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ChatGPT for phenotypes extraction: one model to rule them all?

Thomas Labbé1,2 Pierre Castel2 Jean-Michel Sanner1,2 Majd Saleh2

Abstract— Information Extraction (IE) is a core task in
Natural Language Processing (NLP) where the objective is
to identify factual knowledge in textual documents (often
unstructured), and feed downstream use cases with the
resulting output. In genomic medicine for instance, being
able to extract the most precise list of phenotypes associated
to a patient allows to improve genetic disease diagnostic,
which represents a vital step in the modern deep phenotyping
approach. As most of the phenotypic information lies in clinical
reports, the challenge is to build an IE pipeline to automatically
recognize phenotype concepts from free-text notes. A new
machine learning paradigm around large language models
(LLM) has given rise of an increasing number of academic
works on this topic lately, where sophisticated combinations
of different technics have been employed to improve the
phenotypes extraction accuracy. Even more recently released,
the ChatGPT1 application nevertheless raises the question of
the relevance of these approches compared to this new generic
one based on an instruction-oriented LLM. In this paper, we
propose a rigorous evaluation of ChatGPT and the current
state-of-the-art solutions on this specific task, and discuss the
possible impacts and the technical evolutions to consider in
the medical domain.

Clinical relevance— Deep phenotyping on electronic health
records has proven its ability to improve genetic diagnosis by
clinical exomes [10]. Thus, comparing state-of-the-art solutions
in order to derive insights and improving research paths is
essential.

I. INTRODUCTION

Data powerness, boosted during the last decade thanks
to machine learning capabilities, is based on the fact that
data brings value to those who know how to make it speak.
If correlation or pattern recognition were the first obvious
applications based on structured or semi-structured data,
deriving insights from unstructured ones such as human-
generated text became rapidly a new challenge, tackled in the
Natural Language Processing (NLP) field. Text processing
can be roughly summarized in 2 steps: first, compute a
numerical representation of the text (statistical or probabilis-
tic); second, use this representation to process downstream
tasks (classification, translation, generation). One of the most
interesting tasks for many domains is to extract factual
knowledge from unstructured text, also known as Information
Extraction (IE). In medicine, the target knowledge can be
symptoms, drugs, phenotypes or any others characteristics
associated to a patient that can ease doctors in making
decisions. Hence, finding solutions to extract such knowledge
is vital to improve patients care. Nonetheless, this represents
a challenging task given the wide variety of language forms
and domain-specific terms as well as implicit meanings
which can hardly be understood by non-experts. That is
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why the quality of the text representation (step 1) is crucial
to have good results in the extraction task (step 2), and
this is where recent advances in language modeling have
become valuable assets. Indeed, if the first works in this
area were based on rule-based parsers, the most recent
ones significantly improved the results leveraging modern
pretrained Transformer models. Nonetheless, relying solely
on such generic representation models has not proven to be
sufficient, and instead several mechanisms were combined
together to adapt it (e.g. domain adaptation and fine-tuning)
and bypass its weaknesses (e.g. span detection, dictionar-
ies). Then came ChatGPT, an application based on a large
language model (LLM) able to answer many instructions
without being specifically trained on domain-oriented tasks,
and new research questions arose:

1) What is the performance of ChatGPT on IE, and
especially on phenotypes recognition?

2) How does it compare to the current state-of-the-art
solutions?

3) To what extent very large language models may be-
come a key component for computational medicine?

In this paper, we will focus on phenotypes extraction from
text in the deep phenotyping perspective, where the objective
is to associate a list of phenotypes to a given clinical report,
using Human Phenotype Ontology (HPO)[11] as a target
reference.

II. RELATED WORK
A. Information Extraction

First approaches for recognition of HPO terms in medical
reports were mainly based on dictionary string matching
parsers. For instance, Open Biomedical Annotator[5] rep-
resents a string matching-based tool for extracting HPO
terms. The list of direct HPO concept provided can
then be expanded using a semantic annotation component.
MetaMapLite [18] and Clinphen[17] represent other exam-
ples of rule-based methods. They all used a dictionary built
from the HPO database to perform a rule-based process
analysis.

Machine learning approaches were also tested for biomed-
ical IE, such as a combined LSTM - CRF model trained to
recognize five entities belonging to a biomedical domain [7].
A novel RNN architecture trained with a corpus of weakly
labelled data to predict a larger number of concepts from
the international classification of diseases (ICD) in medical
notes [15] is an other example.

However, annotation of a medical corpus with HPO terms
is more difficult than classical IE classification tasks due to
the number of HPO classes to be learned (more than 14 000
HPO terms), and also due to the scarcity of public data avail-
able. This is a challenging aspect of this particular task for



machine learning classification, and alternative approaches
have been proposed.

Neural Concept Recogniser [2], uses deep learning blocks
to find HPO concepts in medical reports. This approach is
based on similarity measurement between a vector repre-
sentation of the HPO names and text tokens vectors rep-
resentation based on fast-text [3]. Sequence tokens vectors
representation are learned with a simple convolutional en-
coder. Neural Concept Recogniser did not use any rule-
based function and is only based on semantic similarity.
When released, Neural Concept Recogniser outperformed the
state-of-the-art of information extraction of HPO terms from
medical texts. The growing success of these deep learning
approaches and the wide dissemination of Transformer-based
models from 2019 unsurprisingly paved the way for the use
of language models for this extraction task.

B. Language Models Era

Performances in many NLP tasks and among them IE has
then been strongly enhanced by the development of learned
language models.

Phenotagger [12], published in 2021, uses a pretrained
BioBERT [9] language model fine-tuned on an augmented
data set built with texts attached to HPO terms. A classifica-
tion process is then used on a sliding window composed
of two to ten tokens. The selection of the HPO terms
combined a dictionary matching method on HPO id with the
classification results to select the most relevant phenotypes.

BERT [8] language model was also leveraged by Phe-
noBert [16], a solution released in 2022 and based on a
sophisticated pipeline composed of several blocks to identify
automatically some of the 14000 HPO terms. The first step
consisted in applying a deep learning based method [13] to
select clinically relevant text segments. Then a dictionary
rule-based method is used trying to extract explicit HPO
terms. Next, for text spans where no HPO terms were found,
a two levels of 26 Convolutional Neural Network (CNN)
classification process was applied. The first CNN level tried
to find the most relevant of the 25 children concepts at the
root of the HPO tree which could relate to the text span.
The second CNNs classification level tried to find a list of
children candidates for each text span. The best terms were
then selected using a BERT based similarity measurement
on embedded sentences pairs composed of the text span on
the one hand, and the HPO term itself on the other hand.
PhenoBERT outperformed the state of the art represented by
PhenoTagger.

More recently, the LLM field was shaken up with the re-
lease of ChatGPT, a language model optimized for interactive
dialogue which provides impressively realistic answers to
human questions, in a wide variety of domains. ChatGPT
is fine-tuned from GPT-3.5 pretrained model (which can be
considered as an improved version of GPT-3 [4]), using
supervised reinforcement learning from human feedback
(RLHF). This last approach is the basis of InstructGPT
[14], a previously released prompt-oriented model and which
can be considered to be a ChatGPT sibling. Without being
specifically trained on medical domain and tasks, it is able
to extract phenotypes concepts with corresponding HPO ID

and label from any text.
Considering its performance in a wide spectrum of tasks,

and given first conclusive experiments on a few clinical
notes samples, it was legitimate to question its relevance by
evaluating it on reference datasets.

III. METHODOLOGY
In order to fairly compare ChatGPT with state-of-the-

art approaches, we implemented a methodology taking into
account the prompt-oriented nature of this model.

The OpenAI API2 was used to access the model. As a
generative model, ChatGPT needs a first prompt context
which will guide it to build a relevant answer. In that sense,
it is particularly sensitive to the formulation of the prompt.
In our case, the prompt is composed of an intent following
by the text to extract the phenotypes from. Regardless of the
performance, we first tested several intent prompts in order
to find ones that fit the purpose. The mandatory requirement
was to get the exact HPO labels and the corresponding IDs,
the latter being the unambiguous keys to make the evaluation:
a candidate will be considered incorrect as soon as its ID
does not match the target one, regardless of the distance
of candidate and target in the ontology tree. Moreover, we
wanted to assess the capability of ChatGPT to provide a
confidence score associated to the extracted phenotypes, so it
can be used for further threshold or top-N filtering strategies.
In order to evaluate the influence of the prompt, two slightly
different intent formulations were tested (Fig. 1).

“Are there HPO phenotypes associated with this text (if so write in the form 
[HPO labels | HPO IDs | confidence score between 0 and 1]): ”

Prompt#1

“Extract HPO phenotypes from this text (parsed as a list in brackets [HPO name 
| HPO ID]): ”

Prompt#2

“A decrease in fetal movements was noted during pregnancy, and her birth 
weight was 2.8 kg.”

Target text

[Decreased fetal movement | HP:0001558 | 0.9], [Low birth weight | 
HP:0001518 | 0.8]

Answer#1

[Decreased fetal movement | HP:0001558], [Low birth weight | HP:0001518]Answer#2

Fig. 1: API Intent Prompts

In this example, ChatGPT seems to have a good knowl-
edge of the HPO ontology. Nonetheless, we noticed that the
label-ID association was often spurious. This was confirmed
by some in-depth tests such as the one presented in Fig. 2.

Fig. 2: Spurious HPO Label - ID Association

We shall specify that ChatGPT integrates an active learn-
ing mechanism that enables the model to use human feedback
and correct inaccurate answers accordingly3. This means
the previous example might become correct if someone
points out this wrong answer. However, this underlines the
fact that it is not possible to rely on these associations
without reservation. As the scores are computed through IDs

2https://openai.com/api/
3https://help.openai.com/en/articles/5722486



comparison (predicted vs Ground Truth), their relevance is
crucial. Hence, we decided to evaluate 3 label-ID association
methods:

• Raw: the Label-ID pairs returned by ChatGPT;
• PhenoB: from label returned by ChatGPT, use

the get most related HPO term() function from
PhenoBERT4 which is a semantic search method based
on FastText model to get the most relevant ID from a
string;

• HPOapi: from a label returned by ChatGPT, use the
HPO API5 to get the corresponding ID.

The objective of phenotypes extraction is to associate a list
of phenotypes to a given clinical report. However, two text-
levels could be considered to process the extraction:

• Sentence-level: the text is first tokenized into sentences,
then each sentences is sent to ChatGPT, and the gener-
ated lists of phenotypes are concatenated into a single
list (with deduplication) which is used for evaluation;

• Report-level: the whole report text is sent to the Chat-
GPT API, which generates a single list of phenotypes.

The choice of the best approach is not trivial, as the text
length is known to have high influence upon LLM results.
To further evaluate the capabilities of ChatGPT, we choose
to run both approaches with different parameters.
In order to fairly compare ChatGPT results with others
state-of-the-art solutions, we used the evaluator developed
by the authors of PhenoBERT [16]. The evaluator computes
the following metrics: precision, recall and F1-score,
averaged at the document level (micro), and at the entire
corpus level (macro).

IV. EXPERIMENTS
A. Dataset and Experimental Settings

Two publically available labeled datasets have been used:
GSC+ [13] and ID-68 [1]. The Gold Standardized Corpora
(GSC+) dataset consists of 228 diseases research articles ab-
stracts annotated with HPO terms by experts. The annotation
includes the HPO term, the position of the annotation in the
text segment, and the considered text segment itself. The ID-
68 dataset consists of 68 clinical notes from families with
intellectual disabilities annotated by experts in the same way
as in GSC+.

Several parameters can be set in the request to the OpenAI
API. Apart from the model itself which is mandatory, the
temperature parameter is important to consider, as it repre-
sents the degree of randomness for the text generation: higher
temperature encourages the model to be more creative, which
means answers to the very same prompt can change over
time. In order to make the experiment reproducible, we first
set a temperature to 0 for the two target datasets. Then, we
ran other experiments on a single dataset with a temperature
set to 0.7 (default value of ChatGPT) to analyze the influence
of this parameter, knowing that in our case (and more broadly
in medical domain), the ideal temperature should be 0 to

4https://github.com/EclipseCN/PhenoBERT/blob/main/phenobert/utils/
5https://clinicaltables.nlm.nih.gov/apidoc/hpo/v3/doc.html

maximize exactness. Finally, we set the maximum tokens
parameter to 80 for the sentence-level approach (allowing
the model to generate up to 6 phenotypes by sentence), and
to 256 for the report-level one.

The experiments and the associated parameters are sum-
marized in Table. I.

Expe Description Target
Dataset

Parameters

#1 Baseline ID-68
and
GSC+

model: text-davinci-003, prompt: Prompt#1,
Temperature: 0, Max tokens: 80 for
sentence-level / 256 for report-level, Label-ID
association: {Raw, PhenoB, HPOapi}

#2 Prompt
influence

ID-68 model: text-davinci-003, prompt: {Prompt#1,
Prompt#2}, Temperature: 0, Max tokens: 80 for
sentence-level / 256 for report-level, Label-ID
association: HPOapi

#3 Temperature
influence

ID-68 model: text-davinci-003, prompt: Prompt#2,
Temperature: {0, 0.7}, Max tokens: 80 for
sentence-level / 256 for report-level, Label-ID
association: HPOapi

TABLE I: Experimental Settings

B. Results and Discussion
Results of the first experiment are shown in Tables II

and III. Using the ChatGPT response with the raw Label-
ID association leads to very low scores. The spurious IDs
obviously cause performance degradation as the results are
significantly better when IDs are retrieved with alternative
offline methods. The PhenoBERT semantic search method
gives the best results, highlighting the fact that such ranking
mechanism add value to any candidates generation approach.
Interestingly, the sentence level method outperforms com-
pared to report level except for precision metric. An hypoth-
esis to explain this point is that in sentence level strategy,
ChatGPT returns much more candidates (concatenation of
a maximum of 80 tokens per sentence vs 256 for a whole
report), which logically reduces precision.

System Micro-Average Macro-Average
P R F1 P R F1

Clinphen 0.74 0.61 0.67 0.74 0.61 0.67
MetaMap Lite 0.80 0.59 0.68 0.81 0.59 0.68
PhenoTagger 0.89 0.75 0.82 0.89 0.76 0.82
PhenoBERT 0.94 0.78 0.85 0.94 0.77 0.85

Sen
ten

ce ChatGPT raw 0.39 0.44 0.42 0.41 0.46 0.44
ChatGPT PhenoB 0.61 0.49 0.54 0.62 0.51 0.56
ChatGPT HPOapi 0.55 0.48 0.51 0.54 0.50 0.52

Rep
or

t ChatGPT raw 0.53 0.34 0.42 0.46 0.40 0.43
ChatGPT PhenoB 0.75 0.34 0.47 0.62 0.40 0.48
ChatGPT HPOapi 0.66 0.34 0.45 0.54 0.40 0.46

TABLE II: Experiment #1 - ID-68 Results

System Micro-Average Macro-Average
P R F1 P R F1

Clinphen 0.64 0.41 0.50 0.51 0.41 0.45
MetaMap Lite 0.69 0.48 0.57 0.63 0.49 0.55
PhenoTagger 0.79 0.63 0.70 0.78 0.68 0.73
PhenoBERT 0.80 0.67 0.73 0.79 0.71 0.75

Sen
ten

ce ChatGPT raw 0.26 0.23 0.24 0.22 0.22 0.22
ChatGPT PhenoB 0.60 0.33 0.43 0.53 0.33 0.41
ChatGPT HPOapi 0.48 0.29 0.36 0.40 0.28 0.33

Rep
or

t ChatGPT raw 0.29 0.11 0.16 0.13 0.12 0.12
ChatGPT PhenoB 0.54 0.13 0.21 0.24 0.14 0.18
ChatGPT HPOapi 0.47 0.12 0.19 0.21 0.13 0.16

TABLE III: Experiment #1 - GSC+ Results

However in all cases, ChatGPT underperforms compared
to the current state-of-the-art systems. The experiments #2



and #3 (Fig. 3) allow to derive some hypothesis explaining
this performance. Note that only micro-average results are
shown as the tendencies are exactly the same for macro-
average.
As expected, changing the prompt modifies the final results.
Prompt#2 improves all metrics, both at report and sentence
levels, but has a higher influence at sentence level. We may
emphasize that prompt is less predominant when the input
text is large, as a wider context limits the intent interpreta-
tion. Although it is difficult to bring a clear conclusion, these
results show the importance of the prompt engineering part,
which is inherent to this type of model.
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Fig. 3: Prompt and Temperature Influence

In addition, increasing temperature to 0.7 improves
slightly the scores, with a similarly predominant influence
on sentence level approach. When temperature is low, the
model is more deterministic, choosing systematically the
most probable string matching parts of the input text, which
works well when phenotypes are explicitly written. When
the reference is more implicit, the learned distribution does
not fit well, and randomness can improve the matching from
time to time.

It is worth reminding here that the evaluation method
does not take into account the ontology distance between
a candidate and the target phenotype. The use of a weighted
generalized match [6] might increase the score, and reduce
the differences with other systems.

Another limitation might be the number of maximum
tokens set in the query: it could be interesting to test the
impact of several values for this parameter.

Finally, the very nature of the dataset can have a significant
influence. It is especially the case for the two target dataset
in experiment #1: ChatGPT perfoms much better on ID-68
than on GSC+.

V. CONCLUSIONS

ChatGPT has proven its ability to tackle many tasks
in a wide variety of domains. However, its performance
on phenotypes extraction from text based on a reference
ontology does not meet expectations, as it underperforms
quite clearly compared to dedicated systems. Even if it
remains difficult to determine all causes explaining these
results, this work highlighted several limitations.

First of all, ChatGPT lacks factual knowledge such as HPO
structure and relationships, and the association between an
extracted phenotype string and its corresponding ID happens
to be spurious. This is expected since the model learned a
statistical distribution of tokens, and does not encode the
facts carried by knowledge sources.

Moreover, such a model is very versatile: modifying
prompt and temperature impacts the scores, sometimes sig-
nificantly when dealing with a sentence level approach. It is
therefore difficult to choose the best set of parameters, except
by performing many configuration experiments, which can
be tedious especially with prompts values. Prompt design
should be considered a crucial step for IE with ChatGPT.

Hence, ChatGPT seems not to be relevant for the consid-
ered task yet, as confirmed by the presented experiments on
two different datasets. We believe a possible improvement
could be to incorporate factual knowledge and referenced
sources, that may counterbalance the highlighted limitations.

While waiting for these potential improvements, this
study confirms the value of dedicated approaches rather
than over-generalized models to achieve good performances
in NLP applications such as IE.
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