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ABSTRACT
After the seminal work of Kraus, Lehmann and Magidor (formally known as the
KLM approach) on conditionals and preferential models, many aspects of defeasi-
bility in more complex formalisms have been studied in recent years. Examples of
these aspects are the notion of typicality in description logic and defeasible necessity
in modal logic. We discuss a new aspect of defeasibility that can be expressed in the
case of temporal logic, which is the normality in an execution. In this contribution,
we take Linear Temporal Logic (LTL) as case study for this defeasible aspect. LTL
has found extensive applications in Computer Science and Artificial Intelligence, no-
tably as a formal framework for representing and verifying computer systems that
vary over time. However, some systems may presents exceptions at some innocuous
time points where they can be tolerated, or conversely, exceptions at other crucial
time points where they need to be addressed. In order to ensure the reliability of
such systems, we study a preferential extension of LTL, called defeasible linear tem-
poral logic (LTL˜). In the first part of this paper, we show how semantics of KLM’s
preferential models can be integrated with LTL. We also discuss the addition of
non-monotonic temporal operators as a way to formalise defeasible properties of
these systems. The second part of this paper is a study of the satisfiability prob-
lem of LTL˜ sentences. Based on Sistla and Clarke’s work on the complexity of
the classical LTL language, we show the bounded-model property of two fragments
of LTL˜ language. Moreover, we provide a procedure to check the satisfiability of
sentences in both of these fragments.
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Knowledge Representation, non-monotonic reasoning, temporal logic.

1. Introduction

Linear Temporal Logic (LTL) was introduced by Pnueli (15) as a formal tool for
reasoning about executions of programs. It is a formalism in the family of temporal
modal logics that uses modalities such as □ (always) and ♢ (eventually) to describe
a program’s execution history. The logic LTL is used for systems verification (16).
With advances in technologies, many extensions have been developed during the years
to better express behavioral changes of systems (8; 13; 21). One of such behavior is
managing and tolerating exceptions within a system. In fact, computer systems are not
either 100% secure or 100% defective, and the properties we wish to check may have
innocuous and tolerable exceptions, or conversely, exceptions that must be carefully
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addressed in order to guarantee the overall reliability of the system. Similarly, the
expected behavior of a system may be correct not for all possible executions, but
rather for its most ’normal’ or expected executions.

For the sake of argument, we consider a system that has exceptional states and
there is a run that goes through these states. We can express the run using a linear
sequence of time points, each of which is a state of the system. We can then describe
the properties of the run using the LTL language. For example, the safety check (the
error e will never occur) can be expressed with the sentence □¬e. The particularity
of this execution is while the error e is not present in the normal states, some of the
aforementioned exceptional states have the error e. In this case, the safety check fails
due to the presence of the error in these states. However, knowing that these states are
exceptional, the presence of e in them is not what matters. We want to make sure that
the safety check succeeds in the normal points of time instead of all of them. Hence,
we need a “defeasible” version of the operator □ that ignores the check at some points
of time that are deemed to be benign in a run.

It turns out that LTL, by virtue of being a formalism of the so-called classical
type, whose underlying reasoning is that of mathematics and not that of common
sense, does not allow at all to formalise the different nuances of the exceptions and
even less to treat them. First of all, at the level of the object language (that of the
logical symbols), it has operators behaving monotonically, and at the level of reasoning,
possesses a notion of logical consequence which is monotonic too, and consequently, it
is not adapted to the evolution of defeasible facts.

On the other hand, defeasible reasoning is studied in the field of non-monotonic
reasoning (NMR). It has been widely investigated by philosophers and the AI commu-
nity (12; 14; 20) for over 40 years now. One aspect of defeasibility is formalising and
reasoning with the presence of exceptions. Such is the case of the conditional logics of
Kraus, Lehmann, and Magidor (11) known as the KLM approach. In their approach,
defeasible consequence relations |∼ with a preferential semantics (17; 18) are studied.
A conditional is a statement of the form α |∼ β and indicates that “normally, if α is
true, then β is true”. This assertion focuses solely on the normal worlds of α to satisfy
β, leaving the exceptional worlds of α to not satisfy β. The aspect of defeasibility that
copes with exceptions is extended to many classical logics from the propositional logics
(2; 10; 11) to more complex frameworks (3; 4; 9).

In the case of modal logic, Britz and Varzinczak (4) use the KLM approach to
describe a new defeasible aspect of non-monotonic reasoning, which is the “normal
outcome of an action”. In classical modal logic, the system goes from a state s to
another state s′ as result of the action a. In addition, we can describe the outcome of
actions using modalities such as □,♢. For example, the sentence □α is true in a state s
if all the reachable states s′ through the action a are states where α is true. However,
in the presence of exceptional states in the system, one might say that the normal
outcome of an action a is α. Specifically, from a starting state s, all normal reachable
states s′ as a result of an action a satisfy α, and leaves it open for the exceptional
states s′′ of the action a to not satisfy it. We can shift the notion of defeasibility from
a premise of inference |∼ to effect of an action. In order to do so, Britz and Varzinczak
(4) defined defeasible versions of the necessity □ and possibility ♢ operators in order
to express the normality of the action’s outcome. In LTL, this aspect of defeasibility
manifests itself as “normality during a run”. If a run goes through exceptional states
at some points of time, it is not required to uphold defeasible properties.

That is why we introduced an extended formalism of LTL, called defeasible lin-
ear temporal logic (LTL˜) (5; 6). It uses the preferential approach of KLM to non-
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monotonic reasoning (11). The defeasible aspect of LTL˜ adds a new dimension to
the verification of a program’s execution. We can, for instance, order time points from
the important ones, which we call normal, to the lesser and lesser ones. Normality
in LTL indicates the importance of a time point within an execution compared to
others. We also introduced defeasible versions of the modalities always and eventually.
With these defeasible modalities, we can express properties similar to their classical
counterparts, targeting the most normal time points within the execution.

In this paper, we define a logical framework for reasoning about defeasible properties
of program executions. We discuss the integration of preferential semantics in the case
of LTL. The remainder of the present paper is structured as follows: In Section 2, we
recall the logic LTL and the KLM approach to NMR. In Sections 3, 4 and 5, we set
up the notation for the syntax and appropriate semantics of defeasible linear temporal
logic (LTL˜). In Section 6, we discuss the properties of defeasible temporal operators.
In Section 7, we highlight two fragments of the language that we shall use for this
paper. In Sections 8, 9, 10, 11, 12 and 13, we investigate the satisfiability problem
of the aforementioned fragments. We conclude this paper in Section 14. In order to
lighten the main text, proofs of propositions and lemmas that are not present in the
main text can be found in the Appendix.

2. Preliminaries

2.1. Linear Temporal Logic

Linear Temporal Logic was introduced by Pnueli (15) as a formal tool for hardware
and software specification and verification. This formalism allows for the description
of a program’s executions. LTL is a modal temporal logic, it uses modalities to refer
to time. We can encode sentences that describe the future of an execution, e.g., from
now on a statement is always true, or, will eventually hold.

In this section, we highlight the syntax of LTL that we use throughout the paper.
Let P be a finite set of propositional atoms. The set of operators in LTL can be split
into two parts: the set of Boolean connectives ¬,∧,∨, and that of temporal operators
□,♢,⃝, U , where □ reads as always, ♢ as eventually, ⃝ as next and U as until. The
set of well-formed sentences expressed in LTL is denoted by L. Sentences of L are
built according to the following grammar:

α ::= p | ¬α | α ∧ α | α ∨ α | □α | ♢α | ⃝α | αU α

The temporal structure is a chronological linear succession of time points. We use
the set of natural numbers equipped with < in order to label each of these time
points, i.e., (N, <). A temporal interpretation I is defined by a mapping function
V : N −→ 2P which associates each time point t ∈ N of the temporal structure with a
set of propositional atoms V (t) that are true in t. (Propositions not belonging to V (t)
are assumed to be false at the given time point.) The truth conditions of LTL sentences
are defined as follows, where I is a temporal interpretation and t a time point in N:

• I, t |= p if p ∈ V (t);
• I, t |= ¬α if I, t ̸|= α;
• I, t |= α ∧ α′ if I, t |= α and I, t |= α′;
• I, t |= α ∨ α′ if I, t |= α or I, t |= α′;
• I, t |= □α if I, t′ |= α for all t′ ∈ N s.t. t′ ≥ t;
• I, t |= ♢α if I, t′ |= α for some t′ ∈ N s.t. t′ ≥ t;
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• I, t |= ⃝α if I, t+ 1 |= α;
• I, t |= αU α′ if I, t′ |= α′ for some t′ ≥ t and for all t ≤ t′′ < t′ we have I, t′′ |= α.

Temporal interpretations are used to model the linear changes of a program over
time. We use the term run to depict a possible sequence of an execution of a program
(these sequences are represented by a temporal interpretation).

In a run, we are able to capture properties by expressing sentences about the current
and future time points. The LTL language is used to express these properties. Here
are some properties that can be expressed in LTL.

• Safety: □α means that the property α will always hold, from this point of the
execution onwards.

• Liveness: ♢α means that the property α will hold eventually. In other words, at
some future time point of the run, α is true.

• Response: □♢α means that for any time point in the run there is a later time
point where α holds.

• Persistence: ♢□α means that there exists a point in the run such that from then
and onwards, α holds.

We say α ∈ L is satisfiable if there are I and t ∈ N such that I, t |= α. A sentence
α is valid if for all temporal interpretations I and all t ∈ N, we have I, t |= α.

Sistla and Clarke (19) proved that the satisfiability in LTL to be a PSPACE-
complete problem. Moreover, the satisfiability checking of many fragments of the lan-
guage were investigated (7; 19). Table 1 contains the complexity of some notable frag-
ments. The notation L(O1, O2, . . . , Ok) denotes that the language of LTL is restricted
to the temporal operators between parenthesis. LNNF indicates that the negation is
allowed on the atomic propositions only.

Fragment Satisfiability

L(♢) NP-complete

LNNF (♢,⃝) NP-complete

L(♢,⃝) PSPACE-complete

L(U ) PSPACE-complete

L(U ,⃝) PSPACE-complete

Table 1.: Complexity of some LTL fragments.

2.2. KLM approach to non-monotonic reasoning

Non-monotonic reasoning covers a family of formalisms and logics that capture and
represent defeasible inference. Using defeasible inference, reasoners draw conclusions
even when the information is incomplete and they reserve the right to retract said con-
clusion in the light of further information. This deductive type of reasoning is similar
to the common sense reasoning, it is used in philosophical fields and expert fields (e.g.
suspects list during an investigation, medical diagnoses . . . ). However, classical logic
(ranging from propositional to more complex formalisms like modal and description
logic) fails to capture this aspect of defeasibility in inferences. Classical (or monotonic)
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inferences are by nature based on complete information and thus do not allow for the
retraction of inferences.

Many aspects of defeasible reasoning have been studied in the literature of non-
monotonic logic. Non-monotonic inferences of the form α |∼ β have the following
meaning: “the normal worlds of α are worlds of β”. The aforementioned statement
expresses that from the most plausible, desired or in general normal worlds of α, we
can infer β; and leaves open the α-worlds that are exceptional to not satisfy β.

The approach we highlight in this paper is the approach of Kraus, Lehmann et
Magidor (11) (known as the KLM approach) to non-monotonic reasoning (the pref-
erential system P). A propositional defeasible consequence relation |∼ (11) is defined
as a binary relation on sentences of an underlying propositional logic. The semantics
of preferential consequence relation is in terms of preferential models: A preferential
model on a set of atomic propositions P is a tuple P def

= (S, l, ⋎ ) where S is a set of
elements called worlds, l : S −→ 2P is a mapping which assigns to each state s a single
world m ∈ 2P and ⋎ is a strict partial order on S satisfying smoothness condition.
In this setting, the states that are lower down in the ordering ⋎ are more plausible,
normal or in a general case preferred, than those that are higher up.

Let α be a propositional sentence, the notation JαK denotes the set of worlds s ∈ S
that satisfy α, called α-worlds. The set min ⋎ (JαK) are α-worlds that are minimal
with respect to the ordering relation ⋎ . The smoothness condition states that for any
sentence α, the set min ⋎ (JαK) is not empty (see Kraus et al. (11) for reference). This
condition ensures that the set of minimal α-worlds has at least one minimal world.
A statement α |∼ β is true if min ⋎ (JαK) ⊆ JβK. The conditional entailment α |∼ β
holds in a preferential model iff the minimal α-worlds are also β-worlds.

Britz and Varzinczak (4) defined defeasible versions of necessity (□) and possibility
(♢) in modal logics and their role to describe the normality of an action. For example,
suppose that we want to toggle a light, the light will turn on generally. Exceptionally,
the light will not turn on. This can be either because the light bulb is broken or
an overcharge resulted from switching the light. In the latter occurrence, the light
bulb not lighting up is an exceptional outcome of the action of switching the light.
Normality then may shift from the premise of the inference to the effect of an action.
This gives the reasoner the power to express the normality at the language level and
use it in the scope of other logical operators. We present briefly in this paper the
preferential models in this case of modal logic and a new type of modalities, called
defeasible modalities.

A preferential Kripke model is a tuple P def
= (S,R, V, ⋎ ) where S is a set of states,

R is the accessibility relation, V : S −→ 2P is a valuation function and ⋎ is a strict
partial order on S that satisfies the smoothness condition. The language of defeasible
modal logic is recursively defined as follows:

α ::= p | ¬α | α ∧ α | α ∨ α | □α | ♢α |p∼∼pα | p∼∼pα

The defeasible modality p∼∼preads as defeasible necessity, and p∼∼p reads defeasible possi-
bility. We shall discuss the truth values behind these defeasible operators next.

Let S′ ⊆ S, then min ⋎ (S
′) denotes the set of minimal elements of S′ with respect

to ⋎ . Let s ∈ S, the set R(s) denotes the elements of S that are accessible to s by
the relation R. The truth values of modalities in defeasible modal logic are defined as
follows.

Definition 2.1. Let P def
= (S,R, V, ⋎ ) be a preferential Kripke model and s ∈ S.
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• P, s |= □α if P, s′ |= α for all s′ in R(s);
• P, s |= ♢α if P, s′ |= α for some s′ in R(s).
• P, s |=p∼∼pα if P, s′ |= α for all s′ in min ⋎ (R(s));

• P, s |= p∼∼pα if P, s′ |= α for some s′ in min ⋎ (R(s)).

The sentence p∼∼pα is true if all the minimal states that are accessible to s via R satisfy
the sentence α. The sentence p∼∼pα is true if some minimal states that are accessible
to s via R satisfy the sentence α. We can see that defeasible modalities behave in a
similar fashion as their classical counterparts. In addition, defeasible modalities single
out the preferred reachable states, by taking into account their order with respect to
the relation ⋎ .

Since LTL also uses modalities such □,♢ to refer to time, we investigate in this
work, the integration of defeasible modalities to the LTL language. We present, in the
upcoming section, their role in the context of the LTL formalism.

3. Defeasible LTL

In this section, we describe a formalism for reasoning about time that is able to handle
exceptional points of time (5). We do so by investigating a defeasible extension of LTL
with a preferential semantics. The following example introduces a case scenario we shall
be using in the remainder of this section, with the purpose of giving a motivation for
this formalism and better illustrating the definitions in what follows.

Example 3.1. We have a computer program in which the values of its variables
change with time. In particular, the agent wants to check two parameters, say x and
y. These two variables take one and only one value between 1 and 3 on each iteration of
the program. We represent the set of atomic propositions by P = {x1, x2, x3, y1, y2, y3}
where xi (resp. yi) for all i ∈ {1, 2, 3} is true iff the variable x (resp. y) has the value
i in a current iteration. Figure 1 depicts a temporal interpretation corresponding to a
possible behaviour of such a program:

x1, y1 x2, y3 x3, y3 x2, y1 x1, y2 x2, y3 · · ·

0 1 2 3 4 5

Figure 1.: LTL interpretation (for t > 5, V (t) = V (5) = {x2, y3})

Under normal circumstances, the program assigns the value 3 to y whenever x = 2.
We can express this fact using classical LTL as follows: □(x2 → y3), with x2 → y3
defined by ¬x2 ∨ y3. Nevertheless, the agent notices that there is one exceptional time
point (the time point 3) where the program assigns the value 1 to y when x = 2.

Some might consider that the current program is defective at some points of time.
In LTL, the statement □(x2 → y3)∧♢(x2∧y1) will always be false, since y cannot have
two different values in an iteration where x = 2. Nonetheless we want to propose a
logical framework that is exception tolerant for reasoning about a system’s behaviour.
We would like express that (x2 → y3) is true in all normal time points while taking
into account that there might be some exceptional time points where (x2 → y3) is not
necessarily true.
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4. Introducing defeasible temporal operators

Britz and Varzinczak (4) introduced new modal operators called defeasible modalities.
Defeasible operators, unlike their classical counterparts, are able to single out normal
worlds from those that are less normal or exceptional in the reasoner’s mind. Using
a similar approach, we extend the vocabulary of classical LTL with the defeasible
temporal operators □∼ and ♢∼. Sentences of the resulting logic LTL˜ are built up
according to the following grammar:

α ::= p | ¬α | α ∧ α | α ∨ α | □α | ♢α | ⃝α | αU α | □∼α | ♢∼α

Other standard Boolean operators are part of the syntax of LTL˜. Let α, β be two
sentences of LTL˜ language, the symbol ⊤ is an abbreviation of α ∨ ¬α, ⊥ is an
abbreviation of α∧¬α, the implication operator is α → β def

=¬α∨β and the equivalence
operator is α ↔ β def

= (α → β)∧ (β → α). The intuition behind the defeasible operators
in LTL˜ is the following: □∼ reads as defeasible always and ♢∼ reads as defeasible
eventuality. The set of all well-formed LTL˜ sentences is denoted by L˜. It is worth
to mention that any well-formed sentence α ∈ L is a sentence of L˜ . Here are some
examples of well-formed sentences in LTL˜.

Example 4.1. Let p, q ∈ P:

p, ¬p, □(p ∧ q) → ♢p, ♢∼ □∼p, □ ♢∼p ∧ □∼¬q

Same as the negation and temporal operators, defeasible operators have higher
precedence than the other operators. As such, the sentence □ ♢∼p ∧ □∼¬q is the same
as (□ ♢∼p) ∧ (□∼¬q) and not □ ♢∼(p ∧ □∼¬q).

Example 4.2. Going back to Example 3.1, the sentence □(x2 → y3) ∧ ♢(x2 ∧ y1)
cannot be true. Suppose that x2 → y3 is always true. Therefore, □(x2 → y3) would
then true and ♢(x2 ∧ y1) would be false. Otherwise, if there is a time point such that
x2∧y1, then ♢(x2∧y1) would be true and □(x2 → y3) would be false (such is the case
in Figure 1). Both of the sentences □(x2 → y3) and ♢(x2 ∧ y1) cannot be true at the
same time.

On the other hand, it is possible to express this specification using defeasible always.
The sentence □∼(x2 → y3) is true if x2 → y3 is true all future normal time points.
There might be some time points in the future where x2 and y1 are true and ♢(x2∧y1)
is true. As long such time points are exceptional, the sentence □∼(x2 → y3) remains
true. As such, the sentence □∼(x2 → y3) ∧ ♢(x2 ∧ y1) can still be true.

Normality can be expressed using non-monotonic operators. A similar version of
the classical properties (see Section 2.1) can be expressed over runs that contain ex-
ceptional time points. These defeasible properties target future time points that are
normal on one hand, and ignore states that are exceptional on the other. Here are
some defeasible properties that can be expressed in LTL˜.

• Defeasible safety: □∼α means that the property α holds for all normal future time
points of the run.

• Pertinent liveness: ♢∼α means that the property α will hold in a normal future
time point of the run.

• Defeasible response: □∼ ♢∼α means that for all normal time points of the run,
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there is a later normal time point where α holds.
• Defeasible persistence: ♢∼ □∼α means that there exists a normal time point in the

run such that α holds for all normal future time points.

The reasoner can therefore express defeasible properties using these new modalities,
and more importantly, use it alongside the rest of other operators of LTL˜. Next we
shall discuss how to interpret statements of LTL˜ formalism and how to determine
the truth values of each well-formed sentence in L˜.

5. Preferential interpretations

Moving on to the semantics, an LTL˜ interpretation I is a pair I def
= (V, ⋎ ). Recall

that in Section 2.1, a temporal structure is represented by the ordering of integers
(N, <). This shall not change for defeasible LTL interpretations. The function V is a
valuation function which associates each time point t ∈ N with a truth assignment of
all propositional atoms V (t). The preferential component ⋎ of the interpretation of
LTL˜ is directly inspired by the preferential semantics proposed by Shoham (17) and
used in the KLM approach (11). The preference relation ⋎ is a strict partial order on
points of time. Following the KLM approach (11), t ⋎ t′ means that t is more normal
or preferred than t′. Time points can be ordered using the relation ⋎ , the closer they
are to being minimal with respect to ⋎ , the more preferable they are, and vice versa,
the farther they are to being minimal with respect to ⋎ , the more exceptional they
become. We also use the notation (t, t′) ∈ ⋎ to indicate that t is more preferred than t′.
The relation ⋎ is an ordering relation for time points of a temporal structure, which
symbolizes the preference over them. Before setting the formal definition for LTL˜
interpretation, we introduce the notion of minimality and well-foundness w.r.t. the
relation ⋎ .

Definition 5.1. (Minimality w.r.t. ⋎ ) Let ⋎ be a strict partial order on N and N ⊆ N.
The set of the minimal elements of N w.r.t. ⋎ , denoted by min ⋎ (N), is defined by

min ⋎ (N) def
= {t ∈ N | there is no t′ ∈ N such that t′ ⋎ t}.

Definition 5.2 (Well-founded set). Let ⋎ be a strict partial order on N. We say N is
well-founded w.r.t. ⋎ iff min ⋎ (N) ̸= ∅ for every ∅ ≠ N ⊆ N.

Definition 5.3 (Preferential temporal interpretation). An LTL˜ interpretation on a
set of propositional atoms P, also called preferential temporal interpretation on P, is
a pair I def

= (V, ⋎ ) where V is a mapping function V : N −→ 2P , and ⋎ ⊆ N × N is
a strict partial order on N such that N is well-founded w.r.t. ⋎ . We denote the set of
preferential temporal interpretations by I.

Example 5.4. Going back to the run in Example 3.1, time points where x = 2 and
y = 3 are more preferred than time points where x = 2 and y = 1. For example,
the time point 1 and 5 are more preferred than 3. We extend the interpretation I in
Example 3.1 by adding the set ⋎ := {(5, 3), (1, 3)}. Figure 2 represents a preferential
temporal interpretation I = (V, ⋎ ) of the second run. Directed edges (1 −→ 3 for
example) in Sub-figure a represent the pairs in the preference relation ⋎ .

In what follows, given an ordering relation ⋎ and a time point t ∈ N, the set of
preferred future time points relative to t is the set min ⋎ ([t,∞[) which is denoted in
short by min ⋎ (t). It is also worth pointing out that given a preferential interpretation
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(a) Preference relation ⋎

x1, y1 x2, y3 x3, y3 x2, y1 x1, y2 x2, y3 · · ·

0 1 2 3 4 5

(b) For t > 5, V (t) = V (5) = {x2, y3}

Figure 2.: Preferential temporal interpretation I = (V, ⋎ )

I = (V, ⋎ ) and N, the set min ⋎ (t) is always a non-empty subset of [t,∞[ at any time
point t ∈ N.

Preferential temporal interpretations provide us with an intuitive way of interpreting
sentences of L˜. Let α ∈ L˜, let I = (V, ⋎ ) be a preferential interpretation, and let t
be a time point in N. Satisfaction of α at t in I, denoted I, t |= α, is defined as follows:

• I, t |= □∼α if I, t′ |= α for all t′ ∈ min ⋎ (t);
• I, t |= ♢∼α if I, t′ |= α for some t′ ∈ min ⋎ (t).

The truth values of Boolean connectives and classical modalities are defined as in
LTL. The intuition behind a sentence of the form □∼α is that α holds in all preferred
time points that come after t. ♢∼α intuitively means that α holds on at least one
preferred time point relative to the future of t.

We say α ∈ L˜ is preferentially satisfiable if there is a preferential temporal inter-
pretation I and a time point t in N such that I, t |= α. Without loss of generality,
we can say that α ∈ L˜ is preferentially satisfiable if there is a preferential temporal
interpretation I s.t. I, 0 |= α. A sentence α ∈ L ˜ is valid (denoted by |= α) if for
all preferential temporal interpretations I and time points t in N, we have I, t |= α.
We shall highlight the study of the satisfiability of LTL˜ sentences in the upcoming
sections of this paper.

Example 5.5. In the interpretation I = (V, ⋎ ) in Figure 2, the set of future preferred
time points relative to 0 is min ⋎ (0) = {0, 1, 2, 4} ∪ [5,∞[. We have the following:

• The time point 3 has the valuation V (3) = {x2, y1}. Thus, we have I, 0 |=
♢(x2 ∧ y1) because I, 3 |= x2 ∧ y1. Moreover, we have I, 0 ̸|= □(x2 → y3) because
I, 3 ̸|= x2 → y3. Therefore, we conclude that I, 0 ̸|= □(x2 → y3) ∧ ♢(x2 ∧ y1).
See that since x and y can have one and only one value, then the □(x2 →
y3) ∧ ♢(x2 ∧ y1) is always false (at most, either □(x2 → y3) or ♢(x2 ∧ y1) but
never both).

• Using defeasible temporal operators, we have I, t |= x2 → y3 for all t ∈ min ⋎ (0).
See that the exceptional time point 3, on which the statement x2 → y3 is false,
is not in min ⋎ (0). Therefore, we can infer that I, 0 |= □∼(x2 → y3) ∧ ♢(x2 ∧ y1).

We can see that the addition of ⋎ relation preserves the truth values of all classical
temporal sentences. Moreover, for every α ∈ L, we have that α is satisfiable in LTL if
and only if α is preferentially satisfiable in LTL˜.
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6. Properties of defeasible temporal modalities

In this section, we discuss properties of defeasible temporal modalities next in relation
to their classical temporal operators (1).

Proposition 6.1 (Duality). Let α be a well-formed sentence in L˜ . We have:

|= □∼α ↔ ¬ ♢∼¬α

Proof. We take an arbitrary I = (V, ⋎ ) ∈ I, α ∈ L˜ and t ∈ N. For the only-if part,
we assume that I, t |= □∼α and suppose that I, t ̸|= ¬ ♢∼¬α. Since I, t |= □∼α, we have
I, t′ |= α for all t′ ∈ min ⋎ (t). By our assumption, we have I, t |= ♢∼¬α. Thus, there is

a time point t′ ∈ min ⋎ (t) such that I, t′ |= ¬α. This contradicts with the above fact

that I, t′ |= α for all t′ ∈ min ⋎ (t). Thus, I, t |= ¬ ♢∼¬α and therefore we conclude that
|= □∼α → ¬ ♢∼¬α.

For the if part, we assume that I, t |= ¬ ♢∼¬α. Going back to the semantics of
the operator ♢∼, if I, t |= ♢∼¬α, then there is a t′ ∈ min ⋎ (t) such that I, t |= ¬α.
Therefore, I, t |= ¬♢∼¬α means that there is no t′ ∈ min ⋎ (t) where I, t′ |= ¬α. Hence,
for all t′ ∈ min ⋎ (t), we have I, t′ ̸|= ¬α, and consequently I, t′ |= α. We conclude that
I, t |= □∼α and therefore |= ¬ ♢∼¬α → □∼α.

Analogously as for the classical modalities, we have a duality between the □∼ and
♢∼ operators. The validity |= ♢∼α ↔ ¬□∼¬α is also true.

Proposition 6.2. Let α be a well-formed sentence in L˜ . We have:

|= □α → □∼α and |= ♢∼α → ♢α

Proof. We take an arbitrary I = (V, ⋎ ) ∈ I, α ∈ L˜ and t ∈ N.

• We assume that I, t |= □α. Then, we have I, t′ |= α for all t′ ∈ [t,∞[. Moreover,
since min ⋎ (t) ⊆ [t,∞[, we have I, t′ |= α for all t′ ∈ min ⋎ (t). Therefore, we have
I, t |= □∼α. We conclude that |= □α → □∼α.

• We assume that I, t |= ♢∼α. Then, there is a t′ ∈ min ⋎ (t) such that I, t |= α.

Since min ⋎ (t) ⊆ [t,∞[ and t′ ∈ min ⋎ (t), there is t′ ∈ [t,∞[ such that I, t′ |= α.
Therefore, we have I, t |= ♢α. We conclude that |= ♢∼α → ♢α.

Proposition 6.2 states that if a statement holds in all of future time points of any
given point of time t, it holds on all preferred future time points. As intended, this
property establishes the defeasible always as “weaker” than the classical always. It can
commonly be accepted since the set of all preferred future states are in the future. This
is why we named □∼ defeasible always. On the other hand, we see that ♢∼ is “stronger”
than classical eventually, the statement within ♢∼ holds at a preferable future.

Next, we discuss the axioms that hold for classical modalities (□,♢) and compare
them with defeasible modalities (□∼, ♢∼). In the case of classical modalities, the distribu-
tivity axiom (K) |= □(α → β) → (□α → □β), the reflexivity axiom (T) |= □α → α
and the transitivity axiom (4) |= □α → □□α are valid (1). As for defeasible modalities,
we have the following:

Proposition 6.3 (Axiom K̃). Let α, β ∈ L˜ . We have:

(K̃) |= □∼(α → β) → (□∼α → □∼β)
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Proof. We take an arbitrary I = (V, ⋎ ) ∈ I, α, β ∈ L˜ and t ∈ N. We assume that
I, t |= □∼(α → β) and suppose that I, t ̸|= □∼α → □∼β. Since I, t |= □∼(α → β),
we have (1) I, t′ |= α → β for all t′ ∈ min ⋎ (t). Going back to the supposition, if
I, t ̸|= □∼α → □∼β, then I, t |= □∼α and I, t |= ¬ □∼β. Using duality, we obtain
I, t |= □∼α and I, t |= ♢∼¬β. Since I, t |= ♢∼¬β, there is a t′′ ∈ min ⋎ (t) where I, t

′′ |= ¬β.
Moreover, since t′′ ∈ min ⋎ (t) and I, t |= □∼α, we have I, t′′ |= α. Therefore, we have

I, t′′ |= α ∧ ¬β. Thanks to De Morgan’s law, we obtain I, t′′ |= ¬(α → β). The result
of the supposition conflicts with the assumption (1), as t′′ is also in min ⋎ (t) and

thus α → β is true at t′′. Therefore, we have I, t |= □∼α → □∼β. We conclude that
|= □∼(α → β) → (□∼α → □∼β).

The axiom of distributivity (K) can be stated in terms of our defeasible temporal
operators. We can also verify the validity of these two statements |= □∼(α ∧ β) ↔
(□∼α ∧ □∼β) and |= (□∼α ∨ □∼β) → □∼(α ∨ β).

Proof. • |= □∼(α ∧ β) ↔ (□∼α ∧ □∼β). We take an arbitrary I = (V, ⋎ ) ∈ I,
α, β ∈ L˜ and t ∈ N. For the if part, we assume that I, t |= □∼α ∧ □∼β. For all
t′ ∈ min ⋎ (t), we have I, t′ |= α and I, t′ |= β. Therefore, we have I, t′ |= α ∧ β
and thus I, t |= □∼(α∧ β). For the only if part, we assume that I, t |= □∼(α∧ β).
For all t′ ∈ min ⋎ (t), we have I, t′ |= α ∧ β. Then, for all t′ ∈ min ⋎ (t), we have

I, t′ |= α and also I, t′ |= β. Thus, we have I, t |= □∼α and I, t |= □∼β and
therefore I, t |= □∼α ∧ □∼β.

• |= (□∼α ∨ □∼β) → □∼(α ∨ β). We take an arbitrary I = (V, ⋎ ) ∈ I, α, β ∈ L˜
and t ∈ N such that I, t |= □∼α ∨ □∼β. We have I, t |= □∼α or I, t |= □∼β. We
assume that I, t |= □∼α. It follows that I, t′ |= α for all t′ ∈ min ⋎ (t). Then, we
have I, t′ |= α ∨ β for all t′ ∈ min ⋎ (t). Therefore, we have □∼(α ∨ β).

Similarly to the operator □, the validity |= □∼(α ∨ β) → (□∼α ∨ □∼β) is not true.
Assume that a preferential interpretation I satisfies □∼(α∨β) at t. This means that for
all t′ ∈ min ⋎ (t), either I, t

′ |= α or I, t′ |= β. Let say that α is true for all t′ ∈ min ⋎ (t)
except for one time point t′′ which satisfies β instead. In this case, neither □∼α nor
□∼β are true in t.

Proposition 6.4 (Reflexivity). Let α ∈ L˜ . We have:

(T̃ ) ̸|= □∼α → α

The reflexivity axiom (T̃ ) for the classical operators does not hold in the case of
defeasible modalities. We can easily find an interpretation I = (V, ⋎ ) where I, t ̸|=
□∼α → α. Indeed, since we can have t ̸∈ min ⋎ (t) for a temporal point t, we can have
I, t |= □∼α and I, t |= ¬α. Case in point on the interpretation in Figure 2, the set
of preferred future time points relative to 3 is min ⋎ (3) = [4,∞[. We can see that

I, t′ |= x2 → y3 for all t′ ∈ min ⋎ (3) and therefore I, 3 |= □∼(x2 → y3). However, we
have I, 3 ̸|= x2 → y3.

Proposition 6.5 (Transitivity). Let α ∈ L˜ . We have:

(4̃) ̸|= □∼α → □∼□∼α

It is worth to point out that the set of future preferred time points changes dynami-
cally as we move forward in time. Given three time points t1 ≤ t2 ≤ t3, t3 ̸∈ min ⋎ (t1),
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t2 ∈ min ⋎ (t1) whilst t3 ∈ min ⋎ (t2) could be true in some cases. Hence, if I, t1 |= □∼α
does not imply that I, t2 |= □∼α.

Example 6.6. Consider a preferential interpretation I = (V, ⋎ ) and five time points
t0 ≤ t1 ≤ t2 ≤ t3 ≤ t4 such that ⋎ = {(t1, t0), (t1, t3)}, I, ti |= α for each i ∈ {1, 2, 4}
and t3 does not satisfy α. We can see that min ⋎ (t0) = {t1, t2, t4}. Hence, we have
I, t0 |= □∼α, since I, ti |= α for all ti ∈ min ⋎ (t0).

Moving on to t2, we have min ⋎ (t2) = {t3, t4}. In this case, I, t2 ̸|= □∼α, since
t3 ∈ min ⋎ (t2) and I, t3 ̸|= α. Moreover, since t2 ∈ min ⋎ (t0) and I, t2 ̸|= □∼α, then we
have I, t0 ̸|= □∼□∼α.

Therefore, the transitivity axiom (4̃) does not hold in the case of defeasible modal-
ities. On the other hand, given those three time points, t3 ̸∈ min ⋎ (t2) implies that
t3 ̸∈ min ⋎ (t1).

We argue that since defeasible modalities are non-monotonic in nature, the reflex-
ivity and transitivity axioms for these type of modalities do not hold. In the case of
classical modalities, by combining both (T) and (4) axioms, we obtain the validity
|= □□α ↔ □α. Using duality, we also obtain |= ♢♢α ↔ ♢α. And as discussed in
Proposition 6.4 and 6.5, the two aforementioned validities are false in the case of de-
feasible modalities, i.e., ̸|= □∼ □∼α ↔ □∼α and ̸|= ♢∼ ♢∼α ↔ ♢∼α. Therefore, there is no
collapsing when it comes to defeasible temporal operators.

7. LTL˜ sub-languages

In this paper, we will focus on two subsets of the language, namely, L1 and L2. In the
sub-language L1, we omit U and □∼ from the set of modalities. Moreover, only Boolean
sentences are allowed within the scope of □ sentences. In the second subset L2, the
language contains only Boolean connectives, the two defeasible operators □∼, ♢∼ and
their classical counterparts.

7.1. The fragment L1

The set of operators consists of ∧,∨,♢,□,⃝, ♢∼. We shall assume that sentences in
L1 are in negation normal form, which means that negation is only applied to atomic
propositions. Furthermore, only Boolean connectors are allowed within the scope of □
sentences. Temporal operators, classical or non-monotonic, are not permitted in the
scope of □ sentences.

In what follows, we describe well formed sentences of L1. In order to do that, we
define first the set of Boolean sentences Lbool. Let p ∈ P, sentences αbool ∈ Lbool are
defined recursively as such:

αbool ::= p | ¬p | αbool ∧ αbool | αbool ∨ αbool

Next, let αbool ∈ Lbool, sentences in L1 are recursively defined as such:

α ::= αbool | α ∧ α | α ∨ α | ♢α | □αbool | ⃝α | ♢∼α
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While the expressivity of L1 is restricted, we can express a variety of properties
using this language. For instance, we can check for the pertinent liveness property
♢∼α, liveness property ♢α and the persistence property ♢□αbool. We can also express
another version of the defeasible persistence property ♢∼□αbool (after a normal time
point, αbool holds in all future time points). Nevertheless, defeasible safety □∼α is not
allowed and only safety of Boolean properties is allowed □αbool.

Example 7.1. Here are some examples of well-formed sentences in L1. Let p, q ∈ P:

p, ¬p, □(p ∧ q) → ♢p, ♢∼□p, ⃝□(p ∨ q)

The following sentences are not well-formed sentences in L1:

□∼p, □♢(p ∧ q), □ ♢∼p

7.2. The fragment L2

The second fragment L2 is a sub-language of L˜ on which only Boolean connectives
and the temporal operators □, □∼,♢, ♢∼ (the operators ⃝, U are omitted) are allowed
as connectives. Sentences in L2 are recursively defined as follows:

α ::= p | ¬α | α ∧ α | α ∨ α | □α | ♢α | □∼α | ♢∼α

The fragment L2 is more expressive than L1. All classical and defeasible properties
that are discussed in Sections 2.1 and 4 can be expressed using this fragment. With
the absence of ⃝, the inductive form of both □ and ♢ cannot be expressed, i.e.,
|= □α ↔ α ∧ ⃝□α and |= ♢α ↔ α ∨ ⃝♢α.

Example 7.2. Here are some examples of well-formed sentences in L2. Let p, q ∈ P:

p, ¬p, □(p ∧ q) → ♢p, ♢∼□p, □ ♢∼(p ∨ q), □∼p, □∼♢p, □∼ ♢∼(p → q)

The following sentences are not well-formed sentences in L2:

⃝p, pU q, ⃝□(p ∧ q)

We based the syntax of L1 on L(♢), and the syntax of L2 on LNNF (♢,⃝) in Sistla
and Clarke’s work (19). In regards to the fragment L1, sentences in L1 follow a similar
pattern to the LNNF (♢,⃝) fragments, with the addition of ♢∼ and allowing □ sentences
only when they have αbool sentences in their scope. For the fragment L2, we add our
defeasible temporal operators □∼, ♢∼ to the fragment L(♢). In the upcoming sections,
we discuss the satisfiability problem of sentences in these two fragments.

With the L˜ language and preferential temporal interpretations defined, we present
an analysis of the satisfiability of L˜ sentences. The algorithmic problem is as follows:
Given an input sentence α ∈ L˜, decide whether α is preferentially satisfiable. Sistla
and Clarke (19) provide, depending on the fragment of L language, structures that
are useful to prove the bounded model property. Then, they lay out the procedures for
checking the satisfiability of the sentence within each of these fragments. In order to
establish computational properties about the satisfiability problem in LTL extended
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with defeasible operators such as those we have considered so far. We introduce struc-
tures and LTL˜ fragments inspired by the approach put forward by Sistla and Clarke
(19). A part of this work was published in Chafik et al. (5).

The upcoming sections are divided into four parts: we shall discuss in Section 8
an interesting sub-class of LTL˜ interpretations that is useful for establishing the
bounded model property for a part of the language. Next, we investigate in Section 9
Sistla and Clarke’s notations for preferential temporal structures. We proceed then to
establish the bounded model property for two of L˜ fragments, namely L1 (Section
10) and L2 (Section 12). Finally, we provide a procedure for checking the satisfiability
of sentences within these fragments (Section 11 for L1 sentences and Section 13 for L2

sentences).

8. State-dependent preferential interpretations

The complexity of the satisfiability problem for LTL has been investigated by Sistla
and Clarke (19). Since temporal structures are infinite by nature, finite representations
of these structures were put in place in order to check the computational properties
of LTL. In the case of LTL˜, the preferential component of I interpretations could
also be infinite. That is why in the study of the satisfiability problem of LTL˜, we
define a well-behaved ordering relation ⋎ . In this section, we introduce a subclass of
I-interpretations called state-dependent interpretations.

Definition 8.1 (State-dependent preferential interpretations). Let I = (V, ⋎ ) ∈ I. I
is a state-dependent preferential interpretation iff for every i, j, i′, j′ ∈ N, if V (i′) =
V (i) and V (j′) = V (j), then (i, j) ∈ ⋎ iff (i′, j′) ∈ ⋎ .

The notation Isd denotes the set of all state-dependent interpretations.

Example 8.2. Let take the preferential temporal interpretation represented of the
second run (see Figure 3 for a reminder).

Recall that, time points where x = 2 and y = 3 are more preferred than time
points where x = 2 and y = 1. In the previous interpretation I = (V, ⋎ ), we had

⋎ := {(5, 3), (1, 3)}. Note that for all t > 5, we have V (t) = {x2, y3}. Now that if
all time points with valuations 1 and 5 are also more preferred than 3, we can use
a state-dependent interpretation I ′ ∈ Isd to represent this case. The interpretation
I ′ = (V ′, ⋎ ′) has the same valuation function as the valuation function V in I. In
addition, for all (t, t′) ∈ N2 such that V ′(t) = {x2, y3} and V ′(t′) = {x2, y1}, we have
(t, t′) ∈ ⋎ ′. In other words, the relation ⋎ ′ can be defined as such: ⋎ ′= {(1, 3), (5, 3)}∪
{(t, t′) ∈ N2 | V ′(t) = {x2, y3} and V ′(t′) = {x2, y1}}.

3

15

(a) Preference relation ⋎

x1, y1 x2, y3 x3, y3 x2, y1 x1, y2 x2, y3 · · ·

0 1 2 3 4 5

(b) For t > 5, V (t) = V (5) = {x2, y3}

Figure 3.: Preferential temporal interpretation I = (V, ⋎ )

The intuition behind setting up this restriction is to have a more compact form of
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expressing the ordering relation over time points. In general, time points that have
the same valuations are identical with regards to ⋎ , they express the same normality
towards other time points. Moreover, we have an interesting property that does not
hold in the general case.

Proposition 8.3. Let I = (V, ⋎ ) ∈ Isd and let i, i′, j, j′ ∈ N s.t. i ≤ i′, i′ ≤ j′ and
j ∈ min ⋎ (i). If V (j) = V (j′), then j′ ∈ min ⋎ (i

′).

Proof. Let I = (V, ⋎ ) ∈ Isd and let i, j, i′, j′ be four time points s.t. i ≤ i′, i′ ≤ j′

and j ∈ min ⋎ (i). We assume that V (j) = V (j′) and we suppose that j′ ̸∈ min ⋎ (i
′).

Following our supposition, j′ ̸∈ min ⋎ (i
′) means that there exists k ∈ [i′,∞[ where

(k, j′) ∈ ⋎ . From Definition 8.1, if (k, j′) ∈ ⋎ and V (j) = V (j′), then (k, j) ∈ ⋎ . Since
(k, j) ∈ ⋎ , we have j ̸∈ min ⋎ (i). This conflicts with our assumption of j ∈ min ⋎ (i).
We conclude that if V (j) = V (j′) then j′ ∈ min ⋎ (i

′).

Proposition 8.3 states that whenever j ∈ min ⋎ (i), i.e., j is a preferred future time

point of i, then all j′ ≥ i with the same valuation as j are preferred futures of all
time points i ≤ i′ ≤ j′ . This property is specific to the class of state-dependent
interpretations. We add another property that holds on all interpretations I ∈ I.

Proposition 8.4. Let I = (V, ⋎ ) ∈ I and let i, j ∈ N s.t. j ∈ min ⋎ (i). For all

i ≤ i′ ≤ j, we have j ∈ min ⋎ (i
′).

Proof. Let I = (V, ⋎ ) ∈ I and let i, i′, j ∈ N s.t. j ∈ min ⋎ (i) and i ≤ i′ ≤ j. Since

j ∈ min ⋎ (i), there is no j
′ ∈ [i,∞[ s.t. (j′, j) ∈ ⋎ . Moreover, we have i ≤ i′, we conclude

that there is no j′ ∈ [i′,∞[ s.t. (j′, j) ∈ ⋎ . Therefore, we have j ∈ min ⋎ (i
′).

In the case of I-interpretations, when a time point j is a preferred time point of i,
then the time point j remains a preferred time point of all time points between i and
j. State-dependent interpretations are going to be used as the de facto interpretations
for the fragment in L2. We shall study them in more depth in Sections 12 and 13.

9. Useful representations of preferential structures

Throughout this work, the term temporal sequence, or sequence in short, will denote a
sequence of integer numbers in their natural order. A sequence represents a set of time
points. Sequences can also be finite or infinite. In what follows, we define formally the
notion of sub-sequences.

Definition 9.1 (Sub-sequence). Let N,N ′ be two sequences of natural numbers. N ′

is a subsequence of N (written as N ′ ⊆ N) iff for all i ∈ N ′, we have i ∈ N .

We introduce pseudo-interpretations next. A pseudo-interpretation IN over a se-
quence N is the restriction of the valuation and the ordering relation of the interpre-
tation I = (V, ⋎ ) to time points of N .

Definition 9.2 (Pseudo-interpretation over N). Let I = (V, ⋎ ) ∈ I and N be a se-
quence of natural numbers. The pseudo-interpretation overN is the pair IN def

=(V N , ⋎ N )
where:

• V N : N −→ 2P is a valuation function over N , where for all i ∈ N , we have
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V N (i) = V (i),
• ⋎ N⊆ N ×N , where for all (i, j) ∈ N2, we have (i, j) ∈ ⋎ N iff (i, j) ∈ ⋎ .

With pseudo-interpretations, we can check the truth values of sentences within
sequences of the starting interpretation I. The truth values of L˜ sentences in pseudo-
interpretations are defined in a similar fashion as for preferential temporal interpre-
tations. Let t, t′ ∈ N , with |=P we denote the truth values of sentences in a pseudo-
interpretation.

• IN , t |=P p if p ∈ V N (t);
• IN , t |=P ¬α if IN , t ̸|=P α;
• IN , t |=P α ∧ β if IN , t |=P α and IN , t |=P β;
• IN , t |=P α ∨ β if IN , t |=P α or IN , t |=P β;
• IN , t |=P □α if IN , t′ |=P α for all t′ ∈ N s.t. t′ ≥ t;
• IN , t |=P ♢α if IN , t′ |=P α for some t′ ∈ N s.t. t′ ≥ t;
• IN , t |=P ⃝α if we have t+ 1 ∈ N and IN , t+ 1 |=P α;
• IN , t |=P □∼α if for all t′ ∈ N s.t. t′ ∈ min ⋎ N (t), we have IN , t′ |=P α;

• IN , t |=P ♢∼α if IN , t′ |=P α for some t′ ∈ N s.t. t′ ∈ min ⋎ N (t).

Another observation made by Sistla & Clarke in the case of finite sets of atomic
proposition P is that in every LTL interpretation, there is a time point t after which ev-
ery t-successor’s valuation occurs infinitely many times. This is an obvious consequence
of having an infinite set of time points and a finite number of possible valuations. That
is the case also for LTL˜ interpretations.

Lemma 9.3. Let I = (V, ⋎ ) ∈ I. There exists t ∈ N s.t. for all l ∈ [t,∞[, there is a
k > l where V (l) = V (k).

Definition 9.4. For an interpretation I ∈ I, we denote the first time point where the
condition set in Lemma 9.3 is satisfied by tI .

With the delimiter tI defined, we can split each temporal structure into two intervals:
an initial and a final part.

Definition 9.5. Let I = (V, ⋎ ) ∈ I. We define:

• init(I) def
= [0, tI [;

• final(I) def
= [tI ,∞[;

• range(I) def
= {V (i) | i ∈ final(I)};

• val(I) def
= {V (i) | i ∈ N};

• size(I) def
= length(init(I)) + card(range(I)), where length(·) denotes the length of

a sequence and card(·) set cardinality.

In the size of I, we count the number of time points in the initial part and the
number of valuations contained in the final part. In the absence of ⃝ and U operators
(such is the case of the fragment L2), the order of time points in final I does not
matter (19). In what follows, we show that it is the case if we use L2 sentences and
Isd interpretations.

Proposition 9.6. Let I = (V, ⋎ ) ∈ Isd and let i ≤ j ≤ i′ ≤ j′ be time points in
final(I) s.t. V (j) = V (j′). Then we have j ∈ min ⋎ (i) iff j′ ∈ min ⋎ (i

′).

Lemma 9.7. Let I = (V, ⋎ ) ∈ Isd and i ≤ i′ be time points of final(I) where V (i) =
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V (i′). Then for every α ∈ L2, we have I, i |= α iff I, i′ |= α.

What we have in Lemma 9.7 is that given an interpretation I ∈ Isd, points of time
in final(I) having the same valuations satisfy exactly the same sentences.

Definition 9.8 (Faithful Interpretations). Let I = (V, ⋎ ) ∈ Isd, I ′ = (V ′, ⋎ ′) ∈ Isd

be two interpretations over the same set of atomic propositions P. We say that I, I ′ are
faithful interpretations if val(I) = val(I ′) and, for all i, j, i′, j′ ∈ N s.t. V ′(i′) = V (i)
and V ′(j′) = V (j), we have (i, j) ∈ ⋎ iff (i′, j′) ∈ ⋎ ′.

Throughout this paper, we write init(I)
.
= init(I ′) as shorthand for the condition

that states: length(init(I)) = length(init(I ′)) and for each i ∈ init(I) we have V (i) =
V ′(i).

Lemma 9.9. Let I = (V, ⋎ ) ∈ Isd, I ′ = (V ′, ⋎ ′) ∈ Isd be two faithful interpretations
over P such that V ′(0) = V (0) (in case init(I) is empty), init(I)

.
= init(I ′), and

range(I) = range(I ′). Then for all α ∈ L2, we have that I, 0 |= α iff I ′, 0 |= α.

In the case of an empty initial part, we need to make sure that both of the in-
terpretations start at the same temporal state V (0). Hence, we add the constraint
V ′(0) = V (0) when init(I) is empty. Lemma 9.9 implies that the ordering of time
points in final(·) does not matter, and what matters is the range(·) of valuations con-
tained within it. It is worth to mention that Lemmas 9.7 and 9.9 hold only in Isd

interpretations and they are not always true in the general case.
Sistla & Clarke (19) introduced sequences that display a certain behaviour called

acceptable sequences. We extend the notion of acceptable sequences for preferential
temporal interpretations in I as follows:

Definition 9.10 (Acceptable sequence w.r.t. I). Let I = (V, ⋎ ) ∈ I and N be a
sequence of temporal time points. N is an acceptable sequence w.r.t. I iff for all
i, j ∈ final(I) s.t. V (i) = V (j), we have i ∈ N iff j ∈ N .

The particularity we are looking for is that any picked time point in init(·) (resp.
final(·)) will remain in the initial (resp. final) part of the new pseudo-interpretation.
It is worth pointing out that an acceptable sequence w.r.t. a preferential temporal
interpretation can be either finite or infinite. Moreover, N is an acceptable sequence
w.r.t. any interpretation I ∈ I. The purpose behind the notion of acceptable sequence
is to build new interpretations starting from an LTL˜ interpretation.

Given N an acceptable sequence w.r.t. I, if N has a time point t in final(I), then
all time points t′ that have the same valuation as t must be in N . Thus, we have an
infinite sequence of time points in N . As such, we can define an initial part and a
final part, in a similar way as LTL˜ interpretations. We let init(I,N) be the largest
subsequence of N that is a subsequence of init(I). Note that if N does not contain
any time point of final(I), then N is finite. Also, an empty sequence, by definition, is
an acceptable sequence w.r.t. I.

We now define the notions init(·), final(·), range(·), and size(·) for acceptable se-
quences.

Definition 9.11. Let I = (V, ⋎ ) ∈ I, and let N be an acceptable sequence w.r.t. I.
We define the following:
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init(I,N) def
= N ∩ init(I);

final(I,N) def
= N \ init(I,N);

range(I,N) def
= {V (t) | t ∈ final(I,N)};

val(I,N) def
= {V (t) | t ∈ N};

size(I,N) def
= length(init(I,N)) + card(range(I,N)).

It is worth mentioning that the definition of size(·) is different between acceptable
sequences and normal (non-acceptable) sequences. The reason behind it that normal
sequences do not have the any restrictions compared to acceptable sequences. Thus,
the initial part of the normal sequence is not necessarily included in the initial part
of the interpretation, the same goes for the final part. In the case of a finite normal
sequence N , the size of IN is defined by size(I,N)def

=length(N). Whereas for acceptable
sequences, the size of the pseudo-interpretation is the length of the initial part plus
the number of distinct valuations in the final part. Thanks to Definition 9.10, given
an acceptable sequence w.r.t. I, we have size(I,N) ≤ size(I).

Let N1, N2 be two sequences of integers. The union of N1 and N2, denoted by
N1 ∪N2, is the sequence containing only and all elements of N1 and N2. If N1, N2 are
acceptable sequences, we have the following properties:

Proposition 9.12. Let I = (V, ⋎ ) ∈ I, N1, N2 be two acceptable sequences w.r.t. I.
Then N1 ∪N2 is an acceptable sequence w.r.t. I s.t. size(I,N1 ∪N2) ≤ size(I,N1) +
size(I,N2).

Proposition 9.13. Let I = (V, ⋎ ) ∈ I and N be an acceptable sequence w.r.t. I. If
for all distinct t, t′ ∈ N , we have V (t′) = V (t) only when both t, t′ ∈ final(I,N), then
size(I,N) ≤ 2|P|.

In the upcoming sections, we use sequences to establish the bounded model-property
of the fragment L1 (Section 10) and we use acceptable sequences for the bounded-model
property of the fragment L2 (Section 12).

10. The bounded-model property of the fragment L1

The first contribution is to establish certain computational properties regarding the
satisfiability problem in L1 (see Section 7.1). Let P be a finite set of atomic proposi-
tions. Just as a remainder, sentences in L1 are recursively defined as follows:

α ::= αbool | α ∧ α | α ∨ α | ♢α | □αbool | ⃝α | ♢∼α

Where αbool is a sentence that has only Boolean connectives. Next, we discuss the
satisfiability of L1 sentences. Given an I-satisfiable sentence α ∈ L1, there exists an
interpretation I ∈ I s.t. I, 0 |= α. From I, we can find a finite sequence of integers N
s.t. the pseudo-interpretation IN satisfies α, i.e., IN , 0 |=P α. Then, we can transform
the pseudo-interpretation IN into an interpretation I ′ which has the same size and
satisfies the sentence α. The first observation we make is that if an interpretation
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I satisfies a Boolean sentence αbool ∈ Lbool at a time point t, then for all pseudo-
interpretations IN over sequences N that contain t, we have IN , t |=P αbool. We can
extend it further and obtain Proposition 10.1.

Proposition 10.1. Let αbool ∈ Lbool, let I = (V, ⋎ ) ∈ I and N be a sequence con-
taining a time point t s.t. IN , t |=P αbool. Then for all N ′ ⊆ N containing t, we have
IN

′
, t |=P αbool.

Proof. Let αbool ∈ Lbool, let I = (V, ⋎ ) ∈ I and N be a sequence containing t s.t.
IN , t |=P αbool. Let N ′ be a subsequence of N that contains t. We use structural
induction based on αbool.

• αbool = p. Since IN , t |=P p, we know that p ∈ V N (t) and therefore p ∈ V (t).
On the other hand, since we have t ∈ N ′ and p ∈ V (t), then we have p ∈ V N ′

(t).
Therefore, we have IN

′
, t |=P p.

• αbool = ¬p. Since IN , t |=P ¬p, we know that p ̸∈ V N (t) and therefore p ̸∈ V (t).
On the other hand, since we have t ∈ N ′ and p ̸∈ V (t), then we have p ̸∈ V N ′

(t).
Therefore, we have IN

′
, t |=P ¬p.

• αbool = α1 ∧ α2. We have IN , t |=P α1 ∧ α2, which means IN , t |=P α1 and
IN , t |=P α2. Since N ′ is a subsequence of N containing t, by the induction
hypothesis on α1 and α2, we have IN

′
, t |=P α1 and IN

′
, t |=P α2. Therefore,

we have IN
′
, t |=P α1 ∧ α2.

• αbool = α1 ∨ α2. We have IN , t |=P α1 ∨ α2, which means either IN , t |=P α1

or IN , t |=P α2. We suppose that IN , t |=P α1. Since N ′ is a subsequence of N
containing t, by the induction hypothesis on α1, we have I

N ′
, t |=P α1. Therefore,

we have IN
′
, t |=P α1 ∨ α2. Same reasoning applies when IN , t |=P α2.

Next, let I ∈ I be an interpretation, N be a sequence, α ∈ L1 and t ∈ N s.t.
IN , t |=P α. We can show, using structural induction on α, that we can find a finite
sequence M that contains t and such that IM , t |=P α. Moreover, for all sequences
M ⊆ Q ⊆ N we have IQ, t |=P α. We show in the following lemma that size(I,M) ≤
|α| (|α| denotes the number of symbols within α).

Lemma 10.2. Let α ∈ L1, I = (V, ⋎ ) ∈ I, N ⊆ N and t ∈ N s.t. IN , t |=P α. Then
there exists a finite sequence M containing t such that:

(1) M ⊆ N ;
(2) size(I,M) ≤ |α|;
(3) for all sequences Q where M ⊆ Q ⊆ N , we have IQ, t |=P α.

Proof. Let α ∈ L1, I = (V, ⋎ ) ∈ I, t ∈ N and N ⊆ N s.t. IN , t |=P α. We use
induction on the structure of α.

• α = p. Let M = (t) be a sequence containing only t. Then M is a finite sequence
such that:

(1) since t ∈ N , then M ⊆ N ; (2) we have size(I,M) = 1 = |p|; (3) since
IN , t |=P p. Then we have p ∈ V (t). Let Q be a sequence s.t. M ⊆ Q ⊆ N , we
have t ∈ Q. Therefore, we have p ∈ V Q(t) and IQ, t |=P p.

• α = ¬p. LetM = (t) be a sequence containing only t. ThenM is a finite sequence
such that:

(1) since t ∈ N , then M ⊆ N ; (2) we have size(I,M) = 1 ≤ |¬p|; (3) since
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IN , t |=P ¬p, then we have p ̸∈ V (t). Let Q be a sequence where M ⊆ Q ⊆ N ,
we have t ∈ Q. Therefore, we have p ̸∈ V Q(t) and IQ, t |=P ¬p.

• α = α1 ∧ α2. Since IN , t |=P α1 ∧ α2, we then have IN , t |=P α1 and IN , t |=P

α2. Using the induction hypothesis on α1, there exists a finite sequence M1

containing t such that:
(1) we have M1 ⊆ N ; (2) we have size(I,M1) ≤ |α1|; (3) for all sequences

Q where M1 ⊆ Q ⊆ N , we have IQ, t |=P α1.
Similarly, using the induction hypothesis on α2, there exists a finite sequence

M2 such that:
(1) we have M2 ⊆ N ; (2) we have size(I,M2) ≤ |α2|; (3) for all sequences

Q where M2 ⊆ Q ⊆ N , we have IQ, t |=P α2.
Let M = M1 ∪M2. Since M1 and M2 contain t, then M is a finite sequence

that contains t such that:
(1) since M1 ⊆ N and M2 ⊆ N , then we have M1 ∪ M2 ⊆ N ; (2) thanks

to Proposition 9.12, we have size(I,M) = size(M1 ∪ M2) ≤ size(I,M1) +
size(I,M2) ≤ |α1| + |α2| ≤ |α1 ∧ α2|; (3) let M ⊆ Q ⊆ N be a sequence.
Since M1 ⊆ Q ⊆ N , then we have IQ, t |=P α1. Similarly, since M2 ⊆ Q ⊆ N ,
then we have IQ, t |=P α2. Therefore, we have IQ, t |=P α1 ∧ α2.

• α = α1 ∨ α2. We have either IN , t |=P α1 or IN , t |=P α2. We suppose that
IN , t |=P α1. Using the induction hypothesis on α1, there exists a finite sequence
M1 containing t such that:

(1) we have M1 ⊆ N ; (2) we have size(I,M1) ≤ |α1|; (3) for all sequences
Q where M1 ⊆ Q ⊆ N , we have IQ, t |=P α1.

Let M = M1. Since M1 contains t, then M is a finite sequence that contains
t such that:

(1) we have M = M1 ⊆ N ; (2) we have size(I,M) = size(M1) ≤ |α1| ≤
|α1 ∨ α2|; (3) for all sequences Q where M1 ⊆ Q ⊆ N , we have IQ, t |=P α1.
Therefore, IQ, t |=P α1 ∨ α2.

The reasoning is the same when IN , t |=P α2.
• α = ⃝α1. Since IN , t |=P ⃝α1, then t+ 1 ∈ N and IN , t+ 1 |=P α1. Using the
induction hypothesis on α1, there exists a finite sequence M1 containing t + 1
such that:

(1) we have M1 ⊆ N ; (2) we have size(I,M1) ≤ |α1|; (3) for all sequences
Q where M1 ⊆ Q ⊆ N , we have IQ, t+ 1 |=P α1.

Let M = (t) ∪M1; then M is a finite sequence containing t such that:
(1) since M1 ⊆ N and t ∈ N , then we have M ⊆ N ; (2) thanks to Propo-

sition 9.12, we have size(I,M) = 1 + size(I,M1) ≤ |⃝α1|; (3) let Q be a
sequence such that M ⊆ Q ⊆ N , we have t, t+1 ∈ M . Since M1 ⊆ Q ⊆ N , then
IQ, t+ 1 |=P α1. Therefore, we have IQ, t |=P ⃝α1.

• α = ♢α1. Since IN , t |=P ♢α1, then there exists t′ ∈ N such that IN , t′ |=P α1.
Using the induction hypothesis on α1, there exists a finite sequence containing
t′ such that:

(1) we have M1 ⊆ N ; (2) we have size(I,M1) ≤ |α1|; (3) for all sequences
Q where M1 ⊆ Q ⊆ N , we have IQ, t′ |=P α1.

Let M = (t) ∪M1; then M is a finite sequence containing t such that:
(1) since M1 ⊆ N and t ∈ N , then we have M ⊆ N ; (2) thanks to Proposi-

tion 9.12, we have size(I,M) = 1+size(I,M1) ≤ |♢α1|; (3) let Q be a sequence
such that M ⊆ Q ⊆ N . Then we have t, t′ ∈ M . Since M1 ⊆ Q ⊆ N and t′ ∈ M1,
then IQ, t′ |=P α1. Therefore, we have IQ, t |=P ♢α1.

• α = ♢∼α1. Since IN , t |=P ♢∼α1, there exists t′ ∈ N s.t. t′ ∈ min ⋎ N (t). Using the
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induction hypothesis on α1, there exists a finite sequence M1 containing t′ such
that:

(1) we have M1 ⊆ N ; (2) we have size(I,M1) ≤ |α1|; (3) for all sequences
Q where M1 ⊆ Q ⊆ N , we have IQ, t′ |=P α1.

Let M = (t) ∪M1; then M is a finite sequence containing t such that:
(1) since M1 ⊆ N and t ∈ N , then we have M ⊆ N ; (2) thanks to Proposi-

tion 9.12, we have size(I,M) = 1+size(I,M1) ≤ |♢∼α1|; (3) let Q be a sequence
such that M ⊆ Q ⊆ N . Since we have t, t′ ∈ M , M1 ⊆ M ⊆ Q ⊆ N and t′ ∈ M1,
then (i) IQ, t′ |=P α1.

We suppose that t′ ̸∈ min ⋎ Q(t), there exists t′′ ∈ Q s.t. (t′′, t′) ∈ ⋎ Q. Following

this supposition, we have (t′′, t′) ∈ ⋎ . Since t′, t′′ ∈ N , we have (t′′, t′) ∈ ⋎ N ,
thus t′ ̸∈ min ⋎ N (t). This supposition conflicts with our assumption that t′ ∈
min ⋎ N (t). Therefore we have (ii) t′ ∈ min ⋎ Q(t). From (i) and (ii), we conclude

that IQ, t |=P ♢∼α1.
• α = □αbool. Since IN , t |=P □αbool, we have IN , t |=P αbool for all t′ ∈ N s.t.
t′ ≥ t. Let M = (t) be a sequence containing only t. Then we have the following:

(1) we have M ⊆ N ; (2) we have size(I,M) = 1 ≤ |□αbool|; (3) let M ⊆
Q ⊆ N be a sequence. We need to prove that IQ, t |=P □αbool. Suppose that
IQ, t ̸|=P □αbool. This means that there exists t′ ∈ Q s.t. t′ ≥ t and IQ, t′ ̸|=P

αbool.
On the other hand, since t′ ∈ Q, and Q ⊆ N , we have t′ ∈ N . We know that

IN , t |=P □αbool, and t′ ≥ t, therefore IN , t′ |=P αbool. Thanks to Proposition
10.1, since αbool ∈ Lbool, t

′ ∈ Q ⊆ N and IN , t′ |=P αbool, we have IQ, t′ |=P

αbool, which raises a contradiction with our assumption. Thus, there is no t′ ∈ Q
s.t. t′ ≥ t and IQ, t′ ̸|=P αbool. We conclude that IQ, t′ |=P □αbool.

The following corollary is a consequence of Lemma 10.2.

Corollary 10.3. Let α ∈ L1 and I = (V, ⋎ ) ∈ I s.t. I, t |= α. Then there exists a
finite sequence M containing t s.t. IM , t |=P α and size(I,M) ≤ |α|.

So far, we showed that if we have an interpretation I ∈ I where I, t |= α, then we
can find a finite sequence M that contains t s.t. IM , t |=P α. Next, an interpretation
I ′ ∈ I is induced from the pseudo-interpretation IN which preserves the satisfaction
of α. We define formally the construction below.

Definition 10.4 (Interpretation construction). Let I = (V, ⋎ ) ∈ I, let N =
(t0, t1, t2, . . . , tn−1) where t0 < t1 < t2 < · · · < tn−1 be a finite sequence. The interpre-
tation I ′ def

= (V ′, ⋎ ′) ∈ I is induced from the pseudo-interpretation IN = (V N , ⋎ N ) as
follows:

V ′ :

{
V ′(i) := V N (ti) if 0 ≤ i < n;

V ′(i) := V N (tn−1) otherwise.

And for all 0 ≤ i, j < n s.t. (ti, tj) ∈ ⋎ N , we have (i, j) ∈ ⋎ ′.

Let IN := (V N , ⋎ N ) be a pseudo-interpretation and let I ′ = (V ′, ⋎ ′) be the IN -
induced interpretation. We can see that size(I ′) ≤ size(I,N). The size of the initial
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part of I ′ is the sequence N and the final part has one distinct valuation which is
the valuation of the last element of the sequence N . We can also see that the truth
values of sub-sentences are preserved in the induced interpretation I ′. In other words,
for every α ∈ L1, if I

N , ti |=P α , then I ′, i |= α.

Theorem 10.5 (Bounded-Model property). Let α ∈ L1 be I-satisfiable. Then there
exists I = (V, ⋎ ) ∈ I s.t. size(I) ≤ |α| and I, 0 |= α.

Proof. Let α ∈ L1 be I-satisfiable and let I = (V, ⋎ ) ∈ I where I, 0 |= α is an
interpretation that satisfies α. Thanks to Lemma 10.2, since N is a sequence and 0 ∈ N
s.t. I, 0 |= α, then there is a sequence M ⊆ N containing 0 where size(I,M) ≤ |α| and
IM , 0 |= α. We obtain IN -induced interpretation I ′ = (V ′, ⋎ ) by changing the labels
of M into a sequence of natural numbers and looping the valuation of the last element
of M . We can see that I ′, 0 |= α and size(I ′) ≤ |α|.

11. The satisfiability problem in L1

Thanks to Theorem 10.5, if a sentence α ∈ L1 is I-satisfiable, then there exists an
interpretation I such that size(I) ≤ |α| that satisfies it. Otherwise, if there is no
interpretation that satisfies α such that its size is less than the length of α, then
the sentence is unsatisfiable. Based on the bounded-model property, we can make a
non-deterministic guess for a bounded interpretation and check whether it satisfies the
sentence α. Note that the induced I-interpretations for sentences in L1 have final parts
that consist of only one distinct valuation (see Definition 10.4). Not only that, but the
preference relation concerns only time points of the initial part. To this purpose, we
introduce a compact structure to represent the bounded interpretations obtained on
the last section.

Definition 11.1 (Finite preferential structure). A finite preferential structure is a
tuple S = (n, VS , ⋎ S) where: n is an integer such that n ≥ 0 (where n is intended to
be the size of the finite sequence); VS : [0, n − 1] −→ 2P , and ⋎ S ⊆ [0, n − 1]2 is a
strict partial order.

We define the size of the structure size(S) def
= n. Thanks to these structures, we can

build the interpretation I(S) in the following way:

Definition 11.2. Given a finite preferential structure S = (n, VS , ⋎ S), let I(S) def
=(V, ⋎

), V (t) def
=VS(t), if t < n, and V (t) def

=VS(n−1), otherwise; and ⋎ def
={(t, t′) | (t, t′) ∈ ⋎ S}.

Interpretations of Definition 11.2 are I-interpretations such that:

• there is a time point n after which all time points t ≥ n have the same valuation
V (t) = V (n− 1);

• the preference relation is only on time points within the initial sequence [0, n−1].

Moreover, we have size(I(S)) ≤ n, and thus size(I(S)) ≤ size(S). The interpretations
of Definition 10.4 I ′ = (V ′, ⋎ ′) can be viewed as an interpretation I(S) issued from
a finite preferential structure S = (n, VS , ⋎ S). The structure S can be induced such
that n def

= |N | (where N is the finite sequence which I ′ was induced from, and |N | is its
cardinality), VS

def
= V ′(t) for all t < n and ⋎ S def

= {(t, t′) | t, t′ ∈ [0, n− 1] and (t, t′) ∈ ⋎ ′}.
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We can go from interpretations of Definition 10.4 to finite preferential structures S
thanks to the intermediate interpretation I(S) of Definition 11.2, and go the other
way around. We extend also the notion of preferred time points to finite preferential
structures S. The formal definition goes as follows: for t < n we have min ⋎ S

(t) def
= {t′ ∈

[t, n−1] | there is no t′′ ∈ [t, n−1] with (t′′, t′) ∈ ⋎ S}. It is easy to show that for every
t, t′ ∈ [0, n − 1], we have t′ ∈ min ⋎ S

(t) iff t′ ∈ min ⋎ (t). Finite preferential structures
are going to be useful in order to check the satisfiability of the guessed interpretations.

In order to check the satisfiability of L1 sentences using a finite preferential structure
S, we introduce the notion of labelling sets in order to assign a set of sub-sentences
of the original sentence α to each element of the sequence [0, n − 1] of S. The set of
sub-sentences of α is denoted by Sf (α).

Definition 11.3 (Sub-sentences). Let α ∈ L1. The set of all sub-sentences of α,
denoted by Sf (α), is recursively defined as follows:

• Sf (p) def
= {p};

• Sf (¬p) def
= {¬p};

• Sf (α1 ∧ α2) def
= Sf (α1) ∪ Sf (α2) ∪ {α1 ∧ α2};

• Sf (α1 ∨ α2) def
= Sf (α1) ∪ Sf (α2) ∪ {α1 ∨ α2};

• Sf (□αbool) def
= Sf (αbool) ∪ {□αbool};

• Sf (♢α1) def
= Sf (α1) ∪ {♢α1};

• Sf (⃝α1) def
= Sf (α1) ∪ {⃝α1};

• Sf ( ♢∼α1) def
= Sf (α1) ∪ { ♢∼α1}.

With a proof by induction, we can show that the cardinality of the set Sf (α) is
|Sf (α)| ≤ |α|. We define for a structure S = (n, VS , ⋎ S) and a sentence α ∈ L1,
labelling sets labMα (·) which link a set of sub-sentences of α that hold true in each
t ∈ [0, n− 1].

Definition 11.4 (Labelling sets). Let S = (n, VS , ⋎ S) be a structure, α ∈ L1. The
set of sub-sentences of α in a t ∈ [0, n− 1], denoted by labSα(t), is defined as follows:

• p ∈ labSα(t) iff p ∈ VS(t);
• ¬p ∈ labSα(t) iff p ̸∈ VS(t);
• α1 ∧ α2 ∈ labSα(t) iff α1, α2 ∈ labSα(t);
• α1 ∨ α2 ∈ labSα(t) iff α1 ∈ labSα(t) or α2 ∈ labSα(t);
• ♢α1 ∈ labSα(t) iff α1 ∈ labSα(t

′) for some t′ ∈ [t, n− 1];
• □αbool ∈ labSα(t) iff αbool ∈ labSα(t

′) for all t′ ∈ [t, n− 1];
• ⃝α1 ∈ labSα(t) iff α1 ∈ labSα(t+ 1) and t+ 1 ≤ n− 1;
• ♢∼α1 ∈ labSα(t) iff α1 ∈ labSα(t

′) for some t′ ∈ min ⋎ S
(t).

The labelling sets labMα (·) is used to check the satisfiability of the sub-sentences of α
in each t in the interval [0, n−1]. As mentioned after Definition 11.2, we can represent
the bounded interpretations found on the last section. As such, for any given bounded
interpretation I ′, there is a finite structure S = (n, VS , ⋎ S) such that its I(S) is the
same as I ′ (same valuation for all time points and same preference relation). Given
any induced bounded-interpretation I ′, we show that for every t ∈ [0, n− 1] and every
α1 ∈ Sf (α) we have α1 ∈ labSα(t) iff I ′, t |= α1. The proof of Lemma 11.5 can be found
on the Appendix A.

Lemma 11.5. Let α ∈ L1 be an I-satisfiable sentence and I = (V, ⋎ ) ∈ I be an
interpretation such that I, 0 |= α. Let IN be the pseudo-interpretation of I over the

23



finite sequence N such that IN , 0 |=P α, and I ′ = (V ′, ⋎ ′) be the induced interpreta-
tion from IN . Let S = (n, VS , ⋎ S) be the finite preferential structure where n = |N |,
VS(t) = V ′(t) for each t ∈ [0, |N | − 1] and ⋎ S= ⋎ ′. Let I(S) = (V ′′, ⋎ ′′) be the induced
interpretation from S. We have the following:

• ⋎ ′′= ⋎ ′ and V ′′(t) = V ′(t) for each t ∈ N;
• for every α1 ∈ Sf (α), we have α1 ∈ labSα(t) iff I(S), t |= α1.

The Lemma 11.5 has two interesting consequences. The first one is that we can
represent bounded interpretations of Section 10 as finite preferential structures. The
second result is labelling sets can be used to check the satisfiability of sub-sentences of
α within the finite part of the interpretations. Furthermore, we use Lemma 11.5 and
obtain this proposition. In fact, the following proposition is a special case of Lemma
11.5 when t = 0.

Corollary 11.6. Given a finite preferential structure S = (n, VS , ⋎ S) and α ∈ L1, we
have I(S), 0 |= α iff α ∈ labSα(0).

We describe, in what follows, the algorithm that checks the I-satisfiability for L1

sentences. Let α be a sentence in L1. If α is satisfiable, then there exists an interpre-
tation I ∈ I where I, 0 |= α. Thanks to Theorem 10.5, a new interpretation I ′ can
be induced from I where I ′, 0 |= α, size(I ′) ≤ |α|, final(I ′) = 1 and the preferential
relation ⋎ ′ is only on time points within the finite sequence. As discussed after Defi-
nition 11.2, a finite preferential structure S can be induced from I ′. Therefore, we can
make a non-deterministic guess for a finite preferential structure S = (n, VS , ⋎ S) s.t.
size(S) ≤ |α|. Next, for each α1 ∈ Sf (α) in the increasing order of |α1| and for each
t ∈ [0, n−1], we update labSα(t). At the end of this procedure, S is accepted as a model
for α iff α ∈ labSα(0), otherwise, S is rejected (thanks to Corollary 11.6).

The procedure is polynomial-time bounded. Since the set Sf (α) is ordered by the
increasing length of sub-sentences of α, then each time we want to add a sub-sentence
α1 to labSα(t), the presence of all of the sub-sentences of α1 in the labelling set labSα(t)
has already been checked for all t ∈ [0, n − 1]. Therefore, checking whether said sub-
sentences of α1 are in a point t′ is a simple “yes” or “no” question. Thus, for each
sub-sentence α1 and t ∈ [0, n− 1], we check only once if α1 ∈ labSα(t). We can see that
the most costly sentence to check time wise is ♢∼ sentences. Say that we check for a
sentence ♢∼α1 ∈ labSα(t) with t ∈ [0, n−1]. In this case, we need to check whether there
is a t′ ∈ [t, n− 1] s.t. α1 ∈ labSα(t

′) (which costs O((t− n))) and t′ ∈ min ⋎ S(t) (which

costs O((t − n))). In the worst case scenario, this takes a time of O((t − n)2). Since
size(S) = n, checking whether ♢∼α1 ∈ labSα(0) costs at most O(n2), checking whether
♢∼α1 ∈ labSα(1) costs at most O((n− 1)2), and so on. If we add them together, then for
all t ∈ [0, n−1], checking whether ♢∼α1 ∈ labSα(t) is O(n3). Checking whether □α1 and
♢α1 sentences for all t ∈ [0, n−1] costs at most O(n2). We only check for the presence
of the sub-sentence α1 in labSα(t

′) with t′ ∈ [t, n− 1]. For ⃝ and Boolean sentences, it
costs at most O(n). Suppose that |Sf (α)| = k, checking for all sub-sentences of α for
all t ∈ [0, n− 1] costs O(k ∗ n3). Without loss of generality, since k, n ≤ |α|, then the
full expansion of the labelling sets costs O(|α|4) at most.

Theorem 11.7. I-satisfiability for L1 sentences is NP-complete.

Proof. I-satisfiability for L1 sentences is at least NP-hard because the satisfiability
of Boolean sentences is an NP-hard problem, and Boolean sentences are a subset of
L1.
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Let α ∈ L1. If α is I-satisfiable, then there is an interpretation I = (V, ⋎ ) ∈ I s.t.
I, 0 |= α. Thanks to Theorem 10.5, an interpretation I ′ = (V ′, ⋎ ) where size(I ′) ≤ |α|
and I ′, 0 |= α can be induced from I . The interpretation I ′ can be represented
by a finite preferential structure S = (n, VS , ⋎ S) where I(S) is I ′. We make a non-
deterministic guess of a finite preferential structure S = (n, VS , ⋎ S) where size(S) ≤
|α| and use the labelling sets labSα(t) to check for all sub-sentences of α1 in each
t ∈ [0, n − 1]. Thanks to Corollary 11.6, if α ∈ labSα(0), then S is accepted as a
model and therefore α is satisfiable. Otherwise, S is rejected. Using the aforementioned
procedure, the labelling sets is polynomial-time bounded in O(|α|4). I-satisfiability
for L1 sentences is an NP problem. Therefore, I-satisfiability for L1 sentences is NP-
complete.

12. The bounded-model property of the fragment L2

The second contribution of our work is to show the decidability of the satisfiability
problem of another fragment of defeasible LTL, namely L2 (See Section 7.2). Just as
a reminder, sentences in L2 are recursively defined as follows:

α ::= p | ¬α | α ∧ α | α ∨ α | □α | ♢α | □∼α | ♢∼α

Let α ∈ L2 be a sentence. With |α| we denote the number of symbols within α. The
main result of this section is summarized in the following theorem, of whose proof will
be given in the remainder of the section.

Theorem 12.1 (Bounded-model property). If α ∈ L2 is Isd-satisfiable, then there is
an interpretation I ∈ Isd such that I, 0 |= α and size(I) ≤ |α| × 2|P|.

Hence, given a Isd-satisfiable sentence α ∈ L2, there is an Isd-interpretation satis-
fying α whose size is bounded. Since α is Isd-satisfiable, we know I, 0 |= α. From I we
can construct an interpretation I ′ also satisfying α, i.e., I ′, 0 |= α, which is bounded
on its size by |α| × 2|P|.

The goal of this section is to show how to build said bounded interpretation. Let
α ∈ L2 and let I ∈ Isd be s.t. I, 0 |= α. The first step is to characterize an acceptable
sequence N w.r.t. I such that N is bounded first of all, and “keeps” the satisfiability of
the sub-sentences α1 contained in α, i.e., if I, t |= α1, then IN , t |=P α1 (see Definition
9.2). We do so by building inductively a bounded pseudo-interpretation step by step
by selecting what to take from the initial interpretation I for each sub-sentence α1

contained in α to be satisfied. In what follows, we introduce the notion of Anchors(·)
as a strategy for picking out the desired time points from I. Definitions 12.4–12.8 tell
us how to pick these time points.

Definition 12.2 (Induced acceptable sequence). Let I = (V, ⋎ ) ∈ Isd and let N be
a sequence of time points. Let N ′ be the sequence of all time points t′ in final(I) for
which there is t ∈ N ∩ final(I) with V (t′) = V (t). With AS (I,N) def

=N ∪N ′ we denote
the induced acceptable sequence of N w.r.t. I.

Example 12.3. Let I = (V, ⋎ ) be the interpretation represented in Figure 4 and N be
a sequence such that N = (t0, t1, t2) (marked with black circles on the figure). In order
to obtain AS (I,N), we look for time points of the sequence N that are in final(I).

25



The only time point in final(I) is t2 and has the valuation V (t2) = V1. In addition of
t0, t1, t2, the induced acceptable sequence of N w.r.t. I, denoted by AS (I,N), contains
all time points in final(I) that have the same valuation as t1 (marked with green circles
on the figure).

I
tI

init(I) final(I)

t0 t1 t2

V1

t′1

V1

t′2

V1

t′3

V1

Figure 4.: Induced acceptable sequence

In the previous definition, N ′ is the sequence of all time points t′ having the same
valuation as some time point t ∈ N that is in final(I). It is also worth to point out
that N ′ can be empty in the case of there being no time point t ∈ N that is in final(I).
N is then a finite acceptable sequence w.r.t. I where AS (I,N) = N . This notation is
mainly used to ensure that we are using the acceptable version of any sequence.

Definition 12.4 (Chosen occurrence w.r.t. α). Let I = (V, ⋎ ) ∈ Isd, α ∈ L2 and N
be an acceptable sequence w.r.t. I s.t. there exists a time point t in N with I, t |= α.

The chosen occurrence satisfying α in N , denoted by tI,Nα , is defined as follows:

tI,Nα
def
=

{
min<{t ∈ final(I,N) | I, t |= α}, if {t ∈ final(I,N) | I, t |= α} ≠ ∅;
max<{t ∈ init(I,N) | I, t |= α}, otherwise.

Notice that < above denotes the natural ordering of the underlying temporal struc-
ture. The strategy to pick out a time point satisfying a given sentence α in N is as
follows. If such sentence is in the final part, we pick the first time point that satisfies
it, since we have the guarantee to find infinitely many time points having the same
valuation as tI,Nα that also satisfy α (see Lemma 9.7). If not, we pick the last occur-
rence in the initial part that satisfies α. Thanks to Definition 12.4, we can limit the
number of time points taken that satisfy the same sentence.

Example 12.5. To highlight the notion of chosen occurrence, we illustrate it in Figure
5. On the figure, the coloured circles points are the time points of the sequence N that
satisfy α1.

In Case 1, both t and t′ are in init(I). We pick the last occurrence which is t′

(coloured in blue) as the chosen occurrence tI,Nα1 = t′.
In Case 2, all of the time points of N that satisfy α are in final(I). We pick the first

occurrence in N ∩ final(I), which is t′1 as the chosen occurrence tI,Nα1 .
In Case 3, even when time points of N are both in init(I) and final(I), the chosen

occurrence tI,Nα1 is the first time point in N ∩ final(I) that satisfies α1.

26



Case 1
tI

init(I) final(I)

t′

α1

t

α1

Case 2
tI

init(I) final(I)

t′1

α1

V1

t′2

α1

V1

t′3

α1

V1

t′′

α1

V2

Case 3
tI

init(I) final(I)

t

α1

t′′

α1

V2

t′1

α1

V1

t′2

α1

V1

t′3

α1

V1

Figure 5.: Selected time points of α in AS (I,N)

Next, we define the sequence ST (·) as the induced acceptable sequence of the se-
quence that contains only the chosen occurrence.

Definition 12.6 (Selected time points). Let I = (V, ⋎ ) ∈ Isd, N be an ac-
ceptable sequence w.r.t. I and α ∈ L2 s.t. there is t in N s.t. I, t |= α. With

ST (I,N, α) def
= AS (I, (tI,Nα )) we denote the selected time points of N and α w.r.t. I.

(Note that (tI,Nα ) is a sequence of only one element.)

Example 12.7. In Example 12.5, we obtained the chosen occurrences for each of the
cases represented in Figure 5. The next step is to compute ST (I,N, α1).

In Case 1, since ST (I,N, α1) is the induced acceptable sequence of (tI,Nα1 ) and tI,Nα1 ∈
init(I), then ST (I,N, α1) = (tI,Nα1 ) = (t′).

In Case 2, now that tI,Nα1 is in final(I), the sequence ST (I,N, α1) is the acceptable

sequence w.r.t. I that contains all time points final(I) with the same valuation as tI,Nα1

(coloured in blue in Figure 5), i.e., ST (I,N, α1) = (t′1, t
′
2, t

′
3, · · · ) with V (t′i) = V1 for

all i ≥ 1.
In Case 3 and following the same line of reasoning as in Case 2, since we have

tI,Nα1 = t′1 and tI,Nα1 ∈ final(I), then ST (I,N, α1) is the sequence (t′1, t
′
2, t

′
3, · · · ) with

V (t′i) = V1 for all i ≥ 1 (coloured in blue in Figure 5).

Given a sentence α ∈ L2 and an acceptable sequence N w.r.t. I s.t. there is at
least one time point t ∈ N where I, t |= α, the sequence ST (I,N, α) is the induced

acceptable sequence of the sequence (tI,Nα ). If tI,Nα ∈ init(I), the sequence ST (I,N, α)

is the sequence (tI,Nα ). Otherwise, the sequence ST (I,N, α) is the sequence of all time

points t in final(I) that have the same valuation as tI,Nα . In both cases, we can see
that size(I,ST (I,N, α)) = 1.

Given an interpretation I = (V, ⋎ ) and N an acceptable sequence w.r.t I, the
representative sentence of a valuation v is formally defined as αv

def
=

∧
{p | p ∈ v} ∧

27



∧
{¬p | p ̸∈ v}.

Definition 12.8 (Distinctive reduction). Let I = (V, ⋎ ) ∈ Isd and let N be an
acceptable sequence w.r.t. I. With DR(I,N)def=

⋃
v∈val(I,N) ST (I,N, αv) (The definition

of val(I,N) can be found in Definition 9.11) we denote the distinctive reduction of N .

Given an acceptable sequence N w.r.t. I, DR(I,N) is the sequence contain-

ing the chosen occurrence tI,Nαv that satisfies the representative αv in N for each
v ∈ val(I,N). In other words, we pick the selected time points for each possible
valuation in val(I,N). There are two interesting results with regard to DR(I,N).
The first one is that DR(I,N) is an acceptable sequence w.r.t. I. This can eas-
ily be proven since ST (I,N, αv) is also an acceptable sequence w.r.t. I, and the
union of all ST (I,N, αv) is an acceptable sequence w.r.t. I (see Proposition 9.12).
The second result is that size(I,DR(I,N)) ≤ 2|P|. Indeed, thanks to Proposition
9.12, we can see that size(I,DR(I,N)) ≤

∑
v∈val(I,N) size(I,ST (I,N, αv)). More-

over, we have size(I,ST (I,N, αv)) = 1 for each v ∈ val(I,N). On the other hand,
there are at most 2|P| possible valuations in val(I,N). Thus, we can assert that∑

v∈val(I,N) size(I,ST (I,N, αv)) ≤ 2|P|, and then we have size(I,DR(I,N)) ≤ 2|P|.

Definition 12.9 (Anchors). Let α ∈ L2 be of the form Oα1 where O ∈ {♢,□, ♢∼, □∼}
and α1 ∈ L2. Let I = (V, ⋎ ) ∈ Isd, and let T be a non-empty acceptable sequence
w.r.t. I s.t. for all t ∈ T we have I, t |= α. The sequence Anchors(I, T, α) is defined
as:

Anchors(I, T,♢α1) def
= ST (I,N, α1);

Anchors(I, T,□α1) def
= ∅;

Anchors(I, T, ♢∼α1) def
=

⋃
t∈T ST (I,AS (I,min ⋎ (t)), α1);

Anchors(I, T, □∼α1) def
= DR(I,

⋃
t∈T AS (I,min ⋎ (t))).

Given an acceptable sequence T w.r.t. I ∈ Isd where all of its time points satisfy
Oα1 (where O ∈ {♢,□, ♢∼, □∼}), Anchors(I, T,Oα1) is an acceptable sequence w.r.t. I
such that all of its elements have the sub-sentence α1. The goal here if we inductively
select the time points that satisfy α1 in Anchors(I, T,Oα1), all of the Oα1 sentences
in T would then be satisfied. We shall start with Anchors(·) for ♢α1 sentences (see
Figure 6). Let T be an acceptable sequence w.r.t. I such that all of its elements have
the sentence ♢α1. In case 1 of Figure 6, let N be an acceptable sequence that contains
t0, t1, t2 and t′ such that IN , t′ |=P α1. The sentence ♢α1 is then satisfied in IN ,i.e.,
IN , t0 |=P ♢α1 (same goes for t1, t2). We can see that t′′ is also a candidate that keeps
the satisfiability of ♢α1 in t0, t1 and t2. However, in order to have a bounded number
of elements, we use the selected time points ST (·) function. If all time points that
satisfy α1 are in the init(I), we pick the last one (t′ in case 1). Otherwise, we choose
the first candidate that satisfies α1 in final(I) (t′1 in case 2) and pick all time points
of final(I) with the same valuation as t′1. Even if such candidate comes before ti with
♢α1 (case 3), there is always a time point with the same valuation that comes after
ti that satisfies α1 (Thanks to Lemma 9.6, time points with the same valuation in
final(I) satisfy the same sentences). By choosing the first when it comes to final(I)
and the last when it comes to init(I), the picked can overlap with each other. This is
the essence of ST (·) function and our strategy for picking time points.

It is worth to point out that the choice of Anchors(I, T,□α1) = ∅ is due to the fact
α1 is satisfied starting from the first time point t0 in T and onwards, i.e., for all t ≥ t0,
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Case 1
tI

init(I) final(I)

t0

♢α1

t1

♢α1

t2

♢α1

t′

α1

t′′

α1

Case 2
tI

init(I) final(I)

t0

♢α1

t1

♢α1

t2

♢α1

t′1

α1

V1

t′2

α1

V1

t′3

α1

V1

t′′

α1

V2

Case 3
tI

init(I) final(I)

t0

♢α1

t1

♢α1

t2

♢α1

t3

♢α1

t4

♢α1

t′1

α1

V1

t′2

α1

V1

t′3

α1

V1

Figure 6.: Anchors for ♢-sentences

we have I, t |= α1. We need to make sure that the sentence □α1 remains satisfied in
ti ∈ T for all pseudo-interpretations IN where T ⊆ N .

I
tI

init(I) final(I)

t0

♢∼α1

t′0

α1

t1

♢∼α1

t′1

α1

t2

♢∼α1

t3

♢∼α1α1

V1

α1

V1

α1

V1

t′′1 t′′2 t′′3

Figure 7.: Anchors for ♢∼-sentences

Moving on to Anchors(·) for ♢∼α1 sentences (see Figure 7), each time point of ti in
init(I, T ) is represented by different color in the figure. Time points tj ∈ final(I, T )
have the same color. For each time point ti ∈ T , we shall pick the selected time points
(using the ST (·) function) in min ⋎ (ti) that satisfy α1. In Figure 7, each time point
ti and its selected candidate have the same color. Similarly to ♢α1, if there is an
acceptable sequence N that satisfies α1 in all of the chosen occurrences. Then, the
sentence ♢∼α1 is also satisfied. Note that all the picked candidates need to be minimal
to their respective ti w.r.t. ⋎ . Later on this section, we will show Anchors(·) for ♢∼α1

sentences is an acceptable sequence w.r.t. I that is bounded in its size.
Finally, Anchors(·) for □∼α1 sentences is represented in Figure 8. For each time ti (for

simplicity’s sake, there is only one time point t0 in Figure 8), the selected time points
are the chosen occurrence for each distinct valuation in min ⋎ (ti), i.e., V1, V2, V3, V4

(each distinct valuation is represented by a different color in Figure 8). Note that the
all the selected time points have the sentence α1. These candidates have a particular
property that we shall motivate in Proposition 12.12.

The following are some properties of Anchors(·) sequence:
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I
tI

init(I) final(I)

t0

□∼α1

t′0

α1

V1

t′1

α1

V1

t′2

α1

V2

t′′

α1

V3

t′′

α1

V3

t′′

α1

V3

t′′′

α1

V4

t′′′

α1

V4

Figure 8.: Anchors for □∼-sentences

Lemma 12.10. Let α1 ∈ L2 be a sentence, I = (V, ⋎ ) ∈ Isd and let T be a
non-empty acceptable sequence w.r.t. I where for all ti ∈ T we have I, ti |= ♢∼α1.
Then for all t, t′ ∈ Anchors(I, T, ♢∼α1) s.t. V (t) = V (t′) and t ̸= t′, we have
t, t′ ∈ final(I,Anchors(I, T, ♢∼α1)).

Proposition 12.11. Let α ∈ L2 be of the form Oα1, where O ∈ {♢,□, ♢∼, □∼} and
α1 ∈ L2. Let I = (V, ⋎ ) ∈ Isd, and let T be a non-empty acceptable sequence w.r.t. I
where for all t ∈ T we have I, t |= α. Then, we have:

size(I,Anchors(I, T, α)) ≤ 2|P|.

Proposition 12.12. Let α1 ∈ L2, I = (V, ⋎ ) ∈ Isd, and let T be a non-empty
acceptable sequence w.r.t. I s.t. for all t ∈ T we have I, t |= □∼α1, with α1 ∈ L2. For
all acceptable sequences N w.r.t. I s.t. Anchors(I, T, □∼α1) ⊆ N and for all ti ∈ N∩T ,
let IN = (V N , ⋎ N ) be the pseudo-interpretation over N and t′ ∈ N . We have the
following:

If t′ ̸∈ min ⋎ (ti), then t′ ̸∈ min ⋎ N (ti).

When trying to build the bounded pseudo-interpretation IN that satisfies α, one
problem we encountered is that the set min ⋎ N (t) may include a time point t′ that is not

in min ⋎ (t). This becomes an issue when checking truth values of defeasible sentences

in IN . In order to solve this issue, we defined Anchors(·) to pick only time points
such that we keep truth values of defeasible sentences. In the case of ♢∼-sentences, the
sequence Anchors(I, T, ♢∼α1) contains the selected time point t′i that satisfies α1 and
is minimal to ti w.r.t. ⋎ for each ti ∈ T . This is sufficient to preserve the truth ♢∼α1 for
each ti ∈ T . As for □∼-sentences and for each ti ∈ T , the sequence Anchors(I, T, □∼α1)
contains selected time points t′i for each distinct valuation in min ⋎ (ti). As showed in

Proposition 12.12, any time point t′i that is not originally in min ⋎ (ti), is therefore not
in min ⋎ N (ti).

With Anchors(·) defined, we introduce the notion of Keep(·). The sequence Keep(·)
will help us to compute recursively, starting from the initial satisfiable sentence α
down to its literals, the selected time points to pick in order to induce the pseudo-
interpretation IN that is bounded in size and satisfies α.

Definition 12.13 (Keep). Let α ∈ L2 be in NNF, I = (V, ⋎ ) ∈ Isd, and let T be
an acceptable sequence w.r.t. I s.t. for all t ∈ T we have I, t |= α. The sequence
Keep(I, T, α) is defined as ∅, if T = ∅; otherwise it is recursively defined as follows:

• Keep(I, T, ℓ) def
= ∅, where ℓ is a literal;

• Keep(I, T, α1 ∧ α2) def
=Keep(I, T, α1) ∪Keep(I, T, α2);
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• Keep(I, T, α1∨α2) def
=Keep(I, T1, α1)∪Keep(I, T2, α2), where T1 ⊆ T (resp. T2 ⊆

T ) is the sequence of all t1 ∈ T (resp. t2 ∈ T ) s.t. I, t1 |= α1 (resp. I, t2 |= α2);
• Keep(I, T,♢α1) def

=Anchors(I, T,♢α1) ∪Keep(I,Anchors(I, T,♢α1), α1);
• Keep(I, T,□α1) def

=Keep(I, T, α1);
• Keep(I, T, ♢∼α1) def

=Anchors(I, T, ♢∼α1) ∪Keep(I,Anchors(I, T, ♢∼α1), α1);
• Keep(I, T, □∼α1) def

= Anchors(I, T, □∼α1) ∪ Keep(I, T ′, α1), where T ′ =⋃
ti∈T AS (I,min ⋎ (ti)).

With µ(α) we denote the number of classical and non-monotonic modalities in α.

Proposition 12.14. Let α ∈ L2 be in NNF, I = (V, ⋎ ) ∈ Isd, and let T be a non-
empty acceptable sequence w.r.t. I s.t. for all t ∈ T we have I, t |= α. Then, we have
size(I,Keep(I, T, α)) ≤ µ(α)× 2|P|.

Given an acceptable sequence N w.r.t. I, we need to make sure that for each added
time point t in the induced pseudo-interpretation IN , we keep the truth values of the
sub-sentences in t, i.e., if I, t |= α, then IN , t |=P α. The sequence Keep(I, T, α) is
the acceptable sequence of time points s.t. if Keep(I, T, α) ⊆ N and t ∈ T , then said
condition is met. We prove this in Lemma 12.15.

Lemma 12.15. Let α ∈ L2 be in NNF, I = (V, ⋎ ) ∈ Isd, and let T be a non-empty
acceptable sequence w.r.t. I s.t. for all t ∈ T we have I, t |= α. For all acceptable
sequences N w.r.t. I, if Keep(I, T, α) ⊆ N , then for every t ∈ N∩T , we have IN , t |=P

α.

Since we build our pseudo-interpretation IN by adding selected time points for each
sub-sentence α1 of α, we need to make sure that such sub-sentence remains satisfied
in IN . Lemma 12.15 ensures that.

Definition 12.16 (Induced interpretation). Let I = (V, ⋎ ) ∈ Isd and let N be an
infinite acceptable sequence w.r.t. I and ti, tj ∈ N . The interpretation I ′ = (V ′, ⋎ ′) ∈
Isd is induced from the pseudo-interpretation IN = (V N , ⋎ N ) as follows:

• for all i ≥ 0, we have V ′(i) = V N (ti);
• for all i, j ≥ 0, ti, tj ∈ N , we have (ti, tj) ∈ ⋎ N iff (i, j) ∈ ⋎ ′.

It is worth mentioning that the IN -induced interpretation I ′ is a state-dependent
interpretation. Moreover, we have size(I ′) = size(IN ). We notice also that if IN , t0 |=
α, then I ′, 0 |= α. We can now prove our bounded-model theorem.

Proof of Theorem 12.1. We assume that α ∈ L2 is Isd-satisfiable. The first thing
we notice is that |α| ≥ µ(α)+1. Let α′ be the NNF of the sentence α. As a consequence
of the duality rules of L2, we can deduce that µ(α′) = µ(α). Let I = (V, ⋎ ) ∈ Isd s.t.
I, 0 |= α′. Let T0 = AS (I, (0)) be an acceptable sequence w.r.t. I. We can see that
size(I, T0) = 1. Since for all t ∈ T0 we have I, t |= α′ (see Lemma 9.7), we can compute
recursively U = Keep(I, T0, α

′). Thanks to Proposition 12.14, we conclude that U is
an acceptable sequence w.r.t. I s.t. size(I, U) ≤ µ(α′) × 2|P|. Let N = T0 ∪ U be the
union of T0 and U and let IN = (V N , ⋎ N ) be its pseudo-interpretation over N . Thanks
to Proposition 9.12, we have size(I,N) ≤ 1 + µ(α′) × 2|P|. Thanks to Lemma 12.15,
since 0 ∈ N ∩ T0 and Keep(I, T0, α

′) ⊆ N , we have IN , 0 |=P α′. In case N is finite,
we replicate the last time point tn infinitely many times. Notice that size(I,N) does
not change if we replicate the last element. We obtain the IN -induced interpretation
I ′ ∈ Isd by changing the labels of N into a sequence of natural numbers minding the
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order of time points in N (see Definition 12.16). We can see that size(I ′) = size(I,N)
and I ′, 0 |= α. Consequently, we have size(I ′) ≤ 1 + µ(α′)× 2|P|. Hence, from a given
interpretation I s.t. I, 0 |= α we can build an interpretation I ′ s.t. I ′, 0 |= α and
size(I ′) ≤ 1 + µ(α′) × 2|P|. Since |α| ≥ µ(|α|) + 1 and µ(|α′|) = µ(|α|), we conclude
that size(I ′) ≤ |α| × 2|P|.

13. The satisfiability problem in L2

We discuss in this section the satisfiability checking problem of the fragment L2. We use
a similar procedure as described in Section 11. Given a sentence α, a bounded structure
is non-deterministically guessed, then the labeling sets labSα(·) are used to update the
set of sub-sentences in each element of the sequence and checking whether the sentence
α is satisfied. Thanks to Theorem 12.1, if a sentence α ∈ L2 is Isd-satisfiable, then
there exists an interpretation I ∈ Isd s.t. size(I) ≤ |α|×2|P| that satisfies the sentence.
We use a compact structure to represent state-dependent interpretations. For this
purpose, we focus on particular interpretations of the class Isd, namely the ultimately
periodic interpretations (UPI in short). We show that any interpretation I ∈ Isd has
an equivalent UPI. As we will see in the second part of this section, we define a finite
representation of UPIs, called finite preferential structures.

Definition 13.1 (UPI). Let I = (V, ⋎ ) ∈ Isd and let π = card(range(I)). We say I
is an ultimately periodic interpretation if:

• for every t, t′ ∈ [tI , tI + π[ s.t. t ̸= t′, we have V (t) ̸= V (t′),
• for every t ∈ [tI ,∞[, we have V (t) = V (tI + (t− tI) mod π).

A UPI I is a state-dependent interpretation s.t. each time point’s valuation in
final(I) is replicated periodically. Given a UPI, π = card(range(I)) denotes the length
of the period and the interval [tI , tI +π[ is the first period which is replicated periodi-
cally throughout the final part. It is worth pointing out that for every t ∈ final(I), we
have V (t) ∈ {V (t′) | t′ ∈ [tI , tI +π[}, which is one of the consequences of the definition
above. Thanks to Lemma 9.9, we can prove the following proposition.

Proposition 13.2. Let P be a set of atomic propositions, I = (V, ⋎ ) ∈ Isd,
i = length(init(I)) and π = card(range(I)). There exists an ultimately periodic inter-
pretation I ′ = (V ′, ⋎ ′) ∈ Isd s.t. I, I ′ are faithful interpretations over P (see Definition
9.8), init(I ′)

.
= init(I), range(I ′) = range(I) (see Definition 9.8 and Lemma 9.9 for

reference) and V ′(0) = V (0). Moreover, for all α ∈ L2, we have I, 0 |= α iff I ′, 0 |= α.

It is worth to point out that the size of an interpretation and that of its UPI are the
same. It can easily be seen that these interpretations have the same initial part and
the same range of valuations in the final part. I ′ from the aforementioned proposition
is obtained from I by keeping the same initial part, and placing each distinct valuation
of range(I) in the interval [tI , tI+π[ and finally replicating this interval infinitely many
times. Moreover, the preference relation ⋎ ′ arranges valuations in the same way as ⋎ .
We can see that I and I ′ are faithful and that init(I ′)

.
= init(I), range(I ′) = range(I)

and V ′(0) = V (0). Therefore, I and its UPI I ′ satisfy the same sentences.
We showed that, starting from any interpretation I ∈ Isd, the equivalent UPI

can be induced. Next, we introduce a compact representation for ultimately periodic
structures. The structure used for checking the satisfiability of L2 sentences is defined
in the following way:
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Definition 13.3 (Finite preferential structure). A finite preferential structure is a
tuple S = (i, π, VS , ⋎ S) where: i, π are two integers such that i ≥ 0 and π > 0 (where
i is intended to be the starting point of the period, π is the length of the period);
VS : [0, i + π[−→ 2P , and ⋎ S ⊆ 2P × 2P is a strict partial order. Moreover, (I) for
all t ∈ [i, i+ π[, we have VS(t) ̸= VS(i− 1); and (II) for all distinct t, t′ ∈ [i, i+ π[, we
have VS(t) ̸= VS(t

′).

The structure is split into two intervals. The interval [0, i[ represents the initial part
of a UPI I, and the interval [i, i + π[ is the first period of the final part of I. Each
element in the interval [i, i + π[ has a unique valuation, they represent all valuations
in the range of I. We suppose that the elements of [i, i+ π[ are inter-connected. Since
this interval is infinitely replicated in the final part of the interpretation, then every
time point with a valuation in [i, i+π[ is a successor of all time points with valuations
in [i, i+π[. The added properties (I) and (II) make sure that we can build a structure
S from a UPI I, and back (the initial part of I coincides with [0, i[ and the valuations
in [i, i+ π[ are the range of final part of I). Starting from a structure S, we can build
a UPI I(S) as follows:

Definition 13.4. Given a finite preferential structure S = (i, π, VS , ⋎ S), let
I(S)def=(V, ⋎ ), where for every t ≥ 0, V (t)def=VS(t), if t < i, and V (t)def=VS(i+(t−i) mod π),
otherwise. The ordering relation ⋎ is defined as ⋎ def

= {(t, t′) | (V (t), V (t′)) ∈ ⋎ S}.

Given a structure S = (i, π, VS , ⋎ S), the interval [0, i[ of the structure corresponds
to the initial temporal part of the underlying interpretation I(S) and [i, i+π[ represents
a temporal period that is infinitely replicated in order to determine the final temporal
part of the interpretation. The ordering relation ⋎ of I(S) is the projection of ⋎ S over
the time points in the sequence. It follows directly from ⋎ S being an ordering relation
on valuations that the relation ⋎ of I(S) satisfies the condition of state-dependent
interpretations, i.e., I(S) ∈ Isd. In addition, we have size(I(S)) = i+ π. We define the
size of the structure as size(S) def

= i+ π.

Definition 13.5 (Minimality). Let S = (i, π, VS , ⋎ S) be a finite preferential structure
and t be a time point s.t. t ∈ [0, i + π[. The set of preferred time points of t w.r.t.
S, denoted by min ⋎ S

(t), is defined as follows: min ⋎ S
(t) def

= {t′ ∈ [min<{t, i}, i + π[ |
there is no t′′ ∈ [min<{t, i}, i+ π[ with (VS(t

′′), VS(t
′)) ∈ ⋎ S}.

The definition of minimality in our structures follows the principle of future preferred
time points in the preferential interpretations. Given a t ∈ [0, i+ π[, the set min ⋎ S

(t)

contains the minimal elements that come after t. Notice that in the case of t ∈ [0, i[, the
minimal set starts with t and finishes with i+π−1. Whereas in the case of t ∈ [i, i+π[,
we recall that in Definition 13.3 the interval [i, i + π[ is a finite representation of the
final part of an interpretation where the elements within this interval are successors
of each other, then the set min ⋎ S

(t) contains all minimal elements of [i, i+ π[.

Proposition 13.6. Let S = (i, π, VS , ⋎ S) be a structure, I(S) = (V, ⋎ ) be its corre-
sponding interpretation and t, t′, tS , t′S ∈ N s.t.:

tS =

{
t if t < i;

i+ (t− i) mod π otherwise.
t′S =

{
t′ if t′ < i;

i+ (t′ − i) mod π otherwise.

We have the following: t′ ∈ min ⋎ (t) iff t′S ∈ min ⋎ S
(tS).
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With the structures S introduced, we move to the procedure for checking the sat-
isfiability of L2 sentences. We use a similar procedure to the one described in Section
11. Let α ∈ L2 be a sentence, we define first the ordered set of sub-sentences of α1.

Definition 13.7 (Sub-sentences). Let α ∈ L2, the set Sf (α) is recursively defined as
follows:

• Sf (p) := {p}; Sf (¬p) := {¬p};
• Sf (α1 ∧ α2) := Sf (α1) ∪ Sf (α2) ∪ {α1 ∧ α2};
• Sf (α1 ∨ α2) := Sf (α1) ∪ Sf (α2) ∪ {α1 ∨ α2};
• Sf (□α1) := Sf (α1) ∪ {□α1};
• Sf (♢α1) := Sf (α1) ∪ {♢α1};
• Sf (□∼α1) := Sf (α1) ∪ {□∼α1};
• Sf ( ♢∼α1) := Sf (α1) ∪ { ♢∼α1}.

Next, the labelling set labSα(·) is defined accordingly.

Definition 13.8 (Labelling sets). Let S = (i, π, VS , ⋎ S) be a finite preferential struc-
ture, α ∈ L2 and t ∈ [0, i + π[. The set of sub-sentences of α that hold in t, denoted
by labSα(t), is defined as follows:

• p ∈ labSα(t) iff p ∈ VS(t); ¬α1 ∈ labSα(t) iff α1 ̸∈ labSα(t);
• α1 ∧ α2 ∈ labSα(t) iff α1, α2 ∈ labSα(t); α1 ∨ α2 ∈ labSα(t) iff α1 ∈ labSα(t) or
α2 ∈ labSα(t);

• ♢α1 ∈ labSα(t) iff α1 ∈ labSα(t
′) for some t′ ∈ [min<{t, i}, i+ π[;

• □α1 ∈ labSα(t) iff α1 ∈ labSα(t
′) for all t′ ∈ [min<{t, i}, i+ π[;

• ♢∼α1 ∈ labSα(t) iff α1 ∈ labSα(t
′) for some t′ ∈ min ⋎ S

(t);

• □∼α1 ∈ labSα(t) iff α1 ∈ labSα(t
′) for all t′ ∈ min ⋎ S

(t).

The set labSα(t) contains the set of all sub-sentences of α that hold in t. For each
sub-sentence, we can see that the labelling sets mimic the definition for that sentence’s
semantics. Moreover, we have the following property.

Proposition 13.9. Given a finite preferential structure S and α ∈ L2, we have
I(S), 0 |= α iff α ∈ labSα(0).

We provide the generalised Lemma E.2 and its proof in Appendix E.
Checking the Isd-satisfiability for L2 sentences uses the same procedure described in

Section 11. Let α be a sentence in L2 and thanks to Theorem 12.1, if α is Isd-satisfiable,
then there exists an interpretation I ∈ Isd s.t. size(I) ≤ 2|P| × |α| that satisfies it. We
make a non-deterministic guess for a structure S s.t. size(S) ≤ 2|P| × |α|. Next, for
each α1 ∈ Sf (α) in the increasing order of |α1| and for each t ∈ [0, i + π[, we update
labSα(t) accordingly. At the end of this procedure, S is accepted as a structure for α if
α ∈ labSα(0), otherwise, S is rejected.

Proposition 13.10. Let α ∈ L2. We have that α is Isd-satisfiable iff there exists a
finite preferential structure S such that I(S), 0 |= α and size(I(S)) ≤ |α| × 2|P|.

Hence, to decide the satisfiability of a sentence α ∈ L2, we can first guess a struc-
ture S bounded by |α| × 2|P|. Next, using the labelling function of S, we check the
satisfiability of α by the UPI I(S).

Theorem 13.11. Isd-satisfiability problem for L2 sentences is decidable.
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Proof. Let α ∈ L2. Thanks to Theorem 12.1, if α is Isd-satisfiable, there exists a
bounded interpretation I s.t. I, 0 |= α and size(I) ≤ |α| × 2|P|. We make a non-
deterministic guess of a structure S = (i, π, VS , ⋎ S) where size(S) ≤ |α|× 2|P| and use
the labelling function labSα(t) to check for all sub-sentences of α1 in each t ∈ [0, i]. If
α ∈ labSα(0), S is accepted as a structure and therefore α is satisfiable. Otherwise, S is
rejected. Therefore, the Isd-satisfiability for L2 sentences is a decidable problem.

14. Conclusion

We presented in this paper a new formalism called defeasible linear temporal logic
(LTL˜) for reasoning about runs that have exceptional states in them. It extends also
from the KLM approach to non-monotonic reasoning in order to handle exceptions. We
adapted the notion of normality of accessible worlds in Britz and Varzinczak’s (4) work
on defeasible modal logic, to the notion of normality in a run in the case of temporal
logic. By introducing non-monotonic temporal operators, defeasible properties that
target the pertinent points of the execution can be expressed. Thus the elegant nature
of LTL’s vocabulary to express different properties of systems is preserved when they
contain exceptional states.

In the study of the satisfiability checking problem, we establish a finite represen-
tation of models in the case of the fragments L1 and L2. We start by proving the
bounded model properties (Sections 10 and 12) for both of them. Then in Sections 11
and 13, we define a compact model in the case of each of these sub-languages of LTL˜
respectively. While there is not a jump in the upper bound of the size of models when
adding the ♢∼ operator in the case of L1 (the bound in L1 is the same as the fragment
LNNF (♢,⃝) in Sistla and Clarke’s work (19)), we notice an exponential blowup when
adding the □∼ operator to the vocabulary in the case of L2 (for an input sentence α,
the upper-bound is |α| × 2|P| compared with |α| in the fragment L(♢) in Sistla and
Clarke’s work (19)).

The decidability of the satisfiability for the whole L˜ language is still, as of yet, an
open problem. In our investigation, when introducing ⃝ and U operator, the order of
time points matters in the final part of preferential interpretation. Unlike the fragment
L2, Lemmas 9.7 and 9.9 do not hold in the case of L˜. Thus, in the same way as the
fragment L(♢,⃝) in Sistla and Clarke’s work (19), we need to find a class of LTL˜
interpretations where interpretations can be ultimately periodic, in order to have the
bounded-model property for L˜. As it turns out, the Isd class of interpretations is not
sufficient to prove the aforementioned property. We are currently investigating a new
class of preferential interpretations. In this class, time points with the same set of sub-
sentences express the same normality towards the other time points. We conjecture,
using this class, that an ultimately periodic interpretation for L ˜ sentences can be
induced and therefore have the decidability for the defeasible LTL language.
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Appendix A. Proofs of results in Section 9

Proposition 9.6. Let I = (V, ⋎ ) ∈ Isd and let i ≤ j ≤ i′ ≤ j′ be time points in
final(I) s.t. V (j) = V (j′). Then we have j ∈ min ⋎ (i) iff j′ ∈ min ⋎ (i

′).

Proof. Let I = (V, ⋎ ) ∈ Isd, and let us have four time points i ≤ j ≤ i′ ≤ j′ ∈
final(I).

• For the only-if part, we suppose that j ∈ min ⋎ (i) and we prove that j′ ∈
min ⋎ (i

′). We have i ≤ i′, i′ ≤ j′, V (j) = V (j′) and j ∈ min ⋎ (i). Thanks to

Proposition 8.3, j′ ∈ min ⋎ (i
′).

• For the if part, we suppose that j′ ∈ min ⋎ (i
′) and we prove that j ∈ min ⋎ (i).

We use a proof by contradiction. We assume that j′ ∈ min ⋎ (i
′) and we suppose

that j ̸∈ min ⋎ (i). This implies that there exists k ∈ [i,∞[ such that (k, j) ∈ ⋎ .
◦ Case 1: k ∈ [i′,∞[. From Definition 8.1, since V (j) = V (j′) and (k, j) ∈ ⋎ ,
then (k, j′) ∈ ⋎ and therefore j′ ̸∈ min ⋎ (i

′). This conflicts with our assump-

tion that j′ ∈ min ⋎ (i
′).

◦ Case 2: k ∈ [i, i′[. From Lemma 9.3, since k ∈ final(I), there exists k′ ∈
[i′,∞[ such that V (k′) = V (k). From Definition 8.1, since we have V (j′) =
V (j), V (k′) = V (k) and (k, j) ∈ ⋎ , we also have (k′, j′) ∈ ⋎ , hence j′ ̸∈
min ⋎ (i

′). This conflicts with the assumption that j′ ∈ min ⋎ (i
′).

Lemma 9.7. Let I = (V, ⋎ ) ∈ Isd and i ≤ i′ be time points of final(I) where V (i) =
V (i′). Then for every α ∈ L2, we have I, i |= α iff I, i′ |= α.

Proof. Let I = (V, ⋎ ) ∈ Isd and i ≤ i′ in final(I) be such that V (i) = V (i′). We
prove that I, i |= α iff I, i′ |= α using structural induction on α.

• Base: α = p. We know that I, i |= p iff p ∈ V (i). Since V (i) = V (i′), we have
p ∈ V (i′). Thus I, i′ |= p.

• α = ¬α1. For the only-if part, we assume that I, i |= ¬α1 and suppose that
I, i′ ̸|= ¬α1. I, i

′ ̸|= ¬α1 implies that I, i′ |= α1. Since the Lemma holds on α1

and I, i′ |= α1, then I, i |= α1. This conflicts with the assumption I, i |= ¬α1.
We follow the same reasoning for the if part.

• α = α1∧α2. I, i |= α1∧α2 means that I, i |= α1 and I, i |= α2. Since the Lemma
holds on both α1 and α2, we have I, i

′ |= α1 and I, i′ |= α2. Thus I, i
′ |= α1∧α2.

• α = ♢α1. For the only-if part, we assume that I, i |= ♢α1. This means that there
exists j ∈ [i,∞[ s.t. I, j |= α1. Thanks to Lemma 9.3, since j ∈ final(I), then
there exists j′ ∈ [i′,∞[ where V (j′) = V (j). Thanks to the induction hypothesis,
if V (j) = V (j′) and I, j |= α1, then I, j′ |= α1. We conclude that I, i′ |= ♢α1.
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For the if part, we assume that I, i′ |= ♢α1. This means that there is a j′ ∈
[i′,∞[ s.t. I, j′ |= α1. We know that [i′,∞[⊆ [i,∞[, and therefore we conclude
that I, i |= ♢α1.

• α = ♢∼α1. For the only-if part, we assume that I, i |= ♢∼α1. This means that
there is a j ∈ [i,∞[ s.t. j ∈ min ⋎ (i) and I, j |= α1. Thanks to Lemma 9.3, since

j ∈ final(I), there exists j′ ∈ [i′,∞[ such that V (j′) = V (j). Thanks to the
induction hypothesis, if V (j) = V (j′) and I, j |= α1, then (I) I, j′ |= α1. Thanks
to Proposition 8.3, since V (j) = V (j′), i ≤ i′, i′ ≤ j′ and j ∈ min ⋎ (i), then we

have (II) j′ ∈ min ⋎ (i
′). From (I) and (II), we conclude that I, i′ |= ♢∼α1.

For the if part, we assume that I, i′ |= ♢∼α1. I, i
′ |= ♢∼α1 means that there is

a j′ ∈ [i′,∞[ such that j′ ∈ min ⋎ (i
′) and (I) I, j′ |= α1. We need to prove that

j′ ∈ min ⋎ (i). We suppose that j′ ̸∈ min ⋎ (i). It means that there exists k ∈ [i,∞[

such that (k, j′) ∈ ⋎ . From Lemma 9.3, since k ∈ final(I), there is k′ ∈ [i′,∞[
such that V (k) = V (k′). By Definition 8.1, since (k, j′) ∈ ⋎ and V (k′) = V (k),
we have (k′, j′) ∈ ⋎ and therefore j′ ̸∈ min ⋎ (i

′), conflicting with the assumption

j′ ∈ min ⋎ (i
′). Thus, we have (II) j′ ∈ min ⋎ (i) . From (I) and (II), we conclude

that I, i |= ♢∼α.

The proof of Lemma 9.9 can be found in Section B.

Proposition 9.12. Let I = (V, ⋎ ) ∈ I, N1, N2 be two acceptable sequences w.r.t. I.
Then N1 ∪N2 is an acceptable sequence w.r.t. I s.t. size(I,N1 ∪N2) ≤ size(I,N1) +
size(I,N2).

Proof. Let I = (V, ⋎ ) ∈ I, N1, N2 be two acceptable sequences w.r.t. I and let
IN1 = (V N1 , ⋎ N1), IN2 = (V N1 , ⋎ N2) be two pseudo-interpretations over N1 and N2

respectively. We assume that N = N1 ∪N2.
We suppose that N is not an acceptable sequence w.r.t. I. It means that there are

two time points t, t′ ∈ final(I) s.t. V (t) = V (t′) where t ∈ N and t′ ̸∈ N . Since t ∈ N ,
t is either an element of N1 or N2. We assume that t ∈ N1. By Definition 9.10, since
t ∈ N1 and N1 is an acceptable sequence w.r.t. I, all time points of final(I) that
have the same valuation as t are in N1. Since t′ ∈ final(I) and V (t′) = V (t), then
t′ ∈ N1, and therefore t′ ∈ N . This conflicts with the supposition of t′ ̸∈ N . Same
reasoning applies if we take t ∈ N2. We conclude that for all t ∈ N s.t. t ∈ final(I), all
t′ ∈ final(I) s.t. V (t′) = V (t) are also in N . Thus, N is an acceptable sequence w.r.t.
I.

In order to prove that size(I,N) ≤ size(I,N1) + size(I,N2), we need to prove that
init(I,N) ⊆ init(I,N1) ∪ init(I,N2) and range(I,N) ⊆ range(I,N1) ∪ range(I,N2).
Let t ∈ N be a time point s.t. t ∈ init(I,N). By the definition of init(I,N), we know
that t ∈ init(I). Since N is a sequence containing only elements of N1 or N2, the time
point t is either in N1 or N2. By definition of init(I,N1), if t ∈ N1 and t ∈ init(I), then
t ∈ init(I,N1). The same goes in the case of t ∈ N2. We conclude that if t ∈ init(I,N),
then t ∈ init(I,N1) ∪ init(I,N2).

Following the same line of thought, we can prove that final(I,N) ⊆ final(I,N1) ∪
final(I,N2) and consequently we can prove that range(I,N) ⊆ range(I,N1) ∪
range(I,N2).

Since init(IN ) ⊆ init(IN1) ∪ init(IN2), we have length(init(IN )) ≤
length(init(IN1)) + length(init(IN2)). Similarly, if range(IN ) ⊆ range(IN1) ∪
range(IN2), then card(range(IN )) ≤ card(range(IN1)) + card(range(IN2)). We con-
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clude that size(IN ) ≤ size(IN1) + size(IN2).

Proposition 9.13. Let I = (V, ⋎ ) ∈ I and N be an acceptable sequence w.r.t. I. If
for all distinct t, t′ ∈ N , we have V (t′) = V (t) only when both t, t′ ∈ final(I,N), then
size(I,N) ≤ 2|P|.

Proof. Let I = (V, ⋎ ) ∈ I and N be an acceptable sequence w.r.t. I. We assume that
for all t, t′ ∈ N s.t. we have V (t′) = V (t) only when both t, t′ ∈ final(N). Two cases
are possible:

• init(I,N) is empty. Since card(range(I,N)) ≤ 2|P|, we have size(I,N) ≤ 2|P|.
• init(I,N) is not empty. We can see that for all t ∈ init(I,N) and t′ ∈ N s.t.
t′ ̸= t we have V (t′) ̸= V (t). If init(I,N) has n time points having distinct
valuations, then range(final(I,N)) has at most 2|P| − n valuations. Therefore,
we have size(I,N) ≤ 2|P|.

Appendix B. Proofs of results for Lemma 9.9

NB: The results marked (∗) are introduced here, while they are omitted in the main
text.

Proposition B.1 (∗). Let I = (V, ⋎ ) ∈ I and i ∈ final(I). For all j ∈ final(I), there
exists j′ ≥ j such that V (j′) = V (i).

Proof. Let I = (V, ⋎ ) ∈ I and i, j ∈ final(I). Let E be the set defined by E =
{i′ ∈ final(I) : V (i′) = V (i)}. Since i ∈ final(I), we have E ̸= ∅. Suppose now
that there does not exist j′ ≥ j such that V (j′) = V (i). We have E is a non empty
finite set of integers included in [0, . . . , j − 1]. Let k = max{k′ ∈ E}. From the
definitions of E and k, we have k ∈ final(I) and there does not exist k′ > k such that
V (k′) = V (k). This contradicts Lemma 9.3. We conclude that there exists j′ ≥ j such
that V (j′) = V (i).

Proposition B.2 (∗). Let I = (V, ⋎ ) ∈ Isd and I ′ = (V ′, ⋎ ′) ∈ Isd be two faithful
interpretations over the same set of atomic propositions P s.t. range(I) = range(I ′).
For all i ∈ final(I) and i′ ∈ final(I ′) such that V (i) = V ′(i′), we have :

(1) for all j ∈ [i,∞[ there exists j′ ∈ [i′,∞[ such that V ′(j′) = V (j).
(2) for all j ∈ min ⋎ (i) there exists j′ ∈ min ⋎ ′(i′) such that V (j) = V ′(j′).

Proof. Let I = (V, ⋎ ) ∈ Isd, I ′ = (V ′, ⋎ ′) ∈ Isd be two faithful interpretations over
P s.t. range(I) = range(I ′) and let i, i′ ∈ final(I) be such that V (i) = V ′(i′).

(1) Let j ∈ [i,∞[. Since i ∈ final(I), we have j ∈ final(I). Moreover, given that
range(I) = range(I ′), we can assert that there exists k ∈ final(I ′) such that
V ′(k) = V (j). Hence, from Proposition B.1, there exists j′ ≥ i′ such that V ′(j′) =
V ′(k) = V (j).

(2) Let j ∈ min ⋎ (i). We have j ∈ final(I). From Property (1) above, there exists

j′ ≥ i′ such that V ′(j′) = V (j). Suppose that j′ ̸∈ min ⋎ ′(i′). Since j′ ≥ i′,

there exists k′ ≥ i′ such that (k′, j′) ∈ ⋎ ′. From Property (1) above, there exists
k ≥ i such that V (k) = V ′(k′). Since V (k) = V ′(k′), V ′(j′) = V (j), (k′, j′) ∈ ⋎ ′
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and, since I and I ′ are two faithful interpretations, we can assert that (k, j) ∈ ⋎ .
Consequently, since k ≥ i and (k, j) ⋎ , we have j ̸∈ min ⋎ (i), which leads to a

contradiction. We conclude that j′ ∈ min ⋎ ′(i′).

Proposition B.3 (∗). Let α ∈ L2, I = (V, ⋎ ) ∈ Isd and I ′ = (V ′, ⋎ ′) ∈ Isd be two
faithful interpretations over the same set of atomic propositions P s.t. range(I) =
range(I ′). For every α ∈ L2 and every i ∈ final(I) and i′ ∈ final(I ′) s.t. V (i) = V ′(i′),
we have:

I, i |= α iff I ′, i′ |= α.

Proof. Let I = (V, ⋎ ), I ′ = (V ′, ⋎ ′) be two faithful interpretations belonging to Isd

over the same set of atomic propositions P s.t. range(I) = range(I ′). Let α ∈ L2, and
let i ∈ final(I) and i′ ∈ final(I ′) be such that V (i) = V ′(i′). Without loss of generality,
we suppose that α does not contain ∨, □ and □∼. This proposition can be proven by
induction on the structure of the sentence α.

• Base case : α = p, with p ∈ P. Since V (i) = V ′(i′), we have p ∈ V (i) iff p ∈ V ′(i′),
and thus I, i |= p iff I ′, i′ |= p.

• α = ¬α1. By the induction hypothesis, I, i |= α1 iff I ′, i′ |= α1. Hence, we have
I, i ̸|= α1 iff I ′, i′ ̸|= α1. It follows that I, i |= ¬α1 iff I ′, i′ |= ¬α1.

• α = α1 ∧ α2. We know that I, i |= α1 ∧ α2 holds iff I, i |= α1 and I, i |= α2. By
the induction hypothesis, since V (i) = V ′(i′), we have I, i |= α1 and I, i |= α2 iff
I ′, i′ |= α1 and I ′, i′ |= α2. We conclude that I, i |= α1 ∧ α2 iff I ′, i′ |= α1 ∧ α2.

• α = ♢α1. First we prove that I, i |= ♢α1 implies that I ′, i′ |= ♢α1. We assume
that I, i |= ♢α1. It means that there exists j ∈ [i,∞[ s.t. I, j |= α1. From
Proposition B.2 (1), there exists j′ ∈ [i′,∞[ such that V ′(j′) = V (j). By the
induction hypothesis, we have I ′, j′ |= α1. Hence, we conclude that I, i′ |= ♢α1.
The if part can be proved with a similar reasoning.

• α = ♢∼α1. First we prove that I, i |= ♢∼α1 implies that I ′, i′ |= ♢∼α1. We assume
that I, i |= ♢∼α1. Hence, there exists j ∈ [i,∞[ s.t. j ∈ min ⋎ (i) and I, j |= α1.

From Proposition B.2 (2), there exists j′ ∈ min ⋎ ′(i′) such that V ′(j′) = V (j).

By the induction hypothesis, we have I ′, j′ |= α1. We conclude that I ′, i′ |= ♢∼α1.
The if part can be proved with a similar reasoning.

Corollary B.4 (∗). Let I = (V, ⋎ ) ∈ Isd and I ′ = (V ′, ⋎ ′) ∈ Isd be two faithful
interpretations over the same set of atomic propositions P s.t. range(I) = range(I ′).
For every i ∈ final(I) and every α ∈ L2, we have: if I, i |= α, then there exists
i′ ∈ final(I ′) s.t. I ′, i′ |= α.

Proposition B.5 (∗). Let I = (V, ⋎ ) ∈ Isd and I ′ = (V ′, ⋎ ′) ∈ Isd be two faithful
interpretations over P s.t. init(I)

.
= init(I ′) and range(I) = range(I ′). Then we have:

For all t, t′ ∈ init(I), t′ ∈ min ⋎ (t) iff t′ ∈ min ⋎ ′(t).

Proof. Let I = (V, ⋎ ) ∈ Isd and I ′ = (V ′, ⋎ ′) ∈ Isd be two faithful interpretations
over P such that init(I)

.
= init(I ′) and range(I) = range(I ′). Let t, t′ ∈ init(I) be

such that t′ ∈ min ⋎ (t). Suppose that t′ ̸∈ min ⋎ ′(t). Since t′ ≥ t, there exists t′′ ≥ t

such that (t′′, t′) ∈ ⋎ ′. There are two possible cases:
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• t′′ ∈ init(I ′). Since init(I)
.
= init(I ′), we have V ′(t′′) = V (t′′). Moreover, since

I and I ′ are two faithful interpretations and V ′(t′) = V (t′), we have (t′′, t′) ∈ ⋎ .
Since t′′ ≥ t, it follows that t′ ̸∈ min ⋎ (t). This leads to a contradiction. We

conclude that t′ ∈ min ⋎ ′(t).

• t′′ ∈ final(I ′). Since range(I) = range(I ′), there exists t′′′ ∈ final(I) such that
V ′(t′′) = V (t′′′). Moreover, since I and I ′ are two faithful interpretations and
V ′(t′) = V (t′), we have (t′′′, t′) ∈ ⋎ . Since t′′′ ≥ t, it follows that t′ ̸∈ min ⋎ (t).
This leads leads to a contradiction. We conclude that t′ ∈ min ⋎ ′(t).

Same reasoning can be applied to prove the if part.

Proposition B.6 (∗). Let I = (V, ⋎ ) ∈ Isd and I ′ = (V ′, ⋎ ′) ∈ Isd be two faithful
interpretations over P such that init(I)

.
= init(I ′) and range(I) = range(I ′). For all

t ∈ init(I) and t′ ∈ final(I) such that t′ ∈ min ⋎ (t), we have {t′′ ∈ final(I ′) | V ′(t′′) =

V (t′)} ⊆ min ⋎ ′(t).

Proof. Let I = (V, ⋎ ) ∈ Isd and I ′ = (V ′, ⋎ ′) ∈ Isd be two faithful interpretations
over P such that init(I)

.
= init(I ′) and range(I) = range(I ′). Let t ∈ init(I), t′ ∈

final(I), t′′ ∈ final(I ′) be such that t′ ∈ min ⋎ (t) and V ′(t′′) = V (t′). We show that

t′′ ∈ min ⋎ ′(t).

Suppose that t′′ ̸∈ min ⋎ ′(t). Since t′′ ≥ t, there exists t′′′ ≥ t such that (t′′′, t′′) ∈ ⋎ ′.
There are two possible cases.

• t′′′ ∈ init(I ′). Since init(I)
.
= init(I ′), we have V ′(t′′′) = V (t′′′). Moreover, since

I and I ′ are two faithful interpretations and V ′(t′′) = V (t′), we have (t′′′, t′) ∈ ⋎ .
Since t′′′ ≥ t, it follows that t′ ̸∈ min ⋎ (t). This leads to a contradiction. We

conclude that t′′ ∈ min ⋎ ′(t).

• t′′′ ∈ final(I ′). Since range(I) = range(I ′), there exists u ∈ final(I) such that
V ′(t′′′) = V (u). Moreover, since I and I ′ are two faithful interpretations and
V ′(t′′) = V (t′), we have (u, t′) ∈ ⋎ . Since u ≥ t, it follows that t′ ̸∈ min ⋎ (t).
There is a contradiction. We conclude that t′′ ∈ min ⋎ ′(t).

Lemma B.7 (∗). Let I = (V, ⋎ ) ∈ Isd and I ′ = (V ′, ⋎ ′) ∈ Isd be two faithful
interpretations over P such that V ′(0) = V (0), init(I)

.
= init(I ′), and range(I) =

range(I ′). Then for all α ∈ L2, we have :

For all t ∈ init(I) ∪ {0}, I, t |= α iff I ′, t |= α.

The singleton {0} is there in case of an empty init(I).

Proof. Let I = (V, ⋎ ) ∈ Isd, I ′ = (V ′, ⋎ ′) ∈ Isd be two faithful interpretations over
P such that V ′(0) = V (0), init(I)

.
= init(I ′), and range(I) = range(I ′). Let α ∈ L2

and t ∈ init(I) ∪ {0}. Without loss of generality, we suppose that α does not contain
∨, □ and □∼.

First, notice that in the case where init(I) and init(I ′) are empty intervals, we
necessarily have t = 0. Moreover, since t ∈ final(I) and t ∈ final(I ′) and V (0) = V ′(0),
from Proposition B.3, we can assert that I, t |= α iff I ′, t |= α. Consequently, the
property to be proved is true. Now, we suppose that init(I) and init(I ′) are non
empty intervals. Hence, we have t ∈ init(I) and t ∈ init(I ′). We prove that I, t |= α
iff I ′, t |= α by structural induction on α.
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• Base case : α = p. Since t ∈ init(I), we have V (t) = V ′(t). Hence, p ∈ V (t) iff
p ∈ V ′(t). Thus I, t |= p iff I ′, t |= p.

• α = ¬α1. By the induction hypothesis, we have I, t |= α1 iff I ′, t |= α1. Hence, it
is not the case that I, t |= α1 iff it is not the case that I ′, t |= α1. We conclude
that, I, t |= ¬α1 iff I ′, t |= ¬α1.

• α = α1 ∧ α2. We have I, t |= α1 ∧ α2 iff I, t |= α1 and I, t |= α2. Using the
induction hypothesis, it follows that I, t |= α1 and I, t |= α2 iff I ′, t |= α1 and
I ′, t |= α2. We conclude that I, t |= α1 ∧ α2 iff I ′, t |= α1 ∧ α2.

• α = ♢α1. Suppose that I, t |= ♢α1. There exists a t′ ∈ [t,∞[ s.t. I, t′ |= α1. Two
cases are possible w.r.t. t′.

◦ t′ ∈ init(I). By the induction hypothesis, we have I ′, t′ |= α1. Hence, we
conclude that I ′, t |= ♢α1.

◦ t′ ∈ final(I). Since range(I) = range(I ′), there exists t′′ ∈ final(I ′) such
that V ′(t′′) = V (t′). From Proposition B.3, we have I ′, t′′ |= α1. Since
t′′ > t, we have I ′, t |= ♢α1.

Same reasoning can be applied to prove the if part.
• α = ♢∼α1. Suppose that I, t |= ♢∼α1. There exists t′ ∈ min ⋎ (t) s.t. I, t′ |= α1.

Two cases are possible w.r.t. t′.
◦ t′ ∈ init(I). By the induction hypothesis, we have I ′, t′ |= α1. Moreover,

from Proposition B.5, we have t′ ∈ min ⋎ ′(t). Hence, we conclude that

I ′, t |= ♢∼α1.
◦ t′ ∈ final(I). Since range(I) = range(I ′), there exists t′′ ∈ final(I ′) such

that V ′(t′′) = V (t′). From Proposition B.3, we have I ′, t′′ |= α1. From
Proposition B.6, we have t′′ ∈ min ⋎ ′(t). Hence, we conclude that I ′, t |=
♢∼α1. Same reasoning can be applied to prove the if part.

Lemma 9.9 is a direct result of result of Lemma B.7.

Appendix C. Proofs of results in Section 11

Lemma 11.5. Let α ∈ L1 be an I-satisfiable sentence and I = (V, ⋎ ) ∈ I be an
interpretation such that I, 0 |= α. Let IN be the pseudo-interpretation of I over the
finite sequence N such that IN , 0 |=P α, and I ′ = (V ′, ⋎ ′) be the induced interpreta-
tion from IN . Let S = (n, VS , ⋎ S) be the finite preferential structure where n = |N |,
VS(t) = V ′(t) for each t ∈ [0, |N | − 1] and ⋎ S= ⋎ ′. Let I(S) = (V ′′, ⋎ ′′) be the induced
interpretation from S. We have the following:

• ⋎ ′′= ⋎ ′ and V ′′(t) = V ′(t) for each t ∈ N;
• for every α1 ∈ Sf (α), we have α1 ∈ labSα(t) iff I(S), t |= α1.

Proof. Let α ∈ L1 be an I-satisfiable sentence and I = (V, ⋎ ) ∈ I be an interpretation
such that I, 0 |= α. Let IN = (V N , ⋎ N ) be the pseudo-interpretation of I over the finite
sequence N such that IN , 0 |=P α, and I ′ = (V ′, ⋎ ′) be the induced interpretation
from IN . Let S = (n, VS , ⋎ S) be the finite preferential structure where n = |N |,
VS(t) = V ′(t) for each t ∈ [0, |N | − 1] and ⋎ S= ⋎ ′. Let I(S) = (V ′′, ⋎ ′′) be the induced
interpretation from S.

By Definition 11.2, we have ⋎ ′′= ⋎ S , V ′′(t) = VS(t) for each t ∈ [0, n−1] and V ′′(t) =
V ′′(n − 1) for each t ∈ [n,∞[. Since ⋎ ′= ⋎ S , V ′(t) = VS(t) for each t ∈ [0, |N | − 1],
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V ′(t) = V ′(|N |−1) for each t ∈ [|N |,∞[ (see Defnition 10.4) and n = |N |, then ⋎ ′′= ⋎ ′

and V ′′(t) = V ′(t) for each t ∈ N. Therefore, the first item of the lemma holds. As
such, we shall the interpretations I ′ and I(S) interchangeably.

Going back to the pseudo-interpretation IN , we know that N is a finite sequence. By
the definition of truth values of sentences in pseudo-interpretations (after Definition
9.2), we have the following:

• for any ⃝α1 such that IN , ti |=P ⃝α1, we have ti+1 ∈ N and IN , ti+1 |=P α1;
• for any ♢α1 such that IN , ti |=P ♢α1, there exists tj ∈ N such that tj ≥ ti and
IN , tj |=P α1;

• for any ♢∼α1 such that IN , ti |=P ♢∼α1, there exists tj ∈ N such that tj ∈
min ⋎ N (ti) and IN , tj |=P α1.

Since I ′ is the induced from IN , the aforementioned properties hold for I ′ as well.
Given i, j ∈ [0, |N | − 1], we have the following:

• (I) for any ⃝α1 such that I ′, i |= ⃝α1, we have i+1 ∈ [0, |N |−1] and I ′, i+1 |= α1;
• (II) for any ♢α1 such that I ′, i |= ♢α1, there exists j ∈ [0, |N | − 1] such that

j ≥ i and I ′, j |= α1;
• (III) for any ♢∼α1 such that I ′, i |= ♢∼α1, there exists j ∈ [0, |N | − 1] such that
∈ min ⋎ ′(i) and I ′, j |= α1.

It is important to note that these properties hold for I(S) as well. In other words, any
sub-sentence of the form ⃝α1, ♢α1 or ♢∼α1 that holds at t ∈ [0, n−1] is satisfied within
the finite part of I(S). Moving on to the second item of the lemma, let α1 ∈ Sf (α) and
t ∈ [0, n− 1]. We use structural induction on sub-sentences of α1.

• α1 = p. By Definition 11.2, since I(S) is the S-induced interpretation and t ∈
[0, n− 1], then V ′′(t) = VS(t). Thus, we have p ∈ VS(t) iff p ∈ V ′′(t). Therefore,
we have p ∈ labSα(t) iff I(S), t |= p.

• α1 = ¬p. Following the same reasoning as in the case of p, we have V ′′(t) = VS(t).
Thus, we have p ̸∈ VS(t) iff p ̸∈ V ′′(t). Therefore, we have ¬p ∈ labSα(t) iff
I(S), t |= ¬p.

• α1 = α2 ∧ α3. Assume that α2 ∧ α3 ∈ labSα(t), we have α2, α3 ∈ labSα(t). By the
induction hypothesis, α2, α3 ∈ labSα(t) iff I(S), t |= α2 and I(S), t |= α3. Therefore,
we have α2 ∧ α3 ∈ labSα(t) iff I(S), t |= α2 ∧ α3.

• α1 = α2∨α3. Assume that α2∨α3 ∈ labSα(t), we either have α2 ∈ labSα(t) or α2 ∈
labSα(t). Assume that α2 ∈ labSα(t), by the induction hypothesis, α2 ∈ labSα(t) iff
I(S), t |= α2. Thus, we have α2∨α3 ∈ labSα(t) iff I(S), t |= α2∨α3. Same reasoning
can be applied in the case of α3 ∈ labSα(t).

• α1 = ♢α2.
◦ For the only-if part, we assume that ♢α2 ∈ labSα(t), we have α2 ∈ labSα(t

′)
where t′ ∈ [t, n − 1]. By the induction hypothesis, since α2 ∈ labSα(t

′) and
t′ ∈ [0, n − 1], then we have α2 ∈ labSα(t

′) iff I(S), t′ |= α2. Therefore, we
have I(S), t |= ♢α2.

◦ For the if part, we assume that I(S), t |= ♢α2. Knowing I(S) is the same as
I ′, since t ∈ [0, n − 1] and thanks to item (II), then there is t′ ∈ [t, n − 1]
where I(S), t′ |= α2. By the induction hypothesis, since I(S), t′ |= α2 and
t′ ∈ [t, n−1], then we have α2 ∈ labSα(t

′). Therefore, we have ♢α2 ∈ labSα(t).
• α1 = ⃝α2. Assume that ⃝α2 ∈ labSα(t), we have α2 ∈ labSα(t+ 1) where t+ 1 ≤

n − 1 (thanks to item (I), there is no need to check the case of t = n − 1).
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By the induction hypothesis, since α2 ∈ labSα(t + 1) and t + 1 ∈ [0, n − 1], we
have α2 ∈ labSα(t + 1) iff I(S), t + 1 |= α2. Therefore, we have ⃝α2 ∈ labSα(t) iff
I(S), t |= ⃝α2.

• α1 = □αbool. Assume that □αbool ∈ labSα(t), we have αbool ∈ labSα(t
′) for all

t′ ∈ [t, n−1]. By the induction hypothesis, since we have αbool ∈ labSα(t
′) for each

t′ ∈ [t, n− 1], then for all t′ ∈ [t, n− 1], we have (i) αbool ∈ labSα(t
′) iff I(S), t′ |=

αbool. Moreover, we have V ′′(t′) = VS(n − 1) = V (n − 1) for all t′ ∈ [n,∞[.
Since αbool is a Boolean sentence, I(S), n − 1 |= αbool and V ′′(t′) = V ′′(n − 1)
for all t′ ∈ [i,∞[; then we deduce that (ii) I(S), n − 1 |= αbool iff I(S), t′ |= αbool

for all t′ ∈ [n,∞[ . From (i) and (ii), we conclude that □αbool ∈ labSα(t) iff
I(S), t |= □αbool.

• α1 = ♢∼α2.
◦ For the only-if part, we assume that ♢∼α2 ∈ labSα(t). We have α2 ∈ labSα(t

′)
where t′ ∈ min ⋎ S

(t). By the induction hypothesis, since α2 ∈ labSα(t
′) and

t′ ∈ [0, n− 1], then we have (i) I(S), t′ |= α2. Moreover, since t′ ∈ min ⋎ S
(t),

we have (ii) t′ ∈ min ⋎ ′′(t). From (i) and (ii), we conclude that I(S), t |= ♢∼α2.

◦ For the if part, we assume that I(S), t |= ♢∼α2. Knowing I(S) is the same as
I ′, since t ∈ [0, n − 1] and thanks to item (III), then there is t′ ∈ [t, n − 1]
such that t′ ∈ min ⋎ (t) and I(S), t′ |= α2. By the induction hypothesis, since

t′ ∈ [t, n − 1] and I(S), t′ |= α2, then we have (i) α2 ∈ labSα(t
′). Moreover,

since t′ ∈ min ⋎ ′′(t), we have (ii) t′ ∈ min ⋎ S
(t). From (i) and (ii), we

conclude that ♢∼α2 ∈ labSα(t).

Appendix D. Proofs of results in Section 12

Lemma 12.10. Let α1 ∈ L2 be a sentence, I = (V, ⋎ ) ∈ Isd and let T be a
non-empty acceptable sequence w.r.t. I where for all ti ∈ T we have I, ti |= ♢∼α1.
Then for all t, t′ ∈ Anchors(I, T, ♢∼α1) s.t. V (t) = V (t′) and t ̸= t′, we have
t, t′ ∈ final(I,Anchors(I, T, ♢∼α1)).

Proof. Let α1 ∈ L2, let T be a non-empty acceptable sequence w.r.t. I ∈ Isd

where for all ti ∈ T we have I, ti |= ♢∼α1. Just as a reminder, we have
Anchors(I, T, ♢∼α1) =

⋃
ti∈T ST (I,AS (I,min ⋎ (ti)), α1). Thus, there exists ti, t

′
i ∈ T

such that t ∈ ST (I,AS (I,min ⋎ (ti)), α1) and t′ ∈ ST (I,AS (I,min ⋎ (t
′
i)), α1). Suppose

that the lemma is false. Then there are two time points t, t′ ∈ Anchors(I, T, ♢∼α1) with
t ̸= t′ such that t is in init(I,Anchors(I, T, ♢∼α1)) at least and V (t) = V (t′). Note that
t ∈ init(I), since we have t ∈ init(I,Anchors(I, T,♢∼α1)). Without loss of generality, we

assume that t < t′. From Definition 12.6, we have t ∈ AS (I, (t
I,AS(I,min ⋎ (ti))

α1 )) where

t
I,AS(I,min ⋎ (ti))

α1 is the chosen occurrence that satisfies α1 in AS (I,min ⋎ (ti)). Thanks

to Definitions 12.2 and 12.4, since t ∈ init(I), we can see that: t = t
I,AS(I,min ⋎ (ti))

α1 .
Moreover, (1) there is no t′′ ∈ final(I, AS(I,min ⋎ (ti))) s.t. I, t′′ |= α1 and (2)

t = t
I,AS(I,min ⋎ (ti))

α1 = max<{t′′ ∈ init(I, AS(I,min ⋎ (ti))) | I, t′′ |= α1} (see Defi-

nition 12.4). On the other hand, thanks to Proposition 8.3, since t < t′, V (t) = V (t′)
and t ∈ min ⋎ (ti), we have t′ ∈ min ⋎ (ti). Hence, we have t′ ∈ AS(I,min ⋎ (ti)). Since
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t′ ∈ ST (I,AS (I,min ⋎ (t
′
i)), α1), we also have I, t′ |= α1. From this and the property

(1), we can assert that t′ does not belong to final(I, AS(I,min ⋎ (ti))). It follows that
t′ ∈ init(I, AS(I,min ⋎ (ti))). From the property (2) we can assert that t ≥ t′, which

leads to a contradiction since t < t′. Therefore, for all t, t′ ∈ Anchors(I, T, ♢∼α1) s.t.
V (t) = V (t′), we must have t, t′ ∈ final(Anchors(I, T, ♢∼α1)).

Proposition 12.11. Let α ∈ L2 be of the form Oα1, where O ∈ {♢,□, ♢∼, □∼} and
α1 ∈ L2. Let I = (V, ⋎ ) ∈ Isd, and let T be a non-empty acceptable sequence w.r.t. I
where for all t ∈ T we have I, t |= α. Then, we have:

size(I,Anchors(I, T, α)) ≤ 2|P|.

Proof. Let I = (V, ⋎ ) ∈ Isd, and let T be a non-empty acceptable sequence w.r.t. I
s.t. for all t ∈ T we have I, t |= α. We show that is the case for the temporal operators
□,♢, □∼, ♢∼:

• Since size(I,Anchors(I, T,□α1)) = size(I, ∅) = 0, the result follows immedi-
ately.

• Since size(I,Anchors(I, T,♢α1)) = size(I,ST (I,N, α1)) = 1, the result follows
immediately.

• T is an acceptable sequence w.r.t. I s.t. for all t ∈ T we have I, t |= ♢∼α1.
From Proposition 12.10, for all t′i, t

′
j ∈ Anchors(I, T, ♢∼α1) s.t. V (t′i) = V (t′j) and

t′i ̸= t′j , we have t
′
i, t

′
j ∈ final(I,Anchors(I, T, ♢∼α1)). Thanks to Proposition 9.13,

we conclude that size(Anchors(I, T, ♢∼α1)) ≤ 2|P|.
• Going back to Definition 12.9, we have Anchors(I, T, □∼α1) =
DR(I,

⋃
ti∈T AS (I,min ⋎ (ti))). We denote the acceptable sequence⋃

ti∈T AS (I,min ⋎ (ti)) byN . From Definition 12.8 we have Anchors(I, T,□∼α1) =
DR(I,N) =

⋃
v∈val(I,N) ST (I,N, αv). Moreover, we know that

size(ST (I,N, αv)) = 1 for all v ∈ val(I,N). Consequently, thanks to
Proposition 9.12, we have size(

⋃
v∈val(I,N) ST (I,N, αv)) ≤ card(val(I,N)). We

can see that card(val(I,N)) ≤ 2|P|, and therefore size(Anchors(I, T, □∼α1)) =
size(

⋃
v∈val(I,N) ST (I,N, αv)) ≤ 2|P|.

Proposition 12.12. Let α1 ∈ L2, I = (V, ⋎ ) ∈ Isd, and let T be a non-empty
acceptable sequence w.r.t. I s.t. for all t ∈ T we have I, t |= □∼α1, with α1 ∈ L2. For
all acceptable sequences N w.r.t. I s.t. Anchors(I, T, □∼α1) ⊆ N and for all ti ∈ N∩T ,
let IN = (V N , ⋎ N ) be the pseudo-interpretation over N and t′ ∈ N . We have the
following:

If t′ ̸∈ min ⋎ (ti), then t′ ̸∈ min ⋎ N (ti).

Proof. Let I = (V, ⋎ ) ∈ Isd, and let T be a non-empty acceptable sequence w.r.t. I
s.t. for all t ∈ T we have I, t |= □∼α1, with α1 ∈ L2. Let N be an acceptable sequence
w.r.t. I s.t. Anchors(I, T, □∼α1) ⊆ N . Let ti ∈ N ∩ T . Let t′ ∈ N be a time point s.t.
t′ ̸∈ min ⋎ (ti). There are two possible cases:

• t′ ̸∈ [ti,∞[: Since t′ ̸∈ [ti,∞[, then t′ ̸∈ [ti,∞[∩N . Therefore, we conclude that
t′ ̸∈ min ⋎ N (ti).

• t′ ∈ [ti,∞[: Since ⋎ satisfies the well-foundedness condition (that is why T must
not be empty), t′ ̸∈ min ⋎ (ti) implies that there exists a time point t′′ ∈ min ⋎ (ti)
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s.t. (t′′, t′) ∈ ⋎ . Let αt′′ be the representative sentence of V (t′′) (recall that
αt′′ =

∧
{p | p ∈ V (t′′)} ∧

∧
{¬p | p ̸∈ V (t′′)}). For the sake of readability,

we shall denote the sequence
⋃

t∈T AS (I,min ⋎ (t)) with M . Notice that there

exists V ∈ val(I,M) such that V = V (t′′) since ti ∈ T and t′′ ∈ min ⋎ (ti).
Thanks to Definition 12.8, since DR(I,M) =

⋃
v∈val(I,M) ST (I,M,αv) and

V (t′′) ∈ val(I,M), we can find t′′′ ∈ ST (I,M,αt′′) where t′′′ ∈ DR(I,M) ⊆ N ,
V (t′′′) = V and t′′′ ≥ t′′. Since (t′′, t′) ∈ ⋎ , I ∈ Isd and V (t′′′) = V (t′′), we
have (t′′′, t′) ∈ ⋎ . Moreover, we have t′′′, t′ ∈ N , and therefore (t′′′, t′) ∈ ⋎ N . Since
t′′′ ∈ [ti,∞[∩N and (t′′′, t′) ∈ ⋎ N , we conclude that t′ ̸∈ min ⋎ N (ti).

Proposition 12.14. Let α ∈ L2 be in NNF, I = (V, ⋎ ) ∈ Isd, and let T be a non-
empty acceptable sequence w.r.t. I s.t. for all t ∈ T we have I, t |= α. Then, we have
size(I,Keep(I, T, α)) ≤ µ(α)× 2|P|.

Proof. Let I = (V, ⋎ ) ∈ Isd, and let T be a non-empty acceptable sequence w.r.t. I
s.t. for all t ∈ T we have I, t |= α where α ∈ L2.

We use structural induction on T and α in order to prove this property.

• Base: α = p or α = ¬p. We have Keep(I, T, α) = ∅. Since size(I, ∅) = 0 ≤
µ(α)× 2|P| = 0, then the property holds on atomic propositions.

• α = α1 ∧ α2. Since I, t |= α1 ∧ α2 for all t ∈ T , we can assert that I, t |= α1

and I, t |= α2. By applying the induction hypothesis on T , α1 and α2, we have
size(I,Keep(I, T, α1)) ≤ µ(α1)× 2|P| and size(I,Keep(I, T, α2)) ≤ µ(α2)× 2|P|.
Thanks to Proposition 9.12, size(Keep(I, T, α1 ∧ α2)) ≤ (µ(α1) + µ(α2))× 2|P|.
We conclude that size(I,Keep(I, T, α1 ∧ α2)) ≤ (µ(α1 ∧ α2))× 2|P|.

• α = α1∨α2. Since I, t |= α1∨α2 for all t ∈ T , we have I, t |= α1 or I, t |= α2. Let
T1 be the sequence (resp. T2) containing all t1 ∈ T (resp.t2 ∈ T ) s.t. I, t1 |= α1

(resp. I, t2 |= α2). Using induction hypothesis on T1, T2, α1 and α2, we have
size(I,Keep(I, T1, α1)) ≤ µ(α1)×2|P| and size(I,Keep(I, T2, α2)) ≤ µ(α2)×2|P|.
We conclude that size(I,Keep(I, T, α1 ∨ α2)) ≤ (µ(α1 ∨ α2))× 2|P| in the same
way as α1 ∧ α2.

• α = ♢α1. First of all, we proved in Proposition 12.11 that (I)
size(I,Anchors(I, T,♢α1)) ≤ 2|P|. On the other hand, thanks to Definition 12.9
it is easy to see that size(I,Anchors(I, T,♢α1)) is a non-empty acceptable se-
quence w.r.t. I s.t. for all t′ ∈ Anchors(I, T,♢α1) we have I, t′ |= α1. By the
induction hypothesis on Anchors(I, T,♢α1) and α1, we have (II)
size(I,Keep(I,Anchors(I, T,♢α1), α1)) ≤ µ(α1) × 2|P|. Thanks to Proposition
9.12, from (I) and (II) we conclude that size(I,Keep(I, T,♢α1)) ≤ (1+µ(α1))×
2|P| = µ(♢α1)× 2|P|.

• α = □α1. As a result of semantics of the □ operator, we can see that
for all t ∈ T we have I, t |= α1. By the induction hypothesis on T and
α1, we have size(I,Keep(I, T, α1)) ≤ µ(α1) × 2|P|. Since Keep(I, T, α1) =
Keep(I, T,□α1) then size(I,Keep(I, T,□α1)) ≤ µ(α1)× 2|P|. We conclude that
size(I,Keep(I, T,□α1)) ≤ µ(□α1)× 2|P|.

• α = ♢∼α1. First of all, we proved in Proposition 12.11 that (I)
size(I,Anchors(I, T, ♢∼α1)) ≤ 2|P|. On the other hand, thanks to Definition
12.9, it is easy to see that Anchors(I, T, ♢∼α1) is a non-empty acceptable se-
quence w.r.t. I s.t. for all t′ ∈ Anchors(I, T, ♢∼α1) we have I, t′ |= α1. By the
induction hypothesis on Anchors(I, T, ♢∼α1) and α1, we have (II)
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size(I,Keep(I,Anchors(I, T, ♢∼α1), α1)) ≤ µ(α1) × 2|P|. Thanks to Proposition
9.12, from (I) and (II), we conclude that size(I,Keep(I, T, ♢∼α1)) ≤ (1+µ(α1))×
2|P| = µ( ♢∼α1)× 2|P|.

• α = □∼α1. First of all, we proved in Proposition 12.11 that (I)
size(I,Anchors(I, T, □∼α1)) ≤ 2|P|. On the other hand, from Definition 12.13,
we have T ′ =

⋃
ti∈T AS (I,min ⋎ (ti)). It is easy to see that for all t′ ∈ T ′ we

have I, t′ |= α1 and that T ′ is a non-empty acceptable sequence w.r.t. I. By
the induction hypothesis on T ′ and α1, we have (II) size(I,Keep(I, T ′, α1)) ≤
µ(α1) × 2|P|. Thanks to Proposition 9.12, from (I) and (II) we conclude that
size(I,Keep(I, T, □∼α1)) ≤ (1 + µ(α1))× 2|P| = µ(□∼α1)× 2|P|.

Lemma 12.15. Let α ∈ L2 be in NNF, I = (V, ⋎ ) ∈ Isd, and let T be a non-empty
acceptable sequence w.r.t. I s.t. for all t ∈ T we have I, t |= α. For all acceptable
sequences N w.r.t. I, if Keep(I, T, α) ⊆ N , then for every t ∈ N∩T , we have IN , t |=P

α.

Proof. Let α ∈ L2 be in NNF, I = (V, ⋎ ) ∈ Isd, and let T be a non-empty acceptable
sequence w.r.t. I s.t. for all t ∈ T we have I, t |= α. Let N be an acceptable sequence
w.r.t. I s.t. Keep(I, T, α) ⊆ N and t ∈ N ∩T (we assume that N contains at least one
t ∈ T ). Let IN = (N,V N , ⋎ N ) be the pseudo-interpretation over N .

We use structural induction on T and α in order to prove this property.

• α = p or α = ¬p. Since I, t |= p (resp. ¬p), it means that p ∈ V (t) (resp.
p ̸∈ V (t)). We know that V N (t) = V (t). We conclude that IN , t |=P p (resp.
¬p).

• α = α1 ∧ α2. Since I, t |= α1 ∧ α2 for all t ∈ T , we can assert that I, t |= α1

and I, t |= α2. By applying the induction hypothesis on T , α1 and α2, since
Keep(I, T, α1) ⊆ N and Keep(I, T, α2) ⊆ N , therefore we have IN , t |=P α1 and
IN , t |=P α2. Thus, we have IN , t |=P α1 ∧ α2.

• α = α1 ∨ α2. Suppose that I, t |= α1 (the case I, t |= α2 can be treated in a
similar way) and let T1 be the sequence containing all t1 ∈ T s.t. I, t1 |= α1 .
Here, since t ∈ T1, therefore T1 is non-empty and t ∈ T1 ∩ N . We know that
Keep(I, T1, α1) ∪Keep(I, T2, α2) ⊆ N . Consequently Keep(I, T1, α1) ⊆ N . From
the induction hypothesis, we have IN , t |=P α1. Therefore, we have IN , t |=
α1 ∨ α2.

• α = ♢α1. We have I, t |= ♢α1 and we need to prove that IN , t |=P ♢α1.
I, t |= ♢α1 means that there exists t′ ∈ [t,∞[ such that I, t′ |= α1. There-
fore Anchors(I, T,♢α1) is non-empty (see Definition 12.9). We know that
Anchors(I, T,♢α1) ⊆ Keep(I, T,♢α1) ⊆ N , consequently Anchors(I, T,♢α1) ∩
N is non-empty. Thanks to Definition 12.9 it is easy to see that for all
t1 ∈ Anchors(I, T,♢α1) we have I, t1 |= α1. By the induction hypothesis on
Anchors(I, T,♢α1) and α1, since Keep(I,Anchors(I, T,♢α1), α1) ⊆ N , t′ ∈
Anchors(I, T,♢α1) (a non-empty acceptable sequence w.r.t I) and I, t′ |= α1,
thus IN , t′ |= α1. Therefore, we have IN , t |=P ♢α1.

• α = □α1. We have I, t |= □α1 and we need to prove that IN , t |=P □α1. We
know that for all t′ ≥ t we have I, t′ |= α1. We can assert that for all t′ ∈ N ∩ T
such that t′ ≥ t, we have IN , t′ |=P α1. By the induction hypothesis on T and
α1, Keep(I, T, α1) = Keep(I, T,□α1). Consequently Keep(I, T, α1) ⊆ N since
for all t′ ∈ N ∩ T , we have IN , t′ |=P α1. We conclude that IN , t |=P □α1.
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• α = ♢∼α1. We have I, t |= ♢∼α1 and we need to prove that IN , t |=P ♢∼α1.
I, t |= ♢∼α1 means that there exists t′ ∈ min ⋎ (t) such that I, t′ |= α1, and
therefore Anchors(I, T, ♢∼α1) is non-empty (see Definition 12.9). We know that
Anchors(I, T, ♢∼α1) ⊆ Keep(I, T, ♢∼α1) ⊆ N , consequently Anchors(I, T, ♢∼α1)∩
N is non-empty. Thanks to Definition 12.9 it is easy to see that for all
t1 ∈ Anchors(I, T, ♢∼α1) we have I, t1 |= α1. By the induction hypothe-
sis on Anchors(I, T, ♢∼α1) and α1, since Keep(I, T1, α1) ⊆ N with T1 =
Anchors(I, T, ♢∼α1), and T1 is an acceptable sequence where I, t′ |= α1 for all
t′ ∈ T1, we conclude (I) I

N , t′ |=P α1. Thanks to the construction of the pseudo-
interpretation IN , since t′ ∈ min ⋎ N (t), we have (II) t′ ∈ min ⋎ (t). From (I) and

(II), we conclude that IN , t |=P ♢∼α1.
• α = □∼α1. We have I, t |= □∼α1 and we need to prove that IN , t |=P □∼α1.

I, t |= □∼α1 means that for all t′ ∈ min ⋎ (t) we have I, t′ |= α1, there-

fore for all t′ ∈ T ′ =
⋃

ti∈T AS (I,min ⋎ (ti)) we have I, t′ |= α1. In addition,

thanks to the well-foundedness condition on ⋎ , T ′ is non-empty. We know that
Anchors(I, T, □∼α1) ⊆ Keep(I, T, □∼α1) ⊆ N and that Anchors(I, T, □∼α1) =
DR(I, T ′), consequently T ′ ∩ N is non-empty. We use proof by contradiction.
Suppose that IN , t ̸|=P □∼α1, which means there exists t′ ∈ min ⋎ N (ti) s.t.

IN , t′ ̸|=P α1. Thanks to Proposition 12.12, if t′ ∈ min ⋎ N (ti), then t′ ∈ min ⋎ (ti).
Just a reminder, we have T ′ =

⋃
ti∈T AS (I,min ⋎ (ti)) where for all t′′ ∈ T ′

we have I, t′′ |= α1. Note that T ′ is a non-empty acceptable sequence w.r.t.
I. By the induction hypothesis on T ′ and α1, since Keep(I, T ′, α1) ⊆ N , and
t′ ∈ AS (I,min ⋎ (t)) ⊆ T ′, therefore IN , t′ |=P α1. This conflicts with our sup-

position. We conclude that there is no t′ ∈ min ⋎ N (t) s.t. IN , t′ ̸|=P α1, and

therefore IN , t |=P □∼α1.

Appendix E. Proof of results in Section 13

NB: The results marked (∗) are introduced here, while they are omitted in the main
text.

Proposition 13.6. Let S = (i, π, VS , ⋎ S) be a structure, I(S) = (V, ⋎ ) be its corre-
sponding interpretation and t, t′, tS , t′S ∈ N s.t.:

tS =

{
t if t < i;

i+ (t− i) mod π otherwise.
t′S =

{
t′ if t′ < i;

i+ (t′ − i) mod π otherwise.

We have the following: t′ ∈ min ⋎ (t) iff t′S ∈ min ⋎ S
(tS).

Proof. Let S = (i, π, VS , ⋎ S) be a finite preferential structure, I(S) = (V, ⋎ ) and
t, t′ ∈ N.

• For the only-if part, we use proof by contradiction. We assume that t′ ∈ min ⋎ (t)
and suppose that t′S ̸∈ min ⋎ S

(tS). Following the assumption, t′ ∈ min ⋎ (t) means

that there is no t′′ ∈ [t,∞[ s.t. (t′′, t′) ∈ ⋎ . On the other hand, t′S ̸∈ min ⋎ S
(tS)

means that there exists t′′S ∈ [min<{tS , i}, i+π[ with (VS(t
′′
S), VS(t

′
S)) ∈ ⋎ S (Note
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that t′S is also in [min<{tS , i}, i + π[). Note that following Definition 13.4, we
have VS(tS) = V (tS), VS(t

′
S) = V (t′S) and VS(t

′′
S) = V (t′′S). Knowing that t′S , t

′′
S ∈

[0, i + π[ and (VS(t
′′
S), VS(t

′
S)) ∈ ⋎ S , then we have (t′′S , t

′
S) ∈ ⋎ . We discuss two

cases: t ∈ [0, i[ and t ∈ [i,∞[.

◦ If t ∈ [0, i[, then we have t = tS and t′′S ∈ [t, i+π[ (t = tS = [min<{tS , i}, i+
π[). Thanks to Definition 13.4, since t′S = t′ in the case of t′ ∈ [0, i[ and
t′S = i+(t′− i) mod π in the case of t′ ∈ [i,∞[, then we have V (t′) = V (t′S).
Moreover, since I(S) ∈ Isd, V (t′) = V (t′S) and (t′′S , t

′
S) ∈ ⋎ , then we have

(t′′S , t
′) ∈ ⋎ . This conflicts with the assumption of t′ ∈ min ⋎ (t).

◦ If t ∈ [i,∞[, then tS , t
′
S , t

′′
S ∈ [i, i + π[ (tS ≥ i and therefore i =

min<{tS , i}, i+ π[ for both t′S , t
′′
S). This entails that tS , t

′
S , t

′′
S ∈ final(I(S)).

On the hand we have V (t) = VS(tS) and V (t′) = VS(t
′
S) thanks to Defini-

tion 13.4. Thanks to Proposition 9.3, since t′′S and t are in final(I(S)), then
there exists t′′′ ∈ [t,∞ where V (t′′′) = V (t′′S). Since I(S), V (t′′′) = V (t′′S)
and V (t′) = VS(t

′
S). This conflicts with the assumption of t′ ∈ min ⋎ (t).

• For the if part, we also use proof by contradiction. We assume that
t′S ∈ min ⋎ S

(tS) and suppose that t′ ̸∈ min ⋎ (t). Following the assump-

tion, t′S ∈ min ⋎ S
(tS) entails that there is no t′′S ∈ [min<{tS , i}, i +

π[ with (VS(t
′′
S), VS(t

′
S)) ∈ ⋎ S . On the other hand, t′ ̸∈ min ⋎ (t) means that

there exists t′′′ ∈ [t,∞[ where (t′′, t′) ∈ ⋎ . Let t′′′S be its corresponding points on
the finite structure S. t′′′s is defined as follows:

t′′′S =

{
t′′′ if t′′′ < i;

i+ (t′′′ − i) mod π otherwise.

The definition of tS , t
′
S , t

′′′
S in this proposition has two results. The first of which

is that tS , t
′
S , t

′′′
S are all in [0, i+π[. The second is that, thanks to Definition 13.4,

we have VS(tS) = V (t), VS(t
′
S) = V (t′) and VS(t

′′′
S ) = V (t′′′). Moreover, since

(t′′′, t′) ∈ ⋎ , then (V (t′′′), V (t′)) ∈ ⋎ S and therefore (VS(t
′′′
S ), VS(t

′
S)) ∈ ⋎ S . Next

we show that t′′′S ∈ [min<{tS , i}, i+ π[. We discuss two cases.

◦ If t′′′S ∈ [0, i[, then we have t′′′S = t′′′. Moreover, since t′′′ ≥ t, we also
have t ∈ [0, i[, therefore tS = t and t′′′S ∈ [tS , i + π[. Thus, we have t′′′S ∈
[min<{tS , i}, i+ π[.

◦ The other case is when t′′′S ∈ [i, i+π[. It follows that t′′′S ∈ [min<{tS , i}, i+π[.

Since (VS(t
′′′
S ), VS(t

′
S)) ∈ ⋎ S and t′′′S ∈ [min<{tS , i}, i+π[, then t′S ̸∈ min ⋎ S

(tS).

THis conflicts with the assumption of t′S ∈ min ⋎ S
(tS).

Definition E.1 (∗). Given a UPI I = (V, ⋎ ), we define the finite preferential structure
S(I) = (i, π, VS , ⋎ S) by:

• i = length(init(I)), π = card(range(I));
• VS(t) = V (t) for all t ∈ [0, i+ π[;
• for all t, t′ ∈ [0, i+ π[, (V (t), V (t′)) ∈ ⋎ S iff (t, t′) ∈ ⋎ .

It is worth to note that Definition E.1 is possible because I is an UPI. In particular,
UPIs are state-dependent interpretations, i.e., in Isd. Therefore, for each t, t′, t′′, t′′′
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where V (t) = V (t′) and V (t′′) = V (t′′′), then t ⋎ t′′ iff t′′ ⋎ t′′′. Thus, it is possible to
have a compact representation of the preference relation of UPIs.

Next, we shall show that given an UPI I, the induced interpretation from the
finite preferential structure I(S(I)) and I are the same. Let I = (V, ⋎ ) be an UPI
and S(I) = (i, π, VS , ⋎ S) be its finite preferential structure. Let I(S(I)) = (V ′, ⋎ ′)
be the induced interpretation of S(I). Since VS(t) = V (t) for all t ∈ [0, i + π[ and
V ′(t) = VS(t) for all t ∈ [0, i + π[, then V ′(t) = V (t) for all t ∈ [0, i + π[. Given
a t ∈ [i + π,∞[, since V (t) = V (i + (t − i) mod π) (see Definition 13.1, note that
tI = length(init(I)) = i and π = card(range(I))) and i + (t − i)) mod π ∈ [i, i + π[,
then VS(i + (t − i)) mod π) = V (i + (t − i) mod π). On the other hand, we have
V ′(t) = VS(i + (t − i)) mod π) for t ∈ [i + π,∞[ (see Definition 13.4), then we
have V ′(t) = V (t). Therefore, for any t ∈ N, we have V ′(t) = V (t). Moreover, given
any (t, t′) ∈ ⋎ , we have ((V (t), V (t′)) ∈ ⋎ S). Since (V (t), V (t′)) ∈ ⋎ S , V (t) = V ′(t)
and V (t′) = V ′(t′), then we have (t, t′) ∈ ⋎ ′. The if part follows the same reasoning.
Therefore for any t, t′ ∈ N, we have (t, t′) ∈ ⋎ iff (t, t′) ∈ ⋎ ′.

Proposition 13.10. Let α ∈ L2. We have that α is Isd-satisfiable iff there exists a
finite preferential structure S such that I(S), 0 |= α and size(I(S)) ≤ |α| × 2|P|.

Proof. Let α ∈ L2.

• For the only if part, let α be Isd-satisfiable. Thanks to Theorem 12.1 and
Proposition 13.2, there exists a UPI I = (V, ⋎ ) ∈ Isd s.t. I, 0 |= α and
size(I) ≤ |α| × 2|P|. We define the structure S(I) from I. Since I and I(S(I))
are the same interpretation, then from Isd-satisfiable sentence α, we can find a
finite preferential structure S such that I(S), 0 |= α and size(I(S)) ≤ |α| × 2|P|.

• For the if part, let S = (i, π, VS , ⋎ S) be a structure s.t. I(S), 0 |= α. Since
I(S) ∈ Isd, therefore α is Isd-satisfiable.

Lemma 13.9 is a particular case of the following Lemma.

Lemma E.2 (∗). Let S = (i, π, VS , ⋎ S), α ∈ L2 be a finite preferential structure,
α1 ∈ Sf (α) and t, t′ ∈ N such that:

t′ =

{
t if t < i;

i+ (t− i) mod π otherwise.

We have I(S), t |= α1 iff α1 ∈ labSα(t
′).

Proof. Let S = (i, π, VS , ⋎ S) be a finite preferential structure, α ∈ L2, α1 ∈ Sf (α),
t ∈ N and I(S) = (V, ⋎ ). We use structural induction on α1 to prove the Lemma. Let
t′ be a time point s.t. t′ = t, if t ∈ [0, i[, and t′ = i+ (t− i) mod π, if t ∈ [i,∞[.

• α1 = p. If t ∈ [0, i[, then we have VS(t
′) = V (t). Thus p ∈ VS(t) iff p ∈ V (t),

and therefore I(S), t |= p iff p ∈ labSα(t). If t ∈ [i,∞[, we have VS(t
′) = V (t) .

Following the same reasoning as the previous case, I(S), t |= p iff p ∈ labSα(t
′).

• α1 = ¬α2. By the induction hypothesis, we have I(S), t |= α2 iff α2 ∈ labSα(t
′),

and therefore I(S), t ̸|= α2 iff α2 ̸∈ labSα(t
′). We conclude that I(S), t |= ¬α2 iff

¬α2 ∈ labSα(t
′).
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• α1 = α2 ∧α3. By the induction hypothesis, we have I(S), t |= α2 iff α2 ∈ labSα(t
′)

and I(S), t |= α3 iff α3 ∈ labSα(t
′), and therefore I(S), t |= α2 ∧ α3 iff α2 ∧ α3 ∈

labSα(t
′).

• α1 = ♢α2.
◦ For the only-if part, let I(S), t |= ♢α2. We have t2 ∈ [t,∞[ s.t. I(S), t2 |=
α2. Depending on where t2 is, there exists a t′2 s.t. t′2 = t2 if t2 ∈ [0, i[
and t′2 = i + (t2 − i) mod π if t2 ∈ [i,∞[. By the induction hypothesis
on α2, we have α2 ∈ labSα(t

′
2). Note that t′2 is [0, i + π[. Next, we show

that t′2 ∈ [min<{t′, i}, i + π[. When t′2 ∈ [0, i[, then we have t′ = t and
t′2 = t2. Since t ≤ t2, then t′2 ∈ [t′, i[ and without a loss of generality t′2 ∈
[min<{t′, i}, i+π[. When t′2 ∈ [i, i+π[, it follows that t′2 ∈ [min<{t′, i}, i+π[.
In both cases, since α2 ∈ labSα(t

′
2) and t′2 ∈ [min<{t′, i}, i+ π[, we conclude

that ♢α2 ∈ labSα(t
′) (see Definition 13.8).

◦ For the if part, let I(S), t ̸|= ♢α2. I(S), t |= ¬♢α2 means that for all t2 ≥ t
we have I(S), t2 ̸|= α2. By the induction hypothesis, for all t2 ≥ t, we have
α2 ̸∈ labSα(t

′
2) where t′2 = t2 if t2 ∈ [0, i[ and t′2 = i+ (t2 − i) mod π if t2 ∈

[i,∞[. Following the same reasoning as the only-part proof, we can check
that for all t2 ≥ t, we have t′2 ∈ [min<{t′, i}, i+ π[. Therefore α2 ̸∈ labSα(t

′
2)

for all t′2 ∈ [min<{t′, i}, i + π[. Going back to Definition 13.8, we conclude
that ♢α2 ̸∈ labSα(t

′)
• α1 = ♢∼α2.

◦ For the only-if part, let I(S), t |= ♢∼α2. We have t2 ∈ min ⋎ (t) s.t. I(S), t2 |=
α2. Depending on where t2 is, there exists a t′2 s.t. t′2 = t2 if t2 ∈ [0, i[ and
t′2 = i+(t2− i) mod π if t2 ∈ [i,∞[. By the induction hypothesis on α2, we
have α2 ∈ labSα(t

′
2). From Proposition 13.6, we can see that t2 ∈ min ⋎ (t) iff

t′2 ∈ min ⋎ S
(t′). Going back to Definition 13.8, since there is t′2 ∈ min ⋎ S

(t′)

where α2 ∈ labSα(t
′
2), we conclude that ♢∼α2 ∈ labSα(t

′).
◦ For the if part, let I(S), t ̸|= ♢∼α2. I(S), t |= ¬ ♢∼α2 means that for all
t2 ∈ min ⋎ (t) we have I(S), t2 ̸|= α2. By the induction hypothesis on α2,

for all t2 ∈ min ⋎ (t), we have (I) α1 ̸∈ labSα(t
′
2) where t′2 = t2 if t2 ∈ [0, i[

and t′2 = i+ (t2 − i) mod π if t2 ∈ [i,∞[. From Proposition 13.6, we can
see that (II) t2 ∈ min ⋎ (t) iff t′2 ∈ min ⋎ S

(t′) for all t2 ≥ t. Going back to

Definition 13.8, since α2 ∈ labSα(t
′
2) for all t

′
2 ∈ min ⋎ S

(t′), we conclude that

♢∼α1 ̸∈ labSα(t
′).
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