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Aix-Marseille Univ, Université de Toulon, CNRS, IM2NP, Marseille, France

E-mail: jonathan.amodeo@cnrs.fr

Abstract.

While surfaces are known to have a limited impact on the mechanical properties of

crystalline materials at the macroscopic scale, they play a key role at small-scale be-

having alternatively as sources or sinks of various plastic deformation processes. In this

study, we present a new tool called El-Numodis that relies on the superposition method

to couple the discrete dislocation dynamics code Numodis to Elmer, an open-source

finite-element-modeling tool. After few years of development, El-Numodis allows now

for the simulation of small-scale object deformation and mechanical properties based

on a large set of surface-related processes including stress-free boundaries, mirrored dis-

locations and a Monte-Carlo based dislocation nucleation mechanism. Here we present

the main features of the code as well as numerical test-cases and benchmarks going

from classical boundary value problems to tensile tests on model thin film.

1. General introduction

Modeling and predicting the mechanical properties of materials is at the roots of mod-

ern materials engineering. In this context, the development of multi-scale modeling

approaches has recently known an unprecedented growth including specific improve-

ments at the mesoscale i.e., at the grain-scale. Among others, techniques such as the

Discrete Dislocation Dynamics (DDD) [1–3], phase field modeling [4, 5] or large-scale

Molecular Dynamics (MD) simulations [6,7] have allowed a better understanding of ele-

mentary deformation processes while opening alternative routes to the classical reverse

engineering process [8]. Among others, the DDD method benefits of a particular status

in the materials multi-scale modeling framework. Indeed, as focusing on the collective

behaviour of dislocations (linear defects responsible for the irreversible deformation of

crystalline materials), DDD is one of the very first method able to predict dislocation

microstructure evolution at the grain-scale while providing quantitative inputs to model

the mechanical response of crystalline materials at larger-scales as e.g., in crystal plas-

ticity models [9–12]. Nevertheless, the downscaling generated by the recent acceleration

of nanotechnology developments has reshuffled the cards of the multi-scale modeling

framework.
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Indeed, nanotech is now an important segment of the modern material industry. The

wide range of applications of nanodevices is mainly due to the advantages brought by

the radical change of their properties (mechanical, surface, optical, chemical, etc.) in-

duced by their size, compared to bulk materials. As examples, nanowires are employed

for digital data storage due to their superparamagnetic capability that relies on a very

fast response to external fields with almost zero remanence [13, 14], nanoparticles are

also currently used to improve the performance of lubricants [15,16] or as compounds to

build implants due to their high-strength and wear resistance [17]. Overall, nanocrys-

tals and their outstanding mechanical properties (smaller is stronger) are now widely

used to improve bulk materials [18, 19] and their strength vs. size dependence mostly

arises from the increase of the surface over volume ratio when scaling down the sample

size [20, 21].

While the flow of bulk materials is known to be governed by a dislocation multipli-

cation process from an existing defective microstructure, the plastic deformation of

nano-objects is controlled by a Surface Dislocation Nucleation (SDN) mechanism that

requires a much larger stress than in the classical dislocation multiplication case (stress

increased by a factor of 10 to 1000) [22–25]. In fact, nanocrystals are known to be

dislocation-scarce (or free) due to both the soft fabrication routes from which they are

derived (e.g., crystal growth, dewetting, lithography) as well as to surface-induced im-

age forces [26, 27] that pump the dislocation density out, this latter being intrinsically

concomitant to the aforementioned SDN process.

Several experimental and numerical methods currently exist to try to understand

the mechanical behaviour of nano-objects. For example, nanocompression in the Scan-

ning or Transmission Electron Microscope (SEM or TEM) are the most used experimen-

tal techniques in the field [28–30]. Experiments are reported for sample sizes ranging

from several micrometers down to few tens nanometers as well as for low deformation

rate (10−4 to ∼1 s−1). While the use of TEM allows for microstructure, defect and

surface characterizations at the nanoscale, it is still a complex and expensive method

and several issues including sample misalignment, contamination or oxidation are com-

monly reported [31–33]. Thus, computational methods are often used to support the

interpretation of nanomechanics experiments. On one hand, MD is the most used nu-

merical technique to simulate the mechanical properties of nano-objects as relying on

the description of atomic-scale processes [21, 34]. It is based on interatomic potentials

used to compute atomic forces and integrate the dynamics of molecular systems e.g., in

a sample under load when applied to the field of nanomechanics. However, MD sam-

ple size is usually limited to few tens of nanometers while nano-objects can be of few

hundreds and, furthermore, MD is performed at particularly high strain-rate (∼108 s−1)

due to prohibitive computational costs.

On the other hand, while DDD allows for larger sample size and strain rates both being

closer to experimental conditions, it also has some drawbacks. Indeed, DDD allows to

model dislocations on the basis of constitutive equations rather than atomic interactions
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what makes the model less expensive in terms of cpu costs but has the disadvantage of

being less accurate. Furthermore, DDD codes are generally developed for bulk applica-

tions and often miss nanoscale features. The major lack relies on the elastic theory the

DDD is based on that usually assumes an infinite continuum. This peculiarity raises the

issue of finite Boundary Conditions (BCs) as DDD was originally developed to tackle

configurations close to bulk conditions i.e., using Periodic Boundary Conditions (PBCs)

or free-BCs, without explicitly considering realistic surfaces. In addition, former DDD

codes (e.g., microMegas [35,36], Paradis [37], Tridis [2,38]) have not been originally de-

veloped to describe dislocation nucleation processes. While this latter is not crucial to

simulate bulk mechanics, it is imperative to model nanoscale mechanical properties due

to the aforementioned SDN process. In this context, the development of quantitative

numerical tools to investigate the mechanical properties of small-scale objects including

the effect of surfaces, sample size, strain rate as well as the ability to account for most

of nanoscale elementary deformation processes emerges as a crucial step up to improve

our understanding of micro and nanomechanics [33].

Boundary Value Problems (BVPs) related to surfaces or interfaces can be addressed

coupling the DDD with the Finite-Element Method (FEM) using various kinds of ap-

proaches such as the SuperPosition Method (SPM) that relies on a linear stress cor-

rection originally proposed by Van der Giessen and Needleman [39], the Discrete Con-

tinuous Method (DCM) proposed by Devincre and collaborators [40–42] based on the

eigenstrain formalism of Mura [43] or the Fast Fourier Transform (FFT) dislocation

approach which is increasingly used by the community [44,45]. As an example of appli-

cation, a DCM-FFT approach was recently used by Kohnert and colleagues to quantify

the effect of surfaces and TEM lamella thinning on the dislocation density [46].

Here we present our approach called El-Numodis which is based on the SPM and

integrate specific features adapted to nanomechanical simulations. El-Numodis relies

on the coupling of the DDD code Numodis [47, 48] and the open-source FEM software

Elmer [49]. It benefits of a particularly accurate and parallel nodal DDD framework that

integrates top of the art features such as various implementations of the elastic theory,

the singular and non-singular theories for dislocations [26, 50] as well as additional

ingredients to better model deformation tests at small-scales accounting for surface

effects as e.g., the Weygand’s approach for dislocation vs. surface interactions [27] and

a Monte-Carlo routine for homogeneous and heterogeneous dislocation nucleation, as

inferred from the harmonic Transition State Theory (TST) [51].

In the following, we start with a brief reminder about the DDD and FEM techniques

in the context of the parent codes Numodis and Elmer, then, the main aspects of the

coupling are introduced (SPM basics, coupling and interfacing procedures, dislocation

nucleation and interaction with surfaces, etc.). Finally, an extended last section

composed of various validation tests and applications complete the study.
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2. Numerical methods

2.1. Basics on DDD and FEM: methodologies and parent codes

The DDD is a mesoscopic approach developed to investigate the collective behaviour

of dislocations. This method was originally developed in the late 80’ to study the

evolution of a dislocation population under load in metals [52]. Since, it was further

used to investigate various issues including strain hardening (see e.g., [3,53]), irradiation

defects [48, 54, 55], fatigue [56, 57] or nanoindentation [58] in metals. Few applications

in oxides and minerals can also be found [12, 59–61]. General details about the DDD

method can be found in Refs. [36,62,63].

Numodis is a versatile DDD code developed by the french Atomic Energy Center (CEA)

used here in the DDD/FEM coupling framework of El-Numodis. Up to now, Numodis

has shown to be particularly suited to investigate the influence of radiation-induced

defects on the plastic behavior of metals such as iron [48, 64] or zirconium alloys [47]

with one-to-one cross-validations of the DDD outcomes against MD and experiments.

From a technical point of view, Numodis is a C++ nodal code in which dislocations are

described by nodes interconnected into segments characterized by their Burgers vector

and glide plane. It can be used either serial or parallel using the openMP protocol.

In Numodis, a remeshing algorithm ensures that each segment length respects an

admissible size range chosen in accordance with the characteristic size of the investigated

phenomenon. The force acting on the nodes is computed within the singular [26] or non-

singular [65] dislocation theoretical framework using the analytical formulation derived

by Arsenlis et al. [37]. Additional dislocation core forces can be accounted using core

energy terms [66–68]. The velocity of each node is computed using a classical variational

approach [27,65] assuming an overdamped motion and various kind of dedicated mobility

laws including e.g., viscous or thermally-activated glide assigned on each segment

character and slip system. Dislocation contact reactions (junction, annihilation, crossed-

states, etc.) are computed using the elastic theory allowing to model the dislocation

microstructure evolution and strain hardening. The methodology used in El-Numodis is

inspired from the seminal work of Bulatov and collaborators [37,69] and can be resumed

as follow. A collision detection algorithm is used at each timestep to predict incoming

dislocation contact reactions with other dislocations or microstructural defects such as

grain boundaries or precipitates. When a collision is detected, a new node is generated

at the contact point and is kept fixed during the current DDD time step allowing for

the rest of the dislocation microstructure to relax. If the collision is confirmed, the node

evolves at step n + 1 depending on the situation while minimizing the energy using a

split node algorithm. For example, for a contact between two dislocations, the node

can split into two subsequent nodes forming a junction segment. At each time step, the

code checks whether or not a node has to be split, a splittable node being defined as

connected at least to three other nodes and must not be arbitrary pinned (e.g., Frank-

Read source).
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Used in the El-Numodis context as an elastic solver, Elmer is a multiphysical FEM

code written in modern Fortran that includes a large set of continuum-based physical

models [49]. Up to now, Elmer was used in various fields of application to model e.g.,

crystal growth [70], blood flow in elastic arteries [71], computational glaciology [72]

or electrical machines [73]. Elmer uses high-level abstraction when treating individ-

ual equations for solving multiphysical problems and benefits from a modular struc-

ture and generic strategies that are useful when coupling it with other codes as e.g.,

with OpenFOAM [74]. In the following, Elmer is coupled to Numodis using the SPM

method [39,75]. The Elmer physical model used for this coupling is the elasticity equa-

tion that can be solved using various types of 2D (triangular, quadrilateral) and 3D

(tetrahedron, hexahedron, prism or wedge) elements. Finally, the linear system is solved

using number of different direct (Umfpack, MUMPS and Pardiso packages) or iterative

(conjugate gradient, basic preconditioning, Krylov subsapce methods, etc.) techniques.

Also, Elmer is interfaced with Hypre that provides an additional set of iterative solvers

and preconditioners [76]. Finally, efficient octree-based interpolation methods that can

be performed on nodes or on integration points are available for mapping results be-

tween computational meshes.

2.2. The superposition method and El-Numodis

Figure 1: The superposition method. The stress field σ inside a finite-size volume

containing dislocations (right-hand side) is obtained adding the dislocation self-stress

σ̃ as computed by the DDD to the elastic stress σ̂ as inferred from a FEM boundary

corrected problem (left-hand side).

2.2.1. Introduction to the superposition method

The SPM method was first introduced by Needleman and collaborators to solve

BVP problems [39]. It is based on the correction of the dislocation self-stress σ̃
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and displacement fields ũ originally computed by a DDD code (assuming an infinite

medium) at physical boundaries S using a FEM elastic solver. Assuming a finite-size

volume, the SPM aims at imposing an applied force or displacement (Fapp and uapp,

respectively) via the BCs that is corrected by an homologous contribution (σ̃ or ũ)

induced by a dislocation population as computed by the DDD using an infinite medium

hypothesis (see Figure 1). For that purpose, the dislocation stress field computed at

the boundary σ̃(S) is converted into forces F̃ (S) using an appropriate conversion

scheme when accounting for Neumann applied force BCs whereas applied displacement

(Dirichlet) BCs ũ(S) are computed using the Barnett approach [77]. After solving

the BVP, the field corrections (σ̂ or û) is added to the original internal fields (σ̃

or ũ) computed by the DDD what leads to the total stress σ or displacement fields

u (Equation 1). The FEM correction is computed at the dislocation Gauss points

using a classical interpolation method and is further added to the dislocation stress

or displacement field contribution. Thus, SPM allows for the mesoscale modeling of a

finite-size domain including surfaces and interfaces (in the contrary to the self-standing

DDD). This method that allows for arbitrary BCs was already used for various modeling

applications such as nanoindendation [2,78], thin film [79] or micropillar compression [80]

simulations.

σ = σ̃ + σ̂

u = ũ+ û
(1)

2.3. El-Numodis operation

In the coupling approach, the FEM code Elmer drives the simulation and refers to the

DDD as an external library. Number and format conversion drivers have been imple-

mented for direct data transfer between the two codes while Elmer external solvers were

upgraded here to manage the newly coupled BCs. In a nutshell, the coupling consists in

three external routines and several Numodis functions being called as shown in Figure

2. The El-Numodis workflow can be described as follows:

(i) Loading deformation conditions. El-Numodis requires a 3D geometrical mesh as

well as a parameter file that are loaded at first. Among others, the parameters file

contains the definition of the faces where the BCs (Dirichlet or Neumann) are ap-

plied, the total number of time steps, the output saving frequency, material elastic

properties as well as the elastic solver parameters. At the end of this first step,

Numodis is called using a first driver refered as El-Numodis export bnodes.

(ii) Calculation of σ̃(S) and ũ(S). Specific DDD inputs as e.g., the dislocation density

distribution, are loaded by Numodis. Elmer associates parts of or all the surface

nodes to specific BCs i.e., Neumann (including traction-free nodes) or Dirichlet
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Figure 2: El-Numodis workflow. The FEM code Elmer masters the coupling using the

DDD Numodis code as a library. Both contributions are illustrated in green and blue,

respectively. The three main drivers of El-Numodis i.e., El-Numodis export Bnodes,

El-Numodis import and El-Numodis export stress are illustrated using red blocks. (i),

(ii), (iii) and (iv) refer to the main operations as described in the text.

BCs. Then, the DDD computes the displacement and stress fields associated with

the current dislocation density σ̃(S) and ũ(S) at the specified BC nodes.

(iii) Fields regularisation. A second driver called El-Numodis import converts σ̃(S) into

F̃ (S) at Neumann boundary nodes and F̂ (S)=Fapp-F̃ (S) as well as û(S)=uapp-

ũ(S) are computed. Then, the assembly is performed accounting for a feedback

loop to either adapt the applied stress or displacement. Finally, the linear elastic

solver of Elmer computes σ̂ everywhere inside the simulation volume.
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(iv) Fields superposition. Finally, the last driver El-Numodis export stress is called. It

first lists dislocation Gauss points and then interpolates σ̂. The stress superposi-

tion as described by Equation 1 is performed leading to the effective stress state σ.

Then, a new DDD step is performed including force computation, possible nucle-

ation event or dislocation displacement. The whole process is repeated up to the

total amount of simulation time steps.

2.4. Field conversion and interpolation

By definition, stress and force are connected by a geometrical area. In FEM, the con-

version from stress to force is performed retrieving stress values at the Gauss points of

mesh elements and converting them into nodal values using the pseudo-inverse of a shape

function associated to each mesh type. Figure 3a shows a typical example about how

this is implemented in El-Numodis, associated here to a a regular mesh of 8-nodes hexa-

hedron elements for the sake of simplicity. As shown in Figure 3a, σ̃(S) is computed at

the mesh nodes and the conversion from σ̃(S) to F̃ (S) is done using a weighted area of

normal vector n associated to each node using Equation 2. The weighted area depends

on the element shape and localization. Here, internal surface nodes are characterised

by A=1 whereas corners and external edge nodes have associated area of A/4 and A/2,

respectively.

F̃ (S) = Aσ̃(S)n (2)

The stress at the dislocation Gauss points σ̂gp is derived from the FEM solution σ̂

originally computed at the mesh nodes. To interpolate and retrieve the solution at the

dislocation Gauss point, it is necessary to (i) identify the element and the k nodes enclos-

ing the respective dislocation Gauss point, (ii) transform the global coordinates (x,y,z)

of the element nodes into a reference frame (ξ,η,ζ) (Figure 3b) and (iii) apply the shape

function Nk. In the square mesh case depicted in Figure 3a, Nk and σ̂gp are provided by,

Nk =
1

8
(1 + ξgpξk)(1 + ηgpηk)(1 + ζgpζk) (3)

σ̂gp =
8∑

k=1

Nkσ̂k (4)

where k refers to nodes index. This method is commonly used in El-Numodis that bene-

fits of various additional interpolation schemes (via Elmer) that could be adapted to the

calculation of σ̂gp. See e.g., [81] for more details on field conversion and interpolation.
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Figure 3: El-Numodis interpolation scheme using shape functions and fields conversion.

(a) Representation of a surface mesh where stresses are converted into forces at the

element nodes. Nodes and surface colors refer to respective types (green=corner,

blue=side edge and red=internal). (b) The global coordinates (x,y,z) of each node

is transformed into reference coordinate (ξ,η,ζ) with the new axes located at the center

of the hexahedron element.

2.5. Dislocation and surfaces

El-Numodis is designed to model dislocations interacting with surfaces (optionally) us-

ing the mirror dislocation concept [26,27] to assist the FEM in field corrections. Indeed,

when a dislocation approaches a surface, the local stress and displacement fields can be

obtained adding the contribution of an out-of-the-box mirror dislocation to the original

dislocation fields. While the field calculation will be discussed later, the topological

aspects of the mirroring process in El-Numodis can be described as follow. First, fol-

lowing the seminal work of Weygand et al. [27], a dislocation close to a sample surface

by a cutoff distance rimc is automatically replicated on the other side of the surface using

planar symmetry as shown in Figure 4. The resulting mirror dislocation is characterized

by a line with symmetric orientation but an opposite Burgers vector direction. While

the mirror dislocation stress and displacement fields are accounted within the simula-

tion cell in order to reduce image contributions, the image dislocation does not produce

any plastic shear. If the dislocation is about to contact with the surface, the Numodis

collision detection algorithm is used to identify dislocation segments about to react with

their mirrored counterpart, both emerging at the surface. In this case, the dislocation

contact reaction leads to the annihilation of both dislocations. Finally, the dislocation

annihilated portion at the surface is replaced by a ledge made of surface nodes (Figure

4). The surface nodes have the same mobility as the bulk ones but are constrained

to move only on the sample surface (with the possibility to pass from one surface to

an other). Also, ledges benefit from the same properties as dislocations i.e., they can

superimpose or annihilate when several dislocations escape from the same surface but
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do not produce any stress or displacement field inside the sample.

Figure 4: Dislocation interacting with surfaces in El-Numodis. (a) a dislocation close

to a surface by a distance rimc is mirrored using planar symmetry, (b) bulk and mirror

dislocations react at the surface creating a surface ledge. Dislocation and ledge nodes

are colored according to their Degree Of Freedom number (DOF). NA=Not Accounted.

2.6. Dislocation nucleation

Dislocation nucleation was originally introduced within DDD simulations by Fivel et al.

who used a criterion on the macroscropic stress to model the nucleation of prismatic

loops during nanoindentation [82]. More recently, Roy et al. investigated homogeneous

dislocation nucleation in nanoparticles nucleating octagonal loops with characteristic

size (imposed by the user) in high-stress regions further testing their expansion by a

strict calculation of the Peach-Koehler force between two consecutive DDD time steps

[83]. This kind of approach was consecutively extended or adapted by several groups

[57,63,83]. At the atomic scale, SDN has shown to be a stochastic process that depends

on both the local shear stress and temperature [51, 84]. This kind of mechanism can

be rationalized using the TST that connects the phenomenon frequency of occurrence

to the local thermomechanical conditions through an activation energy, as it has been

done e.g., by Zhu et al. for SDN in metal nano-objects [51]. Recently the approach

of Zhu was extended to investigate the influence of the local atomic environment on

the SDN process accounting for the sharpness of surface corners and edges [85, 86].

To provide a more realistic description of what is commonly done at the mesoscale, our

approach benefits of the recent theoretical progresses made on the dislocation nucleation

process. Indeed, the code uses a combination of dislocation harmonic TST and Kinetic

Monte-Carlo (KMC) to identify the favorable homogeneous or heterogeneous dislocation

nucleation sites using meshed activation data and a probabilistic approach. As suggested

by the harmonic TST, the dislocation nucleation rate at finite temperature and site i is

described by,

νi = ν0,i exp

(
−∆Gi(σi, T )

kBT

)
(5)
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where ν0,i is the local attempt frequency, ∆Gi is the Gibbs free energy of the dislocation

nucleation process at site i, σi is the local stress and kBT is the Boltzmann factor.

Thus, the probability for a dislocation to nucleate at site i during time δt in El-Numodis

is computed as,

δNi = νi.δt (6)

with

δt =
1

N∑
i=1

νi

(7)

with N the total number of nucleation sites.

The frequency nKMC at which the KMC algorithm is called is defined by

nKMC=δtDDD/δt per DDD step, where δtDDD is the DDD timestep. nKMC is adapted

on-the-fly during the simulation based on possible νi variations induced by local stress

changes. Dislocation nucleation activation energy ∆Gi and other characteristic param-

eters (critical nucleation radius and slip systems) can be set as non-local inputs or using

tabulated data on a 2D or 3D grid to account for the site-dependence of the nucle-

ation process. Corresponding dislocations are then generated into the simulation box as

circular glissile loop (homogeneous nucleation) or truncated half or quarter loops (het-

erogenous nucleation) depending on the nucleation site location. Finally, El-Numodis

is able to interpolate multiple stress or strain-dependent ∆Gi databases to model the

dislocation nucleation sensitivity to the mechanical history of the virtual sample.

While a comprehensive study of the SDN process in ceramic nanoparticles using

atomistically-informed El-Numodis will be the main focus of a forthcoming study, a

simplified application of the dislocation nucleation process is presented in Figure 5.

In this example, we use a cubic-shaped copper single crystal of 500×500×500 nm3

size under constant load. SDN in the 1
2
〈110〉{111} slip systems at three hypothetical

nucleation sites is considered i.e., two top corners c1 and c2 and the middle of a single

lateral surface labelled s. As in the work of Zhu et al. [51], we use the approximation

of an homogeneous surface disordering temperature ∆Si = ∆Hi/Tm,i, where ∆Si is the

activation entropy at site i, ∆Hi is the 0 K nucleation activation enthalpy and Tm,i is

the local surface disordering temperature (ν0,i=3.14 1011 /s and Tm,i=700 K whatever

i). Corner and mid-surface activation enthalpies are set to ∆Hc1=∆Hc2=0.2 eV and

∆Hs=0.5 eV respectively, assuming SDN to be more efficient from corners than from

mid-surface. A high-enough constant load is considered (σzz=1 GPa) to guarantee

dislocation nucleation and glide. For a sake of simplicity, the per-site activation

nucleation energy is temporarily increased after each nucleation event to mimic the

effect of internal stress relaxation that prevents overly correlated nucleation events.
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Figure 5: Dislocation nucleation at the surfaces of a cuböıdal Cu sample under constant

load (σzz=1 GPa) at (a) T=250 K and (b) T=650 K. (c) Nucleation probability

Pi=νi/
∑
i

νi at corners c1 and c2 and mid-surface s computed at T=250 and 650 K.

Simulation performed at T=250 and 650 K are described Figure 5. El-Numodis promotes

SDN originating only from c1 and c2 at T=250 K (Figure 5a) while nucleation events

incoming from the three sites are observed at larger temperature (Figure 5b). This

result is mainly explained by the site-dependence of the nucleation probability that

is influenced by the temperature range as expected by the harmonic TST. Here, the

probability to nucleate from a corner Pc=νc/
∑
i

νi∼0.5 at T=250 K while its mid-surface

counterpart is close to zero (Ps=6.47 10−5) what justifies the lack of nucleation event

from site s at low temperature. On the other hand, Ps increases up to ∼0.25 when the

temperature is increased up to 650 K as shown Figure 5c and nucleation from site s

becomes more favorable.
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2.7. Loading and feedback loops

El-Numodis handles displacement- and force-controlled BCs (Dirichlet and Neumann

BCs, respectively) that can be set at each surface of the virtual sample allowing for

constant strain rate or creep simulations. During constant strain rate simulation, a

feedback control acting on stress is performed as described in Equation 8 using Neumann

BCs. On the other hand, the sole SPM method is used during creep simulations.

σ(S, t) =
1

Σ
(ε̇.t− εp(t)) (8)

where σ(S, t) is the applied stress tensor at the surface, t is the elapsed time, ε̇ is the

total strain rate tensor and εp is the plastic strain tensor computed using the area swept

by all moving dislocations. Σ is the corresponding compliance tensor.

3. Validation and applications

3.1. Dislocation stress field

El-Numodis benefits of both the singular and non-singular formulations for dislocation

stress field (equations are provided as Supplementary Information). Figure 6 shows a

comparison between El-Numodis DDD and the analytical formulation of the stress field

using the Cai’s non-singular theory [50].From a technical point of view, a straight (edge

or screw) dislocation is modeled assuming an infinite continuum using a simulation cell

of size 1×1×1 µm3. The dislocation line is oriented along z=[001] and the stress field

is illustrated in the (x,y) plan at z=0.5 µm. Copper lattice parameter (a0=3.61 Å)

and isotropic elasticity (λ=77.3 GPa, µ=42.0 GPa, ν=0.324) are used for the example.

Overall, results show a good agreement between analytical and El-Numodis solutions.

One could notice that changing the BCs from periodic to fixed-BCs as well as short

variations of cell dimensions along x and y do not significantly impact the results for

the investigated size range.

3.2. Edge dislocation and free surface

Here we test El-Numodis reliability in the context of the stress-free BC problem by

investigating how the stress field of an edge dislocation is modified in the vicinity of

a free surface, as described in Figure 7a. In their seminal work, Hirth and Lothe

proposed an analytical solution to this problem that relies on the concept of image

dislocation [26]. Indeed, the authors demonstrate that most of the stress components

induced by an infinite edge dislocation can be cancelled at a surface by adding a so-

called image dislocation located on the other side of the surface. The image dislocation

is characterized by i) the same line direction and infinite length, ii) an opposite

Burgers vectors -b and iii) the same dislocation-to-surface distance l than the original
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Figure 6: Comparison between El-Numodis and analytical formulations of edge and

screw dislocation stress fields in the framework of the non-singular theory of Cai [50].

dislocation. In addition, they use an Airy stress σ̂Airy superimposed to the self σ̃ and

image dislocation σ̂im stress-fields to ensure the complete vanishing of all the stress

components at the free surface (i.e., for x=l), without modifying the long-range stress

distribution within the sample,

σ̃ij + σ̂im
ij + σ̂Airy

ij = 0, for x = l (9)

with σ̂im
ij the stress components of the image dislocation.

Within the Hirth and Lothe 2D formulation, the Airy stress components that verify

the stress-free conditions of the x-oriented surface are given by,

σAiry
xx = − 2µblxy

π(1− ν)r6
[3(l − x)2 − y2] (10)

σAiry
xy = − µbl

π(1− ν)r6
[(l − x)4 + 2x(l − x)3 + 6xy2(l − x)− y4] (11)

where r = (l2 + y2)1/2
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Figure 7: Edge dislocation and free surface: stress-field prediction comparison between

El-Numodis simulation (Sim) and Hirth and Lothe (H&L) theoretical model. (a)

Simulation setup, (b) Dislocation self-stress σ̃ and total stress σ variations along y

for a 30×60×30 elements mesh with special refine in the vicinity of the dislocation

(Gmsh Bump=-4.9 and Progression=1.3). Data are plotted along a virtual line crossing

the free surface.

The Hirth and Lothe model presented in Equation 9 relies on a stress summation

very close the one used in the SPM. Thus, one way to test El-Numodis implementation is

to verify that the FEM stress correction computed by the code correctly reproduces the

Hirth and Lothe theoretical predictions of Airy and image stresses i.e., σ̂=σ̂im+σ̂Airy.

To test this hypothesis, we design 1×2×1 µm3 simulation cells including a finite-length

edge dislocation (line along z, Burgers vector along x) located at a distances l=0.1 µm

from a surface located at x=0. Simulation volumes are meshed using 8-nodes hexahedron

elements. Various geometries are tested including elements distributions from 30×30×30

up to 120×120×120. Figure 7a shows a 30×60×30 volume with mesh refinement near

the dislocation performed using Gmsh (Bump=-4.9 and Progression=1.3) [87]. As in

the previous test-case, copper lattice and elastic properties are used. In the simulation,

traction-free BC is applied to the x free-surface while zero fixed displacement is used

on the opposite side (other surfaces are not considered). The total stress σ and the

dislocation self-stress σ̃ obtained are presented in Figure 7b as plotted along a vertical

line passing along the free-surface. Results confirm El-Numodis ability to reproduce

theoretical σ̃, as already shown in Figure 6. In addition, the plot of σ allows for

a direct comparison between the FEM correction σ̂ and the Hirth and Lothe model

σ̂im+σ̂Airy. The total stress components σxx and σxy show a significant decrease at the

surface (originally equal to the self-stress) what confirms the correct implementation of
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the superposition algorithm within El-Numodis. This result applies almost everywhere

except close to y=0, where spurious stresses are observed. These discrepancies are at-

tributed to the mesh refinement in this region (where large stress gradients are shown)

as well as to the intrinsic difference between the 2D Hirth and Lothe model and the

3D finite-size simulation. One can notice that similar stress singularities at free-surface

were already observed in simulations using the SPM [27] or the DCM approach [42,88].

Still for this test-case, Figure 8 illustrates the influence of the mirror dislocation

method on El-Numodis stress field correction. Results show a qualitative agreement

between simulated σ̂ (or σ̂-σ̂im, depending if the mirror image method is turned off

or on) and the σ̂Airy of the Hirth and Lothe model. Overall, using the mirror image

method with FEM to compute the image stress improves the results allowing for less

refined meshes. However, such an improvement has limitations as emphasized by the

y = 0 region where data for 60 and 120 elements simulations saturate. Thus, the resid-

ual stress in the y = 0 region also observed Figure 7b is neither significantly sensitive

to simulation cell size variations or nor to the mesh refinement.

3.3. Square dislocation loop and free surface

In this section, we use El-Numodis to solve the stress-free BC problem in the case of

a dislocation square loop located in the vicinity of a free surface. Curved dislocation

stress field can be computed using linear elasticity and surface integration built out of

the dislocation curvature [75,89,90],

σpq(x
′) = −

∫
bsCsrklCpqmj

∂

∂x′j
Gmk,j(x,x

′)dSr (12)

where C is the elastic stiffness and G is the Green tensor associated to a particular

material.

In an infinite medium, Equation 12 can be reduced into a simple integral computed

along the dislocation line using the Stokes theorem. Gosling and Willis expanded this

approach to a finite-size domain using Equation 13 where S∞ and Ŝ are kernels associ-

ated to infinite and finite-size media respectively [90]. The integral of Ŝ directly leads

to the image stress σ̂; It will be referred as the Gosling-Willis solution in the following

(more details on this approach can be found e.g., in Ref. [75]).

σpq(x
′) = −

∮
C

bs[S
∞
pqrs(x− x′) + Ŝpqrs(x,x

′)]dx (13)

The El-Numodis simulation setup used to model the square loop and surface inter-

actions is presented Figure 9a. A copper 〈100〉-oriented simulation cell with dimensions
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Figure 8: El-Numodis σ̂xy (or σ̂xy-σ̂
im
xy when accounting the mirroring dislocation

method) correction as function of mesh refinement. Simulations are performed for

mesh discretization of 30 (dashed curves), 60 (dotted curves) and 120 (full curves) 8-

nodes hexahedron elements in the three directions of space, using the Weygand’s mirror

dislocation method (W) or not. Ref curves rely on the aforementioned 30×60×30

with particular mesh refinement near the dislocation using Gmsh (Bump=-4.9 and

Progression=1.3). Results are compared to the σ̂Airy
xy of the Hirth & Lothe model (H&L,

red curve). Data are plotted along a vertical line passing by the middle of the x-surface

as shown in Figure 7a.

of 5×5×2.5 µm3 is meshed with 8-nodes hexahedron elements further refined near the

[001] bottom free surface. A 1
2
[1̄01](111) square dislocation loop axis-aligned with z and

with edge lengths of about 0.5 µm is introduced at 0.37 µm of the bottom-z surface

at which stress-free BCs are applied. As in the previous case, zero displacement fixed

BCs are used for the opposite z surface while remaining surfaces are not considered as

boundaries in the simulation. The mirroring dislocation method is off here.

Results are presented in Figure 9b and 10. On one hand, Figure 9b shows the

variations of the FEM stress correction σ̂ as plotted along the z-axis starting from the

free surface up to 2 µm and passing trough the center of the dislocation loop. Here the

results illustrate that El-Numodis is particularly suited to reproduce the Gosling-Willis

theoretical solution. On the other hand, σ̃, σ̂ and σ̃+σ̂ stress maps plotted at the

bottom-z surface are shown in Figure 10. El-Numodis alllows for the decrease of the

various stress components by more than a factor 5 with only few MPa leftover at the

surface. This test further confirms the ability of El-Numodis to solve stress-free BVPs.
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Figure 9: Dislocation square loop in the vicinity of a free surface: image stress

field comparison between El-Numodis simulation (Sim) and the Gosling-Willis (GW)

theoretical model (a) Simulation setup, (b) Image stress components σ̂ij as measured

along a vertical line passing by the middle of the dislocation square loop. El-Numodis

results (dots) are compared to the Gosling-Willis model (curves).

3.4. Example of application: thin film tensile test

For this final application, El-Numodis is confronted to classical DDD (i.e., standalone

Numodis) performing tensile tests on a model thin film. A 〈100〉-oriented Cu thin film

of 250 nm thickness is generated and meshed using eight nodes hexahedrons discretized

with 20 points along [010] and [001] directions while 10 points are used along [100].

The initial dislocation microstructure is identical in both simulations. It is made of 25

Frank-Read sources of 0.2 µm length randomly distributed on the various slip systems

of the FCC crystal structure. The defects distribution is biased using a cutoff to avoid

overlaping and boundary crossing. Constant strain-rate simulation (ε̇=10−6 /ns) is per-

formed pulling from one of the (001) lateral surface while the opposite one is kept fixed.

Other surfaces are set stress-free in El-Numodis. The mirror-image dislocation method

is used in El-Numodis simulation only with a cutoff distance of 60 nm while free-BCs

are used in the pure DDD simulation. Equation 8 feedback loop is used to correct the

applied stress at the boundary in both simulations.

Computed stress-strain curves are shown in Figure 11a. Both SPM and DDD sim-

ulations are characterized by an initial elastic load up to the activation of the first

Frank-Read sources. The pure DDD exhibits a higher yield stress when compared to

El-Numodis (196 and 175 MPa, respectively) and, overall, a harder mechanical response
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Figure 10: Stress components of σ̃, σ̂ and total stress σ̃+σ̂ computed using El-Numodis

at the bottom-z surface close to a dislocation square loop.

all along the simulation. Figure 11b shows both dislocation microstructures in the early

stage of deformation. One can easily identify the prior activation of parts of the Frank-

Read sources close to the surfaces in the SPM simulation, as indicated by the red arrows

in Figure 11b. On the other hand, the DDD simulation does not show any influence of

the surfaces and the applied stress within the sample is homogeneous what promotes

the activation of Frank-Read sources localized in high-Schmid factor slip systems only.

Here surfaces in the El-Numodis simulation behave as sinks that help the opening of the

Frank-Read sources towards the surfaces in a similar way that in the aforementioned

TEM lamella case [46]. Moreover, accounting for surfaces significantly influences the
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Figure 11: Thin film tensile test: standalone Numodis (DDD) vs. El-Numodis

(SPM). (a) stress-strain curves, (b) Comparative dislocation microstructures at the

yield point (black=Numodis, green=El-Numodis). Red arrows highligth early emerging

dislocations in the El-Numodis simulation. Black arrows refer to the tensile direction.

dislocation dynamics and elementary reaction processes between dislocations. For exam-

ple, some junction reactions initially observed in the pure DDD simulation have shown

to be anticipated by the surface-induced pump-out process modeled using El-Numodis

and the SPM method. This process influences the whole plastic regime which is shown

to be softer when accounting for the physics of surfaces. Additional simulations show

that increasing the film thickness tends to reduce the gap between pure DDD and the

SPM mechanical responses while increasing the cutoff used in the mirroring dislocation

method tends to decrease the yield stress.

4. Conclusion

Here we present a tool based on the SPM method called El-Numodis to model disloca-

tion dynamics in finite-size environments. The approach couples the nodal DDD code

Numodis and the Elmer FEM code used here as an elastic solver of BVPs where the BCs

are corrected by the effect originating from the presence of dislocations. El-Numodis

refers on three external drivers that ensure the various operations and exchange between

the DDD and FEM parent codes. It benefits of specific modern developments including

the non-singular dislocation theory of Cai [50], the mirror image method [27] as well as

a Monte-Carlo based dislocation nucleation algorithm that allow for more physics-based

dislocation simulations at the micro- and nano-scales. From a technical viewpoint, these

developments make El-Numodis particularly versatile (and not more complex) than its

original DDD parent code Numodis [47, 48]. In this study, El-Numodis was widely

benchmarked including several test-cases designed to investigate interactions between
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dislocation and surfaces. Among others, straight and square-shaped dislocations were

tested in the vicinity of free-surfaces where El-Numodis has shown to be particularly

suited to relax surface stress fields. A dislocation nucleation algorithm using a Monte-

Carlo approach and the TST was also introduced. It will be soon extended to the study

of dislocation nucleation in nanoparticles using energy barrier databases [85]. Finally,

last tensile tests applications performed on model thin films completes the picture of

El-Numodis potential. Besides ongoing improvements as on force calculation [91,92] or

Gauss integration [93], we believe that El-Numodis is now ready for various kinds of

applications in the field of small-scale mechanics.
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