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Abstract. Given a boolean formula φ(X,Y, Z), the Max#SAT prob-
lem [6,18] asks for finding a partial model on the set of variables X,
maximizing its number of projected models over the set of variables Y .
We investigate a strict generalization of Max#SAT allowing dependen-
cies for variables in X, effectively turning it into a synthesis problem. We
show that this new problem, called DQMax#SAT, subsumes the DQBF

problem [14] as well. We provide a general resolution method, based on
a reduction to Max#SAT, together with two improvements for dealing
with its inherent complexity. We further discuss a concrete application
of DQMax#SAT for symbolic synthesis of adaptive attackers in the field
of program security. Finally, we report preliminary results obtained on
the resolution on benchmark problems using a prototype DQMax#SAT

solver implementation.

Keywords: Function synthesis · Model counting · DQBF · Max#SAT ·
Adaptive attackers.

1 Introduction

A major concern in software security are active adversaries, i.e., adversaries that
can interact with a target program by feeding inputs. Moreover, these adversaries
can often make observations about the program execution through side-channels
and/or legal outputs. In this paper, we consider adaptive adversaries, i.e., ad-
versaries that choose their inputs by taking advantage of previous observations.

In order to get an upper bound of the insecurity of a given program with
respect to this class of adversaries, a possible approach is to synthesize the
best adaptive attack strategy. This can be modelled as finding a function A

(corresponding to the adversarial strategy) satisfying some logical formula Φ

(capturing some combination of attack objectives). Actually, this corresponds to
a classical functional synthesis problem.

Informally, in our case, given a Boolean relation between output variables
(observables) and input variables (attacker provided), our goal is to synthesize
each input variable as a function of the preceedings outputs satisfying Φ. In the
literature, this synthesis problem is captured by the so-called Quantified Boolean
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Formulae (QBF-SAT) satisfiability problem [7,8] and its generalization, the De-
pendency Quantified Boolean Formulae (DQBF-SAT) satisfiability problem [14].

However, these existing qualitative frameworks are not sufficient in a security
context: we are not looking for adversaries able to succeed in all cases, but rather
for adversaries succeeding with “a good probability”. That is why we propose a
generalization of the DQBF problem: we replace the universal (resp. existen-
tial) quantifiers by counting (resp. maximizing) quantifiers. This corresponds to
finding the optimal inputs, depending on preceeding outputs, that maximize the
number of solutions of Φ, hence the succeeding probability of the attack.

As an example, we are interested in solving problems of the form:

max{z1} x1. max{z2} x2. Ry1. Ry2. ∃z1. ∃z2.

(x1 ⇒ y2) ∧ (y1 ⇒ x2) ∧ (y1 ∨ z2 ⇔ y2 ∧ z1)

The problem we aim to solve is then: synthesize for x1 (respectively x2) a
boolean expression e1 (respectively e2), depending only on z1 (respectively z2),
such that the formula obtained after replacing xi by ei has a maximal number
of models projected on the counting variables y1, y2.

Notice that this problem generalizes in a non-trivial way two well-known
existing problems: (i) it generalizes the Max#SAT problem [6,18] by allowing
the maximizing variables to depend symbolically on other variables; (ii) it lifts
the DQBF problem [14] to a quantitative problem, we do not want to check
if there exist expressions ei working for all y1, y2, but to find expressions ei
maximizing the number of models on y1, y2.

Our contributions are the following:

– We introduce formally the DQMax#SAT problem as a new problem that
arises naturally in the field of software security, and we show that it subsumes
both the DQBF and Max#SAT problems.

– We develop a general resolution method based on a reduction to Max#SAT
and further propose two improvements in order to deal with its inherent
complexity: (i) an incremental method, that enables anytime resolution; (ii) a
local method, allowing to split the initial problem into independent smaller
sub-problems, enabling parallel resolution.

– We provide two applications of DQMax#SAT to software security: we show
that quantitative robustness [2] and programs as information leakage-channels
[17,15] can be systematically cast as instances of the DQMax#SAT problem.

– We provide a first working prototype solver for the DQMax#SAT problem
and we apply it to the examples considered in this paper.

The paper is organized as follows. Section 2 introduces formally the DQ-
Max#SAT problem and its relation with the Max#SAT and DQBF problems.
Sections 3 to 5 present the three different approaches we propose for solv-
ing DQMax#SAT. Section 6 shows concrete applications of DQMax#SAT in
software security, that is, for the synthesis of adaptive attackers. Finally, Sec-
tion 7 provides preliminary experimental results obtained with our prototype
DQMax#SAT solver. Section 8 concludes with some references to related work
and proposes some extensions we aim to address in the future.
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2 Problem statement

2.1 Preliminaries

Given a set V of Boolean variables, we denote by F〈V 〉 (resp. M〈V 〉) the set
of Boolean formulae (resp. complete monomials) over V . A model of a boolean
formula φ ∈ F〈V 〉 is an assignement αV : V → B of variables to Boolean values
such that φ evaluates to ⊤ (that is, true) on αV , it is denoted by αV |= φ. A
formula is satisfiable if it has at least one model αV . A formula is valid (i.e.,
tautology) if any assignement αV is a model.

Given a formula φ ∈ F〈V 〉 we denote by |φ|V the number of its models, for-

mally |φ|V
def
= |{αV : V → B | αV |= φ}|. For a partitioning V = V1 ⊎ V2 we de-

note by |∃V2. φ|V1
the number of its V1-projected models, formally |∃V2. φ|V1

def
=

|{αV1
: V1 → B | ∃αV2

: V2 → B. αV1
⊎ αV2

|= φ}|. Note that in general |∃V2. φ|V1
≤

|φ|V with equality only in some restricted situations (e.g. when V1 is an inde-
pendent support of the formula [4]).

Let V , V ′, V ′′ be arbitrary sets of Boolean variables. Given a Boolean formula
φ ∈ F〈V 〉 and a substitution σ : V ′ → F〈V ′′〉 we denote by φ[σ] the Boolean
formula in F〈(V \V ′)∪V ′′〉 obtained by replacing in φ all occurrences of variables
v′ from V ′ by the associated formula σ(v′).

2.2 Problem Formulation

Definition 1 (DQMax#SAT problem). Let X = {x1, ..., xn}, Y , Z be pair-
wise disjoint finite sets of Boolean variables, called respectively maximizing,
counting and existential variables. The DQMax#SAT problem is specified as:

maxH1 x1. ... maxHn xn. RY. ∃Z. Φ(X,Y, Z) (1)

where H1, ..., Hn ⊆ Y ∪Z and Φ ∈ F〈X∪Y ∪Z〉 are respectively the dependencies
of maximizing variables and the objective formula.

The solution to the problem is a substitution σ∗
X : X → F〈Y ∪ Z〉 associat-

ing formulae on counting and existential variables to maximizing variables such
that (i) σ∗

X(xi) ∈ F〈Hi〉, for all i ∈ [1, n] and (ii) |∃Z. Φ[σ∗
X ]|Y is maximal.

That means, the chosen substitution conforms to dependencies on maximizing
variables and guarantees the objective holds for the largest number of models
projected on the counting variables.

Example 1. Consider the problem:

max{z1,z2} x1. Ry1. Ry2. ∃z1. ∃z2. (x1 ⇔ y1) ∧ (z1 ⇔ y1 ∨ y2) ∧ (z2 ⇔ y1 ∧ y2)

Let Φ denote the objective formula. In this case, F〈{z1, z2}〉 = {⊤,⊥, z1, z1, z2, z2, z1∨
z2, z1 ∨ z2, z1 ∨ z2, z1 ∨ z2, z1 ∧ z2, z1 ∧ z2, z1 ∧ z2, z1 ∧ z2, z1 ⇔ z2, z1 ⇔ z2}, and
one shall consider every possible substitution. One can compute for instance
Φ[x1 7→ z1 ∧ z2] ≡ ((z1 ∧ z2) ⇔ y1) ∧ (z1 ⇔ y1 ∨ y2) ∧ (z2 ⇔ y1 ∧ y2) which
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only has one model ({y1 7→ ⊥, y2 7→ ⊤, z1 7→ ⊤, z2 7→ ⊥}) and henceforth
|∃z1. ∃z2. Φ[x1 7→ z1 ∧ z2]|{y1,y2} = 1. Overall, for this problem there exists four
possible maximizing substitutions σ∗ respectively x1 7→ z1, x1 7→ z2, x1 7→ z1∨z2,
x1 7→ z1 ∧ z2 such that for all of them |∃z1. ∃z2. Φ[σ∗]|{y1,y2} = 3.

Example 2. Let us consider the following problem:

max{z1} x1. max{z2} x2. Ry1. Ry2. ∃z1. ∃z2.

(x1 ⇒ y2) ∧ (y1 ⇒ x2) ∧ (y1 ∨ z2 ⇔ y2 ∧ z1)

Let Φ denote the associated objective formula. An optimal solution is x1 7→
⊥, x2 7→ z2 and one can check that |∃z1. ∃z2. Φ[x1 7→ ⊥, x2 7→ z2]|{y1,y2} = 3.
Moreover, on can notice that there do not exist expressions e1 ∈ F〈{z1}〉 (re-
spectively e2 ∈ F〈{z2}〉), such that ∃z1. ∃z2. Φ[x1 7→ e1, x2 7→ e2] admits the
model y1 7→ ⊤, y2 7→ ⊥.

2.3 Hardness of DQMax#SAT

We briefly discuss now the relationship between the DQMax#SAT problem and
the well known Max#SAT and DQBF problems. It turns out that DQMax#SAT
is harder than both of them, as illustrated by the following rather simple reduc-
tions.

DQMax#SAT is harder than Max#SAT: Let X = {x1, ..., xn}, Y , Z be
pairwise disjoint finite sets of Boolean variables, called respectively maximizing,
counting and existential variables. The Max#SAT problem [6] specified as

maxx1. . . .max xn. RY. ∃Z. Φ(X,Y, Z) (2)

asks for finding an assignement α∗
X : X → B of maximizing variables to Boolean

values such that |∃Z. Φ[α∗
X ]|Y is maximal. It is immediate to see that the

Max#SAT problem is the particular case of the DQMax#SAT problem where
there are no dependencies, that is, H1 = H2 = ... = Hn = ∅.

DQMax#SAT is harder than DQBF: Let X = {x1, ..., xn}, Y be disjoint finite
sets of Boolean variables and let H1, ..., Hn ⊆ Y . The DQBF problem [14] asks,
given a Dependency-Quantified Boolean Formula:

∀Y. ∃H1x1. ... ∃
Hnxn. Φ(X,Y ) (3)

to synthesize a substitution σ∗
X : X → F〈Y 〉 whenever one exists such that

(i) σ∗
X(xi) ∈ F〈Hi〉, for all i ∈ [1, n] and (ii) Φ[σ∗

X ] is valid. The DQBF problem
is reduced to the DQMax#SAT problem:

maxH1 x1. ... maxHn xn. RY. Φ(X,Y ) (4)
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By solving (4) one can solve the initial DQBF problem (3). Indeed, let σ∗
X : X →

F〈Y 〉 be a solution for (4). Then, the DQBF problem admits a solution if and
only if |Φ[σ∗

X ]|Y = 2|Y |. Moreover, σ∗
X is a solution for the problem (3) because

(i) σ∗
X satisfies dependencies and (ii) Φ[σ∗

X ] is valid as it belongs to F〈Y 〉 and
has 2|Y | models.

Note that through this reduction of DQMax#SAT to DQBF, the maximizing
quantifiers in DQMax#SAT can be viewed as Henkin quantifiers [10] in DQBF
with a quantitative flavor.

3 Global method

We show in this section that the DQMax#SAT problem can be directly reduced
to a Max#SAT problem with an exponentially larger number of maximizing
variables and exponentially bigger objective formula.

First, recall that any boolean formula ϕ ∈ F〈H〉 can be written as a finite
disjunction of a subset Mϕ of complete monomials from M〈H〉, that is, such
that the following equivalences hold:

ϕ ⇐⇒ ∨m∈Mϕ
m ⇐⇒ ∨m∈M〈H〉 ([[m ∈Mϕ]] ∧m)

Therefore, any formula ϕ ∈ F〈H〉 is uniquely encoded by the set of boolean
values [[m ∈ Mϕ]] denoting the membership of each complete monomial m to
Mϕ. We use this idea to encode the substitution of a maximizing variable xi
by some formula ϕi ∈ F〈Hi〉 by using a set of boolean variables (x′i,m)m∈M〈Hi〉

denoting respectively [[m ∈Mϕi
]] for allm ∈M〈Hi〉. We define now the following

Max#SAT problem:

(max x′1,m.)m∈M〈H1〉 ... (max x′n,m.)m∈M〈Hn〉 RY. ∃Z. ∃X.

Φ(X,Y, Z) ∧
∧

i∈[1,n]

(

xi ⇔ ∨m∈M〈Hi〉(x
′
i,m ∧m)

)

(5)

The next theorem establishes the relation between the two problems.

Theorem 1. σ∗
X = {xi 7→ ϕ∗

i }i∈[1,n] is a solution to the problem DQMax#SAT
(1) if and only if α∗

X′ = {x′i,m 7→ [[m ∈ Mϕ∗

i
]]}i∈[1,n],m∈M〈Hi〉 is a solution to

Max#SAT problem (5).

Proof. Let us denote

Φ′(X ′, X, Y, Z)
def
= Φ(X,Y, Z) ∧

∧

i∈[1,n]

(

xi ⇔ ∨m∈M〈Hi〉(x
′
i,m ∧m)

)

Actually, for any Φ ∈ F〈X ∪ Y ∪ Z〉 for any ϕ1 ∈ F〈H1〉, ..., ϕn ∈ F〈Hn〉 the
following equivalence is valid:

Φ(X,Y, Z)[{xi 7→ ϕi}i∈[1,n]]⇔

(∃X. Φ′(X ′, X, Y, Z))
[

{x′i,m 7→ [[m ∈Mϕi
]]}i∈[1,n],m∈M〈Hi〉

]
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Consequently, finding the substitution σX which maximize the number of
Y -models of the left-hand side formula (that is, of ∃Z. Φ(X,Y, Z)) is actually
the same as finding the valuation αX′ which maximizes the number of Y -models
of the right-hand side formula (that is, ∃Z. ∃X. Φ′(X ′, X, Y, Z)). ⊓⊔

Example 3. Example 1 is reduced to the following:

maxx′1,z1z2 . max x′1,z1z̄2 . maxx′1,z̄1z2 . maxx′1,z̄1z̄2 . Ry1. Ry2. ∃z1. ∃z2. ∃x1.

(x1 ⇔ y1) ∧ (z1 ⇔ y1 ∨ y2) ∧ (z2 ⇔ y1 ∧ y2)∧

(x1 ⇔
((

x′1,z1z2 ∧ z1 ∧ z2
)

∨
(

x′1,z1 z̄2 ∧ z1 ∧ z̄2
)

∨
(

x′1,z̄1z2 ∧ z̄1 ∧ z2
)

∨
(

x′1,z̄1z̄2 ∧ z̄1 ∧ z̄2
))

)

One possible answer is x′1,z1z2 7→ ⊤, x
′
1,z1z̄2 7→ ⊤, x

′
1,z̄1z2 7→ ⊥, x

′
1,z̄1z̄2 7→ ⊥. This

yields the solution σX(x1) = (z1 ∧ z2)∨(z1 ∧ z̄2) = z1 which is one of the optimal
solutions as explained in Example 1.

4 Incremental method

In this section we propose a first improvement with respect to the reduction in
the previous section. It allows to control the blow-up of the objective formula
in the reduced Max#SAT problem through an incremental process. Moreover,
it allows in practice to find earlier good approximate solutions.

The incremental method consists in solving a sequence of related Max#SAT
problems, each one obtained from the original DQMax#SAT problem and a
reduced set of dependencies H ′

1 ⊆ H1, . . . , H ′
n ⊆ Hn. Actually, if the sets of

dependencies H ′
1, . . . , H ′

n are chosen such that to augment progressively from
∅, . . . , ∅ to H1, . . . , Hn by increasing only one of H ′

i at every step then (i) it
is possible to build every such Max#SAT problem from the previous one by a
simple syntactic transformation and (ii) most importantly, it is possible to steer
the search for its solution knowing the solution of the previous one.

The incremental method relies therefore on an oracle procedure max#sat for
solving Max#SAT problems. We assume this procedure takes as inputs the sets
X , Y , Z of maximizing, counting and existential variables, an objective formula
Φ ∈ F〈X ∪ Y ∪ Z〉, an initial assignment α0 : X → B and a filter formula
Ψ ∈ F〈X〉. The last two parameters are essentially used to restrict the search
for maximizing solutions and must satisfy:

– Ψ [α0] = ⊤, that is, the initial assignment α0 is a model of Ψ and
– forall α : X → B if α 2 Ψ then |∃Z. Φ[α]|Y ≤ |∃Z. Φ[α0]|Y , that is, any

assignment α outside of the filter Ψ is at most as good as the assignement
α0.

Actually, whenever the conditions hold, the oracle can safely restrict the search
for the optimal assignements within the models of Ψ . The oracle produces as
output the optimal assignement α∗ : X → B solving the Max#SAT problem.

The incremental algorithm proposed in Algorithm 1 proceeds as follows:
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input : X = {x1, ..., xn}, Y , Z, H1, ..., Hn, Φ
output: σ∗

X

1 H ′
i ← ∅ for all i ∈ [1, n]

2 X ′ ← {x′
i,⊤}i∈[1,n]

3 Φ′ ← Φ ∧
∧

i∈[1,n](xi ⇔ x′
i,⊤)

4 α′
0 ← {x

′
i,⊤ 7→ ⊥}i∈[1,n]

5 Ψ ′ ← ⊤
6 repeat
7 α′∗ ← max#sat(X ′, Y, Z ∪X,Φ′, α′

0, Ψ
′)

8 if H ′
i 6= Hi for some i ∈ [1, n] then

9 i0 ← choose({i ∈ [1, n] | H ′
i 6= Hi})

10 u← choose(Hi0 \H
′
i0
)

11 α′
0 ← α′∗

12 Ψ ′ ← ⊥
13 foreach m ∈M〈H ′

i0
〉 do

14 X ′ ← (X ′ \ {x′
i0,m
}) ∪ {x′

i0,mu, x
′
i0,mū}

15 Φ′ ← Φ′[x′
i0,m
7→ (x′

i0,mu ∧ u) ∨ (x′
i0,mū ∧ ū)]

16 α′
0 ← (α′

0 \ {x
′
i0,m
7→ _}) ∪ {x′

i0,mu, x
′
i0,mū 7→ α′

0(x
′
i0,m

)}
17 Ψ ′ ← Ψ ′ ∨ (x′

i0,mu 6⇔ x′
i0,mū)

18 end
19 Ψ ′ ← Ψ ′ ∨

∧
x∈X′(x⇔ α′

0(x))
20 H ′

i0
← H ′

i0
∪ {u}

21 end

22 until H ′
i = Hi for all i ∈ [1, n]

23 σ∗
X ← {xi 7→ ∨m∈M〈Hi〉(α

′∗(x′
i,m) ∧m)}i∈[1,n]

Algorithm 1: Incremental Algorithm

– at lines 1-5 it prepares the arguments for the first call of the Max#SAT
oracle, that is, for solving the problem where H ′

1 = H ′
2 = ... = H ′

n = ∅,
– at line 7 it calls to the Max#SAT oracle,
– at lines 9-10 it chooses an index i0 of some dependency set H ′

i 6= Hi and a
variable u ∈ Hi0 \H

′
i0

to be considered in addition for the next step,
– at lines 11-19 it prepares the argument for the next call of the Max#SAT

oracle, that is, it updates the set of maximizing variables X ′, it refines the
objective formula Φ′, it defines the new initial assignement α′

0 and the new
filter Ψ ′ using the solution of the previous problem,

– at lines 6,20,22 it controls the main iteration, that is, keep going as long as
sets H ′

i are different from Hi,
– at line 23 it builds the expected solution, that is, convert the Boolean solution
α′∗ of the final Max#SAT problem where H ′

i = Hi for all i ∈ [1, n] to the
corresponding substitution σ∗

X .

Finally, note that the application of substitution at line 15 can be done such
that to preserve the CNF form of Φ′. That is, the substitution proceeds clause
by clause by using the following equivalences, for every formula ψ:
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(ψ ∨ x′i0,m)[x′i0,m 7→ (x′i0,mu ∧ u) ∨ (x′i0,mū ∧ ū)]⇔

(ψ ∨ x′i0,mu ∨ x
′
i0,mū) ∧ (ψ ∨ x′i0,mu ∨ ū) ∧ (ψ ∨ x′i0,mū ∨ u)

(ψ ∨ x′i0,m)[x′i0,m 7→ (x′i0,mu ∧ u) ∨ (x′i0,mū ∧ ū)]⇔

(ψ ∨ x′i0,mu ∨ ū)(ψ ∨ x
′
i0,mū ∨ u)

Theorem 2. Algorithm 1 is correct for solving the DQMax#SAT problem (1).

Proof. The algorithm terminates after 1 +
∑

i∈[1,n] |Hi| oracle calls. Moreover,
every oracle call solves correctly the Max#SAT problem corresponding to DQ-
Max#SAT problem

maxH
′

1 x1. ... maxH
′

n xn. RY. ∃Z. Φ(X,Y, Z)

This is an invariance property provable by induction. It holds by construction
of X ′, Φ′, α′

0, Ψ
′ at the initial step. Then, it is preserved from one oracle call

to the next one i.e., X ′ and Φ′ are changed such that to reflect the addition of
the variable u of the set H ′

i0
. The new initial assignement α′

0 is obtained (i) by
replicating the optimal value α′∗(x′i0,m) to the newly introduced x′i0,mu, x

′
i0,mū

variables derived from x′i0,m variable (line 16) and (ii) by keeping the optimal
value α′∗(x′i,m) for other variables (line 11). As such, for the new problem, the
assignement α′

0 has exactly the same number of Y -projected models as the op-
timal assignement α′∗ had on the previous problem. The filter Ψ ′ is built such
that to contain this new initial assignment α′

0 (line 19) as well as any other
assignement that satisfies x′i0,mu 6⇔ x′i0,mū for some monomial m (lines 12, 17).
This construction guarantees that, any assignment which does not satisfy the
filter Ψ ′ reduces precisely to an assignment of the previous problem, other than
the optimal one α′∗, and henceforth at most as good as α′

0 regarding the number
of Y -projected models. Therefore, it is a sound filter and can be used to restrict
the search for the new problem. The final oracle call corresponds to solving the
complete Max#SAT problem (5) and it will therefore allow to derive a correct
solution to the initial DQMax#SAT problem (1). ⊓⊔

Example 4. Let reconsider Example 1. The incremental algorithm will perform
3 calls to the Max#SAT oracle. The first call corresponds to the Max#SAT
problem

maxx′1,⊤. Ry1. Ry2. ∃z1. ∃z2. ∃x1.

(x1 ⇔ y1) ∧ (z1 ⇔ y1 ∨ y2) ∧ (z2 ⇔ y1 ∧ y2) ∧ (x1 ⇔ x′1,⊤)

A solution found by the oracle is e.g., x′1,⊤ 7→ ⊥ which has 2 projected models. If
z1 is added to H ′

1, the second call corresponds to the refined Max#SAT problem:

maxx′1,z1 . max x′1,z̄1 Ry1. Ry2. ∃z1. ∃z2. ∃x1.

(x1 ⇔ y1) ∧ (z1 ⇔ y1 ∨ y2) ∧ (z2 ⇔ y1 ∧ y2) ∧ (x1 ⇔ x′1,z1 ∧ z1 ∨ x
′
1,z̄1 ∧ z̄1)
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A solution found by the oracle is e.g., x′1,z1 7→ ⊤, x
′
1,z̄1 7→ ⊥ which has 3

projected models. Finally, z2 is added to H ′
1 therefore the third call corresponds

to the complete Max#SAT problem as presented in Example 3. The solution
found by the oracle is the same as in Example 3.

A first benefit of Algorithm 1 is the fact that it opens the door to any-time
approaches to solve the DQMax#SAT problem. Indeed, one could in theory stop
the search at any given iteration, and construct the returned value σX similarly
as in Line 23 of Algorithm 1. In this case the returned σX would be defined as
σX = {xi 7→ ∨m∈M〈H′

i
〉(α

′∗(x′i,m)∧m)}i∈[1,n] (note here that the monomials are
selected from H ′

i instead of Hi).
Another benefit of the incremental approach is that it is applicable without

any assumptions on the underlying Max#SAT solver. Indeed, one can use Ψ ′ in
Algorithm 1 by solving the Max#SAT problem corresponding to Φ′ ∧ ¬Ψ ′, and
return the found solution. Even though the α′

0 parameter requires an adaptation
of the Max#SAT solver in order to ease the search of a solution, one could still
benefit from the incremental resolution of DQMax#SAT. Notice that a special
handling of the Ψ ′ parameter by the solver would avoid complexifying the formula
passed to the Max#SAT solver and still steer the search properly.

5 Local method

The local resolution method allows to compute the solution of an initial DQ-
Max#SAT problem by combining the solutions of two strictly smaller and inde-
pendent DQMax#SAT sub-problems derived syntactically from the initial one.
The local method applies only if some counting or existential variable u is oc-
curring in all dependency sets. That is, in contrast to the global and incremental
methods, the local method is applicable only in specific situations.

Let us consider a DQMax#SAT problem of form (1). Let us consider a

variable u which occurs in all dependency sets Hi and let Φu
def
= Φ[u 7→ ⊤],

Φū
def
= Φ[u 7→ ⊥] be the two cofactors on variable u of the objective Φ. Let us

consider the following u-reduced DQMax#SAT problems:

maxH1\{u} x1. ...maxHn\{u} xn. RY \ {u}. ∃Z \ {u}. Φu (6)

maxH1\{u} x1. ...maxHn\{u} xn. RY \ {u}. ∃Z \ {u}. Φū (7)

Let σ∗
X,u, σ∗

X,ū denote respectively the solutions to the problems above.

Theorem 3. If either

(i) u ∈ Y or
(ii) u ∈ Z and u is functionally dependent on counting variables Y within the

objective Φ,

then σ∗
X defined as

σ∗
X(xi)

def
=

(

u ∧ σ∗
X,u(xi)

)

∨
(

ū ∧ σ∗
X,ū(xi)

)

for all i ∈ [1, n]

is a solution to the DQMax#SAT problem (1).
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Proof. First, any formula ϕi ∈ F〈Hi〉 can be equivalently written as u ∧ ϕi,u ∨

ū ∧ ϕi,ū where ϕi,u
def
= ϕi[u 7→ ⊤] ∈ F〈Hi \ {u}〉 and ϕi,ū

def
= ϕi[u 7→ ⊥] ∈

F〈Hi \ {u}〉. Second, we can prove the equivalence:

Φ[xi 7→ ϕi]⇔ (u ∧ Φu ∨ ū ∧ Φū)[xi 7→ u ∧ ϕi,u ∨ ū ∧ ϕi,ū]

⇔ u ∧ Φu[xi 7→ ϕi,u] ∨ ū ∧ Φū[xi 7→ ϕi,ū]

by considering the decomposition of Φu, Φū according to the variable xi. The
equivalence above can then be generalized to a complete substitution σX =

{xi 7→ ϕi}i∈[1,n] of maximizing variables. Let denote respectively σX,u
def
= {xi 7→

ϕi,u}i∈[1,n], σX,ū
def
= {xi 7→ ϕi,ū}i∈[1,n]. Therefore, one obtains

Φ[σX ]⇔ (u ∧ Φu ∨ ū ∧ Φū)[xi 7→ ϕi]i∈[1,n]

⇔ u ∧ Φu[xi 7→ ϕi,u]i∈[1,n] ∨ ū ∧ Φū[xi 7→ ϕi,ū]i∈[1,n]

⇔ u ∧ Φu[σX,u] ∨ ū ∧ Φū[σX,ū]

Third, the later equivalence provides a way to compute the number of Y -models
of the formula ∃Z. Φ[σZ ] as follows:

|∃Z. Φ[σX ]|Y = |∃Z. (u ∧ Φu[σX,u] ∨ ū ∧ Φū[σX,ū])|Y

= |∃Z. (u ∧ Φu[σX,u]) ∨ ∃Z. (ū ∧ Φū[σX,ū])|Y

= |∃Z. (u ∧ Φu[σX,u])|Y + |∃Z. (ū ∧ Φū[σX,ū])|Y

= |∃Z \ {u}. Φu[σX,u]|Y \{u} + |∃Z \ {u}. Φū[σX,ū]|Y \{u}

Note that the third equality holds only because u ∈ Y or u ∈ Z and functionally
dependent on counting variables Y . Actually, in these situations, the sets of
Y -projected models of respectively, u ∧ Φu[σX,u] and ū ∧ Φū[σX,ū] are disjoint.
Finally, the last equality provides the justification of the theorem, that is, finding
σX which maximizes the left hand side reduces to finding σX,u, σX,ū which
maximizes independently the two terms of right hand side, and these actually
are the solutions of the two u-reduced problems (6) and (7). ⊓⊔

Example 5. Let us reconsider Example 1. It is an immediate observation that ex-
istential variables z1, z2 are functionally dependent on counting variables y1, y2
according to the objective. Therefore the local method is applicable and hence-
forth since H1 = {z1, z2} one reduces the initial problem to four smaller prob-
lems, one for each valuation of z1, z2, as follows:

z1 7→ ⊤, z2 7→ ⊤ : max∅ x1. Ry1. Ry2 .(x1 ⇔ y1) ∧ (⊤ ⇔ y1 ∨ y2) ∧ (⊤ ⇔ y1 ∧ y2)

z1 7→ ⊤, z2 7→ ⊥ : max∅ x1. Ry1. Ry2 .(x1 ⇔ y1) ∧ (⊤ ⇔ y1 ∨ y2) ∧ (⊥ ⇔ y1 ∧ y2)

z1 7→ ⊥, z2 7→ ⊤ : max∅ x1. Ry1. Ry2 .(x1 ⇔ y1) ∧ (⊥ ⇔ y1 ∨ y2) ∧ (⊤ ⇔ y1 ∧ y2)

z2 7→ ⊥, z2 7→ ⊥ : max∅ x1. Ry1. Ry2 .(x1 ⇔ y1) ∧ (⊥ ⇔ y1 ∨ y2) ∧ (⊥ ⇔ y1 ∧ y2)

The four problems are solved independently and have solutions e.g., respectively
x1 7→ c1 ∈ {⊤}, x1 7→ c2 ∈ {⊤,⊥}, x1 7→ c3 ∈ {⊤,⊥}, x1 7→ c4 ∈ {⊥}. By
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recombining these solutions according to Theorem 3 one obtains several solutions
to the original DQMax#SAT problem of the form:

x1 7→ (z1 ∧ z2 ∧ c1) ∨ (z1 ∧ z̄2 ∧ c2) ∨ (z̄1 ∧ z2 ∧ c3) ∨ (z̄1 ∧ z̄2 ∧ c4)

They correspond to solutions already presented in Example 3, that is:

x1 7→ (z1 ∧ z2 ∧ ⊤) ∨ (z1 ∧ z2 ∧⊥) ∨ (z1 ∧ z2 ∧ ⊥) ∨ (z1 ∧ z2 ∧ ⊥) (≡ z1 ∧ z2)

x1 7→ (z1 ∧ z2 ∧ ⊤) ∨ (z1 ∧ z2 ∧⊥) ∨ (z1 ∧ z2 ∧ ⊤) ∨ (z1 ∧ z2 ∧ ⊥) (≡ z2)

x1 7→ (z1 ∧ z2 ∧ ⊤) ∨ (z1 ∧ z2 ∧⊤) ∨ (z1 ∧ z2 ∧ ⊥) ∨ (z1 ∧ z2 ∧ ⊥) (≡ z1)

x1 7→ (z1 ∧ z2 ∧ ⊤) ∨ (z1 ∧ z2 ∧⊤) ∨ (z1 ∧ z2 ∧ ⊤) ∨ (z1 ∧ z2 ∧ ⊥) (≡ z1 ∨ z2)

Finally, note that the local resolution method has potential for parallelization. It
is possible to eliminate not only one but all common variables in the dependency
sets as long as they fulfill the required property. This leads to several strictly
smaller sub-problems that can be solved in parallel. The situation has been
already illustrated in the previous example, where by the elimination of z1 and
z2 one obtains 4 smaller sub-problems.

6 Application to Software Security

In this section, we give a concrete application of DQMax#SAT in the context
of software security. More precisely, we show that finding an optimal strategy
for an adaptative attacker trying to break the security of some program can be
naturally encoded as specific instances of the DQMax#SAT problem.

In our setting, we allow the attacker to interact multiple times with the target
program. Moreover, we assume that the adversary is able to make observations,
either from the legal outputs or using some side-channel leaks. Adaptive attack-
ers [5,16,15] are a special form of active attackers considered in security that are
able to select their inputs based on former observations, such that they maximize
their chances to reach their goals (i.e., break some security properties).

First we present in more details this attacker model we consider, and then
we focus on two representative attack objectives the attacker aims to maximize:

– either the probability of reaching a specific point in the target program, while
satisfying some objective function (Section 6.2),

– or the amount of information it can get about some fixed secret used by the
program (Section 6.3).

At the end of the section, we show that the improvements presented in the
previous sections apply in both cases.

6.1 Our model of security in presence of an adaptive adversary

The general setting we consider is the one of so-called active attackers, able to
provide inputs to the program they target. Such attacks are then said adaptive
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when the attacker is able to deploy an attack strategy, which continuously relies
on some knowledge gained from prevous interactions with the target program,
and allowing to maximize its chances of success. Moreover, we consider the more
powerful attacker model where the adversary is assumed to know the code of
the target program.

Note that such an attacker model is involved in most recent concrete attack
scenarios, where launching an exploit or disclosing some sensitive data requires
to chain several (interactive) attack steps in order to defeat some protections
and/or to gain some intermediate priviledges on the target platform. Obviously,
from the defender side, quantitative measures about the “controlability” of such
attacks is of paramount importance for exploit analysis or vulnerability triage.

When formalizing the process of adaptatively attacking a given program, one
splits the program’s variables between those controlled and those uncontrolled by
the attacker. Among the uncontrolled variables one further distinguishes those
observable and those non-observable, the former ones being available to the at-
tacker for producing its (next) inputs. The objective of the attacker is a formula,
depending on the values of program variables, and determining whether the
attacker has successfully conducted the attack.

For the sake of simplicity – in our examples – we restrict ourselves to non-
looping sequential programs operating on variables with bounded domains (such
as finite integers, Boolean’s, etc). We furthermore consider the programs are
written in SSA form, assuming that each variable is assigned before it is used.
These hypothesis fit well in the context of a code analysis technique like symbolic
execution [11], extensively used in software security.

Finally, we also rely on explicit (user-given) annotations by predefined func-
tions (or macros) to identify the different classes of program variables and the
attacker’s objective. In the following code excerpts, we assume that:

– The random function produces an uncontrolled non-observable value; it al-
lows for instance to simulate the generation of both long term keys and
nonces in a program using cryptographic primitives.

– The input function feeds the program with an attacker-controlled value.
– The output function simulates an observation made by the adversary and

denotes a value obtained through the evaluation of some expression of pro-
gram variables.

6.2 Security as a rechability property

We show in this section how to encode quantitative reachability defined in [2] as
an instance of the DQMax#SAT problem.

In quantitative reachability, the goal of an adversary is to reach some target
location in some program such that some objective property get satisified. In or-
der to model this target location of the program that the attacker wants to reach,
we extend our simple programming language with a distinguished win function.
The win function can take a predicate as argument (the objective property)
and is omitted whenever this predicate is the True predicate. In practice such
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1 y1 ← random()

2 y2 ← random()

3 z1 ← output(y1 + y2)
4 x1 ← input()

5 if y1 ≤ x1 then
6 win(x1 ≤ y2)

7 end

Program 2: A first program example

a predicate may encode some extra conditions required to trigger and exploit
some vulnerability at the given program location (e.g., overflowing a buffer with
a given payload).

Example 6. In Program 2 one can see an example of annotated program. y1
and y2 are uncontrollable non-observable variables. z1 is an observable variable
holding the sum y1+y2. x1 is a variable controlled by the attacker. The attacker’s
objective corresponds to the path predicate y1 ≤ x1 denoting the condition to
reach the win function call and the argument predicate x1 ≤ y2 denoting the
objective property. Let us observe that a successful attack exists, that is, by
taking x1 ←

z1
2 the objective is always reachable.

When formalizing adaptive attackers, the temporality of interactions (that is,
the order of inputs and outputs) is important, as the attacker can only synthe-
size an input value from the output values that were observed before it is asked
to provide that input. To track the temporal dependencies in our formalization,
for every controlled variable xi one considers the set Hi of observable variables
effectively known at the time of defining xi, that is, representing the accumu-
lation of attacker’s knowledge throughout the interactions with the program at
that input time.

We propose hereafter a systematic way to express the problem of synthe-
sis of an optimal attack (that is, with the highest probability of the objective
property to get satisfied), as a DQMax#SAT instance. Let Y (resp. Z) be the
set of uncontrolled variables being assigned to random() which in this section
is assumed to uniformly sample values in their domain (resp. other expressions)
in the program. For a variable z ∈ Z let moreover ez be the unique expression
assigned to it in the program, either through an assignment of the form z ← ez
or z ← output(ez). Let X = {x1, ..., xn} be the set of controlled variables with
their temporal dependencies respectively subsets H1, . . . , Hn ⊆ Z of uncontrol-
lable variables. Finally, let Ψ be the attacker objective, that is, the conjunction
of the argument of the win function and the path predicate leading to the win

function call. Consider the next most likely generalized DQMax#SAT problem:

maxH1 x1. ... maxHn xn. RY. ∃Z. Ψ ∧
∧

z∈Z
(z = ez) (8)
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1 z ← random() //the secret
2 x← input()

3 if x ≥ z then
4 ... some computation taking 10 seconds
5 else
6 ... some computation taking 20 seconds
7 end

Program 3: A simple leaking program

Example 7. Consider the annotated problem from Program 2. The encoding of
the optimal attack leads to the generalized DQMax#SAT problem:

max{z1} x1. Ry1. Ry1. ∃z1. (y1 ≤ x1 ∧ x1 ≤ y2) ∧ (z1 = y1 + y2)

Note that in contrast to the DQMax#SAT problem (1), the variables are
not restricted to Booleans (but to some finite domains) and the expressions
are not restricted to Boolean terms (but involve additional operators available
in the specific domain theories e.g., =, ≥, +, −, etc). Nevertheless, as long as
both variables and additional operators can be respectively, represented by and
interpreted as operations on bitvectors, one can use bitblasting and transforms
the generalized problem into a full-fledged DQMax#SAT problem and then solve
it by the techniques introduced earlier in the paper.

6.3 Security as a lack of leakage property

In this section, we extend earlier work on adaptive attackers from [16] by effec-
tively synthesizing the strategy the attacker needs to deploy in order to maximize
its knowledge about some secret value used by the program. Moreover, we show
that in our case, we are able to keep symbolic the trace corresponding to the
attack strategy, while in [15], the attacker strategy is a concretized tree, which
explicitely states, for each concrete program output, what should be the next
input provided by the adversary. Following ideas proposed in [15], symbolic exe-
cution can be used to generate constraints characterizing partitions on the secrets
values, where each partition corresponds to the set of secrets leading to the same
sequences of side-channel observations.

Example 8. Let us consider the excerpt Program 3 taken from [15]. This program
is not constant-time, namely it executes a branching instruction whose condition
depends on the secret z. Hence an adversary able to learn the branch taken
during the execution, either by measuring the time or doing some cache-based
attack, will get some information about the secret z. A goal of an adversary
interacting several times with the program could be to maximize the amount
of information leaked about the secret value z. When the program is seen as a
channel leaking information, the channel capacity theorem [17] states that the
information leaked by a program is upper-bounded by the number of different
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1 z ← random() ;

2 x1 ← input();
3 y1 ← output(x1 ≥ z);

4 x2 ← input();
5 y2 ← output(x2 ≥ z);

6 x3 ← input();
7 y3 ← output(x3 ≥ z);

Program 4: An iterated leaking program

observable outputs of the program (and the maximum is achieved whenever the
secret is the unique randomness used by the program). In our case, it means
that an optimal adaptive adversary interacting k-times with the program should
maximize the number of different observable outputs. Hence, for example, if as
in [15], we fix k = 3 and if we assume that the secret z is uniformly sampled in
the domain 1 ≤ z ≤ 6, then the optimal strategy corresponds to maximize the
number of different observable outputs y of the Program 4, which corresponds
to the following DQMax#SAT instance:

max∅ x1. max{y1} x2. max{y1,y2} x3. Ry1. Ry2. Ry3. ∃z .

(y1 ⇔ x1 ≥ z) ∧ (y2 ⇔ x2 ≥ z) ∧ (y3 ⇔ x3 ≥ z) ∧ (1 ≤ z ≤ 6)

Our prototype provided the following solution: x1 = 100, x2 = y110, x3 = y1y21,
that basically says: the attacker should first input 4 to the program, then the
input corresponding to the integer whose binary encoding is y1 concatenated
with 10, and the last input x3 is the input corresponding to the integer whose
binary encoding is the concatenation of y2, y1 and 1. In [15] the authors obtain
an equivalent attack encoded as a tree-like strategy of concrete values.

We now show a systematic way to express the problem of the synthesis of
an optimal attack expressed as the maximal channel capacity of a program seen
as an information leakage channel, as a DQMax#SAT instance. Contrary to the
previous section, the roles of Y and Z are now switched: Y is a set of variables
encoding the observables output by the program; Z is the set of variables uni-
formly sampled by random() or assigned to other expressions in the program.
For a variable y ∈ Y , let ey be the unique expression assigned to it in the pro-
gram through an assignment of the form y ← output(ey). For a variable z ∈ Z,
let moreover ez be the unique expression assigned to it in the program through
an assignment of the form z ← ez or the constraint encoding the domain used
to sample values in z ← random(). Let X = {x1, ..., xn} be the set of controlled
variables with their temporal dependencies respectively subsets H1, . . . , Hn ⊆ Y .
Consider now the following most likely generalized DQMax#SAT problem:

maxH1 x1. ... maxHn xn. RY. ∃Z.
∧

y∈Y
(y = ey) ∧

∧

z∈Z
(z = ez)
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6.4 Some remarks about the applications to security

Let us notice some interesting properties of the attacker synthesis’s DQMax#SAT
problems. If controlled variables x1, x2, ..., xn are input in this order within the
program then necessarily H1 ⊆ H2 ⊆ ... ⊆ Hn. That is, the knowledge of the
attacker only increases as long as newer observable values became available to
it. Moreover, since we assumed that variables are used only after they were ini-
tialized, the sets Hi contain observable variables that are dependent only on
the counting variables Y . If moreover H1 6= ∅, then this enables the use of the
local resolution method described in Section 5. For example, it is the case of
Example 6 where z1 is dependent only on counting variables y1 and y2.

7 Implementation and Experiments

We implement Algorithm 1 leaving generic the choice of the underlying Max#SAT
solver. For concrete experiments, we used both the approximate solver BaxMC1 [18]
and the exact solver D4max [1].

In the implementation of Algorithm 1 in our tool, the filter Ψ ′ is handled as
discussed at the end of Section 4: the formula effectively solved is Φ′ ∧ ¬Ψ ′, al-
lowing to use any Max#SAT solver without any prior modification. Remark that
none of BaxMC and D4max originally supported exploiting the α0 parameter
of Algorithm 1 out of the box. While D4max is used of the shelf, we modified
BaxMC to actually support this parameter for the purpose of the experiment.

We use the various examples used in this paper as benchmark instances for
the implemented tool. Examples 1 and 2 are used as they are. We furthermore
use Example 11 (in appendix) which is a slightly modified version of Example 1.
We consider Examples 7 and 8 from Section 6 and perform the following steps
to convert them into DQMax#SAT instances: (i) bitblast the formula represent-
ing the security problem into a DQMax#SAT instance over boolean variables;
(ii) solve the later formula; (iii) propagate the synthesized function back into a
function over bit-vectors for easier visual inspection of the result.

We also add the following security related problems (which respectively corre-
spond to Program 5 in appendix and a relaxed version of Example 8 in Section 6)
into our benchmark set:

Example 9.

max∅ x1. max{z1} x2. max{z1,z2} x3. Ry1. ∃z1. ∃z2.

(x3 = y1) ∧ (z1 = x1 ≥ y1 ∧ z2 = x2 ≥ y)

Example 10.

max∅ x1. max{y1} x2. max{y1,y2} x3. Ry1. Ry2. Ry3. ∃z .

(y1 ⇔ x1 ≥ z) ∧ (y2 ⇔ x2 ≥ z) ∧ (y3 ⇔ x3 ≥ z)
1 Thanks to specific parametrization and the oracles [3] used internally by BaxMC,

it can be considered an exact solver on the small instances of interest in this section.
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Table 1. Summary of the performances of the tool. |Φ| denotes the number of clauses.
The last two columns indicate the running time using the specific Max#SAT oracle.

Benchmark name |X| |Y | |Z| |Φ| Time (BaxMC) Time (D4max)

Example 1 1 2 2 7 32ms 121ms

Example 2 2 2 2 7 25ms 134ms

Example 11 1 2 1 5 16ms 89ms

Example 7 (3 bits) 3 6 97 329 378ms 79.88s

Example 7 (4 bits) 4 8 108 385 638.63s > 30mins

Example 8 (3 bits) 9 3 150 487 18.78s 74.58s

Example 9 (3 bits) 9 3 93 289 74.00s 18.62s

Example 10 (3 bits) 9 3 114 355 9.16s 93.48s

When bitblasting is needed for a given benchmark, the number of bits used
for bitblasting is indicated in parentheses.

As you can see in Table 1, the implemented tool can effectively solve all the
examples presented in this paper. The synthesized answers returned by both
oracles are the same (that is, the selected monomials in Algorithm 1, Line 23
are the same).

For security examples, one key part of the process is the translation of the
synthesized answer (over boolean variables) back to the original problem (over
bit-vectors). In order to do that, one can simply concatenate the generated sub-
functions for each bit of the bit-vector into a complete formula, but that would
lack explainability because the thus-generated function would be a concatena-
tion of potentially big sums of monomials. In order to ease visual inspection, we
run a generic simplification step [9] for all the synthesized sub-function, before
concatenation. This simplification allows us to directly derive the answers ex-
plicited in Examples 7 and 8 instead of their equivalent formulated as sums of
monomials, and better explain the results returned by the tool.

8 Related work and conclusions

We exposed in this paper a new problem called DQMax#SAT that subsumes
both Max#SAT and DQBF. We then devised three different resolution methods
based on reductions to Max#SAT and showed the effectiveness of one of them,
the incremental method, by implementing a prototype solver. A concrete appli-
cation of DQMax#SAT lies in the context of software security, in order to assess
the robustness of a program by synthesizing the optimal adversarial strategy of
an adaptive attacker.

As demonstrated in Section 2, DQMax#SAT subsumes the DQBF problem.
This relation indicates a similarity of the two problems (one being the quantita-
tive flavor of the other), and thus some related works can be extracted from here.
For example, DQMax#SAT can be shown to belong to NEXPTIME

#P knowing
that DQBF is NEXPTIME-complete [13] and Max#SAT is NP

#P-complete [18].
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Comparing the performances of DQBF algorithms with the algorithms we
proposed is not yet realistic since they address different objectives. However,
thanks to the relationship with DQBF and Max#SAT, one can search for future
directions by looking at the possible optimizations and enhancements arising in
these two problems. As summarized in [12], numerous approaches have been pro-
posed to improve the resolution of DQBF. For instance, dependency schemes [19]
are a way to change the dependency sets in DQBF without changing the truth
value compared to the original formula. Thus, adaptations of these dependency
schemes could be applied to our problem as well. Indeed, any enhancement on
the dependencies of any maximizing variables will lead to a significant decrease
of the size of the resulting Max#SAT problem (5).

From the security point of view, the closest works to our proposal are the
ones decribed in [15,16]. As the authors in these papers, we are able to effectively
synthesize the optimal adaptive strategy the attacker needs to deploy in order
to maximize its knowledge about some secret value used by the program. In
addition, we show that in our case, we are able to keep symbolic the trace
corresponding to the attack strategy, while in [15], the attacker strategy is a
concretized tree which explicitely states, for each concrete program output, what
should be the next input provided by the adversary.

Our work can be expanded in several directions. First, we would like to
enhance our prototype with strategies for dependency expansion (that is, the
choice of variable u or the set Hi lines 9 and 10) in the incremental algorithm.
Second, we plan to integrate the local resolution method in our prototype. Third,
we shall apply these techniques on more realistic security related examples, and
possibly getting further improvement directions from this dedicated context.
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Appendix

Example 11. Consider the problem:

max{z1} x1. Ry1. Ry2. ∃z1. (x1 ⇔ y1) ∧ (z1 ⇔ (y1 ∨ y2))

Let Φ1 denote the objective formula. As F〈{z1}〉 = {⊤,⊥, z1, z1} one shall con-
sider these four possible substitutions for the maximizing variable x1 and com-
pute the associated number of {y1, y2}-projected models. For instance, Φ1[x1 7→
⊥] ≡ y1 ∧ (z1 ⇔ y2) has two models, respectively {y1 7→ ⊥, y2 7→ ⊤, z1 7→ ⊤}
and {y1 7→ ⊥, y2 7→ ⊥, z1 7→ ⊥} and two {y1, y2}-projected models respectively
{y1 7→ ⊥, y2 7→ ⊤} and {y1 7→ ⊥, y2 7→ ⊥}. Therefore |∃z1. Φ1[x1 7→ ⊥]|{y1,y2} =
2. The maximizing substitution is x1 7→ z1 which has three {y1, y2}-projected
models, that is |∃z1. Φ1[x1 7→ z1]|{y1,y2} = 3. Note that no substitution for x1
exists such that the objective to have four {y1, y2}-projected models, that is,
always valid for counting variables.

Example 12. In Program 5, one shall know that the optimal strategy is the
dichotomic search of y1 within its possible values.

1 y1 ← random() ;

2 x1 ← input();
3 z1 ← output(x1 ≥ y1);

4 x2 ← input();
5 z2 ← output(x2 ≥ y1);

6 x3 ← input();

7 if x3 ≈
msb
3 y1 then

8 win();
9 end

Program 5: A second program example
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