
HAL Id: hal-04098541
https://hal.science/hal-04098541v2

Preprint submitted on 11 Sep 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Function synthesis for maximizing model counting
Thomas Vigouroux, Marius Bozga, Cristian Ene, Laurent Mounier

To cite this version:
Thomas Vigouroux, Marius Bozga, Cristian Ene, Laurent Mounier. Function synthesis for maximizing
model counting. 2023. �hal-04098541v2�

https://hal.science/hal-04098541v2
https://hal.archives-ouvertes.fr

Function synthesis for maximizing model counting

Thomas Vigouroux[0000−0001−6396−0285], Marius Bozga[0000−0003−4412−5684],
Cristian Ene[0000−0001−6322−0383], and Laurent Mounier[0000−0001−9925−098X]

Univ. Grenoble Alpes, CNRS, Grenoble INP⋆⋆, VERIMAG, 38000 Grenoble, France
{name.surname}@univ-grenoble-alpes.fr https://www-verimag.imag.fr/

Abstract. Given a boolean formula φ(X,Y, Z), the Max#SAT prob-
lem [10,26] asks for finding a partial model on the set of variables X,
maximizing its number of projected models over the set of variables Y .
We investigate a strict generalization of Max#SAT allowing dependen-
cies for variables in X, effectively turning it into a synthesis problem.
We show that this new problem, called DQMax#SAT , subsumes both
the DQBF [22] and DSSAT [18] problems. We provide a general reso-
lution method, based on a reduction to Max#SAT , together with two
improvements for dealing with its inherent complexity. We further dis-
cuss a concrete application of DQMax#SAT for symbolic synthesis of
adaptive attackers in the field of program security. Finally, we report
preliminary results obtained on the resolution of benchmark problems
using a prototype DQMax#SAT solver implementation.

Keywords: Function synthesis · Model counting · Max#SAT · DQBF

· DSSAT · Adaptive attackers.

1 Introduction

A major concern in software security are active adversaries, i.e., adversaries that
can interact with a target program by feeding inputs. Moreover, these adversaries
can often make observations about the program execution through side-channels
and/or legal outputs. In this paper, we consider adaptive adversaries, i.e., ad-
versaries that choose their inputs by taking advantage of previous observations.

In order to get an upper bound of the insecurity of a given program with
respect to this class of adversaries, a possible approach is to synthesize the
best adaptive attack strategy. This can be modelled as finding a function A

(corresponding to the adversarial strategy) satisfying some logical formula Φ

(capturing some combination of attack objectives). Actually, this corresponds to
a classical functional synthesis problem.

Informally, in our case, given a Boolean relation Φ between output variables
(observables) and input variables (attacker provided), our goal is to synthesize
each input variable as a function on preceeding outputs satisfying Φ. In the lit-
erature, this synthesis problem is captured by the so-called Quantified Boolean

⋆⋆ Institute of Engineering Univ. Grenoble Alpes

https://www-verimag.imag.fr/

2 T. Vigouroux et al.

Formulae (QBF) satisfiability problem [11,12] and its generalization, the Depen-
dency Quantified Boolean Formulae (DQBF) satisfiability problem [22].

These existing qualitative frameworks are not sufficient in a security con-
text: we are not only interested by adversaries able to succeed in all cases, but
rather for adversaries succeeding with “a good probability”. The Stochastic SAT
(SSAT) problem [20] was therefore proposed and replaces the classical universal
(resp. existential) quantifiers by counting (resp. maximizing) quantifiers. This
corresponds to finding the optimal inputs, depending on preceeding outputs,
that maximize the number of models of Φ, hence the succeeding probability
of the attack. More recently, the Dependency Stochastic SAT (DSSAT) prob-
lem [18] has been proposed as a strict generalization of the SSAT problem by
allowing explicit dependencies for maximizing variables, in a similar way the
DQBF problem generalizes the QBF problem.

Nonetheless, an additional complication is hindering the use of quantitative
stochastic frameworks in our security context. In general, the output variables
in a program may hold expressions computed from one or more secret variables.
Consequently, they rarely translate as counting variables in a stochastic formula.
Most likely, the above-mentioned secret variables translate into counting vari-
ables whereas the observable variables need to be projected out when counting
the models. Yet, the output variables are mandatory to express the knowledge
available and the dependencies for synthesizing the attacker’s optimal inputs.

As an example, we are interested in solving counting problems of the form:

max{z1} x1. max{z2} x2. Ry1. Ry2. ∃z1. ∃z2.

(x1 ⇒ y2) ∧ (y1 ⇒ x2) ∧ (y1 ∨ z2 ⇔ y2 ∧ z1)

which involve three distinct types of quantified variables and which are inter-
preted as follows: synthesize for x1 (respectively x2) a boolean expression e1
(respectively e2), depending only on z1 (respectively z2), such that the formula
obtained after replacing xi by ei has a maximal number of models projected on
the counting variables y1, y2.

Notice that this problem generalizes in a non-trivial way three well-known
existing problems: (i) it generalizes the Max#SAT problem [10,26] by allowing
the maximizing variables to depend symbolically on other variables; (ii) it lifts the
DQBF problem [22] to a quantitative problem, we do not want to check if there
exist expressions ei working for all y1, y2, but to find expressions ei maximizing
the number of models on y1, y2; (iii) it extends the DSSAT problem [18] with the
additional category of existential variables, which can occur in the dependencies
of maximizing variables, but which are projected for model counting.

Our contributions are the following:

– We introduce formally the DQMax#SAT problem as a new problem that
arises naturally in the field of software security, and we show that it subsumes
the Max#SAT , DQBF and DSSAT problems.

– We develop a general resolution method based on a reduction to Max#SAT
and further propose two improvements in order to deal with its inherent

Function synthesis for maximizing model counting 3

complexity: (i) an incremental method, that enables anytime resolution; (ii) a
local method, allowing to split the initial problem into independent smaller
sub-problems, enabling parallel resolution.

– We provide two applications of DQMax#SAT to software security: we show
that quantitative robustness [3] and programs as information leakage-channels
[25,23] can be systematically cast as instances of the DQMax#SAT problem.

– We provide a first working prototype solver for the DQMax#SAT problem
and we apply it to the examples considered in this paper.

The paper is organized as follows. Section 2 introduces formally the DQ-
Max#SAT problem and its relation with the Max#SAT , DQBF and DSSAT
problems. Sections 3 to 5 present the three different approaches we propose for
solving DQMax#SAT . Section 6 shows concrete applications of DQMax#SAT
in software security, that is, for the synthesis of adaptive attackers. Finally, Sec-
tion 7 provides preliminary experimental results obtained with our prototype
DQMax#SAT solver. Section 8 discusses some references to related work and
Section 9 concludes and proposes some extensions to address in the future.

2 Problem statement

2.1 Preliminaries

Given a set V of Boolean variables, we denote by F〈V 〉 (resp. M〈V 〉) the set
of Boolean formulae (resp. complete monomials) over V . A model of a boolean
formula φ ∈ F〈V 〉 is an assignement αV : V → B of variables to Boolean values
such that φ evaluates to ⊤ (that is, true) on αV , it is denoted by αV |= φ. A
formula is satisfiable if it has at least one model αV . A formula is valid (i.e.,
tautology) if any assignement αV is a model.

Given a formula φ ∈ F〈V 〉 we denote by |φ|V the number of its models, for-

mally |φ|V
def
= |{αV : V → B | αV |= φ}|. For a partitioning V = V1 ⊎ V2 we de-

note by |∃V2. φ|V1
the number of its V1-projected models, formally |∃V2. φ|V1

def
=

|{αV1
: V1 → B | ∃αV2

: V2 → B. αV1
⊎ αV2

|= φ}|. Note that in general |∃V2. φ|V1
≤

|φ|V with equality only in some restricted situations (e.g. when V1 is an inde-
pendent support of the formula [6]).

Let V , V ′, V ′′ be arbitrary sets of Boolean variables. Given a Boolean formula
φ ∈ F〈V 〉 and a substitution σ : V ′ → F〈V ′′〉 we denote by φ[σ] the Boolean
formula in F〈(V \V ′)∪V ′′〉 obtained by replacing in φ all occurrences of variables
v′ from V ′ by the associated formula σ(v′).

2.2 Problem Formulation

Definition 1 (DQMax#SAT problem). Let X = {x1, ..., xn}, Y , Z be
pairwise disjoint finite sets of Boolean variables, called respectively maximizing,
counting and existential variables. The DQMax#SAT problem is specified as:

maxH1 x1. ... maxHn xn. RY. ∃Z. Φ(X,Y, Z) (1)

4 T. Vigouroux et al.

where H1, ..., Hn ⊆ Y ∪Z and Φ ∈ F〈X∪Y ∪Z〉 are respectively the dependencies
of maximizing variables and the objective formula.

The solution to the problem is a substitution σ∗
X : X → F〈Y ∪ Z〉 associat-

ing formulae on counting and existential variables to maximizing variables such
that (i) σ∗

X(xi) ∈ F〈Hi〉, for all i ∈ [1, n] and (ii) |∃Z. Φ[σ∗
X]|Y is maximal.

That means, the chosen substitution conforms to dependencies on maximizing
variables and guarantees the objective holds for the largest number of models
projected on the counting variables.

Example 1. Consider the problem:

max{z1,z2} x1. Ry1. Ry2. ∃z1. ∃z2. (x1 ⇔ y1) ∧ (z1 ⇔ y1 ∨ y2) ∧ (z2 ⇔ y1 ∧ y2)

Let Φ denote the objective formula. In this case, F〈{z1, z2}〉 = {⊤,⊥, z1, z1, z2, z2, z1∨
z2, z1 ∨ z2, z1 ∨ z2, z1 ∨ z2, z1 ∧ z2, z1 ∧ z2, z1 ∧ z2, z1 ∧ z2, z1 ⇔ z2, z1 ⇔ z2}, and
one shall consider every possible substitution. One can compute for instance
Φ[x1 7→ z1 ∧ z2] ≡ ((z1 ∧ z2) ⇔ y1) ∧ (z1 ⇔ y1 ∨ y2) ∧ (z2 ⇔ y1 ∧ y2) which
only has one model ({y1 7→ ⊥, y2 7→ ⊤, z1 7→ ⊤, z2 7→ ⊥}) and henceforth
|∃z1. ∃z2. Φ[x1 7→ z1 ∧ z2]|{y1,y2} = 1. Overall, for this problem there exists four
possible maximizing substitutions σ∗ respectively x1 7→ z1, x1 7→ z2, x1 7→ z1∨z2,
x1 7→ z1 ∧ z2 such that for all of them |∃z1. ∃z2. Φ[σ∗]|{y1,y2} = 3.

Example 2. Let us consider the following problem:

max{z1} x1. max{z2} x2. Ry1. Ry2. ∃z1. ∃z2.

(x1 ⇒ y2) ∧ (y1 ⇒ x2) ∧ (y1 ∨ z2 ⇔ y2 ∧ z1)

Let Φ denote the associated objective formula. An optimal solution is x1 7→
⊥, x2 7→ z2 and one can check that |∃z1. ∃z2. Φ[x1 7→ ⊥, x2 7→ z2]|{y1,y2} = 3.
Moreover, on can notice that there do not exist expressions e1 ∈ F〈{z1}〉 (re-
spectively e2 ∈ F〈{z2}〉), such that ∃z1. ∃z2. Φ[x1 7→ e1, x2 7→ e2] admits the
model y1 7→ ⊤, y2 7→ ⊥.

The following proposition provides an upper bound on the number of models
corresponding to the solution of (1) computable using projected model counting.

Proposition 1. For any substitution σX : X → F〈Y ∪ Z〉 it holds

|∃Z. Φ[σX]|Y ≤ |∃X. ∃Z. Φ|Y .

2.3 Hardness of DQMax#SAT

We briefly discuss now the relationship between the DQMax#SAT problem and
the Max#SAT , DQBF and DSSAT problems. It turns out that DQMax#SAT
is at least as hard as all of them, as illustrated by the following reductions.

Function synthesis for maximizing model counting 5

DQMax#SAT is at least as hard as Max#SAT : Let X = {x1, ..., xn},
Y , Z be pairwise disjoint finite sets of Boolean variables, called maximizing,
counting and existential variables. The Max#SAT problem [10] specified as

maxx1. . . .max xn. RY. ∃Z. Φ(X,Y, Z) (2)

asks for finding an assignement α∗
X : X → B of maximizing variables to Boolean

values such that |∃Z. Φ[α∗
X]|Y is maximal. It is immediate to see that the

Max#SAT problem is the particular case of the DQMax#SAT problem where
there are no dependencies, that is, H1 = H2 = ... = Hn = ∅.

DQMax#SAT is at least as hard as DQBF : Let X = {x1, ..., xn}, Y
be disjoint finite sets of Boolean variables and let H1, ..., Hn ⊆ Y . The DQBF
problem [22] asks, given a DQBF formula:

∀Y. ∃H1x1. ... ∃
Hnxn. Φ(X,Y) (3)

to synthesize a substitution σ∗
X : X → F〈Y 〉 whenever one exists such that

(i) σ∗
X(xi) ∈ F〈Hi〉, for all i ∈ [1, n] and (ii) Φ[σ∗

X] is valid. The DQBF problem
is reduced to the DQMax#SAT problem:

maxH1 x1. ... maxHn xn. RY. Φ(X,Y) (4)

By solving (4) one can solve the initial DQBF problem (3). Indeed, let σ∗
X : X →

F〈Y 〉 be a solution for (4). Then, the DQBF problem admits a solution if and
only if |Φ[σ∗

X]|Y = 2|Y |. Moreover, σ∗
X is a solution for the problem (3) because

(i) σ∗
X satisfies dependencies and (ii) Φ[σ∗

X] is valid as it belongs to F〈Y 〉 and has
2|Y | models. Note that through this reduction of DQBF to DQMax#SAT , the
maximizing quantifiers in DQMax#SAT can be viewed as Henkin quantifiers [14]
in DQBF with a quantitative flavor.

DQMax#SAT is at least as hard as DSSAT : Let X = {x1, ..., xn}, Y =
{y1, ..., ym} be disjoint finite sets of variables. A DSSAT formula is of the form:

maxH1 x1. ... maxHn xn. R
p1y1. ... R

pmym. Φ(X,Y) (5)

where p1, ..., pm ∈ [0, 1] are respectively the probabilities of variables y1, ..., ym to
be assigned ⊤ and H1, ..., Hn ⊆ Y are respectively the dependency sets of vari-
ables x1, ..., xn. Given a DSSAT formula (5), the probability of an assignement
αY : Y → B is defined as

P [αY]
def
=

m
∏

i=1

{

pi if αY (yi) = ⊤

1− pi if αY (yi) = ⊥

This definition is lifted to formula Ψ ∈ F〈Y 〉 by summing up the probabilities

of its models, that is, P [Ψ]
def
=

∑

αY |=Ψ P [αY].

6 T. Vigouroux et al.

The DSSAT problem [18] asks, for a given formula (5), to synthesize a sub-
stitution σ∗

X : X → F〈Y 〉 such that (i) σ∗
X(xi) ∈ F〈Hi〉, for all i ∈ [1, n]

and (ii) P [Φ[σ∗
X]] is maximal. If p1 = ... = pm = 1

2 then for any substitution

σX : X → F〈Y 〉 it holds P [Φ[σX]] = |Φ[σX]|Y
2m . In this case, it is immediate to

see that solving (5) as a DQMax#SAT problem (i.e., by ignoring probabilities)
would solve the original DSSAT problem. Otherwise, in the general case, one
can use existing techniques such as [4] to transform arbitrary DSSAT problems
(5) into equivalent ones where all probabilities are 1

2 and solve them as above.
Note that while the reduction above from DSSAT to DQMax#SAT seems

to indicate the two problems are rather similar, a reverse reduction from DQ-
Max#SAT to DSSAT seems not possible in general. That is, recall that DQ-
Max#SAT allows for a third category of existential variables Z which can occur
in the dependencies setsHi and which are not used for counting but are projected
out. Yet, such problems arise naturally in our application domain as illustrated
later in section 6. If no such existential variables exists or if they do not occur
in the dependencies sets then one can apriori project them from the objective Φ
and syntactically reduce DQMax#SAT to DSSAT (i.e., adding 1

2 probabilities
on counting variables). However, projecting existential variables in a brute-force
way may lead to an exponential blow-up of the objective formula Φ, an issue
already explaining the hardness of projected model counting vs model counting
[2,17]. Otherwise, in case of dependencies on existential variables, it is an open
question if any direct reduction exists as these variables do not fit into the two
categories of variables (counting, maximizing) occurring in DSSAT formula.

3 Global method

We show in this section that the DQMax#SAT problem can be directly reduced
to a Max#SAT problem with an exponentially larger number of maximizing
variables and exponentially bigger objective formula.

First, recall that any boolean formula ϕ ∈ F〈H〉 can be written as a finite
disjunction of a subset Mϕ of complete monomials from M〈H〉, that is, such
that the following equivalences hold:

ϕ ⇐⇒ ∨m∈Mϕ
m ⇐⇒ ∨m∈M〈H〉 ([[m ∈Mϕ]] ∧m)

Therefore, any formula ϕ ∈ F〈H〉 is uniquely encoded by the set of boolean
values [[m ∈ Mϕ]] denoting the membership of each complete monomial m to
Mϕ. We use this idea to encode the substitution of a maximizing variable xi
by some formula ϕi ∈ F〈Hi〉 by using a set of boolean variables (x′i,m)m∈M〈Hi〉

denoting respectively [[m ∈Mϕi
]] for allm ∈M〈Hi〉. We now define the following

Max#SAT problem:

(max x′1,m.)m∈M〈H1〉 ... (max x′n,m.)m∈M〈Hn〉 RY. ∃Z. ∃X.

Φ(X,Y, Z) ∧
∧

i∈[1,n]

(

xi ⇔ ∨m∈M〈Hi〉(x
′
i,m ∧m)

)

(6)

Function synthesis for maximizing model counting 7

The next theorem establishes the relation between the two problems.

Theorem 1. σ∗
X = {xi 7→ ϕ∗

i }i∈[1,n] is a solution to the problem DQMax#SAT
(1) if and only if α∗

X′ = {x′i,m 7→ [[m ∈ Mϕ∗

i
]]}i∈[1,n],m∈M〈Hi〉 is a solution to

Max#SAT problem (6).

Proof. Let us denote

Φ′(X ′, X, Y, Z)
def
= Φ(X,Y, Z) ∧

∧

i∈[1,n]

(

xi ⇔ ∨m∈M〈Hi〉(x
′
i,m ∧m)

)

Actually, for any Φ ∈ F〈X ∪ Y ∪ Z〉 for any ϕ1 ∈ F〈H1〉, ..., ϕn ∈ F〈Hn〉 the
following equivalence is valid:

Φ(X,Y, Z)[{xi 7→ ϕi}i∈[1,n]]⇔

(∃X. Φ′(X ′, X, Y, Z))
[

{x′i,m 7→ [[m ∈Mϕi
]]}i∈[1,n],m∈M〈Hi〉

]

Consequently, finding the substitution σX which maximize the number of Y -
models of the left-hand side formula (that is, of ∃Z. Φ(X,Y, Z)) is actually the
same as finding the valuation αX′ which maximizes the number of Y -models of
the right-hand side formula (that is, ∃Z. ∃X. Φ′(X ′, X, Y, Z)). ⊓⊔

Example 3. Example 1 is reduced to the following:

maxx′1,z1z2 . max x′1,z1z2 . maxx′1,z1z2 . maxx′1,z1z2 . Ry1. Ry2. ∃z1. ∃z2. ∃x1.

(x1 ⇔ y1) ∧ (z1 ⇔ y1 ∨ y2) ∧ (z2 ⇔ y1 ∧ y2)∧

(x1 ⇔
((

x′1,z1z2 ∧ z1 ∧ z2
)

∨
(

x′1,z1z2 ∧ z1 ∧ z2
)

∨
(

x′1,z1z2 ∧ z1 ∧ z2
)

∨
(

x′1,z1z2 ∧ z1 ∧ z2
))

)

One possible answer is x′1,z1z2 7→ ⊤, x
′
1,z1z2

7→ ⊤, x′1,z1z2 7→ ⊥, x
′
1,z1z2

7→ ⊥. This
yields the solution σX(x1) = (z1 ∧ z2)∨(z1 ∧ z2) = z1 which is one of the optimal
solutions as explained in Example 1.

4 Incremental method

In this section we propose a first improvement with respect to the reduction in
the previous section. It allows to control the blow-up of the objective formula in
the reduced Max#SAT problem through an incremental process. Moreover, it
allows in practice to find earlier good approximate solutions.

The incremental method consists in solving a sequence of related Max#SAT
problems, each one obtained from the original DQMax#SAT problem and a
reduced set of dependencies H ′

1 ⊆ H1, . . . , H ′
n ⊆ Hn. Actually, if the sets of

dependencies H ′
1, . . . , H ′

n are chosen such that to augment progressively from
∅, . . . , ∅ to H1, . . . , Hn by increasing only one of H ′

i at every step then (i) it
is possible to build every such Max#SAT problem from the previous one by a
simple syntactic transformation and (ii) most importantly, it is possible to steer
the search for its solution knowing the solution of the previous one.

8 T. Vigouroux et al.

The incremental method relies therefore on an oracle procedure max#sat for
solving Max#SAT problems. We assume this procedure takes as inputs the sets
X , Y , Z of maximizing, counting and existential variables, an objective formula
Φ ∈ F〈X ∪ Y ∪ Z〉, an initial assignment α0 : X → B and a filter formula
Ψ ∈ F〈X〉. The last two parameters are essentially used to restrict the search
for maximizing solutions and must satisfy:

– Ψ [α0] = ⊤, that is, the initial assignment α0 is a model of Ψ and
– forall α : X → B if α 2 Ψ then |∃Z. Φ[α]|Y ≤ |∃Z. Φ[α0]|Y , that is, any

assignment α outside the filter Ψ is at most as good as the assignement α0.

Actually, whenever the conditions hold, the oracle can safely restrict the search
for the optimal assignements within the models of Ψ . The oracle produces as
output the optimal assignement α∗ : X → B solving the Max#SAT problem.

The incremental algorithm proposed in Algorithm 1 proceeds as follows:

– at lines 1-5 it prepares the arguments for the first call of the Max#SAT
oracle, that is, for solving the problem where H ′

1 = H ′
2 = ... = H ′

n = ∅,
– at line 7 it calls to the Max#SAT oracle,
– at lines 9-10 it chooses an index i0 of some dependency set H ′

i 6= Hi and a
variable u ∈ Hi0 \H

′
i0

to be considered in addition for the next step,
– at lines 11-19 it prepares the argument for the next call of the Max#SAT

oracle, that is, it updates the set of maximizing variables X ′, it refines the
objective formula Φ′, it defines the new initial assignement α′

0 and the new
filter Ψ ′ using the solution of the previous problem,

– at lines 6,20,22 it controls the main iteration, that is, keep going as long as
sets H ′

i are different from Hi,
– at line 23 it builds the expected solution, that is, convert the Boolean solution
α′∗ of the final Max#SAT problem where H ′

i = Hi for all i ∈ [1, n] to the
corresponding substitution σ∗

X .

Finally, note that the application of substitution at line 15 can be done such
that to preserve the CNF form of Φ′. That is, the substitution proceeds clause
by clause by using the following equivalences, for every formula ψ:

(ψ ∨ x′i0,m)[x′i0,m 7→ (x′i0,mu ∧ u) ∨ (x′i0,mū ∧ ū)]⇔

(ψ ∨ x′i0,mu ∨ x
′
i0,mū) ∧ (ψ ∨ x′i0,mu ∨ ū) ∧ (ψ ∨ x′i0,mū ∨ u)

(ψ ∨ x′i0,m)[x′i0,m 7→ (x′i0,mu ∧ u) ∨ (x′i0,mū ∧ ū)]⇔ (ψ ∨ x′i0,mu ∨ ū)(ψ ∨ x
′
i0,mū ∨ u)

Theorem 2. Algorithm 1 is correct for solving the DQMax#SAT problem (1).

Proof. The algorithm terminates after 1 +
∑

i∈[1,n] |Hi| oracle calls. Moreover,
every oracle call solves correctly the Max#SAT problem corresponding to DQ-
Max#SAT problem

maxH
′

1 x1. ... maxH
′

n xn. RY. ∃Z. Φ(X,Y, Z)

Function synthesis for maximizing model counting 9

input : X = {x1, ..., xn}, Y , Z, H1, ..., Hn, Φ
output: σ∗

X

1 H ′
i ← ∅ for all i ∈ [1, n]

2 X ′ ← {x′
i,⊤}i∈[1,n]

3 Φ′ ← Φ ∧
∧

i∈[1,n](xi ⇔ x′
i,⊤)

4 α′
0 ← {x

′
i,⊤ 7→ ⊥}i∈[1,n]

5 Ψ ′ ← ⊤
6 repeat
7 α′∗ ← max#sat(X ′, Y, Z ∪X,Φ′, α′

0, Ψ
′)

8 if H ′
i 6= Hi for some i ∈ [1, n] then

9 i0 ← choose({i ∈ [1, n] | H ′
i 6= Hi})

10 u← choose(Hi0 \H
′
i0
)

11 α′
0 ← α′∗

12 Ψ ′ ← ⊥
13 foreach m ∈M〈H ′

i0
〉 do

14 X ′ ← (X ′ \ {x′
i0,m
}) ∪ {x′

i0,mu, x
′
i0,mū}

15 Φ′ ← Φ′[x′
i0,m
7→ (x′

i0,mu ∧ u) ∨ (x′
i0,mū ∧ ū)]

16 α′
0 ← (α′

0 \ {x
′
i0,m
7→ _}) ∪ {x′

i0,mu, x
′
i0,mū 7→ α′

0(x
′
i0,m

)}
17 Ψ ′ ← Ψ ′ ∨ (x′

i0,mu 6⇔ x′
i0,mū)

18 end
19 Ψ ′ ← Ψ ′ ∨

∧
x∈X′(x⇔ α′

0(x))
20 H ′

i0
← H ′

i0
∪ {u}

21 end

22 until H ′
i = Hi for all i ∈ [1, n]

23 σ∗
X ← {xi 7→ ∨m∈M〈Hi〉(α

′∗(x′
i,m) ∧m)}i∈[1,n]

Algorithm 1: Incremental Algorithm

This is an invariance property provable by induction. It holds by construction
of X ′, Φ′, α′

0, Ψ
′ at the initial step. Then, it is preserved from one oracle call

to the next one i.e., X ′ and Φ′ are changed such that to reflect the addition of
the variable u of the set H ′

i0
. The new initial assignement α′

0 is obtained (i) by
replicating the optimal value α′∗(x′i0,m) to the newly introduced x′i0,mu, x

′
i0,mū

variables derived from x′i0,m variable (line 16) and (ii) by keeping the optimal
value α′∗(x′i,m) for other variables (line 11). As such, for the new problem, the
assignement α′

0 has exactly the same number of Y -projected models as the op-
timal assignement α′∗ had on the previous problem. The filter Ψ ′ is built such
that to contain this new initial assignment α′

0 (line 19) as well as any other
assignement that satisfies x′i0,mu 6⇔ x′i0,mū for some monomial m (lines 12, 17).
This construction guarantees that, any assignment which does not satisfy the
filter Ψ ′ reduces precisely to an assignment of the previous problem, other than
the optimal one α′∗, and henceforth at most as good as α′

0 regarding the number
of Y -projected models. Therefore, it is a sound filter and can be used to restrict
the search for the new problem. The final oracle call corresponds to solving the
complete Max#SAT problem (6) and it will therefore allow to derive a correct
solution to the initial DQMax#SAT problem (1). ⊓⊔

10 T. Vigouroux et al.

Example 4. Let reconsider Example 1. The incremental algorithm will perform
3 calls to the Max#SAT oracle. The first call corresponds to the problem

maxx′1,⊤. Ry1. Ry2. ∃z1. ∃z2. ∃x1.

(x1 ⇔ y1) ∧ (z1 ⇔ y1 ∨ y2) ∧ (z2 ⇔ y1 ∧ y2) ∧ (x1 ⇔ x′1,⊤)

A solution found by the oracle is e.g., x′1,⊤ 7→ ⊥ which has 2 projected models. If
z1 is added to H ′

1, the second call corresponds to the refined Max#SAT problem:

maxx′1,z1 . max x′1,z̄1 Ry1. Ry2. ∃z1. ∃z2. ∃x1.

(x1 ⇔ y1) ∧ (z1 ⇔ y1 ∨ y2) ∧ (z2 ⇔ y1 ∧ y2) ∧ (x1 ⇔ x′1,z1 ∧ z1 ∨ x
′
1,z̄1 ∧ z̄1)

A solution found by the oracle is e.g., x′1,z1 7→ ⊤, x
′
1,z̄1 7→ ⊥ which has 3 projected

models. Finally, z2 is added to H ′
1 therefore the third call corresponds to the

complete Max#SAT problem as presented in Example 3. The solution found by
the oracle is the same as in Example 3.

A first benefit of Algorithm 1 is the fact that it opens the door to any-time
approaches to solve the DQMax#SAT problem. Indeed, the distance between
the current and the optimal solution (that is, the relative ratio between the cor-
responding number of Y -projected models) can be estimated using the upper
bound provided by Prop. 1. Hence, one could stop the search at any given it-
eration as soon as some threshold is reached and construct the returned value
σX similarly as in Line 23 of Algorithm 1. In this case the returned σX would
be defined as σX = {xi 7→ ∨m∈M〈H′

i
〉(α

′∗(x′i,m) ∧m)}i∈[1,n] (note here that the
monomials are selected from H ′

i instead of Hi).
Another benefit of the incremental approach is that it is applicable without

any assumptions on the underlying Max#SAT solver. Indeed, one can use Ψ ′ in
Algorithm 1 by solving the Max#SAT problem corresponding to Φ′ ∧ Ψ ′, and
return the found solution. Even though the α′

0 parameter requires an adaptation
of the Max#SAT solver in order to ease the search of a solution, one could still
benefit from the incremental resolution of DQMax#SAT . Notice that a special
handling of the Ψ ′ parameter by the solver would avoid complexifying the formula
passed to the Max#SAT solver and still steer the search properly.

5 Local method

The local resolution method allows to compute the solution of an initial DQ-
Max#SAT problem by combining the solutions of two strictly smaller and inde-
pendent DQMax#SAT sub-problems derived syntactically from the initial one.
The local method applies only if either 1) some counting or existential variable u
is occurring in all dependency set; or 2) if there is some maximizing variable hav-
ing an empty dependency set. That is, in contrast to the global and incremental
methods, the local method is applicable only in specific situations.

Let us consider a DQMax#SAT problem of form (1). Given a variable v, let

Φv
def
= Φ[v 7→ ⊤], Φv̄

def
= Φ[v 7→ ⊥] be the two cofactors on variable v of the

objective Φ.

Function synthesis for maximizing model counting 11

5.1 Reducing common dependencies

Let us consider now a variable u which occurs in all dependency sets Hi and let
us consider the following u-reduced DQMax#SAT problems:

maxH1\{u} x1. ...maxHn\{u} xn. RY \ {u}. ∃Z \ {u}. Φu (7)

maxH1\{u} x1. ...maxHn\{u} xn. RY \ {u}. ∃Z \ {u}. Φū (8)

Let σ∗
X,u, σ∗

X,ū denote respectively the solutions to the problems above.

Theorem 3. If either

(i) u ∈ Y or
(ii) u ∈ Z and u is functionally dependent on counting variables Y within

the objective Φ (that is, for any valuation αY : Y → B, at most one of
Φ[αY][u 7→ ⊤] and Φ[αY][u 7→ ⊥] is satisfiable).

then σ∗
X defined as

σ∗
X(xi)

def
=

(

u ∧ σ∗
X,u(xi)

)

∨
(

ū ∧ σ∗
X,ū(xi)

)

for all i ∈ [1, n]

is a solution to the DQMax#SAT problem (1).

Proof. First, any formula ϕi ∈ F〈Hi〉 can be equivalently written as u ∧ ϕi,u ∨

ū ∧ ϕi,ū where ϕi,u
def
= ϕi[u 7→ ⊤] ∈ F〈Hi \ {u}〉 and ϕi,ū

def
= ϕi[u 7→ ⊥] ∈

F〈Hi \ {u}〉. Second, we can prove the equivalence:

Φ[xi 7→ ϕi]⇔ (u ∧ Φu ∨ ū ∧ Φū)[xi 7→ u ∧ ϕi,u ∨ ū ∧ ϕi,ū]

⇔ u ∧ Φu[xi 7→ ϕi,u] ∨ ū ∧ Φū[xi 7→ ϕi,ū]

by considering the decomposition of Φu, Φū according to the variable xi. The
equivalence above can then be generalized to a complete substitution σX =

{xi 7→ ϕi}i∈[1,n] of maximizing variables. Let us denote respectively σX,u
def
=

{xi 7→ ϕi,u}i∈[1,n], σX,ū
def
= {xi 7→ ϕi,ū}i∈[1,n]. Therefore, one obtains

Φ[σX]⇔ (u ∧ Φu ∨ ū ∧ Φū)[xi 7→ ϕi]i∈[1,n]

⇔ u ∧ Φu[xi 7→ ϕi,u]i∈[1,n] ∨ ū ∧ Φū[xi 7→ ϕi,ū]i∈[1,n]

⇔ u ∧ Φu[σX,u] ∨ ū ∧ Φū[σX,ū]

Third, the later equivalence provides a way to compute the number of Y -models
of the formula ∃Z. Φ[σZ] as follows:

|∃Z. Φ[σX]|Y = |∃Z. (u ∧ Φu[σX,u] ∨ ū ∧ Φū[σX,ū])|Y

= |∃Z. (u ∧ Φu[σX,u]) ∨ ∃Z. (ū ∧ Φū[σX,ū])|Y

= |∃Z. (u ∧ Φu[σX,u])|Y + |∃Z. (ū ∧ Φū[σX,ū])|Y

= |∃Z \ {u}. Φu[σX,u]|Y \{u} + |∃Z \ {u}. Φū[σX,ū]|Y \{u}

12 T. Vigouroux et al.

Note that the third equality holds only because u ∈ Y or u ∈ Z and functionally
dependent on counting variables Y . Actually, in these situations, the sets of
Y -projected models of respectively, u ∧ Φu[σX,u] and ū ∧ Φū[σX,ū] are disjoint.
Finally, the last equality provides the justification of the theorem, that is, finding
σX which maximizes the left hand side reduces to finding σX,u, σX,ū which
maximizes independently the two terms of right hand side, and these actually
are the solutions of the two u-reduced problems (7) and (8). ⊓⊔

Example 5. Let us reconsider Example 1. It is an immediate observation that ex-
istential variables z1, z2 are functionally dependent on counting variables y1, y2
according to the objective. Therefore the local method is applicable and hence-
forth since H1 = {z1, z2} one reduces the initial problem to four smaller prob-
lems, one for each valuation of z1, z2, as follows:

z1 7→ ⊤, z2 7→ ⊤ : max∅ x1. Ry1. Ry2 .(x1 ⇔ y1) ∧ (⊤ ⇔ y1 ∨ y2) ∧ (⊤ ⇔ y1 ∧ y2)

z1 7→ ⊤, z2 7→ ⊥ : max∅ x1. Ry1. Ry2 .(x1 ⇔ y1) ∧ (⊤ ⇔ y1 ∨ y2) ∧ (⊥ ⇔ y1 ∧ y2)

z1 7→ ⊥, z2 7→ ⊤ : max∅ x1. Ry1. Ry2 .(x1 ⇔ y1) ∧ (⊥ ⇔ y1 ∨ y2) ∧ (⊤ ⇔ y1 ∧ y2)

z2 7→ ⊥, z2 7→ ⊥ : max∅ x1. Ry1. Ry2 .(x1 ⇔ y1) ∧ (⊥ ⇔ y1 ∨ y2) ∧ (⊥ ⇔ y1 ∧ y2)

The four problems are solved independently and have solutions e.g., respectively
x1 7→ c1 ∈ {⊤}, x1 7→ c2 ∈ {⊤,⊥}, x1 7→ c3 ∈ {⊤,⊥}, x1 7→ c4 ∈ {⊥}. By
recombining these solutions according to Theorem 3 one obtains several solutions
to the original DQMax#SAT problem of the form:

x1 7→ (z1 ∧ z2 ∧ c1) ∨ (z1 ∧ z̄2 ∧ c2) ∨ (z̄1 ∧ z2 ∧ c3) ∨ (z̄1 ∧ z̄2 ∧ c4)

They correspond to solutions already presented in Example 3, that is:

x1 7→ (z1 ∧ z2 ∧ ⊤) ∨ (z1 ∧ z2 ∧⊥) ∨ (z1 ∧ z2 ∧ ⊥) ∨ (z1 ∧ z2 ∧ ⊥) (≡ z1 ∧ z2)

x1 7→ (z1 ∧ z2 ∧ ⊤) ∨ (z1 ∧ z2 ∧⊥) ∨ (z1 ∧ z2 ∧ ⊤) ∨ (z1 ∧ z2 ∧ ⊥) (≡ z2)

x1 7→ (z1 ∧ z2 ∧ ⊤) ∨ (z1 ∧ z2 ∧⊤) ∨ (z1 ∧ z2 ∧ ⊥) ∨ (z1 ∧ z2 ∧ ⊥) (≡ z1)

x1 7→ (z1 ∧ z2 ∧ ⊤) ∨ (z1 ∧ z2 ∧⊤) ∨ (z1 ∧ z2 ∧ ⊤) ∨ (z1 ∧ z2 ∧ ⊥) (≡ z1 ∨ z2)

Finally, note that the local resolution method has potential for parallelization. It
is possible to eliminate not only one but all common variables in the dependency
sets as long as they fulfill the required property. This leads to several strictly
smaller sub-problems that can be solved in parallel. The situation has been
already illustrated in the previous example, where by the elimination of z1 and
z2 one obtains 4 smaller sub-problems.

5.2 Solving variables with no dependencies

Let us consider now a maximizing variable which has an empty dependency set.
Without lack of generality, assume x1 has an empty dependency set, i.e. H1 = ∅.

Function synthesis for maximizing model counting 13

Thus, the only possible values that can be assigned to x1 are ⊤ or ⊥. Let us
consider the following x1-reduced DQMax#SAT problems:

maxH2 x2. . . . maxHn xn. RY. ∃Z. Φx1

maxH2 x2. . . . maxHn xn. RY. ∃Z. Φx1

and let σ∗
X,x1

, σ∗
X,x1

denote respectively the solutions to the problems above.
The following proposition is easy to prove, and provides the solution of the
original problem based on the solutions of the two smaller sub-problems.

Proposition 2. The substitution σ∗
X defined as

σ∗
X

def
=

{

σ∗
X,x1

⊎ {x1 7→ ⊤} if |∃Z. Φx1
[σ∗

X,x1
]|Y ≥ |∃Z. Φx1

[σ∗
X,x1

]|Y

σ∗
X,x1

⊎ {x1 7→ ⊥} otherwise

is a solution to the DQMax#SAT problem (1).

6 Application to Software Security

In this section, we give a concrete application of DQMax#SAT in the context
of software security. More precisely, we show that finding an optimal strategy
for an adaptative attacker trying to break the security of some program can be
naturally encoded as specific instances of the DQMax#SAT problem.

In our setting, we allow the attacker to interact multiple times with the target
program. Moreover, we assume that the adversary is able to make observations,
either from the legal outputs or using some side-channel leaks. Adaptive attack-
ers [9,24,23] are a special form of active attackers considered in security that are
able to select their inputs based on former observations, such that they maximize
their chances to reach their goals (i.e., break some security properties).

First we present in more details this attacker model we consider, and then
we focus on two representative attack objectives the attacker aims to maximize:

– either the probability of reaching a specific point in the target program, while
satisfying some objective function (Section 6.2),

– or the amount of information it can get about some fixed secret used by the
program (Section 6.3).

At the end of the section, we show that the improvements presented in the
previous sections apply in both cases.

6.1 Our model of security in presence of an adaptive adversary

The general setting we consider is the one of so-called active attackers, able to
provide inputs to the program they target. Such attacks are then said adaptive
when the attacker is able to deploy an attack strategy, which continuously relies
on some knowledge gained from previous interactions with the target program,

14 T. Vigouroux et al.

and allowing to maximize its chances of success. Moreover, we consider the more
powerful attacker model where the adversary is assumed to know the code of
the target program.

Note that such an attacker model is involved in most recent concrete attack
scenarios, where launching an exploit or disclosing some sensitive data requires
to chain several (interactive) attack steps in order to defeat some protections
and/or to gain some intermediate privileges on the target platform. Obviously,
from the defender side, quantitative measures about the “controllability” of such
attacks is of paramount importance for exploit analysis or vulnerability triage.

When formalizing the process of adaptatively attacking a given program, one
splits the program’s variables between those controlled and those uncontrolled by
the attacker. Among the uncontrolled variables one further distinguishes those
observable and those non-observable, the former ones being available to the at-
tacker for producing its (next) inputs. The objective of the attacker is a formula,
depending on the values of program variables, and determining whether the
attacker has successfully conducted the attack.

For the sake of simplicity – in our examples – we restrict ourselves to non-
looping sequential programs operating on variables with bounded domains (such
as finite integers, Boolean’s, etc). We furthermore consider the programs are
written in SSA form, assuming that each variable is assigned before it is used.
These hypothesis fit well in the context of a code analysis technique like symbolic
execution [15], extensively used in software security.

Finally, we also rely on explicit (user-given) annotations by predefined func-
tions (or macros) to identify the different classes of program variables and the
attacker’s objective. In the following code excerpts, we assume that:

– The random function produces an uncontrolled non-observable value; it al-
lows for instance to simulate the generation of both long term keys and
nonces in a program using cryptographic primitives.

– The input function feeds the program with an attacker-controlled value.
– The output function simulates an observation made by the adversary and

denotes a value obtained through the evaluation of some expression of pro-
gram variables.

6.2 Security as a rechability property

We show in this section how to encode quantitative reachability defined in [3] as
an instance of the DQMax#SAT problem.

In quantitative reachability, the goal of an adversary is to reach some target
location in some program such that some objective property get satisfied. In order
to model this target location of the program that the attacker wants to reach,
we extend our simple programming language with a distinguished win function.
The win function can take a predicate as argument (the objective property)
and is omitted whenever this predicate is the True predicate. In practice such
a predicate may encode some extra conditions required to trigger and exploit
some vulnerability at the given program location (e.g., overflowing a buffer with
a given payload).

Function synthesis for maximizing model counting 15

1 y1 ← random()

2 y2 ← random()

3 z1 ← output(y1 + y2)
4 x1 ← input()

5 if y1 ≤ x1 then
6 win(x1 ≤ y2)

7 end

Program 2: A first program example

Example 6. In Program 2 one can see an example of annotated program. y1
and y2 are uncontrollable non-observable variables. z1 is an observable variable
holding the sum y1+y2. x1 is a variable controlled by the attacker. The attacker’s
objective corresponds to the path predicate y1 ≤ x1 denoting the condition to
reach the win function call and the argument predicate x1 ≤ y2 denoting the
objective property. Let us observe that a successful attack exists, that is, by
taking x1 ←

z1
2 the objective is always reachable.

When formalizing adaptive attackers, the temporality of interactions (that is,
the order of inputs and outputs) is important, as the attacker can only synthesize
an input value from the output values that were observed before it is asked to
provide that input. To track the temporal dependencies in our formalization, for
every controlled variable xi one considers the set Hi of observable variables ef-
fectively known at the time of defining xi, that is, representing the accumulation
of attacker’s knowledge throughout the interactions with the program.

We propose hereafter a systematic way to express the problem of synthe-
sis of an optimal attack (that is, with the highest probability of the objective
property to get satisfied), as a DQMax#SAT instance. Let Y (resp. Z) be the
set of uncontrolled variables being assigned to random() which in this section
is assumed to uniformly sample values in their domain (resp. other expressions)
in the program. For a variable z ∈ Z let moreover ez be the unique expression
assigned to it in the program, either through an assignment of the form z ← ez
or z ← output(ez). Let X = {x1, ..., xn} be the set of controlled variables with
their temporal dependencies respectively subsets H1, . . . , Hn ⊆ Z of uncontrol-
lable variables. Finally, let Ψ be the attacker objective, that is, the conjunction
of the argument of the win function and the path predicate leading to the win

function call. Consider the next most likely generalized DQMax#SAT problem:

maxH1 x1. ... maxHn xn. RY. ∃Z. Ψ ∧
∧

z∈Z
(z = ez) (9)

Example 7. Consider the annotated problem from Program 2. The encoding of
the optimal attack leads to the generalized DQMax#SAT problem:

max{z1} x1. Ry1. Ry2. ∃z1. (y1 ≤ x1 ∧ x1 ≤ y2) ∧ (z1 = y1 + y2)

Note that in contrast to the DQMax#SAT problem (1), the variables are
not restricted to Booleans (but to some finite domains) and the expressions

16 T. Vigouroux et al.

are not restricted to Boolean terms (but involve additional operators available
in the specific domain theories e.g., =, ≥, +, −, etc). Nevertheless, as long as
both variables and additional operators can be respectively, represented by and
interpreted as operations on bitvectors, one can use bitblasting and transforms
the generalized problem into a full-fledged DQMax#SAT problem and then solve
it by the techniques introduced earlier in the paper.

Finally, note also that in the DQMax#SAT problems constructed as above,
the maximizing variables are dependent by definition on existential variables
only. Therefore, as earlier discussed in Section 2, these problems cannot be actu-
ally reduced to similar DSSAT problems. However, they compactly encode the
quantitative reachability properties subject to input/output dependencies.

6.3 Security as a lack of leakage property

In this section, we extend earlier work on adaptive attackers from [24] by effec-
tively synthesizing the strategy the attacker needs to deploy in order to max-
imize its knowledge about some secret value used by the program. Moreover,
we show that in our case, we are able to keep symbolic the trace corresponding
to the attack strategy, while in [23], the attacker strategy is a concretized tree,
which explicitly states, for each concrete program output, what should be the
next input provided by the adversary. Following ideas proposed in [23], symbolic
execution can be used to generate constraints characterizing partitions on the
secrets values, where each partition corresponds to the set of secrets leading to
the same sequences of side-channel observations.

1 z ← random() //the secret
2 x← input()

3 if x ≥ z then
4 ... some computation taking

10 seconds

5 else
6 ... some computation taking

20 seconds

7 end

Program 3: A leaking program

1 z ← random() ;

2 x1 ← input();
3 y1 ← output(x1 ≥ z);

4 x2 ← input();
5 y2 ← output(x2 ≥ z);

6 x3 ← input();
7 y3 ← output(x3 ≥ z);

Program 4: An iterated
leaking program

Example 8. Let us consider the excerpt Program 3 taken from [23]. This program
is not constant-time, namely it executes a branching instruction whose condition
depends on the secret z. Hence an adversary able to learn the branch taken
during the execution, either by measuring the time or doing some cache-based
attack, will get some information about the secret z. A goal of an adversary
interacting several times with the program could be to maximize the amount
of information leaked about the secret value z. When the program is seen as a
channel leaking information, the channel capacity theorem [25] states that the
information leaked by a program is upper-bounded by the number of different

Function synthesis for maximizing model counting 17

observable outputs of the program (and the maximum is achieved whenever the
secret is the unique randomness used by the program). In our case, it means
that an optimal adaptive adversary interacting k-times with the program should
maximize the number of different observable outputs. Hence, for example, if as
in [23], we fix k = 3 and if we assume that the secret z is uniformly sampled in
the domain 1 ≤ z ≤ 6, then the optimal strategy corresponds to maximize the
number of different observable outputs y of the Program 4, which corresponds
to the following DQMax#SAT instance:

max∅ x1. max{y1} x2. max{y1,y2} x3. Ry1. Ry2. Ry3. ∃z .

(y1 ⇔ x1 ≥ z) ∧ (y2 ⇔ x2 ≥ z) ∧ (y3 ⇔ x3 ≥ z) ∧ (1 ≤ z ≤ 6)

Our prototype provided the following solution: x1 = 100, x2 = y110, x3 = y1y21,
that basically says: the attacker should first input 4 to the program, then the
input corresponding to the integer whose binary encoding is y1 concatenated
with 10, and the last input x3 is the input corresponding to the integer whose
binary encoding is the concatenation of y2, y1 and 1. In [23] the authors obtain
an equivalent attack encoded as a tree-like strategy of concrete values.

We now show a systematic way to express the problem of the synthesis of an
optimal attack expressed as the maximal channel capacity of a program seen as
an information leakage channel, as a DQMax#SAT instance. Contrary to the
previous section, the roles of Y and Z are now switched: Y is a set of variables
encoding the observables output by the program; Z is the set of variables uni-
formly sampled by random() or assigned to other expressions in the program.
For a variable y ∈ Y , let ey be the unique expression assigned to it in the pro-
gram through an assignment of the form y ← output(ey). For a variable z ∈ Z,
let moreover ez be the unique expression assigned to it in the program through
an assignment of the form z ← ez or the constraint encoding the domain used
to sample values in z ← random(). Let X = {x1, ..., xn} be the set of controlled
variables with their temporal dependencies respectively subsets H1, . . . , Hn ⊆ Y .
Consider now the following most likely generalized DQMax#SAT problem:

maxH1 x1. ... maxHn xn. RY. ∃Z.
∧

y∈Y
(y = ey) ∧

∧

z∈Z
(z = ez)

Finally, in contrast to reachability properties, in the DQMax#SAT problems
obtained as above for evaluating leakage properties, the maximizing variables
are by definition dependent on counting variables only. Consequently, for these
problems, the existential variables can be apriori eliminated so that to obtain
an equivalent DSSAT 1 problem as discussed in Section 2.

6.4 Some remarks about the applications to security

Let us notice some interesting properties of the attacker synthesis’s DQMax#SAT
problems. If controlled variables x1, x2, ..., xn are input in this order within the

1 Actually these problems can even be reduced to SSAT instances.

18 T. Vigouroux et al.

program then necessarily H1 ⊆ H2 ⊆ ... ⊆ Hn. That is, the knowledge of the
attacker only increases as long as newer observable values became available to
it. Moreover, since we assumed that variables are used only after they were ini-
tialized, the sets Hi contain observable variables that are dependent only on the
counting variables Y . Hence we can apply iteratively the following steps from
the local resolution method described in Section 5:

– While H1 6= ∅, apply the local resolution method described in Section 5.1
iteratively until H1 becomes empty. For example, it is the case of Example 6
where z1 is dependent only on counting variables y1 and y2.

– When H1 becomes ∅, apply the local resolution method described in Sec-
tion 5.2 in order to eliminate the first maximizing variable.

7 Implementation and Experiments

We implement Algorithm 1 leaving generic the choice of the underlying Max#SAT
solver. For concrete experiments, we used both the approximate solver BaxMC2 [26]
and the exact solver D4max [1].

In the implementation of Algorithm 1 in our tool, the filter Ψ ′ is handled as
discussed at the end of Section 4: the formula effectively solved is Φ′∧¬Ψ ′, allow-
ing to use any Max#SAT solver without any prior modification. Remark that
none of BaxMC and D4max originally supported exploiting the α0 parameter
of Algorithm 1 out of the box. While D4max is used of the shelf, we modified
BaxMC to actually support this parameter for the purpose of the experiment.

We use the various examples used in this paper as benchmark instances for
the implemented tool. Examples 1 and 2 are used as they are. We furthermore
use Example 11 (in appendix) which is a slightly modified version of Example 1.
We consider Examples 7 and 8 from Section 6 and perform the following steps
to convert them into DQMax#SAT instances: (i) bitblast the formula represent-
ing the security problem into a DQMax#SAT instance over boolean variables;
(ii) solve the later formula; (iii) propagate the synthesized function back into a
function over bit-vectors for easier visual inspection of the result.

We also add the following security related problems (which respectively corre-
spond to Program 5 in appendix and a relaxed version of Example 8 in Section 6)
into our benchmark set:

Example 9. max∅ x1. max{z1} x2. max{z1,z2} x3. Ry1. ∃z1. ∃z2.
(x3 = y1) ∧ (z1 = x1 ≥ y1 ∧ z2 = x2 ≥ y)

Example 10. max∅ x1. max{y1} x2. max{y1,y2} x3. Ry1. Ry2. Ry3. ∃z .
(y1 ⇔ x1 ≥ z) ∧ (y2 ⇔ x2 ≥ z) ∧ (y3 ⇔ x3 ≥ z)

When bitblasting is needed for a given benchmark, the number of bits used
for bitblasting is indicated in parentheses. After the bitblasting operation, the
problems can be considered medium sized.

2 Thanks to specific parametrization and the oracles [5] used internally by BaxMC,
it can be considered an exact solver on the small instances of interest in this section.

Function synthesis for maximizing model counting 19

Table 1. Summary of the performances of the tool. |Φ| denotes the number of clauses.
The last two columns indicate the running time using the specific Max#SAT oracle.

Benchmark name |X| |Y | |Z| |Φ| Time (BaxMC) Time (D4max)

Example 1 1 2 2 7 32ms 121ms

Example 2 2 2 2 7 25ms 134ms

Example 11 1 2 1 5 16ms 89ms

Example 7 (3 bits) 3 6 97 329 378ms 79.88s

Example 7 (4 bits) 4 8 108 385 638.63s > 30mins

Example 8 (3 bits) 9 3 150 487 18.78s 74.58s

Example 9 (3 bits) 9 3 93 289 74.00s 18.62s

Example 10 (3 bits) 9 3 114 355 9.16s 93.48s

As you can see in Table 1, the implemented tool can effectively solve all the
examples presented in this paper. The synthesized answers (i.e. the monomials
selected in Algorithm 1, Line 23) returned by both oracles are the same.

For security examples, one key part of the process is the translation of the
synthesized answer (over boolean variables) back to the original problem (over
bit-vectors). In order to do that, one can simply concatenate the generated sub-
functions for each bit of the bit-vector into a complete formula, but that would
lack explainability because the thus-generated function would be a concatena-
tion of potentially big sums of monomials. In order to ease visual inspection, we
run a generic simplification step [13] for all the synthesized sub-function, before
concatenation. This simplification allows us to directly derive the answers ex-
plicited in Examples 7 and 8 instead of their equivalent formulated as sums of
monomials, and better explain the results returned by the tool.

Unfortunately, we could not compare our algorithm against the state-of-the-
art DSSAT solver DSSATpre [18] on the set of example described in this paper
because (i) as discussed in Section 2.3, some DQMax#SAT instances cannot
be converted into DSSAT instances, (ii) for the only DQMax#SAT instance
(Example 10) that can be converted into a DSSAT instance, we were not able
to get an answer using DSSATpre.

8 Related Work

As shown in Section 2, DQMax#SAT subsumes the DSSAT and DQBF prob-
lems. This relation indicates a similarity of the three problems, and thus some
related works can be extracted from here. From the complexity point of view,
the decision version of DQMax#SAT can be shown to be NEXPTIME-complete
and hence it lies in the same complexity class as DQBF [21] and DSSAT [18].

Comparing the performances of existing DQBF algorithms with the pro-
posed algorithms for DQMax#SAT is not yet realistic since they address differ-
ent objectives. However, one can search for potential improvements for solving
DQMax#SAT by considering the existing enhancements proposed in [16] to im-
prove the resolution of DQBF . For example, dependency schemes [28] are a way

20 T. Vigouroux et al.

to change the dependency sets in DQBF without changing the truth value com-
pared to the original formula. Thus, adaptations of these dependency schemes
could be applied to our problem as well and potentially lead to a significant
decrease of the size of the resulting Max#SAT problems.

The DSSAT problem is currently receiving an increased attention by the
research community. A first sound and complete resolution procedure has been
proposed in [19], however, without being yet implemented. The only available
DSSAT solver nowadays is DSSATpre [8]. This tool relies on preprocessing to
get rid of dependencies and to produce equivalent SSAT problems. These prob-
lems are then accurately solved by existing SSAT solvers [7,27], some of them
being also able to compute the optimal assignments for maximizing variables. In
contrast, our tool for solving DQMax#SAT relies on existing Max#SAT solvers,
always synthesizes the assignments for maximizing variables and provide support
for approximate solving. Moreover, due to the presence of existential variables,
note that DQMax#SAT and DSSAT are fundamentally different problems. Ex-
istential variables are already pinpointing the difference between the two pure
counting problems #SAT and #∃SAT [2,17]. In cases where maximizing vari-
ables depend on existential variables no trivial reduction from DQMax#SAT to
DSSAT seems to exists.

From the security point of view, the closest works to our proposal are the
ones decribed in [23,24]. As the authors in these papers, we are able to effectively
synthesize the optimal adaptive strategy the attacker needs to deploy in order
to maximize its knowledge about some secret value used by the program. In
addition, we show that in our case, we are able to keep symbolic the trace
corresponding to the attack strategy, while in [23], the attacker strategy is a
concretized tree which explicitely states, for each concrete program output, what
should be the next input provided by the adversary.

9 Conclusions

We exposed in this paper a new problem called DQMax#SAT that subsumes
both DQBF and DSSAT . We then devised three different resolution methods
based on reductions to Max#SAT and showed the effectiveness of one of them,
the incremental method, by implementing a prototype solver. A concrete appli-
cation of DQMax#SAT lies in the context of software security, in order to assess
the robustness of a program by synthesizing the optimal adversarial strategy of
an adaptive attacker.

Our work can be expanded in several directions. First, we would like to
enhance our prototype with strategies for dependency expansion in the incre-
mental algorithm. Second, we plan to integrate the local resolution method in
our prototype. Third, we shall apply these techniques on more realistic security
related examples, and possibly getting further improvement directions from this
dedicated context.

Function synthesis for maximizing model counting 21

References

1. Audemard, G., Lagniez, J., Miceli, M.: A New Exact Solver for (Weighted)
Max#SAT. In: SAT. LIPIcs, vol. 236, pp. 28:1–28:20. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik (2022)

2. Aziz, R.A., Chu, G., Muise, C.J., Stuckey, P.J.: #∃SAT: Projected Model Counting.
In: SAT. Lecture Notes in Computer Science, vol. 9340, pp. 121–137. Springer
(2015)

3. Bardin, S., Girol, G.: A Quantitative Flavour of Robust Reachability. CoRR
abs/2212.05244 (2022)

4. Chakraborty, S., Fried, D., Meel, K.S., Vardi, M.Y.: From Weighted to Unweighted
Model Counting. In: IJCAI. pp. 689–695. AAAI Press (2015)

5. Chakraborty, S., Meel, K.S., Vardi, M.Y.: A Scalable Approximate Model Counter.
CoRR abs/1306.5726 (2013)

6. Chakraborty, S., Meel, K.S., Vardi, M.Y.: Balancing Scalability and Uniformity in
SAT Witness Generator. In: DAC. pp. 60:1–60:6. ACM (2014)

7. Chen, P., Huang, Y., Jiang, J.R.: A Sharp Leap from Quantified Boolean Formula
to Stochastic Boolean Satisfiability Solving. In: AAAI. pp. 3697–3706. AAAI Press
(2021)

8. Cheng, C., Jiang, J.R.: Lifting (D)QBF Preprocessing and Solving Techniques to
(D)SSAT. In: AAAI. pp. 3906–3914. AAAI Press (2023)

9. Dullien, T.: Weird Machines, Exploitability, and Provable Unexploitability. IEEE
Trans. Emerg. Top. Comput. 8(2), 391–403 (2020)

10. Fremont, D.J., Rabe, M.N., Seshia, S.A.: Maximum Model Counting. In: AAAI.
pp. 3885–3892. AAAI Press (2017)

11. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman (1979)

12. Garey, M.R., Johnson, D.S., So, H.C.: An Application of Graph Coloring to Printed
Circuit Testing (Working Paper). In: FOCS. pp. 178–183. IEEE Computer Society
(1975)

13. Gario, M., Micheli, A.: PySMT: a solver-agnostic library for fast prototyping of
SMT-based algorithms. In: SMT workshop. vol. 2015 (2015)

14. Henkin, L., Karp, C.R.: Some Remarks on Infinitely Long Formulas. Journal of
Symbolic Logic 30(1), 96–97 (1965). https://doi.org/10.2307/2270594

15. King, J.C.: Symbolic Execution and Program Testing. Commun. ACM 19(7), 385–
394 (1976)

16. Kovásznai, G.: What is the state-of-the-art in DQBF solving. In: MaCS-16. Joint
Conference on Mathematics and Computer Science (2016)

17. Lagniez, J., Marquis, P.: A Recursive Algorithm for Projected Model Counting.
In: AAAI. pp. 1536–1543. AAAI Press (2019)

18. Lee, N., Jiang, J.R.: Dependency Stochastic Boolean Satisfiability: A Logical For-
malism for NEXPTIME Decision Problems with Uncertainty. In: AAAI. pp. 3877–
3885. AAAI Press (2021)

19. Luo, Y., Cheng, C., Jiang, J.R.: A Resolution Proof System for Dependency
Stochastic Boolean Satisfiability. J. Autom. Reason. 67(3), 26 (2023)

20. Papadimitriou, C.H.: Games Against Nature. J. Comput. Syst. Sci. 31(2), 288–301
(1985)

21. Peterson, G., Reif, J., Azhar, S.: Lower bounds for multiplayer noncooperative
games of incomplete information. Computers & Mathematics with Applications
41(7-8), 957–992 (2001)

https://doi.org/10.2307/2270594
https://doi.org/10.2307/2270594

22 T. Vigouroux et al.

22. Peterson, G.L., Reif, J.H.: Multiple-Person Alternation. In: FOCS. pp. 348–363.
IEEE Computer Society (1979)

23. Phan, Q., Bang, L., Pasareanu, C.S., Malacaria, P., Bultan, T.: Synthesis of Adap-
tive Side-Channel Attacks. IACR Cryptol. ePrint Arch. p. 401 (2017)

24. Saha, S., Eiers, W., Kadron, I.B., Bang, L., Bultan, T.: Incremental Adaptive
Attack Synthesis. CoRR abs/1905.05322 (2019)

25. Smith, G.: On the Foundations of Quantitative Information Flow. In: FoSSaCS.
Lecture Notes in Computer Science, vol. 5504, pp. 288–302. Springer (2009)

26. Vigouroux, T., Ene, C., Monniaux, D., Mounier, L., Potet, M.: BaxMC: a CEGAR
approach to Max#SAT. In: FMCAD. pp. 170–178. IEEE (2022)

27. Wang, H., Tu, K., Jiang, J.R., Scholl, C.: Quantifier Elimination in Stochastic
Boolean Satisfiability. In: SAT. LIPIcs, vol. 236, pp. 23:1–23:17. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik (2022)

28. Wimmer, R., Scholl, C., Wimmer, K., Becker, B.: Dependency Schemes for DQBF.
In: SAT. LNCS, vol. 9710, pp. 473–489. Springer (2016)

Appendix

Example 11. Consider the problem:

max{z1} x1. Ry1. Ry2. ∃z1. (x1 ⇔ y1) ∧ (z1 ⇔ (y1 ∨ y2))

Let Φ1 denote the objective formula. As F〈{z1}〉 = {⊤,⊥, z1, z1} one shall con-
sider these four possible substitutions for the maximizing variable x1 and com-
pute the associated number of {y1, y2}-projected models. For instance, Φ1[x1 7→
⊥] ≡ y1 ∧ (z1 ⇔ y2) has two models, respectively {y1 7→ ⊥, y2 7→ ⊤, z1 7→ ⊤}
and {y1 7→ ⊥, y2 7→ ⊥, z1 7→ ⊥} and two {y1, y2}-projected models respectively
{y1 7→ ⊥, y2 7→ ⊤} and {y1 7→ ⊥, y2 7→ ⊥}. Therefore |∃z1. Φ1[x1 7→ ⊥]|{y1,y2} =
2. The maximizing substitution is x1 7→ z1 which has three {y1, y2}-projected
models, that is |∃z1. Φ1[x1 7→ z1]|{y1,y2} = 3. Note that no substitution for x1
exists such that the objective to have four {y1, y2}-projected models, that is,
always valid for counting variables.

Example 12. In Program 5, one shall know that the optimal strategy is the
dichotomic search of y1 within its possible values.

1 y1 ← random() ;

2 x1 ← input();
3 z1 ← output(x1 ≥ y1);

4 x2 ← input();
5 z2 ← output(x2 ≥ y1);

6 x3 ← input();

7 win(x3 ≈
msb
3 y1);

Program 5: A second program example

	Function synthesis for maximizing model counting

