−1𝑖 𝑗 (u · q),

where 𝑢𝑘𝑙 = Q(𝑑𝑘𝑙/𝑞𝑘𝑙 ) − 𝑑𝑘𝑙/𝑞𝑘𝑙 is the compression error in
the DCT domain. The decompression rounding errors, which are
the main focus of this work, are 𝑒𝑖 𝑗 = 𝑦𝑖 𝑗 − [𝑦𝑖 𝑗 ]. Note that the
decompression errors can now be written as :

𝑒𝑖 𝑗 = DCT−1𝑖 𝑗 (u · q) − [DCT−1𝑖 𝑗 (u · q)],

therefore it is fully characterized by the compression errors 𝑢𝑘𝑙 . We
will show in Section 2.3 that this error can have different properties,
depending on the JPEG compressor used.

2.2 Wrapped Gaussian Distribution
Since the main goal of this paper is to assess the false alarm rate
of the RJCA, we first recall in here the statistical models that were
derived in the original publication. For 𝑌 ∼ N(𝜇, 𝑠) with 𝜇 ∈ Z, the
rounding error 𝑌 − [𝑌 ] follows a Wrapped Gaussian distribution
𝑌 − [𝑌 ] ∼ N𝑊 (0, 𝑠), where the probability density function (pdf)
𝜈 (𝑥 ; 𝑠) of the Wrapped Gaussian is given by

𝜈 (𝑥 ; 𝑠) = 1
√
2𝜋𝑠

∑︁
𝑛∈Z

exp
(
− (𝑥 + 𝑛)2

2𝑠

)
, (1)

with −1/2 ≤ 𝑥 < 1/2. We would like to point out that the distribu-
tion parameter 𝑠 represents the variance of the underlying Gaussian
distribution before wrapping into interval [−1/2, 1/2). If one was
to compute the variance of the Wrapped Gaussian distribution, it
would be smaller than the original variance 𝑠 , due to the wrapping.

It was shown [5] that the rounding errors 𝑒𝑖 𝑗 of a cover image
follow a Wrapped Gaussian distribution

𝑒𝑖 𝑗 ∼ N𝑊 (0, 𝑠𝑖 𝑗 ), (2)

with the variance of the Gaussian distribution

𝑠𝑖 𝑗 =

7∑︁
𝑘,𝑙=0

(𝑓 𝑖 𝑗
𝑘𝑙
)2Var(𝑢𝑘𝑙 )𝑞2𝑘𝑙 . (3)
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We can see the impact of the variance on the Wrapped Gaussian
distribution in Figure 1, where we show its probability density
function for different variances. We see a clear evolution towards
uniform distribution with increasing variances. This is important
because it was also shown that the rounding errors 𝑒 (𝑆)

𝑖 𝑗
of stego

images follow the Wrapped Gaussian distribution with increased
variance

𝑒
(𝑆)
𝑖 𝑗

∼ N𝑊 (0, 𝑠𝑖 𝑗 + 𝑟𝑖 𝑗 ), (4)

where the increase of variance depends on the size of the secret
message:

𝑟𝑖 𝑗 =

7∑︁
𝑘,𝑙=0

(𝑓 𝑖 𝑗
𝑘𝑙
)2𝑞2

𝑘𝑙
𝛽𝑘𝑙 ,

with 𝛽𝑘𝑙 being the embedding change rates.
To derive these models, two main assumptions were made. First,

the rounding errors in the DCT domain are mutually independent
and follow uniform distribution between −1/2 and 1/2, which is
in many cases a reasonable assumption. Second, it was assumed
that the embedding changes are mutually independent and also
independent of the DCT rounding errors. While the second assump-
tion depends on the steganographic scheme used and was further
studied in [4], we will assume for simplicity that the embedding
changes are, in fact, independent. On the other hand, we will show
that the first assumption could be wrong depending on which JPEG
compressor is employed.

2.3 JPEG Compressor Zoo
In this section, we introduce various JPEG compressors that will be
used throughout the paper. We tried to pick the representatives of
the most diverse compressors publicly available.

Convert. The first compressor we use is ImageMagick’s convert.
This compressor uses the reference libjpeg C library provided and
maintained by the Independent JPEG Group (IJG) under the hood.2
This library is provided as an open-source and therefore remains
very often used in other software such as the python library PIL,
Phil Sallee’s Matlab JPEG toolbox, etc. This explains the amazing
generalization property on these compressors previously reported
in [5] (see Table V). Furthermore, Benes et al. [2] showed that all lib-
jpeg versions work the same way on grayscale images compressed
with QF 100. As given by the standard, convert uses rounding
towards the nearest integer during the DCT coefficients quantiza-
tion [15].

The compression error can in this case be expressed as 𝑢𝑘𝑙 =

[𝑑𝑘𝑙/𝑞𝑘𝑙 ] − 𝑑𝑘𝑙/𝑞𝑘𝑙 and can be therefore modeled with a uniform
distribution as 𝑢𝑘𝑙 ∼ U(−1/2, 1/2), where Var(𝑢𝑘𝑙 ) = 1/12. It is
straightforward to verify that at QF 100, the variances 𝑠𝑖 𝑗 are then
exactly 1/12 for every 𝑖, 𝑗 = 0, . . . 7, because the DCT is an orthonor-
mal transformation and all the quantization steps are equal to 1.
Note again, that 𝑠𝑖 𝑗 is not the variance of 𝑒𝑖 𝑗 but of the underlying
Gaussian distribution before wrapping. The variance of 𝑒𝑖 𝑗 can be
computed numerically as 0.0638.

2https://ijg.org/

Mozjpeg. A very popular JPEG compressor, due to its superior
compression ratio, is mozjpeg.3 Not only has this compressor non-
standard quantization tables (quantization is much stronger for
qualities below 100), but it also by default uses Trellis quantization
to help improve image quality. This is done by rate-distortion opti-
mization on quantized DCT coefficients before the entropy coding.
As a result, the quantized DCT coefficients can potentially further
change their magnitude in order to use entropy codes of smaller
sizes.

The compression error 𝑢𝑘𝑙 can then be modeled similarly as
for convert. However, for a steganographic detector, the extra
changes during the trellis quantization can be detected as stegano-
graphic changes with a ‘small’ embedding payload (4). As a result,
we could expect that the variance 𝑠𝑖 𝑗 will be generally bigger than
for convert.

We want to point out, that with the trellis quantization disabled,
mozjpeg produces the same DCT coefficients as convert.

Trunc. As a last compressor, we take the so-called trunc quan-
tizer [1]. Instead of rounding the quantized DCT coefficients to-
wards nearest integers, they are rounded towards zero (trunc opera-
tion - removing the fractional part): 𝑐𝑘𝑙 = ⌈𝑑𝑘𝑙/𝑞𝑘𝑙 ⌉ , 𝑐𝑘𝑙 ≤ 0, 𝑐𝑘𝑙 =
⌊𝑑𝑘𝑙/𝑞𝑘𝑙 ⌋ , 𝑐𝑘𝑙 > 0. This truncation operation is used in various
imaging devices, as it is quite efficient to implement in hardware.

The compression errors then exhibit different properties than
the other compressors and can be modeled as:

𝑢𝑘𝑙 ∼


U(−1, 0), 𝑐𝑘𝑙 > 0,
U(0, 1), 𝑐𝑘𝑙 < 0,
U(−1, 1), 𝑐𝑘𝑙 = 0.

The variance of the error in the first two cases is still 1/12, but
they are not zero-mean anymore. This is however not a problem,
since the means are known and we can simply correct for them (be-
cause the quantized DCT coefficients 𝑐𝑘𝑙 are known). The problem
arises when 𝑐𝑘𝑙 = 0 because the variance of the compression errors
in these cases is Var(𝑢𝑘𝑙 ) = 1/3. Unfortunately, even at QF 100, the
majority of DCT coefficients are equal to 0, which will make the
errors 𝑒𝑖 𝑗 look seemingly uniform (see Figure 1).

3 BENCHMARKING SETUP
This section describes the datasets as well as the detectors used for
evaluating security.

3.1 Dataset
The first dataset used for evaluation is the ALASKA2 dataset [9],
which contains 80, 005 uncompressed grayscale images. We JPEG
compressed the whole dataset with Quality Factor 100 with several
JPEG compressors introduced in Section 2.3: mozjpeg, convert, and
trunc. We will refer to ALASKA dataset compressed with these
compressors simply by their respective compressors.

For the second dataset, we downloaded 301, 000 JPEG images
compressed with Quality Factor 100 from Flickr45. and center-
cropped them using jpegtran to 512 × 512 tiles. The cropping
3https://github.com/mozilla/mozjpeg
4https://www.flickr.com/
5According to the authors of the ALASKA competition [8], 14% of all images uploaded
to Flickr have been compressed with Quality Factor 100

https://ijg.org/
https://github.com/mozilla/mozjpeg
https://www.flickr.com/


IH&MMSec ’23, June 28–30, 2023, Chicago, IL, USA Jan Butora, Patrick Bas, and Rémi Cogranne

is done in the DCT domain, thus avoiding recompression. In this
dataset, we do not know anything about the compressor used. Af-
ter a very brief inspection of DCT histograms, it even seems that
some images might have been double-compressed. We are hoping
that training a detector on this diverse dataset will provide it with
enough generalization power to other JPEG compressors used. Note
that this forces us to (blindly) annotate all the images from this
dataset as cover images.

To create stego images, we embed the Flickr and convert datasets
with UERD [11] at payload 0.4 bits per non-zero AC DCT coeffi-
cient (bpnzac). This payload is big enough to change completely
the cover statistics and since we are mainly interested in the false
alarm rate, we can afford not detecting some stego images with
smaller payloads.

For training the deep learning detectors, we split the convert
dataset into training, validation, and testing set of sizes 66k, 4k,
and 10k images respectively. In order to have a reliable estimate of
small false alarm (e.g. 10−4) in the bigger Flickr dataset, we split
it into training, validation, and testing sets of 146k, 10k, and 145k
images. We chose such a big testing set on purpose, in order to have
reliable estimates of false alarms as small as 10−4.

3.2 Detectors
For experimental evaluation, we use two types of detectors in this
work. The first detector is a variance detector using the variance of
decompression rounding errors

V =
1
𝑁

𝑁∑︁
𝑖=1

𝑒2𝑖 (5)

as a test statistic, where 𝑁 is the number of pixels in the image. The
detector is then tuned by establishing a threshold 𝜆, such that the
image is classified as a cover image if V < 𝜆, and is classified as a
stego otherwise.

For the second detector, we chose the state-of-the-art e-SRNet [5],
which is equivalent to SRNet [3] trained on the decompression
errors 𝑒𝑖 𝑗 . The detector was trained with a mini-batch size of 32
images, weight decay 2×10−4, one-cycle learning rate with maximal
value at 10−3, and Adamax optimizer. The training was set for 10
epochs in the Flickr dataset and 20 epochs for ALASKA2, due to its
smaller training set.

3.3 Error Filtering
Because the assumptions on decompression errors do not always
hold, we will in our investigation filter out all 8 × 8 blocks that do
not follow these assumptions. These are, as far as we are aware,
blocks with near-constant content [7]. In this work, we consider
a block to be near-constant if the variance of its pixels is below 2.
Let I be the set of all pixels from blocks that are not near-constant.
The filtered variance is then computed as

FV =
1
|I |

∑︁
𝑖∈I

𝑒2𝑖 . (6)

Figure 2 shows a comparison between ROC curves of the variance
detectors using the original decompression error variance V and
the filtered variances FV. We see a clear improvement in the curve
by employing the proposed filtering. To this end, unless stated

0.0 0.2 0.4 0.6 0.8 1.0
PFA
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filtered

Figure 2: ROC curve of a variance detector with and without
filtering.

otherwise, we will always consider the block filtering. On the other
hand, the deep learning detector will not preprocess the images in
this way, as we believe it is not necessary.

In Figure 3 we show histograms of the filtered variances FV. We
can observe what we briefly discussed above. The ALASKA2 im-
ages compressed with convert have in general smallest variances,
mozjpeg increases the variances slightly and trunc produces vari-
ances close to 1/12. For the Flickr images, we can observe that the
density is multimodal, which by itself suggests that very different
compressors (possibly combined with other image processing oper-
ations) are present in this dataset. We leave the analysis for future
research but believe that these outliers are linked to the rounding
operations that occur in digital cameras and that are used in image
forensics by analyzing dimples [1]. Finally, we can see that embed-
ding images with UERD [11] at 0.4 bpnzac also increases variance,
as given by Equation (4).

4 RESULTS
In the following, we discuss the strategies for training the detectors
and comment upon their results. For both detectors, we first inspect
the ROC curves on ALASKA2 compressed with convert and Flickr
datasets, both embedded with UERD at 0.4 bpnzac. Next, we will
discuss the false alarm rates of these detectors on cover images
coming from the other source.

4.1 Variance Detector
First, we will use the variance detector tuned on convert dataset.
Even though this detector uses only the variances FV, Figure 4
shows that, even with a false alarm rate of 10−4, perfect detection
of UERD (probability of detection 𝑃D = 1) is achievable. Note that
since the dataset has only 80k images, the results for smaller false
alarms are rather noisy. Unfortunately, if we use this detector on
other image sources, the same figure shows that the false alarms
increase drastically (with the exception of mozjpeg at FA 10−4). We
hypothesize that this is due to the limited variability of the JPEG
compressor in the data used for tuning the detector.
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Figure 3: Histograms of the filtered variances FV for different
classes of images. Top: ALASKA2, Bottom: Flickr.

We, therefore, repeat the experiment with the variance detector,
this time tuned on the Flickr dataset instead. In Figure 5, we see that
the false alarms below 10−3 are now much more nicely behaved,
that is they are not greater than what we prescribe in the Flickr
dataset.6 However, after inspecting the top curves, we see that by
introducing a more diverse cover source, we sacrificed almost all
the detection power of the detector. This is even more obvious from
Table 1, where we show 𝑃D in the training source and 𝑃FA in the
other datasets. We conclude that a more complex detector needs to
be used.

4.2 Deep Learning
We now extend the experiments with the variance detector to a
more advanced detector, the e-SRNet. As previously, we first train
the detector on convert embedded with UERD at 0.4 bpnzac. It
will not come as a surprise, that the detector also achieves a perfect
ROC curve, see Figure 6. Nonetheless, we can also observe that
testing other cover images produces false alarms even worse than
with the variance detector. We believe this happens because the
detector is complex enough to overfit the given JPEG compressor.

We thus try to use the detector’s complexity to contain informa-
tion about as many JPEG compressors as possible by training on
part of the Flickr dataset.7 While we can observe a small drop in
6Note that this last feature is important for decision-making purposes: the forensic
analyst will be able to adopt a conservative decision on detecting stego contents if the
practical error rate is known to be equal to or lower than the prescribed one.
7Clearly not all possible JPEG compressors are used but we believe that the Flickr
dataset contains large enough samples of the most popular compressors.
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Figure 4: Variance detector tuned on convert. 𝑃D (top) and
𝑃FA (bottom) in other sources as a function of 𝑃FA in convert.

Train 𝑃D
𝑃FA

convert Flickr mozjpeg trunc

convert

0.9636 10−1 0.2026 0.4826 0.9999
0.9635 10−2 0.1678 0.2617 0.9999
0.9634 10−3 0.1637 0.2030 0.9999
0.9629 10−4 0.1190 0.0002 0.9999

Flickr

0.2447 0 10−1 0 0.9997
0.0108 0 10−2 0 0.0826
0.0009 0 10−3 0 0.0017
0.0001 0 10−4 0 0

Table 1: Variance detector cross-testing of false alarms on
different JPEG compressors. Each row corresponds to a de-
tector with a fixed threshold.

detection for very small false alarms (see Figure 7), the generaliza-
tion capabilities on other cover datasets are more than satisfying -
for every other dataset, if the prescribed false alarm rate is below
10−3, then the false alarm on other datasets is also bounded by
this prescribed value. Based on these observations, we conclude
that the Flickr dataset contains (among others) images compressed
with all compressors studied in this work: convert, mozjpeg, and
trunc. Since the detector is complex enough, we can see in Ta-
ble 2 that even for a very conservative false alarm of 10−4, we still
achieve 87% detection on the Flickr dataset. However, a problem
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Figure 5: Variance detector tuned on Flickr. 𝑃D (top) and 𝑃FA
(bottom) in other sources as a function of 𝑃FA in Flickr.

Train 𝑃D
𝑃FA

convert Flickr mozjpeg trunc

convert

1 10−1 0.3527 0.4968 1
1 10−2 0.2498 0.2578 1
1 10−3 0.1805 0.1507 1
1 10−4 0.1576 0.0831 0.9999

Flickr

0.9999 0.0161 10−1 0.1403 1
0.9751 0 10−2 0.0005 0.3865
0.9602 0 10−3 0.0002 0.0009
0.8737 0 10−4 0 0
0.9999 0.0473 10−1 0.1863 N/A

Flickr 0.9999 0.0013 10−2 0.0200 N/A
-filtered 0.9999 0 10−3 0.0013 N/A

0.9264 0 10−4 0 N/A

Table 2: e-SRNet cross-testing of false alarms on different
JPEG compressors. Each row corresponds to a detector with
a fixed threshold.

arises after inspecting what happens with stego images in the other
sources. While we get a reasonable detection in Flickr, convert,
and mozjpeg (∼ 85% for 𝑃FA = 10−4), the accuracy on stego images
in the trunc set is 0%. To investigate why all stego images from
this source are treated as covers, we investigate the detector’s logits
of the stego class.
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Figure 6: e-SRNet trained on convert. 𝑃D (top) and 𝑃FA (bot-
tom) in other sources as a function of 𝑃FA in convert.

Unidentifiable Images. As mentioned above, we investigate here
the soft outputs (logits) of the e-SRNet trained in the Flickr dataset
(see Figure 7 and Table 2). We collect the logits from all 4 sources
(only test set images) and show histograms of the corresponding
logits (cover and stego images) in Figure 8. We can make several
observations from this figure. First, we see that in the Flickr dataset,
we have a reasonable separation of cover and stego classes, except
from the middle lobe around zero containing both classes. Not sur-
prisingly, for convert and mozjpeg, we get perfect separation. We
can note that the distribution of mozjpeg cover images has a thicker
right tail, which we attribute to the trellis quantization. Lastly, we
see that the detector is randomly guessing in the trunc source. This
is also not so surprising based on the rounding error analysis from
Section 2.3. Unfortunately, this means that the e-SRNet is not appli-
cable to steganalysis in the trunc source, because the statistic of
interest looks like a uniform noise for both cover and stego images.
While there are alternative methods for the steganalysis of these
images [6] (such as detection in the pixel or DCT domain), it is not
the goal of this work.

In order to avoid having a detector that always blindly assigns
a cover class, we instead modify our already established detector
to restrain from decisions on such images. To do this, we first
observed that the largest logit coming from the trunc images is
1.91. We then set up a threshold 𝑇 = 2 and force the detector to
discard all images whose logit is in absolute value smaller than 𝑇 .
In practice, the steganalyst would need to use another detector to
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Figure 7: e-SRNet trained on Flickr. 𝑃D (top) and 𝑃FA (bottom)
in other sources as a function of 𝑃FA in Flickr.

make a decision in these images. In Figure 9, we show the false
alarms in different cover sources of this new detector with such
filtering. We see that the other sources now follow the prescribed
false alarm much more accurately, with the exception of the trunc
images that have been all filtered out, thus the detector cannot
decide on them, see Table 2 for specific values of false alarms. We
now fixed the detector’s decision threshold for 𝑃FA = 10−4 and
show in Table 3 the false alarms in other sources as well as the
detection of steganography. We conclude that the proposed filtering
on logits increased detection accuracy in Flickr by 5%, while not
affecting convert and mozjpeg sources. Note also that the false
alarm in convert and mozjpeg is technically not zero, but due
to smaller testing dataset size, we cannot reliable estimate values
below 10−4. It is also shown that the filtering procedure discards
5.7% of all images from Flickr, 1.3% from convert and 3.6% from
mozjpeg. Also, by design, all images from trunc are discarded from
the decision-making.

5 CONCLUSIONS
In this work, we studied the cover source impact on the Reverse
JPEG Compatibility Attack. The main power of the attack comes
from an increased variance of the decompression rounding errors.
We thus study these rounding errors in several popular JPEG com-
pressors. We have shown that the variance of these rounding errors
can also change drastically with different compressors, potentially
triggering a lot of false alarms. Indeed, we showed that a naive
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Figure 8: Histogram of logits (stego class) of e-SRNet trained
on Flickr. From left to right: Flickr, convert, mozjpeg, trunc.
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Figure 9: 𝑃FA in other sources as a function of 𝑃FA in Flickr
of e-SRNet with the logit filtering.

Flickr convert mozjpeg trunc

𝑃FA 10−4 0 0 N/A
𝑃D 0.9264 0.8841 0.8781 N/A

unclassified 0.0574 0.0137 0.0364 1

Table 3: Probability of detection of UERD at 0.4 bpnzac with
the filtered e-SRNet trained on the Flickr dataset. Threshold
for false alarm rate 10−4 in Flickr was used.

variance detector does not generalize on cover images compressed
differently. Using it in a more diverse source, on the other hand,
makes the detector classify even the stego images as covers. A more
complex deep learning detector trained on a diverse enough dataset
preserves false alarms across cover sources, but we point out that
the trunc quantization still makes the rounding errors unusable
for steganalysis. However, we show that in a vast majority of cases,
it is possible to achieve operational false alarm rates while still
having very high detection power even on datasets not included in
the training data. In the future, we plan to investigate the images
in which the detector does not provide a confident decision by
inspecting their respective EXIF data.
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