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 asks for finding a partial model on the set of variables X, maximizing its number of projected models over the set of variables Y . We investigate a strict generalization of Max#SAT allowing dependencies for variables in X, effectively turning it into a synthesis problem. We show that this new problem, called DQMax#SAT , subsumes both the DQBF [22] and DSSAT [18] problems. We provide a general resolution method, based on a reduction to Max#SAT , together with two improvements for dealing with its inherent complexity. We further discuss a concrete application of DQMax#SAT for symbolic synthesis of adaptive attackers in the field of program security. Finally, we report preliminary results obtained on the resolution of benchmark problems using a prototype DQMax#SAT solver implementation.

Introduction

A major concern in software security are active adversaries, i.e., adversaries that can interact with a target program by feeding inputs. Moreover, these adversaries can often make observations about the program execution through side-channels and/or legal outputs. In this paper, we consider adaptive adversaries, i.e., adversaries that choose their inputs by taking advantage of previous observations.

In order to get an upper bound of the insecurity of a given program with respect to this class of adversaries, a possible approach is to synthesize the best adaptive attack strategy. This can be modelled as finding a function A (corresponding to the adversarial strategy) satisfying some logical formula Φ (capturing some combination of attack objectives). Actually, this corresponds to a classical functional synthesis problem.

Informally, in our case, given a Boolean relation Φ between output variables (observables) and input variables (attacker provided), our goal is to synthesize each input variable as a function on preceeding outputs satisfying Φ. In the literature, this synthesis problem is captured by the so-called Quantified Boolean ⋆⋆ Institute of Engineering Univ. Grenoble Alpes Formulae (QBF) satisfiability problem [START_REF] Garey | Computers and Intractability: A Guide to the Theory of NP-Completeness[END_REF][START_REF] Garey | An Application of Graph Coloring to Printed Circuit Testing[END_REF] and its generalization, the Dependency Quantified Boolean Formulae (DQBF ) satisfiability problem [START_REF] Peterson | Multiple-Person Alternation[END_REF].

These existing qualitative frameworks are not sufficient in a security context: we are not only interested by adversaries able to succeed in all cases, but rather for adversaries succeeding with "a good probability". The Stochastic SAT (SSAT ) problem [START_REF] Papadimitriou | Games Against Nature[END_REF] was therefore proposed and replaces the classical universal (resp. existential) quantifiers by counting (resp. maximizing) quantifiers. This corresponds to finding the optimal inputs, depending on preceeding outputs, that maximize the number of models of Φ, hence the succeeding probability of the attack. More recently, the Dependency Stochastic SAT (DSSAT ) problem [START_REF] Lee | Dependency Stochastic Boolean Satisfiability: A Logical Formalism for NEXPTIME Decision Problems with Uncertainty[END_REF] has been proposed as a strict generalization of the SSAT problem by allowing explicit dependencies for maximizing variables, in a similar way the DQBF problem generalizes the QBF problem.

Nonetheless, an additional complication is hindering the use of quantitative stochastic frameworks in our security context. In general, the output variables in a program may hold expressions computed from one or more secret variables. Consequently, they rarely translate as counting variables in a stochastic formula. Most likely, the above-mentioned secret variables translate into counting variables whereas the observable variables need to be projected out when counting the models. Yet, the output variables are mandatory to express the knowledge available and the dependencies for synthesizing the attacker's optimal inputs.

As an example, we are interested in solving counting problems of the form: max {z1} x 1 . max {z2} x 2 . Ry 1 . Ry 2 . ∃z 1 . ∃z 2 .

(x 1 ⇒ y 2 ) ∧ (y 1 ⇒ x 2 ) ∧ (y 1 ∨ z 2 ⇔ y 2 ∧ z 1 )

which involve three distinct types of quantified variables and which are interpreted as follows: synthesize for x 1 (respectively x 2 ) a boolean expression e 1 (respectively e 2 ), depending only on z 1 (respectively z 2 ), such that the formula obtained after replacing x i by e i has a maximal number of models projected on the counting variables y 1 , y 2 .

Notice that this problem generalizes in a non-trivial way three well-known existing problems: (i) it generalizes the Max#SAT problem [START_REF] Fremont | Maximum Model Counting[END_REF][START_REF] Vigouroux | BaxMC: a CEGAR approach to Max#SAT[END_REF] by allowing the maximizing variables to depend symbolically on other variables; (ii) it lifts the DQBF problem [START_REF] Peterson | Multiple-Person Alternation[END_REF] to a quantitative problem, we do not want to check if there exist expressions e i working for all y 1 , y 2 , but to find expressions e i maximizing the number of models on y 1 , y 2 ; (iii) it extends the DSSAT problem [START_REF] Lee | Dependency Stochastic Boolean Satisfiability: A Logical Formalism for NEXPTIME Decision Problems with Uncertainty[END_REF] with the additional category of existential variables, which can occur in the dependencies of maximizing variables, but which are projected for model counting.

Our contributions are the following:

-We introduce formally the DQMax#SAT problem as a new problem that arises naturally in the field of software security, and we show that it subsumes the Max#SAT , DQBF and DSSAT problems. -We develop a general resolution method based on a reduction to Max#SAT and further propose two improvements in order to deal with its inherent complexity: (i) an incremental method, that enables anytime resolution; (ii) a local method, allowing to split the initial problem into independent smaller sub-problems, enabling parallel resolution. -We provide two applications of DQMax#SAT to software security: we show that quantitative robustness [START_REF] Bardin | A Quantitative Flavour of Robust Reachability[END_REF] and programs as information leakage-channels [START_REF] Smith | On the Foundations of Quantitative Information Flow[END_REF][START_REF] Phan | Synthesis of Adaptive Side-Channel Attacks[END_REF] can be systematically cast as instances of the DQMax#SAT problem. -We provide a first working prototype solver for the DQMax#SAT problem and we apply it to the examples considered in this paper.

The paper is organized as follows. Section 2 introduces formally the DQ-Max#SAT problem and its relation with the Max#SAT , DQBF and DSSAT problems. Sections 3 to 5 present the three different approaches we propose for solving DQMax#SAT . Section 6 shows concrete applications of DQMax#SAT in software security, that is, for the synthesis of adaptive attackers. Finally, Section 7 provides preliminary experimental results obtained with our prototype DQMax#SAT solver. Section 8 discusses some references to related work and Section 9 concludes and proposes some extensions to address in the future.

Problem statement

Preliminaries

Given a set V of Boolean variables, we denote by F V (resp. M V ) the set of Boolean formulae (resp. complete monomials) over V . A model of a boolean formula φ ∈ F V is an assignement α V : V → B of variables to Boolean values such that φ evaluates to ⊤ (that is, true) on α V , it is denoted by α V |= φ. A formula is satisfiable if it has at least one model α V . A formula is valid (i.e., tautology) if any assignement α V is a model.

Given a formula φ ∈ F V we denote by |φ| V the number of its models, for-

mally |φ| V def = |{α V : V → B | α V |= φ}|. For a partitioning V = V 1 ⊎ V 2 we de- note by |∃V 2 . φ| V1 the number of its V 1 -projected models, formally |∃V 2 . φ| V1 def = |{α V1 : V 1 → B | ∃α V2 : V 2 → B. α V1 ⊎ α V2 |= φ}|. Note that in general |∃V 2 . φ| V1 ≤ |φ| V with
equality only in some restricted situations (e.g. when V 1 is an independent support of the formula [START_REF] Chakraborty | Balancing Scalability and Uniformity in SAT Witness Generator[END_REF]).

Let V , V ′ , V ′′ be arbitrary sets of Boolean variables. Given a Boolean formula φ ∈ F V and a substitution σ : V ′ → F V ′′ we denote by φ[σ] the Boolean formula in F (V \V ′ )∪V ′′ obtained by replacing in φ all occurrences of variables v ′ from V ′ by the associated formula σ(v ′ ).

Problem Formulation

Definition 1 (DQMax#SAT problem). Let X = {x 1 , ..., x n }, Y , Z be pairwise disjoint finite sets of Boolean variables, called respectively maximizing, counting and existential variables. The DQMax#SAT problem is specified as:

max H1 x 1 . ... max Hn x n . RY. ∃Z. Φ(X, Y, Z) (1) 
where H 1 , ..., H n ⊆ Y ∪Z and Φ ∈ F X ∪Y ∪Z are respectively the dependencies of maximizing variables and the objective formula.

The solution to the problem is a substitution σ * X : X → F Y ∪ Z associating formulae on counting and existential variables to maximizing variables such that

(i) σ * X (x i ) ∈ F H i , for all i ∈ [1, n] and (ii) |∃Z. Φ[σ * X ]| Y is maximal.
That means, the chosen substitution conforms to dependencies on maximizing variables and guarantees the objective holds for the largest number of models projected on the counting variables.

Example 1. Consider the problem:

max {z1,z2} x 1 . Ry 1 . Ry 2 . ∃z 1 . ∃z 2 . (x 1 ⇔ y 1 ) ∧ (z 1 ⇔ y 1 ∨ y 2 ) ∧ (z 2 ⇔ y 1 ∧ y 2 )
Let Φ denote the objective formula. In this case,

F {z 1 , z 2 } = {⊤, ⊥, z 1 , z 1 , z 2 , z 2 , z 1 ∨ z 2 , z 1 ∨ z 2 , z 1 ∨ z 2 , z 1 ∨ z 2 , z 1 ∧ z 2 , z 1 ∧ z 2 , z 1 ∧ z 2 , z 1 ∧ z 2 , z 1 ⇔ z 2 , z 1 ⇔ z 2 },
and one shall consider every possible substitution. One can compute for instance

Φ[x 1 → z 1 ∧ z 2 ] ≡ ((z 1 ∧ z 2 ) ⇔ y 1 ) ∧ (z 1 ⇔ y 1 ∨ y 2 ) ∧ (z 2 ⇔ y 1 ∧ y 2 ) which only has one model ({y 1 → ⊥, y 2 → ⊤, z 1 → ⊤, z 2 → ⊥}) and henceforth |∃z 1 . ∃z 2 . Φ[x 1 → z 1 ∧ z 2 ]| {y1,y2} = 1.
Overall, for this problem there exists four possible maximizing substitutions σ * respectively

x 1 → z 1 , x 1 → z 2 , x 1 → z 1 ∨z 2 , x 1 → z 1 ∧ z 2 such that for all of them |∃z 1 . ∃z 2 . Φ[σ * ]| {y1,y2} = 3.
Example 2. Let us consider the following problem:

max {z1} x 1 . max {z2} x 2 . Ry 1 . Ry 2 . ∃z 1 . ∃z 2 . (x 1 ⇒ y 2 ) ∧ (y 1 ⇒ x 2 ) ∧ (y 1 ∨ z 2 ⇔ y 2 ∧ z 1 )
Let Φ denote the associated objective formula. An optimal solution is x 1 → ⊥, x 2 → z 2 and one can check that |∃z 1 . ∃z 2 . Φ[x 1 → ⊥, x 2 → z 2 ]| {y1,y2} = 3. Moreover, on can notice that there do not exist expressions e 1 ∈ F {z 1 } (respectively e 2 ∈ F {z 2 } ), such that ∃z 1 . ∃z 2 . Φ[x 1 → e 1 , x 2 → e 2 ] admits the model y 1 → ⊤, y 2 → ⊥.

The following proposition provides an upper bound on the number of models corresponding to the solution of (1) computable using projected model counting.

Proposition 1. For any substitution σ

X : X → F Y ∪ Z it holds |∃Z. Φ[σ X ]| Y ≤ |∃X. ∃Z. Φ| Y .

Hardness of DQMax#SAT

We briefly discuss now the relationship between the DQMax#SAT problem and the Max#SAT , DQBF and DSSAT problems. It turns out that DQMax#SAT is at least as hard as all of them, as illustrated by the following reductions.

DQMax#SAT is at least as hard as Max#SAT : Let X = {x 1 , ..., x n }, Y , Z be pairwise disjoint finite sets of Boolean variables, called maximizing, counting and existential variables. The Max#SAT problem [START_REF] Fremont | Maximum Model Counting[END_REF] 

= H 2 = ... = H n = ∅.
DQMax#SAT is at least as hard as DQBF : Let X = {x 1 , ..., x n }, Y be disjoint finite sets of Boolean variables and let H 1 , ..., H n ⊆ Y . The DQBF problem [START_REF] Peterson | Multiple-Person Alternation[END_REF] asks, given a DQBF formula:

∀Y. ∃ H1 x 1 . ... ∃ Hn x n . Φ(X, Y ) (3) 
to synthesize a substitution σ * X : X → F Y whenever one exists such that

(i) σ * X (x i ) ∈ F H i , for all i ∈ [1, n] and (ii) Φ[σ * X ] is valid. The DQBF problem is reduced to the DQMax#SAT problem: max H1 x 1 . ... max Hn x n . RY. Φ(X, Y ) (4) 
By solving (4) one can solve the initial DQBF problem (3). Indeed, let σ * X : X → F Y be a solution for [START_REF] Chakraborty | From Weighted to Unweighted Model Counting[END_REF]. Then, the DQBF problem admits a solution if and

only if |Φ[σ * X ]| Y = 2 |Y | . Moreover, σ *
X is a solution for the problem (3) because (i) σ * X satisfies dependencies and (ii) Φ[σ * X ] is valid as it belongs to F Y and has 2 |Y | models. Note that through this reduction of DQBF to DQMax#SAT , the maximizing quantifiers in DQMax#SAT can be viewed as Henkin quantifiers [START_REF] Henkin | Some Remarks on Infinitely Long Formulas[END_REF] in DQBF with a quantitative flavor.

DQMax#SAT is at least as hard as DSSAT : Let X = {x 1 , ..., x n }, Y = {y 1 , ..., y m } be disjoint finite sets of variables. A DSSAT formula is of the form:

max H1 x 1 . ... max Hn x n . R p1 y 1 . ... R pm y m . Φ(X, Y ) (5) 
where p 1 , ..., p m ∈ [0, 1] are respectively the probabilities of variables y 1 , ..., y m to be assigned ⊤ and H 1 , ..., H n ⊆ Y are respectively the dependency sets of variables x 1 , ..., x n . Given a DSSAT formula (5), the probability of an assignement α Y : Y → B is defined as

P [α Y ] def = m i=1 p i if α Y (y i ) = ⊤ 1 -p i if α Y (y i ) = ⊥
This definition is lifted to formula Ψ ∈ F Y by summing up the probabilities of its models, that is,

P [Ψ ] def = αY |=Ψ P [α Y ].
The DSSAT problem [START_REF] Lee | Dependency Stochastic Boolean Satisfiability: A Logical Formalism for NEXPTIME Decision Problems with Uncertainty[END_REF] asks, for a given formula [START_REF] Chakraborty | A Scalable Approximate Model Counter[END_REF], to synthesize a substitution σ *

X : X → F Y such that (i) σ * X (x i ) ∈ F H i , for all i ∈ [1, n] and (ii) P [Φ[σ * X ]] is maximal. If p 1 = ... = p m = 1 2 then for any substitution σ X : X → F Y it holds P [Φ[σ X ]] = |Φ[σX ]|Y 2 m
. In this case, it is immediate to see that solving (5) as a DQMax#SAT problem (i.e., by ignoring probabilities) would solve the original DSSAT problem. Otherwise, in the general case, one can use existing techniques such as [START_REF] Chakraborty | From Weighted to Unweighted Model Counting[END_REF] to transform arbitrary DSSAT problems (5) into equivalent ones where all probabilities are 1 2 and solve them as above. Note that while the reduction above from DSSAT to DQMax#SAT seems to indicate the two problems are rather similar, a reverse reduction from DQ-Max#SAT to DSSAT seems not possible in general. That is, recall that DQ-Max#SAT allows for a third category of existential variables Z which can occur in the dependencies sets H i and which are not used for counting but are projected out. Yet, such problems arise naturally in our application domain as illustrated later in section 6. If no such existential variables exists or if they do not occur in the dependencies sets then one can apriori project them from the objective Φ and syntactically reduce DQMax#SAT to DSSAT (i.e., adding 1 2 probabilities on counting variables). However, projecting existential variables in a brute-force way may lead to an exponential blow-up of the objective formula Φ, an issue already explaining the hardness of projected model counting vs model counting [START_REF] Aziz | #∃SAT: Projected Model Counting[END_REF][START_REF] Lagniez | A Recursive Algorithm for Projected Model Counting[END_REF]. Otherwise, in case of dependencies on existential variables, it is an open question if any direct reduction exists as these variables do not fit into the two categories of variables (counting, maximizing) occurring in DSSAT formula.

Global method

We show in this section that the DQMax#SAT problem can be directly reduced to a Max#SAT problem with an exponentially larger number of maximizing variables and exponentially bigger objective formula.

First, recall that any boolean formula ϕ ∈ F H can be written as a finite disjunction of a subset M ϕ of complete monomials from M H , that is, such that the following equivalences hold:

ϕ ⇐⇒ ∨ m∈Mϕ m ⇐⇒ ∨ m∈M H ([[m ∈ M ϕ ]] ∧ m) Therefore, any formula ϕ ∈ F H is uniquely encoded by the set of boolean values [[m ∈ M ϕ ]
] denoting the membership of each complete monomial m to M ϕ . We use this idea to encode the substitution of a maximizing variable x i by some formula ϕ i ∈ F H i by using a set of boolean variables

(x ′ i,m ) m∈M Hi denoting respectively [[m ∈ M ϕi ]
] for all m ∈ M H i . We now define the following Max#SAT problem:

(max x ′ 1,m .) m∈M H1 ... (max x ′ n,m .) m∈M Hn RY. ∃Z. ∃X. Φ(X, Y, Z) ∧ i∈[1,n] x i ⇔ ∨ m∈M Hi (x ′ i,m ∧ m) (6)
The next theorem establishes the relation between the two problems.

Theorem 1. σ * X = {x i → ϕ * i } i∈[1,n] is a solution to the problem DQMax#SAT (1) if and only if α * X ′ = {x ′ i,m → [[m ∈ M ϕ * i ]]} i∈[1,n],
m∈M Hi is a solution to Max#SAT problem [START_REF] Chakraborty | Balancing Scalability and Uniformity in SAT Witness Generator[END_REF].

Proof. Let us denote Φ ′ (X ′ , X, Y, Z) def = Φ(X, Y, Z) ∧ i∈[1,n] x i ⇔ ∨ m∈M Hi (x ′ i,m ∧ m) Actually, for any Φ ∈ F X ∪ Y ∪ Z for any ϕ 1 ∈ F H 1 , ..., ϕ n ∈ F H n the following equivalence is valid: Φ(X, Y, Z)[{x i → ϕ i } i∈[1,n] ] ⇔ (∃X. Φ ′ (X ′ , X, Y, Z)) {x ′ i,m → [[m ∈ M ϕi ]]} i∈[1,n],m∈M Hi
Consequently, finding the substitution σ X which maximize the number of Ymodels of the left-hand side formula (that is, of ∃Z. Φ(X, Y, Z)) is actually the same as finding the valuation α X ′ which maximizes the number of Y -models of the right-hand side formula (that is, ∃Z. ∃X.

Φ ′ (X ′ , X, Y, Z)). ⊓ ⊔ Example 3.
Example 1 is reduced to the following:

max x ′ 1,z1z2 . max x ′ 1,z1z2 . max x ′ 1,z1z2 . max x ′ 1,z1z2 . Ry 1 . Ry 2 . ∃z 1 . ∃z 2 . ∃x 1 . (x 1 ⇔ y 1 ) ∧ (z 1 ⇔ y 1 ∨ y 2 ) ∧ (z 2 ⇔ y 1 ∧ y 2 )∧ (x 1 ⇔ x ′ 1,z1z2 ∧ z 1 ∧ z 2 ∨ x ′ 1,z1z2 ∧ z 1 ∧ z 2 ∨ x ′ 1,z1z2 ∧ z 1 ∧ z 2 ∨ x ′ 1,z1z2 ∧ z 1 ∧ z 2 ) One possible answer is x ′ 1,z1z2 → ⊤, x ′ 1,z1z2 → ⊤, x ′ 1,z1z2 → ⊥, x ′ 1,z1z2 → ⊥. This yields the solution σ X (x 1 ) = (z 1 ∧ z 2 )∨(z 1 ∧ z 2 ) = z 1
which is one of the optimal solutions as explained in Example 1.

Incremental method

In this section we propose a first improvement with respect to the reduction in the previous section. It allows to control the blow-up of the objective formula in the reduced Max#SAT problem through an incremental process. Moreover, it allows in practice to find earlier good approximate solutions.

The incremental method consists in solving a sequence of related Max#SAT problems, each one obtained from the original DQMax#SAT problem and a reduced set of dependencies

H ′ 1 ⊆ H 1 , . . . , H ′ n ⊆ H n . Actually, if the sets of dependencies H ′ 1 , . . . , H ′
n are chosen such that to augment progressively from ∅, . . . , ∅ to H 1 , . . . , H n by increasing only one of H ′ i at every step then (i) it is possible to build every such Max#SAT problem from the previous one by a simple syntactic transformation and (ii) most importantly, it is possible to steer the search for its solution knowing the solution of the previous one.

The incremental method relies therefore on an oracle procedure max#sat for solving Max#SAT problems. We assume this procedure takes as inputs the sets X, Y , Z of maximizing, counting and existential variables, an objective formula Φ ∈ F X ∪ Y ∪ Z , an initial assignment α 0 : X → B and a filter formula Ψ ∈ F X . The last two parameters are essentially used to restrict the search for maximizing solutions and must satisfy:

-Ψ [α 0 ] = ⊤, that is, the initial assignment α 0 is a model of Ψ and -forall α : X → B if α Ψ then |∃Z. Φ[α]| Y ≤ |∃Z. Φ[α 0 ]| Y ,
that is, any assignment α outside the filter Ψ is at most as good as the assignement α 0 .

Actually, whenever the conditions hold, the oracle can safely restrict the search for the optimal assignements within the models of Ψ . The oracle produces as output the optimal assignement α * : X → B solving the Max#SAT problem.

The incremental algorithm proposed in Algorithm 1 proceeds as follows:

at lines 1-5 it prepares the arguments for the first call of the Max#SAT oracle, that is, for solving the problem where

H ′ 1 = H ′ 2 = ... = H ′ n = ∅,
at line 7 it calls to the Max#SAT oracle, -at lines 9-10 it chooses an index i 0 of some dependency set

H ′ i = H i and a variable u ∈ H i0 \ H ′
i0 to be considered in addition for the next step, -at lines 11-19 it prepares the argument for the next call of the Max#SAT oracle, that is, it updates the set of maximizing variables X ′ , it refines the objective formula Φ ′ , it defines the new initial assignement α ′ 0 and the new filter Ψ ′ using the solution of the previous problem, -at lines 6,20,22 it controls the main iteration, that is, keep going as long as sets H ′ i are different from H i , -at line 23 it builds the expected solution, that is, convert the Boolean solution α ′ * of the final Max#SAT problem where H ′ i = H i for all i ∈ [1, n] to the corresponding substitution σ * X . Finally, note that the application of substitution at line 15 can be done such that to preserve the CNF form of Φ ′ . That is, the substitution proceeds clause by clause by using the following equivalences, for every formula ψ: 

(ψ ∨ x ′ i0,m )[x ′ i0,m → (x ′ i0,mu ∧ u) ∨ (x ′ i0,mū ∧ ū)] ⇔ (ψ ∨ x ′ i0,mu ∨ x ′ i0,mū ) ∧ (ψ ∨ x ′ i0,mu ∨ ū) ∧ (ψ ∨ x ′ i0,mū ∨ u) (ψ ∨ x ′ i0,m )[x ′ i0,m → (x ′ i0,mu ∧ u) ∨ (x ′ i0,mū ∧ ū)] ⇔ (ψ ∨ x ′ i0,mu ∨ ū)(ψ ∨ x ′ i0,mū ∨ u) Theorem 2.
max H ′ 1 x 1 . ... max H ′ n x n . RY. ∃Z. Φ(X, Y, Z) input : X = {x1, ..., xn}, Y , Z, H1, ..., Hn, Φ output: σ * X 1 H ′ i ← ∅ for all i ∈ [1, n] 2 X ′ ← {x ′ i,⊤ } i∈[1,n] 3 Φ ′ ← Φ ∧ i∈[1,n] (xi ⇔ x ′ i,⊤ ) 4 α ′ 0 ← {x ′ i,⊤ → ⊥} i∈[1,n] 5 Ψ ′ ← ⊤ 6 repeat 7 α ′ * ← max#sat(X ′ , Y, Z ∪ X, Φ ′ , α ′ 0 , Ψ ′ ) 8 if H ′ i = Hi for some i ∈ [1, n] then 9 i0 ← choose({i ∈ [1, n] | H ′ i = Hi}) 10 u ← choose(Hi 0 \ H ′ i 0 ) 11 α ′ 0 ← α ′ * 12 Ψ ′ ← ⊥ 13 foreach m ∈ M H ′ i 0 do 14 X ′ ← (X ′ \ {x ′ i 0 ,m }) ∪ {x ′ i 0 ,mu , x ′ i 0 ,mū } 15 Φ ′ ← Φ ′ [x ′ i 0 ,m → (x ′ i 0 ,mu ∧ u) ∨ (x ′ i 0 ,mū ∧ ū)] 16 α ′ 0 ← (α ′ 0 \ {x ′ i 0 ,m → _}) ∪ {x ′ i 0 ,mu , x ′ i0,mū → α ′ 0 (x ′ i 0 ,m )} 17 Ψ ′ ← Ψ ′ ∨ (x ′ i 0 ,mu ⇔ x ′ i 0 ,mū ) 18 end 19 Ψ ′ ← Ψ ′ ∨ x∈X ′ (x ⇔ α ′ 0 (x)) 20 H ′ i 0 ← H ′ i 0 ∪ {u} 21 end 22 until H ′ i = Hi for all i ∈ [1, n] 23 σ * X ← {xi → ∨ m∈M H i (α ′ * (x ′ i,m ) ∧ m)} i∈[1,n]
Algorithm 1: Incremental Algorithm This is an invariance property provable by induction. It holds by construction of X ′ , Φ ′ , α ′ 0 , Ψ ′ at the initial step. Then, it is preserved from one oracle call to the next one i.e., X ′ and Φ ′ are changed such that to reflect the addition of the variable u of the set H ′ i0 . The new initial assignement α ′ 0 is obtained (i) by replicating the optimal value α ′ * (x ′ i0,m ) to the newly introduced x ′ i0,mu , x ′ i0,mū variables derived from x ′ i0,m variable (line 16) and (ii) by keeping the optimal value α ′ * (x ′ i,m ) for other variables (line 11). As such, for the new problem, the assignement α ′ 0 has exactly the same number of Y -projected models as the optimal assignement α ′ * had on the previous problem. The filter Ψ ′ is built such that to contain this new initial assignment α ′ 0 (line 19) as well as any other assignement that satisfies x ′ i0,mu ⇔ x ′ i0,mū for some monomial m (lines 12, 17). This construction guarantees that, any assignment which does not satisfy the filter Ψ ′ reduces precisely to an assignment of the previous problem, other than the optimal one α ′ * , and henceforth at most as good as α ′ 0 regarding the number of Y -projected models. Therefore, it is a sound filter and can be used to restrict the search for the new problem. The final oracle call corresponds to solving the complete Max#SAT problem (6) and it will therefore allow to derive a correct solution to the initial DQMax#SAT problem (1). ⊓ ⊔ Example 4. Let reconsider Example 1. The incremental algorithm will perform 3 calls to the Max#SAT oracle. The first call corresponds to the problem

max x ′ 1,⊤ . Ry 1 . Ry 2 . ∃z 1 . ∃z 2 . ∃x 1 . (x 1 ⇔ y 1 ) ∧ (z 1 ⇔ y 1 ∨ y 2 ) ∧ (z 2 ⇔ y 1 ∧ y 2 ) ∧ (x 1 ⇔ x ′ 1 
,⊤ ) A solution found by the oracle is e.g., x ′ 1,⊤ → ⊥ which has 2 projected models. If z 1 is added to H ′ 1 , the second call corresponds to the refined Max#SAT problem:

max x ′ 1,z1 . max x ′ 1, z1 Ry 1 . Ry 2 . ∃z 1 . ∃z 2 . ∃x 1 . (x 1 ⇔ y 1 ) ∧ (z 1 ⇔ y 1 ∨ y 2 ) ∧ (z 2 ⇔ y 1 ∧ y 2 ) ∧ (x 1 ⇔ x ′ 1,z1 ∧ z 1 ∨ x ′ 1, z1 ∧ z1 ) A solution found by the oracle is e.g., x ′ 1,z1 → ⊤, x ′ 1, z1
→ ⊥ which has 3 projected models. Finally, z 2 is added to H ′ 1 therefore the third call corresponds to the complete Max#SAT problem as presented in Example 3. The solution found by the oracle is the same as in Example 3.

A first benefit of Algorithm 1 is the fact that it opens the door to any-time approaches to solve the DQMax#SAT problem. Indeed, the distance between the current and the optimal solution (that is, the relative ratio between the corresponding number of Y -projected models) can be estimated using the upper bound provided by Prop. 1. Hence, one could stop the search at any given iteration as soon as some threshold is reached and construct the returned value σ X similarly as in Line 23 of Algorithm 1. In this case the returned σ X would be defined as

σ X = {x i → ∨ m∈M H ′ i (α ′ * (x ′ i,m ) ∧ m)} i∈[1,n]
(note here that the monomials are selected from H ′ i instead of H i ). Another benefit of the incremental approach is that it is applicable without any assumptions on the underlying Max#SAT solver. Indeed, one can use Ψ ′ in Algorithm 1 by solving the Max#SAT problem corresponding to Φ ′ ∧ Ψ ′ , and return the found solution. Even though the α ′ 0 parameter requires an adaptation of the Max#SAT solver in order to ease the search of a solution, one could still benefit from the incremental resolution of DQMax#SAT . Notice that a special handling of the Ψ ′ parameter by the solver would avoid complexifying the formula passed to the Max#SAT solver and still steer the search properly.

Local method

The local resolution method allows to compute the solution of an initial DQ-Max#SAT problem by combining the solutions of two strictly smaller and independent DQMax#SAT sub-problems derived syntactically from the initial one. The local method applies only if either 1) some counting or existential variable u is occurring in all dependency set; or 2) if there is some maximizing variable having an empty dependency set. That is, in contrast to the global and incremental methods, the local method is applicable only in specific situations.

Let us consider a DQMax#SAT problem of form [START_REF] Audemard | A New Exact Solver for (Weighted) Max#SAT[END_REF]. Given a variable v, let

Φ v def = Φ[v → ⊤], Φ v def = Φ[v → ⊥]
be the two cofactors on variable v of the objective Φ.

Reducing common dependencies

Let us consider now a variable u which occurs in all dependency sets H i and let us consider the following u-reduced DQMax#SAT problems:

max H1\{u} x 1 . ... max Hn\{u} x n . R Y \ {u}. ∃ Z \ {u}. Φ u (7) max H1\{u} x 1 . ... max Hn\{u} x n . R Y \ {u}. ∃ Z \ {u}. Φ ū (8) 
Let σ * X,u , σ * X,ū denote respectively the solutions to the problems above. 

Theorem 3. If either (i) u ∈ Y or (ii) u ∈ Z
: Y → B, at most one of Φ[α Y ][u → ⊤] and Φ[α Y ][u → ⊥] is satisfiable). then σ * X defined as σ * X (x i ) def = u ∧ σ * X,u (x i ) ∨ ū ∧ σ * X,ū (x i ) for all i ∈ [1, n]
is a solution to the DQMax#SAT problem [START_REF] Audemard | A New Exact Solver for (Weighted) Max#SAT[END_REF].

Proof. First, any formula ϕ i ∈ F H i can be equivalently written as

u ∧ ϕ i,u ∨ ū ∧ ϕ i,ū where ϕ i,u def = ϕ i [u → ⊤] ∈ F H i \ {u} and ϕ i,ū def = ϕ i [u → ⊥] ∈ F H i \ {u} .
Second, we can prove the equivalence:

Φ[x i → ϕ i ] ⇔ (u ∧ Φ u ∨ ū ∧ Φ ū)[x i → u ∧ ϕ i,u ∨ ū ∧ ϕ i,ū ] ⇔ u ∧ Φ u [x i → ϕ i,u ] ∨ ū ∧ Φ ū[x i → ϕ i,ū ]
by considering the decomposition of Φ u , Φ ū according to the variable x i . The equivalence above can then be generalized to a complete substitution σ

X = {x i → ϕ i } i∈[1,n] of maximizing variables. Let us denote respectively σ X,u def = {x i → ϕ i,u } i∈[1,n] , σ X,ū def = {x i → ϕ i,ū } i∈[1,n] . Therefore, one obtains Φ[σ X ] ⇔ (u ∧ Φ u ∨ ū ∧ Φ ū)[x i → ϕ i ] i∈[1,n] ⇔ u ∧ Φ u [x i → ϕ i,u ] i∈[1,n] ∨ ū ∧ Φ ū[x i → ϕ i,ū ] i∈[1,n] ⇔ u ∧ Φ u [σ X,u ] ∨ ū ∧ Φ ū[σ X,ū ]
Third, the later equivalence provides a way to compute the number of Y -models of the formula ∃Z. Φ[σ Z ] as follows:

|∃Z. Φ[σ X ]| Y = |∃Z. (u ∧ Φ u [σ X,u ] ∨ ū ∧ Φ ū[σ X,ū ])| Y = |∃Z. (u ∧ Φ u [σ X,u ]) ∨ ∃Z. (ū ∧ Φ ū[σ X,ū ])| Y = |∃Z. (u ∧ Φ u [σ X,u ])| Y + |∃Z. (ū ∧ Φ ū[σ X,ū ])| Y = |∃Z \ {u}. Φ u [σ X,u ]| Y \{u} + |∃Z \ {u}. Φ ū[σ X,ū ]| Y \{u}
Note that the third equality holds only because u ∈ Y or u ∈ Z and functionally dependent on counting variables Y . Actually, in these situations, the sets of Y -projected models of respectively, u ∧ Φ u [σ X,u ] and ū ∧ Φ ū[σ X,ū ] are disjoint. Finally, the last equality provides the justification of the theorem, that is, finding σ X which maximizes the left hand side reduces to finding σ X,u , σ X,ū which maximizes independently the two terms of right hand side, and these actually are the solutions of the two u-reduced problems ( 7) and [START_REF] Cheng | Lifting (D)QBF Preprocessing and Solving Techniques to (D)SSAT[END_REF] 

z 1 → ⊤, z 2 → ⊤ : max ∅ x 1 . Ry 1 . Ry 2 .(x 1 ⇔ y 1 ) ∧ (⊤ ⇔ y 1 ∨ y 2 ) ∧ (⊤ ⇔ y 1 ∧ y 2 ) z 1 → ⊤, z 2 → ⊥ : max ∅ x 1 . Ry 1 . Ry 2 .(x 1 ⇔ y 1 ) ∧ (⊤ ⇔ y 1 ∨ y 2 ) ∧ (⊥ ⇔ y 1 ∧ y 2 ) z 1 → ⊥, z 2 → ⊤ : max ∅ x 1 . Ry 1 . Ry 2 .(x 1 ⇔ y 1 ) ∧ (⊥ ⇔ y 1 ∨ y 2 ) ∧ (⊤ ⇔ y 1 ∧ y 2 ) z 2 → ⊥, z 2 → ⊥ : max ∅ x 1 . Ry 1 . Ry 2 .(x 1 ⇔ y 1 ) ∧ (⊥ ⇔ y 1 ∨ y 2 ) ∧ (⊥ ⇔ y 1 ∧ y 2 )
The four problems are solved independently and have solutions e.g., respectively

x 1 → c 1 ∈ {⊤}, x 1 → c 2 ∈ {⊤, ⊥}, x 1 → c 3 ∈ {⊤, ⊥}, x 1 → c 4 ∈ {⊥}.
By recombining these solutions according to Theorem 3 one obtains several solutions to the original DQMax#SAT problem of the form:

x 1 → (z 1 ∧ z 2 ∧ c 1 ) ∨ (z 1 ∧ z2 ∧ c 2 ) ∨ ( z1 ∧ z 2 ∧ c 3 ) ∨ ( z1 ∧ z2 ∧ c 4 )
They correspond to solutions already presented in Example 3, that is:

x 1 → (z 1 ∧ z 2 ∧ ⊤) ∨ (z 1 ∧ z 2 ∧ ⊥) ∨ (z 1 ∧ z 2 ∧ ⊥) ∨ (z 1 ∧ z 2 ∧ ⊥) (≡ z 1 ∧ z 2 ) x 1 → (z 1 ∧ z 2 ∧ ⊤) ∨ (z 1 ∧ z 2 ∧ ⊥) ∨ (z 1 ∧ z 2 ∧ ⊤) ∨ (z 1 ∧ z 2 ∧ ⊥) (≡ z 2 ) x 1 → (z 1 ∧ z 2 ∧ ⊤) ∨ (z 1 ∧ z 2 ∧ ⊤) ∨ (z 1 ∧ z 2 ∧ ⊥) ∨ (z 1 ∧ z 2 ∧ ⊥) (≡ z 1 ) x 1 → (z 1 ∧ z 2 ∧ ⊤) ∨ (z 1 ∧ z 2 ∧ ⊤) ∨ (z 1 ∧ z 2 ∧ ⊤) ∨ (z 1 ∧ z 2 ∧ ⊥) (≡ z 1 ∨ z 2 )
Finally, note that the local resolution method has potential for parallelization. It is possible to eliminate not only one but all common variables in the dependency sets as long as they fulfill the required property. This leads to several strictly smaller sub-problems that can be solved in parallel. The situation has been already illustrated in the previous example, where by the elimination of z 1 and z 2 one obtains 4 smaller sub-problems.

Solving variables with no dependencies

Let us consider now a maximizing variable which has an empty dependency set. Without lack of generality, assume x 1 has an empty dependency set, i.e. H 1 = ∅.

Thus, the only possible values that can be assigned to x 1 are ⊤ or ⊥. Let us consider the following x 1 -reduced DQMax#SAT problems:

max H2 x 2 . . . . max Hn x n . R Y. ∃ Z. Φ x1 max H2 x 2 . . . . max Hn x n . R Y. ∃ Z. Φ x1
and let σ * X,x1 , σ * X,x1 denote respectively the solutions to the problems above. The following proposition is easy to prove, and provides the solution of the original problem based on the solutions of the two smaller sub-problems.

Proposition 2. The substitution σ * X defined as

σ * X def = σ * X,x1 ⊎ {x 1 → ⊤} if |∃Z. Φ x1 [σ * X,x1 ]| Y ≥ |∃Z. Φ x1 [σ * X,x1 ]| Y σ * X,x1 ⊎ {x 1 → ⊥} otherwise
is a solution to the DQMax#SAT problem [START_REF] Audemard | A New Exact Solver for (Weighted) Max#SAT[END_REF].

Application to Software Security

In this section, we give a concrete application of DQMax#SAT in the context of software security. More precisely, we show that finding an optimal strategy for an adaptative attacker trying to break the security of some program can be naturally encoded as specific instances of the DQMax#SAT problem.

In our setting, we allow the attacker to interact multiple times with the target program. Moreover, we assume that the adversary is able to make observations, either from the legal outputs or using some side-channel leaks. Adaptive attackers [START_REF] Dullien | Weird Machines, Exploitability, and Provable Unexploitability[END_REF][START_REF] Saha | Incremental Adaptive Attack Synthesis[END_REF][START_REF] Phan | Synthesis of Adaptive Side-Channel Attacks[END_REF] are a special form of active attackers considered in security that are able to select their inputs based on former observations, such that they maximize their chances to reach their goals (i.e., break some security properties).

First we present in more details this attacker model we consider, and then we focus on two representative attack objectives the attacker aims to maximize:

either the probability of reaching a specific point in the target program, while satisfying some objective function (Section 6.2), -or the amount of information it can get about some fixed secret used by the program (Section 6.3).

At the end of the section, we show that the improvements presented in the previous sections apply in both cases.

Our model of security in presence of an adaptive adversary

The general setting we consider is the one of so-called active attackers, able to provide inputs to the program they target. Such attacks are then said adaptive when the attacker is able to deploy an attack strategy, which continuously relies on some knowledge gained from previous interactions with the target program, and allowing to maximize its chances of success. Moreover, we consider the more powerful attacker model where the adversary is assumed to know the code of the target program. Note that such an attacker model is involved in most recent concrete attack scenarios, where launching an exploit or disclosing some sensitive data requires to chain several (interactive) attack steps in order to defeat some protections and/or to gain some intermediate privileges on the target platform. Obviously, from the defender side, quantitative measures about the "controllability" of such attacks is of paramount importance for exploit analysis or vulnerability triage.

When formalizing the process of adaptatively attacking a given program, one splits the program's variables between those controlled and those uncontrolled by the attacker. Among the uncontrolled variables one further distinguishes those observable and those non-observable, the former ones being available to the attacker for producing its (next) inputs. The objective of the attacker is a formula, depending on the values of program variables, and determining whether the attacker has successfully conducted the attack.

For the sake of simplicity -in our examples -we restrict ourselves to nonlooping sequential programs operating on variables with bounded domains (such as finite integers, Boolean's, etc). We furthermore consider the programs are written in SSA form, assuming that each variable is assigned before it is used. These hypothesis fit well in the context of a code analysis technique like symbolic execution [START_REF] King | Symbolic Execution and Program Testing[END_REF], extensively used in software security.

Finally, we also rely on explicit (user-given) annotations by predefined functions (or macros) to identify the different classes of program variables and the attacker's objective. In the following code excerpts, we assume that:

-The random function produces an uncontrolled non-observable value; it allows for instance to simulate the generation of both long term keys and nonces in a program using cryptographic primitives. -The input function feeds the program with an attacker-controlled value.

-The output function simulates an observation made by the adversary and denotes a value obtained through the evaluation of some expression of program variables.

Security as a rechability property

We show in this section how to encode quantitative reachability defined in [START_REF] Bardin | A Quantitative Flavour of Robust Reachability[END_REF] as an instance of the DQMax#SAT problem.

In quantitative reachability, the goal of an adversary is to reach some target location in some program such that some objective property get satisfied. In order to model this target location of the program that the attacker wants to reach, we extend our simple programming language with a distinguished win function. The win function can take a predicate as argument (the objective property) and is omitted whenever this predicate is the True predicate. In practice such a predicate may encode some extra conditions required to trigger and exploit some vulnerability at the given program location (e.g., overflowing a buffer with a given payload).

1 y1 ← random() 2 y2 ← random() 3 z1 ← output(y1 + y2) 4 x1 ← input() 5 if y1 ≤ x1 then 6 win(x1 ≤ y2) 7 end
Program 2: A first program example Example 6. In Program 2 one can see an example of annotated program. y 1 and y 2 are uncontrollable non-observable variables. z 1 is an observable variable holding the sum y 1 +y 2 . x 1 is a variable controlled by the attacker. The attacker's objective corresponds to the path predicate y 1 ≤ x 1 denoting the condition to reach the win function call and the argument predicate x 1 ≤ y 2 denoting the objective property. Let us observe that a successful attack exists, that is, by taking x 1 ← z1 2 the objective is always reachable. When formalizing adaptive attackers, the temporality of interactions (that is, the order of inputs and outputs) is important, as the attacker can only synthesize an input value from the output values that were observed before it is asked to provide that input. To track the temporal dependencies in our formalization, for every controlled variable x i one considers the set H i of observable variables effectively known at the time of defining x i , that is, representing the accumulation of attacker's knowledge throughout the interactions with the program.

We propose hereafter a systematic way to express the problem of synthesis of an optimal attack (that is, with the highest probability of the objective property to get satisfied), as a DQMax#SAT instance. Let Y (resp. Z) be the set of uncontrolled variables being assigned to random() which in this section is assumed to uniformly sample values in their domain (resp. other expressions) in the program. For a variable z ∈ Z let moreover e z be the unique expression assigned to it in the program, either through an assignment of the form z ← e z or z ← output(e z ). Let X = {x 1 , ..., x n } be the set of controlled variables with their temporal dependencies respectively subsets H 1 , . . . , H n ⊆ Z of uncontrollable variables. Finally, let Ψ be the attacker objective, that is, the conjunction of the argument of the win function and the path predicate leading to the win function call. Consider the next most likely generalized DQMax#SAT problem:

max H1 x 1 . ... max Hn x n . RY. ∃Z. Ψ ∧ z∈Z (z = e z ) (9) 
Example 7. Consider the annotated problem from Program 2. The encoding of the optimal attack leads to the generalized DQMax#SAT problem:

max {z1} x 1 . Ry 1 . Ry 2 . ∃z 1 . (y 1 ≤ x 1 ∧ x 1 ≤ y 2 ) ∧ (z 1 = y 1 + y 2 )
Note that in contrast to the DQMax#SAT problem (1), the variables are not restricted to Booleans (but to some finite domains) and the expressions are not restricted to Boolean terms (but involve additional operators available in the specific domain theories e.g., =, ≥, +, -, etc). Nevertheless, as long as both variables and additional operators can be respectively, represented by and interpreted as operations on bitvectors, one can use bitblasting and transforms the generalized problem into a full-fledged DQMax#SAT problem and then solve it by the techniques introduced earlier in the paper.

Finally, note also that in the DQMax#SAT problems constructed as above, the maximizing variables are dependent by definition on existential variables only. Therefore, as earlier discussed in Section 2, these problems cannot be actually reduced to similar DSSAT problems. However, they compactly encode the quantitative reachability properties subject to input/output dependencies.

Security as a lack of leakage property

In this section, we extend earlier work on adaptive attackers from [START_REF] Saha | Incremental Adaptive Attack Synthesis[END_REF] by effectively synthesizing the strategy the attacker needs to deploy in order to maximize its knowledge about some secret value used by the program. Moreover, we show that in our case, we are able to keep symbolic the trace corresponding to the attack strategy, while in [START_REF] Phan | Synthesis of Adaptive Side-Channel Attacks[END_REF], the attacker strategy is a concretized tree, which explicitly states, for each concrete program output, what should be the next input provided by the adversary. Following ideas proposed in [START_REF] Phan | Synthesis of Adaptive Side-Channel Attacks[END_REF], symbolic execution can be used to generate constraints characterizing partitions on the secrets values, where each partition corresponds to the set of secrets leading to the same sequences of side-channel observations. 1 z ← random() //the secret 2 x ← input() [START_REF] Phan | Synthesis of Adaptive Side-Channel Attacks[END_REF]. This program is not constant-time, namely it executes a branching instruction whose condition depends on the secret z. Hence an adversary able to learn the branch taken during the execution, either by measuring the time or doing some cache-based attack, will get some information about the secret z. A goal of an adversary interacting several times with the program could be to maximize the amount of information leaked about the secret value z. When the program is seen as a channel leaking information, the channel capacity theorem [START_REF] Smith | On the Foundations of Quantitative Information Flow[END_REF] states that the information leaked by a program is upper-bounded by the number of different observable outputs of the program (and the maximum is achieved whenever the secret is the unique randomness used by the program). In our case, it means that an optimal adaptive adversary interacting k-times with the program should maximize the number of different observable outputs. Hence, for example, if as in [START_REF] Phan | Synthesis of Adaptive Side-Channel Attacks[END_REF], we fix k = 3 and if we assume that the secret z is uniformly sampled in the domain 1 ≤ z ≤ 6, then the optimal strategy corresponds to maximize the number of different observable outputs y of the Program 4, which corresponds to the following DQMax#SAT instance:

max ∅ x 1 . max {y1} x 2 . max {y1,y2} x 3 . Ry 1 . Ry 2 . Ry 3 . ∃z . (y 1 ⇔ x 1 ≥ z) ∧ (y 2 ⇔ x 2 ≥ z) ∧ (y 3 ⇔ x 3 ≥ z) ∧ (1 ≤ z ≤ 6)
Our prototype provided the following solution: x 1 = 100, x 2 = y 1 10, x 3 = y 1 y 2 1, that basically says: the attacker should first input 4 to the program, then the input corresponding to the integer whose binary encoding is y 1 concatenated with 10, and the last input x 3 is the input corresponding to the integer whose binary encoding is the concatenation of y 2 , y 1 and 1. In [START_REF] Phan | Synthesis of Adaptive Side-Channel Attacks[END_REF] the authors obtain an equivalent attack encoded as a tree-like strategy of concrete values.

We now show a systematic way to express the problem of the synthesis of an optimal attack expressed as the maximal channel capacity of a program seen as an information leakage channel, as a DQMax#SAT instance. Contrary to the previous section, the roles of Y and Z are now switched: Y is a set of variables encoding the observables output by the program; Z is the set of variables uniformly sampled by random() or assigned to other expressions in the program. For a variable y ∈ Y , let e y be the unique expression assigned to it in the program through an assignment of the form y ← output(e y ). For a variable z ∈ Z, let moreover e z be the unique expression assigned to it in the program through an assignment of the form z ← e z or the constraint encoding the domain used to sample values in z ← random(). Let X = {x 1 , ..., x n } be the set of controlled variables with their temporal dependencies respectively subsets H 1 , . . . , H n ⊆ Y . Consider now the following most likely generalized DQMax#SAT problem: max H1 x 1 . ... max Hn x n . RY. ∃Z. Finally, in contrast to reachability properties, in the DQMax#SAT problems obtained as above for evaluating leakage properties, the maximizing variables are by definition dependent on counting variables only. Consequently, for these problems, the existential variables can be apriori eliminated so that to obtain an equivalent DSSAT1 problem as discussed in Section 2.

Some remarks about the applications to security

Let us notice some interesting properties of the attacker synthesis's DQMax#SAT problems. If controlled variables x 1 , x 2 , ..., x n are input in this order within the program then necessarily H 1 ⊆ H 2 ⊆ ... ⊆ H n . That is, the knowledge of the attacker only increases as long as newer observable values became available to it. Moreover, since we assumed that variables are used only after they were initialized, the sets H i contain observable variables that are dependent only on the counting variables Y . Hence we can apply iteratively the following steps from the local resolution method described in Section 5:

-While H 1 = ∅, apply the local resolution method described in Section 5.1

iteratively until H 1 becomes empty. For example, it is the case of Example 6 where z 1 is dependent only on counting variables y 1 and y 2 .

-When H 1 becomes ∅, apply the local resolution method described in Section 5.2 in order to eliminate the first maximizing variable.

Implementation and Experiments

We implement Algorithm 1 leaving generic the choice of the underlying Max#SAT solver. For concrete experiments, we used both the approximate solver BaxMC2 [START_REF] Vigouroux | BaxMC: a CEGAR approach to Max#SAT[END_REF] and the exact solver D4max [START_REF] Audemard | A New Exact Solver for (Weighted) Max#SAT[END_REF].

In the implementation of Algorithm 1 in our tool, the filter Ψ ′ is handled as discussed at the end of Section 4: the formula effectively solved is Φ ′ ∧¬Ψ ′ , allowing to use any Max#SAT solver without any prior modification. Remark that none of BaxMC and D4max originally supported exploiting the α 0 parameter of Algorithm 1 out of the box. While D4max is used of the shelf, we modified BaxMC to actually support this parameter for the purpose of the experiment.

We use the various examples used in this paper as benchmark instances for the implemented tool. Examples 1 and 2 are used as they are. We furthermore use Example 11 (in appendix) which is a slightly modified version of Example 1. We consider Examples 7 and 8 from Section 6 and perform the following steps to convert them into DQMax#SAT instances: (i) bitblast the formula representing the security problem into a DQMax#SAT instance over boolean variables; (ii) solve the later formula; (iii) propagate the synthesized function back into a function over bit-vectors for easier visual inspection of the result.

We also add the following security related problems (which respectively correspond to Program 5 in appendix and a relaxed version of Example 8 in Section 6) into our benchmark set:

Example 9. max ∅ x 1 . max {z1} x 2 . max {z1,z2} x 3 . Ry 1 . ∃z 1 . ∃z 2 . (x 3 = y 1 ) ∧ (z 1 = x 1 ≥ y 1 ∧ z 2 = x 2 ≥ y) Example 10. max ∅ x 1 . max {y1} x 2 . max {y1,y2} x 3 . Ry 1 . Ry 2 . Ry 3 . ∃z . (y 1 ⇔ x 1 ≥ z) ∧ (y 2 ⇔ x 2 ≥ z) ∧ (y 3 ⇔ x 3 ≥ z)
When bitblasting is needed for a given benchmark, the number of bits used for bitblasting is indicated in parentheses. After the bitblasting operation, the problems can be considered medium sized. For security examples, one key part of the process is the translation of the synthesized answer (over boolean variables) back to the original problem (over bit-vectors). In order to do that, one can simply concatenate the generated subfunctions for each bit of the bit-vector into a complete formula, but that would lack explainability because the thus-generated function would be a concatenation of potentially big sums of monomials. In order to ease visual inspection, we run a generic simplification step [START_REF] Gario | PySMT: a solver-agnostic library for fast prototyping of SMT-based algorithms[END_REF] for all the synthesized sub-function, before concatenation. This simplification allows us to directly derive the answers explicited in Examples 7 and 8 instead of their equivalent formulated as sums of monomials, and better explain the results returned by the tool.

Unfortunately, we could not compare our algorithm against the state-of-theart DSSAT solver DSSATpre [START_REF] Lee | Dependency Stochastic Boolean Satisfiability: A Logical Formalism for NEXPTIME Decision Problems with Uncertainty[END_REF] on the set of example described in this paper because (i) as discussed in Section 2.3, some DQMax#SAT instances cannot be converted into DSSAT instances, (ii) for the only DQMax#SAT instance (Example 10) that can be converted into a DSSAT instance, we were not able to get an answer using DSSATpre.

Related Work

As shown in Section 2, DQMax#SAT subsumes the DSSAT and DQBF problems. This relation indicates a similarity of the three problems, and thus some related works can be extracted from here. From the complexity point of view, the decision version of DQMax#SAT can be shown to be NEXPTIME-complete and hence it lies in the same complexity class as DQBF [START_REF] Peterson | Lower bounds for multiplayer noncooperative games of incomplete information[END_REF] and DSSAT [START_REF] Lee | Dependency Stochastic Boolean Satisfiability: A Logical Formalism for NEXPTIME Decision Problems with Uncertainty[END_REF].

Comparing the performances of existing DQBF algorithms with the proposed algorithms for DQMax#SAT is not yet realistic since they address different objectives. However, one can search for potential improvements for solving DQMax#SAT by considering the existing enhancements proposed in [START_REF] Kovásznai | What is the state-of-the-art in DQBF solving[END_REF] to improve the resolution of DQBF . For example, dependency schemes [START_REF] Wimmer | Dependency Schemes for DQBF[END_REF] are a way to change the dependency sets in DQBF without changing the truth value compared to the original formula. Thus, adaptations of these dependency schemes could be applied to our problem as well and potentially lead to a significant decrease of the size of the resulting Max#SAT problems.

The DSSAT problem is currently receiving an increased attention by the research community. A first sound and complete resolution procedure has been proposed in [START_REF] Luo | A Resolution Proof System for Dependency Stochastic Boolean Satisfiability[END_REF], however, without being yet implemented. The only available DSSAT solver nowadays is DSSATpre [START_REF] Cheng | Lifting (D)QBF Preprocessing and Solving Techniques to (D)SSAT[END_REF]. This tool relies on preprocessing to get rid of dependencies and to produce equivalent SSAT problems. These problems are then accurately solved by existing SSAT solvers [START_REF] Chen | A Sharp Leap from Quantified Boolean Formula to Stochastic Boolean Satisfiability Solving[END_REF][START_REF] Wang | Quantifier Elimination in Stochastic Boolean Satisfiability[END_REF], some of them being also able to compute the optimal assignments for maximizing variables. In contrast, our tool for solving DQMax#SAT relies on existing Max#SAT solvers, always synthesizes the assignments for maximizing variables and provide support for approximate solving. Moreover, due to the presence of existential variables, note that DQMax#SAT and DSSAT are fundamentally different problems. Existential variables are already pinpointing the difference between the two pure counting problems #SAT and #∃SAT [START_REF] Aziz | #∃SAT: Projected Model Counting[END_REF][START_REF] Lagniez | A Recursive Algorithm for Projected Model Counting[END_REF]. In cases where maximizing variables depend on existential variables no trivial reduction from DQMax#SAT to DSSAT seems to exists.

From the security point of view, the closest works to our proposal are the ones decribed in [START_REF] Phan | Synthesis of Adaptive Side-Channel Attacks[END_REF][START_REF] Saha | Incremental Adaptive Attack Synthesis[END_REF]. As the authors in these papers, we are able to effectively synthesize the optimal adaptive strategy the attacker needs to deploy in order to maximize its knowledge about some secret value used by the program. In addition, we show that in our case, we are able to keep symbolic the trace corresponding to the attack strategy, while in [START_REF] Phan | Synthesis of Adaptive Side-Channel Attacks[END_REF], the attacker strategy is a concretized tree which explicitely states, for each concrete program output, what should be the next input provided by the adversary.

Conclusions

We exposed in this paper a new problem called DQMax#SAT that subsumes both DQBF and DSSAT . We then devised three different resolution methods based on reductions to Max#SAT and showed the effectiveness of one of them, the incremental method, by implementing a prototype solver. A concrete application of DQMax#SAT lies in the context of software security, in order to assess the robustness of a program by synthesizing the optimal adversarial strategy of an adaptive attacker.

Our work can be expanded in several directions. First, we would like to enhance our prototype with strategies for dependency expansion in the incremental algorithm. Second, we plan to integrate the local resolution method in our prototype. Third, we shall apply these techniques on more realistic security related examples, and possibly getting further improvement directions from this dedicated context.

  y∈Y (y = e y ) ∧ z∈Z (z = e z )

  and u is functionally dependent on counting variables Y within the objective Φ (that is, for any valuation α Y

  . ⊓ ⊔ Example 5. Let us reconsider Example 1.It is an immediate observation that existential variables z 1 , z 2 are functionally dependent on counting variables y 1 , y 2 according to the objective. Therefore the local method is applicable and henceforth since H 1 = {z 1 , z 2 } one reduces the initial problem to four smaller problems, one for each valuation of z 1 , z 2 , as follows:

  Let us consider the excerpt Program 3 taken from

		1 z ← random() ;
		2 x 1 ← input();
	3 if x ≥ z then	3 y 1 ← output(x 1 ≥ z);
	4 5 else ... some computation taking 10 seconds 6 ... some computation taking 20 seconds	4 x 2 ← input(); 5 y 2 ← output(x 2 ≥ z); 6 x 3 ← input(); 7 y 3 ← output(x 3 ≥ z);
	7 end Program 3: A leaking program	Program 4: An iterated leaking program
	Example 8.	

Table 1 .

 1 Summary of the performances of the tool. |Φ| denotes the number of clauses. The last two columns indicate the running time using the specific Max#SAT oracle.As you can see in Table1, the implemented tool can effectively solve all the examples presented in this paper. The synthesized answers (i.e. the monomials selected in Algorithm 1, Line 23) returned by both oracles are the same.

	Benchmark name |X| |Y | |Z| |Φ| Time (BaxMC) Time (D4max)
	Example 1	1 2 2 7	32ms	121ms
	Example 2	2 2 2 7	25ms	134ms
	Example 11	1 2 1 5	16ms	89ms
	Example 7 (3 bits)	3 6 97 329	378ms	79.88s
	Example 7 (4 bits)	4 8 108 385	638.63s	> 30mins
	Example 8 (3 bits)	9 3 150 487	18.78s	74.58s
	Example 9 (3 bits)	9 3 93 289	74.00s	18.62s
	Example 10 (3 bits) 9 3 114 355	9.16s	93.48s

Actually these problems can even be reduced to SSAT instances.

Thanks to specific parametrization and the oracles[START_REF] Chakraborty | A Scalable Approximate Model Counter[END_REF] used internally by BaxMC, it can be considered an exact solver on the small instances of interest in this section.

y1); Program 5: A second program example

Appendix

Example 11. Consider the problem:

Let Φ 1 denote the objective formula. As F {z 1 } = {⊤, ⊥, z 1 , z 1 } one shall consider these four possible substitutions for the maximizing variable x 1 and compute the associated number of {y 1 , y 2 }-projected models. For instance,

has two models, respectively {y 1 → ⊥, y 2 → ⊤, z 1 → ⊤} and {y 1 → ⊥, y 2 → ⊥, z 1 → ⊥} and two {y 1 , y 2 }-projected models respectively {y 1 → ⊥, y 2 → ⊤} and {y 1 → ⊥, y 2 → ⊥}. Therefore |∃z 1 . Φ 1 [x 1 → ⊥]| {y1,y2} = 2. The maximizing substitution is x 1 → z 1 which has three {y 1 , y 2 }-projected models, that is |∃z 1 . Φ 1 [x 1 → z 1 ]| {y1,y2} = 3. Note that no substitution for x 1 exists such that the objective to have four {y 1 , y 2 }-projected models, that is, always valid for counting variables.

Example 12. In Program 5, one shall know that the optimal strategy is the dichotomic search of y 1 within its possible values.