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Abstract The power flow model performs the anal-

ysis of electric distribution and transmission systems.

With this statement at hand, in this work we present a

summary of those solvers for the power flow equations,

in both algebraic and parametric version. The applica-

tion of the Alternating Search Direction method to the

power flow problem is also detailed. This results in a

family of iterative solvers that combined with Proper

Generalized Decomposition technique allows to solve

the parametric version of the equations. Once the so-

lution is computed using this strategy, analyzing the

network state or solving optimization problems, with

inclusion of generation in real-time, becomes a straight-

forward procedure since the parametric solution is avail-

able. Complementing this approach, an error strategy is

implemented at each step of the iterative solver. Thus,

error indicators are used as an stopping criteria con-

trolling the accuracy of the approximation during the

construction process. The application of these methods

to the model IEEE 57-bus network is taken as a numer-

ical illustration.
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R. Garćıa-Blanco and P. Dı́ez
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1 Introduction

Power system engineering is a technology field inside

the general discipline of energy and electrical engineer-

ing. Specifically, power flow analysis is a branch of this

area that deals with:

– Transmission and distribution of electrical power

– Energy management, storage and generation

– Power system planning: operation and expansion

– Optimal control and contingency analysis

– Real-time monitoring and security risk assessment

for reaching stability and reliability

– Decision making and voltage regulators-assessment

Besides of these aforementioned applications, one of the

most significant ones is the design verification. This in-

volves the study of the state and management of the

physical networks. The amount of money that should be

invested in order to modify, repair and/or expand such

networks might be large. According to this, the early

simulation of the whole procedure for avoiding unnec-

essary failures and assuring the viability of the process

becomes potentially necessary. Thus, design verification

is related to operation and expansion planning.

The design of a network also concerns electricity

production, hence terms such as renewable energy and

environment emerge. This sort of technology is directly

related to another application of the power flow analy-

sis, the optimization of networks under some constrains.

Fortunately, renewable energy has a strong impact on

the electricity market ensuring the reduction of the

greenhouse emissions. This can be done through the

introduction of Distributed Generators (DGs) in the

case of distribution systems or just generators for trans-

mission systems, for instance, photo-voltaic panels or

wind turbines. It is widely believed that the distributed
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power generation is a technology that could help to en-

able efficient renewable energy production. DG tech-

nology is related to the use of small generating unit in-

stalled at strategic points of electric power systems [96].

Both the design network and the optimization should

be efficient and provide security to guarantee all the

desirable benefits. Therefore, these procedures must be

analyzed and tested previously. In such way, the Un-

certainty Quantification (UQ) measures the error and

uncertainties, being another relevant application.

During the last decades, the development of network

simulators has been fundamental in the field of power

flow problem numerical simulation. However, these im-

provements have also brought new challenges, for in-

stance, the possibility of making decisions about the

state of the grid in real time. This requires solving dif-

ferent configurations of the same problem quickly. The

work of this paper focuses on summarizing our con-

tributions to this issue. Our goal is to find the optimal

location and sizing of a generator which is set in the net-

work minimizing the system losses in real time. More-

over, we control the quality of the solution in terms of

the power losses during its construction.

The layout of the paper is structured as follows: sec-

tion 2 presents the governing equations distinguishing

the algebraic version from the parametric version of the

power flow problem while in section 3, a brief review of

the deterministic and classical solvers and the Alter-

nating Search Directions method applied to the power

flow equation are presented. In this section, the error as-

sessment for the algebraic version of the problem is also

illustrated. Equivalently, section 4 analyses probabilis-

tic methods as well as the error assessment associated

with the parametric version of the equation. Section 5

details numerical examples where the proposed method

was applied. The paper closes with section 6 in which

we present our main outcomes regarding the techniques

for solving the power flow problem.

2 Problem Statement

2.1 Algebraic problem

The basic formulation of the well-known power flow

problem was originally illustrated in [38, 54, 117]. The

main objective of the power flow solution is described

by [117] as: to obtain the individual phase voltages at all

nodes in the network corresponding to specified system

conditions. Consequently, the unknowns of the problem

are the voltages and nodal intensities collecting in vec-

tors of n components V and I ∈ Cn, where n is the

number of degrees of freedom. Note that for a three-

phase distribution system, n is three times the number

of buses. The input data characterizing the power flow

problem is the following:

– The topology of the grid, described by the number

of lines, the number of buses and their connectivity.

– The complex power source vector S ∈ Cn, describ-

ing the power supplied and/or extracted at each

phase of each node.

– The admittance matrix Y ∈ Cn×n including the

material characteristics of the devices conforming

the grid.

– The vector I0 ∈ Cn accounting for the current origi-

nated by the slack node. Introducing a slack node is

necessary to guarantee the solvability of the prob-

lem. The complex voltage in this node is known,

and therefore it is not reevaluated. This is equiva-

lent to reduce the dimension of the admittance ma-

trix by deleting the slack bus row and column, see

[34, 51, 64].

At each bus, the nonlinear relation between the volt-

age, the current and the complex power is provided by

the following equation:

S = V � I∗ , (1)

where I∗ denotes the complex conjugate of the cur-

rent vector I, and the symbol � denotes the Hadamard

product of vectors (component-wise product). More-

over, Kirchhoff’s law leads to the following algebraic

system of equations:

YV = I + I0 , (2)

which, using (1) results in a nonlinear algebraic system

of equations for the unknown V :

YV = S∗ � V ∗ + I0 = Ibus(V ) , (3)

where the symbol � denotes the component-wise quo-

tient between vectors.

The admittance matrix and power source in Carte-

sian form are Y = <(Y) + iI(Y) and S = <(S) +

iI(S) = P + iQ respectively where <(·) and I(·) stand

for the real and the imaginary part of the matrix or

vector and i is the imaginary unit. Thus, the vector

of voltages reads V = <(V ) + iI(V ). We also adopt

the notation V = V Re + iV Im, to shorten some expres-

sions in the following. Moreover, the vector V is also ex-

pressed in polar form (module-argument form, αl being

the argument of Vl), such that each component reads

Vl = |Vl| (cos(αl) + i sin(αl)), for l = 1, . . . , n, now the
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power flow equations (3) read as





Pl =

n∑

k

|Vl||Vk|[YRe

lk cos(αl − αk)+

+ YIm

lk sin(αl − αk)]− P0

Ql =

n∑

k

|Vl||Vk|[−YIm

lk cos(αl − αk)+

+ YRe

lk sin(αl − αk)]−Q0

, (4)

where the module and argument of the slack node are

known, thus the term V ∗I0 is also known and from now

on it is called S0 = P0+iQ0. Furthermore, θlk = αl−αk
is defined as the difference in voltage angle between the

l-th and k-th buses, hence the system of equations now

is





Pl =

n∑

k

|Vl||Vk|[YRe

lk cos(θlk) + YIm

lk sin(θlk)]− P0

Ql =

n∑

k

|Vl||Vk|[−YIm

lk cos(θlk) + YRe

lk sin θlk]−Q0

.

(5)

This is a nonlinear real system of 2n equations and

2n unknowns. For each node in the network, that is l =

1, . . . , n, the active power Pl and the reactive power Ql
are known, while the |Vl| and αl are unknown variables.

Equations (3) and (5) are equivalent, the choice of

one rather than the other depends on the type of nodes

in the network and the available data. If there are PQ

nodes, where the values of P and Q are known, both

equations are used. However, in the case of the PV

nodes where just P and |V | are given, equation (5) is
more suitable.

2.2 Parametric problem

The analysis of electric networks under different config-

urations of loads requires the solution of similar prob-

lems a large number of times. Describing these scenarios

is easily done by introducing parameters and therefore

defining the concept of Parametric Power Flow prob-

lem. The novelty of this methodology is the fact that

diverse parameters of the power flow problem are now

considered as variables rather than input quantities.

Taking into consideration the optimization problem

previously described in section 1, typical examples of

parameters are the location and nominal power, de-

noted by q and r, of some generator, and the time t

that modulates the power S. In this work, the gen-

eral form of the Parametric Power Flow problem is de-

scribed by taking all the variables depending on these

three parameters in (3), for instance S(q, r, t). Conse-

quently, its solution also depends on these parameters,

namely V (q, r, t). In practice, this brings the problem

from a simple nonlinear algebraic equation in Cn into

a multidimensional setup, further details are shown in

section 4.2.

3 Algebraic solvers

This section summarizes the state-of-art of the most

significant algebraic methods for solving the power flow

equations. Moreover, the Alternating Search Directions

Methods (ASDM) along with a review of the error ap-

proach in this field is also introduced.

3.1 Y-matrix and Z-matrix methods

Over the last decades, numerous methods have been

proposed in order to solve the power flow equation. The

first practical technique emerged in 1956 [116]. Dur-

ing the same decade, methods called Y-matrix also ap-

peared [18, 49]. These methods are a straightforward

fixed-point iteration from (3). Thus, an approximated

value V [γ] is used to compute the next iteration V [γ+1]

such that

YV [γ+1] = [S∗ � V [γ]∗ + I0] , (6)

by solving, in each iterative step, a linear system of

equations with matrix Y. These methods are consis-

tent and were successfully employed in many examples,

however, they do not guarantee converge.

This difficulty was overcome through the introduc-

tion of the Z-matrix methods [14–17, 53, 55]. The main

idea of these methods is to invert the system admittance

matrix Y, obtaining the impedance matrix Z, using a

technique based on Kron’s concept of network tearing

using the system data. This procedure is faster than the

standard matrix inversion and avoids the necessity of

complete re-inversion when such minor changes in the

network are required. These changes are made directly

to the inverted matrix, thus the computation time in-

volved for such modifications is a small fraction of that

needed for a complete matrix inversion [14]. Besides,

when it comes to networks under fault conditions, the

Y-matrix approach requires an iterative solution of the

entire network for each fault condition. However, one of

the distinct advantages of this method is that (once the

matrix is formed) all fault calculations may be obtained

with a minimum of arithmetic operations involving only

related portions of the matrix [17].

Many techniques have been proposed to modify the

traditional Z-matrix building algorithms. Among those
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methods, the Gauss implicit Z-matrix method is the

most generally used method [82]. Furthermore, some

novel studies about the convergence analysis of this

method including PV nodes and DG have emerged in

the current decade [26, 56, 122, 129].

3.2 Gauss-Seidel and Newton-Raphson methods

Around the sixties, the notable Gauss-Seidel (GS) [49,

106] and Newton-Raphson (NR) [81, 110] methods for

power flow calculations were also proposed. The equa-

tions for both iterative methods are:

– Gauss-Seidel

At iteration γ, the solution V [γ+1] is obtained solv-

ing the below system of equations:

YLV
[γ+1] =

[
S∗ � V [γ]∗ −YUV

[γ] + I0

]
, (7)

being YU the upper triangular part and YL the

lower triangular part of Y plus its diagonal. In the

literature, Gauss-Seidel method is also classified as

an Y-matrix method since the calculation of the so-

lution depends on the admittance matrix.

– Newton-Raphson

Before defining NR equations, since the conjugate

function is not a holomorphic function and complex

derivation is not formally defined, it is necessary to

consider the Cartesian representation of the vectors

and matrices involved in the power flow equations.

By introducing the real and imaginary parts of volt-

ages, currents, powers and admittances as separate

variables, the following quantities are defined as:

Ŷ =

[
YRe −YIm

YIm YRe

]
, V̂ =

[
V Re

V Im

]
,

Îbus =

[
IRe

bus

I Im

bus

]
=

[
IRe
0

I Im
0

]
+

[
(P � V Re +Q� V Im)� (V Re � V Re + V Im � V Im)

(P � V Im −Q� V Re)� (V Re � V Re + V Im � V Im)

]
,

(8)

where Ŷ ∈ R2n×2n and V̂ , Îbus ∈ R2n are duplicat-

ing dimensions of the complex matrices and vectors.

The power flow equations can be written now as:

ŶV̂ = Îbus(V̂ ) . (9)

Newton-Raphson method consists in iteratively up-

dating V̂ with an increment ∆V̂ , that is V̂ [γ+1] =

V̂ [γ] +∆V̂ . In the following the dependence on γ is

eliminated in the superscript to simplify notation.

Thus, the resulting algorithm reads

Ĵ∆V̂ = −ŶV̂ + Îbus(V̂ ) , (10)

where the Jacobian Ĵ is the partial derivative of the

right-hand-side of (10) (the residual) with respect

to V̂ , that is

Ĵ = Ŷ −
[
Ĵ11 Ĵ12

Ĵ21 Ĵ22

]
(11)

where Ĵkh for k, h = 1, 2 are diagonal matrices in

Rn×n (component h of Îbus(V̂ ) depends only on com-

ponent h of V̂ , see (8)) such that

Ĵ11 =
∂IRe

bus

∂V Re
, Ĵ12 =

∂IRe

bus

∂V Im
,

Ĵ21 =
∂I Im

bus

∂V Re
and Ĵ22 =

∂I Im

bus

∂V Im
.

Particularly,

[
Ĵ11

]
ll

=
Pl(|Vl|2 − V Re

l ) + 2QlV
Re

l V Im

l

|Vl|4
,

[
Ĵ12

]
ll

=
Ql|Vl|2 − PlV Re

l + 2Ql(V
Im

l )2

|Vl|4
,

[
Ĵ21

]
ll

=
−Ql|Vl|2 − PlV Im

l − 2Ql(V
Re

l )2

|Vl|4
,

[
Ĵ22

]
ll

=
Pl(|Vl|2 − V Im

l )− 2QlV
Re

l V Im

l

|Vl|4
,

for l = 1, . . . n.

Both GS and NR methods enjoy of low memory

usage and competent ratios of convergence, better in

the case of NR which has an optimal quadratic rate,

although the computational time increases because of

the assembling of the Jacobian matrix at every single

iteration. For that reason, diverse approaches have ap-

peared over the years. In the case of NR methods, it

is worth mentioning different modifications of the orig-

inal problem introducing decomposition of the Jaco-

bian matrix [25, 45], reformulating the original equa-

tions to accommodate the introduction of generation

devices [72, 92] or decreasing the computational time

thorough the application of third-, fourth- and fifth-

order Newton-like methods [33]. Similarly, the GS ap-

proach has been improved using block version of its ini-

tial equations [75, 107] or combined with the implicit

Z-matrix bus method for unbalanced distribution net-

works [122]. The initial references of these three type

of methods (Z-matrix bus, GS and NR) are shown in

the reviews [70, 100] while an extensively recent study

of them can also be found in [50].
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Additionally to the improved methods mentioned

above, since NR methods emerged, a great effort has

been made to overcome the problem of updating the

Jacobian when the size of the test systems was con-

siderable large. Consequently, a variety of formulations

have been developed. These include:

– Newton-Krylov methods consisting in solving the

Jacobian equation partially or combined with a Krylov

subspace method [60–62, 123]

– Jacobian-free Newton-Krylov methods (JFNK) where

a Krylov subspace is built up for correcting the Ja-

cobian in NR strategy [67]

– Jacobian-free methods that analyze approaches as

partial Jacobian update variants and inexact solu-

tions [24, 32]

Generally, despite the fact that these strategies does not

include the whole Jacobian, the quadratic convergence

is still granted.

Apart from these approaches, the most popular is

Fast Decoupled Load Flow Method (FDLF) [101]. It

mainly consists in approximating the Jacobian by using

factorization, preconditioners or information obtained

from the first iteration in order to quickly solve the

Jacobian system. In such a way, the matrices are kept

constant hence NR method is reduced to a sequence

of decoupled linear problems for the voltage magnitude

and phase angle.

The application of the NR method for the equa-

tion (5) results in a nonlinear real system of 2n equa-

tions with 2n unknowns, the vectors |Vl| and αl for

l = 1, . . . , n. The equations read as:

J

[
∆α

∆|V |

]
= −

[
Pres
Qres

]
, (12)

where Pres and Qres are the residuals of the equation

and the Jacobian is

J =

[
J11 J12

J21 J22

]
=

[
∂Pres
∂α

∂Pres
∂|V |

∂Qres
∂α

∂Qres
∂|V |

]
. (13)

Specifically,

[J11]lk =





|Vl||Vk|[YRe

lk sin(θlk)−YIm

lk cos(θlk)], k 6= l

−
∑

m6=l
|Vl||Vm|[YRe

lm sin(θlm)−YIm

lm cos(θlm)],

k = l

[J12]lk =





|Vl|[YRe

lk cos(θlk) + YIm

lk sin(θlk)], k 6= l∑

m 6=l
|Vm|[YRe

lm cos(θlm) + YIm

lm sin(θlm)]

+ 2YRe

ll |Vl|, k = l

[J21]lk =





− |Vl||Vk|[YRe

lk cos(θlk) + YIm

lk sin(θlk)], k 6= l

−
∑

m6=l
|Vl||Vm|[YRe

lm cos(θlm) + YIm

lm sin(θlm)],

k = l

[J22]lk =





|Vl|[YRe

lk sin(θlk)−YIm

lk cos(θlk)], k 6= l∑

m 6=l
|Vm|[YRe

lm sin(θlm)−YIm

lm cos(θlm)]+

− 2YIm

ll |Vl|, k = l

for l, k,m = 1, . . . n.

Taking into account that for k 6= l,

[J11]lk = |Vk| [J22]lk and [J21]lk = −|Vk| [J12]lk ,

the algorithm is rewritten as

J̃

[
∆α
∆|V |
|V |

]
= −

[
Pres
Qres

]
, (14)

where

J̃ =

[
J̃11 J̃12

J̃21 J̃22

]
, explicitly, (15)

[
J̃11

]
lk

=

{
[J11]lk , k 6= l

−Ql + YIm

ll |Vl|2, k = l

[
J̃12

]
lk

=

{
− [J21]lk , k 6= l

Pl + YRe

ll |Vl|2, k = l

[
J̃21

]
lk

=

{
[J21]lk , k 6= l

Pl −YRe

ll |Vl|2, k = l

[
J̃22

]
lk

=

{
[J11]lk , k 6= l

Ql −YIm

ll |Vl|2, k = l

for l, k = 1, . . . n.

As mentioned before, FDLF method is a variation of

Newton-Raphson method. It is achieved by only invert-

ing the Jacobian matrix once it is simplified assuming

the below statements:

– It was observed that real power P was barely influ-

enced by changes in voltage magnitude V , thus, all

the derivative are considered to be zero. Similarly,

Q was relatively insensitive to changes in α. This

means that
[
J̃12

]
lk

=
[
J̃21

]
lk

= 0.
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– The difference between angles θlk = αl − αk is usu-

ally small, cos(θlk) is taken by 1 and sin(θlk) as 0,

for l, k = 1, . . . , n.

– The magnitude of some voltages is also assumed to

be 1.

Applying these assumptions to equation (14) and di-

viding equations by |Vk| in both sides, the system to be

solved is:

[
U′ 0

0 U′′

] [
∆α

∆|V |

]
= −

[
Pres
|V |
Qres
|V |

]
, (16)

where U′ = −YIm and U′′ is built taking the elements

of −YIm that correspond to the PV nodes.

Later, FDLF has been developed for unbalanced ra-

dial distribution system [131], three phase distribution

networks [74] and for transmission system using an op-

timal multiplier [10]. From the mathematical point of

view, some authors have addressed its theoretical back-

ground [78, 120].

3.3 Holomorphic Embedding Load Flow methods

Besides this deficiency in terms of the Jacobian assem-

bly, the traditional power flow methods may suffer from

the fact that there is no guarantee that they converge

to the physical or high voltage solution. Some iterative

solvers might converge to spurious non operative solu-

tions or simply fail to converge in a number of cases.

The reason behind such behavior could be either the

dependency between the initial estimate and the final

approximation [63, 94, 99] or the system operability

making the algorithm not able to find the operative so-

lution. This may happen when the value of network pa-

rameters move outside of the standard operating range

due to contingencies [114]. In the case of NR methods,

the authors of [108, 109] showed that the nature of the

power flow solution is fractal.

Overcoming both adversities was a challenge which

motivated numerous authors. On one hand, methods

based on truncated Taylor expansions in a polar or

Cartesian coordinate form were proposed [93, 98, 121].

A suitable one is the second order load flow technique

which requires less iterations and have better conver-

gence characteristics than conventional NR technique

[91]. On the other hand, it was recently introduced the

Holomorphic Embedding Load Flow Method (HELM)

[111, 112]. HELM is based on an analytical continua-

tion, a technique that extends the domain of analytic

functions, from complex analysis relying on Padé ap-

proximants. The method extends the voltage variables

into analytic functions in the complex plane providing

a non-iterative procedure for constructing the complex

power series of voltages.

If a simple two buses system is considered, the Z-

matrix method applied to the scalar version of equation

(3) reads as:

V = V0 + Z[S∗ � V ∗], (17)

where V0 = ZI0. Rewriting equation (17) using the no-

tation U = V/V0, the following equation is obtained,

U = 1 +
σ

U∗
, (18)

where σ = ZS∗

|V0|2 . This above equation (18) can be seen

as a continued fraction approximation of the solution,

U = 1 +
σ

1 +
σ∗

1 +
σ

1 + ...

. (19)

As we previously mentioned, the Holomorphic Embed-

ding method is based on analytical continuation and

a continued fraction is defined. In this particular case,

(19) is also seen as the same continued fraction result-

ing from the application of the Holomorphic Embedding

method to the same system, see [111]. This continued

fraction suggests the use of Padé approximants and its

convergents corresponds to the application of the fixed

point equation (17). Therefore, the iterative solutions

found with the Z-matrix method, coincide with the ones

found with the HELM as the number of coefficients of

the Padé approximant is increased.

In a general case, Holomorphic Embedding changes

σ by sσ in equation (18) and defines a system of two

equations:

{
F (s) = 1 + sσ

F̄ (s)

F̄ (s) = 1 + sσ∗

F (s)

(20)

with F̄ (s) = F ∗(s∗). In this way, the functions F (s)

and F̄ (s) are holomorphic. Note that F (s = 1) recov-

ers the solution U of equation (18). The procedure is

to consider the power series expansion of F (s) about

s = 0 since F (s) and F̄ (s) are holomorphic. The em-

bedded equations (20) allow to seek the coefficients of

the power series as the solution to a succession of lin-

ear systems. Particularly, the derivatives of the function
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F (s) evaluated in s = 0 are:

F (0) = 1

F (1)(0) = σ

F (2)(0) = −2σσ∗

F (3)(0) = 6(σ2σ∗ + σ(σ∗)2)

F (4)(0) = −72(σ2(σ∗)2)− 24(σ(σ∗)3 + σ3σ∗)

F (5)(0) = −60(σ2σ∗) + 600(σ3(σ∗)2) + 720(σ2(σ∗)3)+

+ 120(σ4σ∗)

...

(21)

Using these derivatives, the Padé approximation P (s)

is computed and the solution U = F (s = 1) is approxi-

mated by P (s = 1), that is to say, using Padé approxi-

mants, the solution at s = 1 can be constructed.

The Padé approximants are a particular type of ra-

tional approximation for power series. They have been

extensively used since their convergence has been known

to be much better than the one of power series. For in-

stance, these approximants are usually superior to Tay-

lor series when the functions to be approximated are

complex with singularities (poles), because the use of

rational functions allows them to be well-represented.

In the case of the power flow equation, Stahl’s results

reveal that Padé approximants are suitable for analytic

continuation. In fact, these results confer the method

very strong additional guarantees: if the approximants

converge at s = 1, the result is guaranteed to be the an-

alytic continuation of the high voltage branch at s = 1;
conversely, if the Padé approximants do not converge

at s = 1 then it is guaranteed that there is no solu-

tion (that is, the system is beyond voltage collapse).

For more details, see [111].

After this initial proposal, an extension from alter-

nating current to direct current-based systems has been

presented [113]. Other authors have also explored this

approach [85, 103]. The main advantage of this sort of

strategies is its reliability finding a stable solution for

any set of power flow equations. If the starting solu-

tion is an operative one, there is guarantee that the

algorithm converges fast to a solution which is in the

branch of the operative solutions.

3.4 Alternating Search Directions Method for the

Power Flow equation

Having described the power flow equation as a combi-

nation of a nonlinear local constraints (1) and a linear

global problem (2), the first idea is to consider the sys-

tem formed by both equations, instead of the primitive

formulation (3). Following this path of dividing the orig-

inal system into two different equations the Method of

Alternating Search Directions emerged. More detailed

theoretical background is provided in [68] where the

same method is applied to nonlinear structural mechan-

ics problems.

3.4.1 Mathematical background

The application of this strategy in the power flow field

generates an iterative solver with two steps, one per

equation. For this, additional linear relations between

voltages and currents are needed, the so-called search

directions, named as matrices α and β.

At iteration γ, for a given matrix α ∈ Cn×n and

initial pair (V, I)
[γ]

, an intermediate solution (denoted

by superscript γ + 1
2 ) is found from the linear system

{
I [γ+ 1

2 ] − I [γ] = α(V [γ+ 1
2 ] − V [γ])

Y V [γ+ 1
2 ] = I0 + I [γ+ 1

2 ]
. (22)

Similarly, in a second step, for a given diagonal ma-

trix β ∈ Cn×n, the solution is updated by solving the

system
{
I [γ+1] − I [γ+ 1

2 ] = β(V [γ+1] − V [γ+ 1
2 ])

V [γ+1]∗ � I [γ+1] = S∗
. (23)

There are several advantages associated with this

approach:

– The non-linearity and the non-locality can be tack-

led separately, since subproblem (2) is global but

linear, while subproblem (1) is nonlinear but local,

meaning that each nodal equation can be solved in-

dividually.

– If α is constant, the matrix factorization needed to

solve system (22) is only performed once.

– Equations (23) can be solved analytically.

– Since the pairs (V, I)
[γ+ 1

2 ]
and (V, I)

[γ+1]
fulfill equa-

tions (2) and (1) respectively, the algorithm is nu-

merically consistent.

Further details about the convergence of the method,

a geometrical interpretation and also an appendix de-

scribing the procedure for seeking the high voltage so-

lution are shown in [13].

3.4.2 Choices of the search directions

Without losing accuracy, currents can be eliminated

from the equations (22) and (23), and the iterative al-

gorithm for V can be formulated as follows:
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Table 1 Search directions for the classical methods

Method Choice for α Choice for β

Gauss-Seidel YU ∞
Newton-Raphson ∂Ibus

∂V
∞

Z-matrix bus 0 ∞

– Global Step. Starting from the iterate V [γ], the in-

termediate solution V [γ+ 1
2 ] is found by solving the

linear system
[
(Y −α)V [γ+ 1

2 ]
]

= S∗ � V [γ]∗ −αV [γ] + I0 . (24)

– Local Step. The new iteration V [γ+1] is then ob-

tained from the solution of the system

βV [γ+1] +
[
(Y − β)V [γ+ 1

2 ] − I0
]
−S∗�V [γ+1]∗ = 0 .

(25)

Depending on the choice of the matrices α and β

it is possible to recover some classical methods as is

shown in table 1. In the light of the results presented

in [13], and based on the choices

{
α = diag

(
S∗ � |Vb|2

)

β →∞
, (26)

where Vb is the voltage base, the proposed approach

is optimal since well designed grids are normally op-

erating not far from this point. Besides this, another

argumentative reasons for this affirmation are given in

[13].

3.5 Algebraic version of the error assessment

Despite that fact the power flow equations have been

studied in detail, the errors during the simulations have

not received the corresponding attention. Particularly,

the error has been addressed from another points of

view as identifying errors associated with power con-

troller parameters [130] or taking into account state

estimation method for measurement error and model

accuracy [5, 22, 90].

When it comes to an error in the application of Re-

duce Order methods (more information is given in sec-

tion 4), [86] provides an error analysis of the computed

solution of a reduced model obtained from Proper Or-

thogonal Decomposition (POD), illustrating the method

using a power grid example modeled by nonlinear swing

equations. In addition, [43] provides an analysis of the

errors involved in solving a nonlinear initial value prob-

lem using a POD reduced order model. An error bound

on the Discrete Empirical Interpolation Method (DEIM)

approximation is provided in [20, 21], while [9] gives

an error analyses for the empirical interpolation proce-

dure and [119] presents a-posteriori error estimation for

POD-DEIM reduced nonlinear systems. On the other

side, the error estimation in Proper Generalized De-

composition (PGD) is still an open question. In this

regard, some strategies have been proposed in [6, 7] .

This section focuses on the development of the error

equations based on a Quantity of Interest (QoI), par-

ticularly the system losses. The classic strategy that

has been applied in this work, has been also applied to

different problems in the field of error estimation for

Reduced Order Models, see [7, 41, 79].

Having defined the error as the subtraction between

the two n components vectors: V the actual solution of

the problem and Va an approximation, such as

E = V − Va , (27)

the residual equation of (3) associated with the approx-

imation is:

R(Va) = S∗ − V ∗a � (YVa − I0). (28)

Assuming that R(V ) = 0, the derivation of the error

equation is straightforward. The first step is to linearize

R(·) by neglecting the quadratic term. After this, the

expanded expression reads as

R(V ) = R(Va)− V ∗a �YE−
E∗ � (YVa − I0) = R(Va)−AE −BE∗,

(29)

where A = Diag(V ∗a )Y and B = Diag(YVa − I0) are

matrices in Cn×n. The operator Diag(·) is introduced

to compact the notation such that it produces a square

matrix with the elements of a vector on the diagonal.

Clearly, equation (29) is still nonlinear because it

involves the conjugate operator. In order to linearize

it, vectors and matrices are separated in their Carte-

sian representation. Hence, equation (29) is rewritten

as a linear system of 2n real equations and unknowns,

namely

CÊ = R̂(Va), (30)

where the matrix C ∈ R2n×2n and the vectors R̂(Va)

and Ê in R2n.

The objective of the optimization problem in this

work is to minimize the power losses, thus, they are as-

sumed as the quantity of interest. In general, the pos-

itive number representing the losses associated with a

vector V is:

l(V ) = (V ∗TYLV )Re (31)
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where YL is the admittance matrix corresponding to

the grid, accounting for all the lines and buses but not

including the terms associated with the generators.

By following the same procedure, the form l(·) is

also nonlinear and has to be linearized in order to de-

fine a goal-oriented error assessment strategy. The lin-

earized version of the losses after neglecting the second

degree term reads,

l(V ) = l(Va) + (V ∗a
TYLE)Re + (E∗TYLVa)Re

= l(Va) + (fTE)Re + (gTE∗)Re,
(32)

where f = YT
LV
∗
a and g = YLVa are vectors in Cn.

Now, using the Cartesian representation in equation

(32), the linear approximation for the error in the QoI

is defined as:

EQoI = l(V )− l(Va) ≈ λ̂TÊ (33)

where

λ̂ =

(
fRe + gRe

−f Im + gIm

)
∈ R2n.

As a standard strategy in the error assessment pro-

cedure, the dual or adjoint problem is introduced in or-

der to obtain a representation of the error in the quan-

tity of interest:

CTρ̂ = λ̂. (34)

The solution of this problem ρ̂ is a real vector of

dimension 2n. Assuming that the approximation (33)

holds, using ρ̂ and (30), the error in the QoI is readily

represented as:

EQoI = λ̂TÊ = ρ̂TR̂(Va). (35)

The authors of [46] detail the difficulties in the lin-

earization of equation (29) and also explains the pos-

sibility of calculating the matrix C and the vectors

R̂(Va), λ̂ and ρ̂ just once during the whole iterative

process.

4 Parametric solvers

So far, the present paper focused algebraic solvers for

power flow equations. In this section, the attention is

drawn to solvers where a parametric representation of

the problem is involved. Two particular cases are the

Probabilistic Load Flow (PLF) and the Optimal Power

Flow (OPF) where a power flow solver is called as many

times as particular system configurations need to be

evaluated.

The concept of Probabilistic Load Flow was first

proposed in the seventies taking into consideration un-

certainty of the nodes data [11]. Another historical ref-

erence, where the definition of Stochastic Load Flow

appeared for the first time, is [36]. Since then, several

scientific contributions have been published in this re-

gard, in review [71], it is claimed that probabilistic load

flow methods can be divided into three categories:

– Simulation methods: the main example of a simu-

lation method is the so-called Monte Carlo method

[39], which simulates power flow calculations based

on deterministic samples. It is well-known as a flex-

ible and robust method, nevertheless is highly time-

consuming because of the need of repeating calcu-

lations.

– Analytical methods: based on convolution techniques

[4] or cumulant method [127] are claimed to be more

effective computationally.

– Approximate methods: the most common are the

method of moments and the point estimate method

[102].

Apart from this classification, another remarkable meth-

ods for solving the probabilistic load problems using

techniques as combinatorics [87] are: Hybrid Latin Hy-

percube Sampling and Cholesky Decomposition [125],

and polynomial normal transformation and Quasi Monte

Carlo Simulation [39].

Over the past decades, PLF has been applied to dif-

ferent problems as branch outages, photo-voltaic and

wind power through distributed generators, wind farm

power generation, energy storage, reliability, distribu-

tion system planning-design-analysis, although without

doubt the most significant is the optimization.

The Optimal Power Flow solution was presented in

the sixties [35]. The idea of the classical OPF is a power

flow problem in which certain controllable variables are

to be adjusted to minimize an objective function such as

the cost of active power generation or losses, see [104].

In fact, [48] defines the optimal distributed generation

placement problem (ODGP) claiming that it provides

the best locations and sizes of DGs to optimize electri-

cal distribution networks. When ODGP is solved, the

objective function can be single or multi-objective. The

main single-objective functions are: minimization of en-

ergy losses, minimization of system average interrup-

tion duration index (SAIDI), minimization of cost, etc.

On the other hand, in [95], ODGP multi-objective for-

mulations are classified as multi-objective function with

weights, goal multi-objective index and multi-objective

formulation considering more than one often contrast-

ing objectives. When it comes to minimize the annual

losses (as we aim in this work), new methodologies have

been proposed based on the optimal allocation of DG
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units in the distribution system with the same objective

[8, 52, 76].

Improved versions of the OPF emerged later on [124]

and with this also the number of applications increase

notably. Some of them are based on the same ideas as

the Probabilistic Load Flow applications, other are eco-

nomic and pollution dispatch or maximum interchange,

however one stands out the optimization problem in

presence of distributed generation, mainly wind farms

or turbines. Diverse strategies has been addressed in

order to solve this particular application as it can be

seen in [96] by using the following techniques:

– Analytical: zero point analysis focusing on the point

of the feeder where the power flow is zero or the 2
3

ruled used for capacitor placement in radial distri-

bution system [118] are examples of this category.

– Exact formulas: references [3, 88] present exact meth-

ods such as the exact loss formula or the gradient

method.

– Evolutionary: Monte Carlo method [37], Hereford

Ranch Algorithm (HRA) and Genetic Algorithm

(GA) based on genetic concepts [65, 77], Simulated

Annealing (SA) a local search algorithm [44], Fuzzy

System algorithm built using the fuzzy set theory

[66], Ant Colony optimization specially designed to

deal with large search spaces since it dynamically

creates the search routes such as real ants do [40],

Tabu Search that explores the whole solution space

randomly based on the local search [80] and Particle

Swarm optimization inspired by social behavior of

bird flocking among others [2].

The optimal placement methods of distributed gener-

ators can be solved using the probabilistic approaches

mentioned above or the deterministic ones reviewed in

section 3. Further information about methods and tech-

niques proposed for solving OPF and PLF are shown

in [23, 42, 59].

4.1 Standard Reduced Order Model methods

A parametric version of the power flow equation (3)

is presented in section 2.2. Having this vision of the

problem implies that the solution of optimization or

uncertainty quantification among others problems in

real-time is reachable. However, in practice, the solu-

tion of high dimensional problems may become compli-

cated due to the exponential increase of the degrees of

freedom. These type of methods are potentially subject

to the curse of dimensionality, that is, to a dramatic in-

crement of the computational cost with the number of

dimensions. In D dimensions if each parameter assumes

d possible states, the extensive exploration of the para-

metric space is associated to a volume of information

that scales with dD. In this context, Reduced Order

Models (ROM) are especially indicated to remedy this

deficiency.

A historical review of ROM is given by [84]. Origi-

nally, they were developed in the area of systems and

control theory that studies properties of dynamical sys-

tems. The fundamental methods in ROM area were

published in the eighties and nineties of the last cen-

tury.

Proper Orthogonal Decomposition method, also known

as Karhunen-Loève decomposition or principal compo-

nent analysis, was proposed by [97]. The basis theory

of this strategy is shown in [84, 89]. This method es-

sentially supplies an orthonormal basis for representing

the given data in a optimal sense, that is to say, given

V̂1, . . . , V̂nsn ∈ R2n vectors, we can approximate the so-

lution voltage V̂ by

V̂ ≈ VPOD =

nsn∑

m=1

ωmV̂m = Mω (36)

where M = [V̂1, . . . , V̂nsn ] is a matrix and the vector

ω ∈ Rnsn is the new unknown (instead of V̂ ). In prac-

tical application, POD methods make essential use of

empirical data taken from numerical simulation. Hence,

considering a given set of pre-computed voltage solu-

tions V̂1, . . . , V̂nsn , called snapshots, the matrix of snap-

shots is defined as Vsn = [V̂1, . . . , V̂nsn ] ∈ Rn×nsn and

used instead of the matrix M in equation (36), where

nsn is the number of snapshots considered. The choice

of the data set plays a crucial role and relies either on
intuition or simulations. It is affirmed that the incor-

poration of empiric data of the original model is one of

the advantages of the POD method.

POD falls into the category of projection methods

where the system is projected onto a subspace of the

original phase space. Later on, singular value decompo-

sition (SVD) of the snapshot matrix Vns is carried out

in order to obtain an approximation of a set of orthog-

onal basis functions spanning the solution space, that

is to say,

Vsn = PΣQT (37)

where P = [u1, u2, . . . , un] is a matrix with orthonor-

mal columns, Q = [q1, q2, . . . , qn] is a orthogonal matrix

containing the singular vectors, andΣ is a diagonal ma-

trix with positive or zero elements λl, l = 1, . . . , nsn,

called the singular values. In general, rank(Vsn) 6
min(n, nsn), so each V̂h, h = 1, . . . , nsn can be written
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as:

V̂h =

rank(Vsn)∑

m=1

ωmV̂m ≈ VPOD =

nRB∑

m=1

ωmV̂m = Pω

(38)

where nRB << rank(Vsn) selected such that accumu-

lative variance
nRB∑
l=1

λl/
nsn∑
l=1

λl is close to one and, P =

[V̂1, . . . , V̂nRB ] is a n× nRB matrix and the vector ω ∈
RnRB is unknown.

The connection between POD and SVD lies in the

fact that the approximating POD basis should contain

as much information as possible. Mathematically, the

problem of approximating the snapshot vectors by a

single vector is written as a constrained optimization

problem. Using the Lagrangian formalism, we derive

that a necessary condition for this problem is given

by the eigenvalue problem. The singular value analy-

sis yields that V̂1 solves this eigenvalue problem and

the functional value is indeed λ1. Now, we iterate this

procedure and by construction it is clear that for every

nRB ≤ n the approximation of the columns of Vsn by

the first nRB singular vectors is optimal in the least-

squares sense. Altogether, this leads the way to the

practical determination of a POD basis of rank nRB .

This method have been developed in different ar-

eas, some of them are: image processing, data compres-

sion, signal analysis, modeling and control of chemical

reaction systems, turbulence models, control of fluids,

electrical power grids, pattern recognition, wind engi-

neering, etc. Despise POD methods are useful in many

cases, when non-linear systems are involved, difficulties

might appear since the cost of evaluating the smaller

system resulting after apply the method still depends

on the number of variables of the full model. For this

reason, other methods have been developed in recent

decades, for instance Discrete Empirical Interpolation

Method, meant to be an improvement of the POD ap-

proximation because (based on a projection combined

with interpolation) it achieves a reduction of the nonlin-

ear term with a complexity proportional to the number

of reduced variables [19].

In general, the concept of ROM has been known

for long time in the field of power system engineering.

Indeed, grid equivalencing techniques like Ward reduc-

tion [115] or POD [83] are commonly used to reduce the

computational cost of power flow analysis of large sys-

tems. The combination of both POD and DEIM meth-

ods has been applied for model order reduction for semi-

conductors in electrical networks using DEIM to treat

the reduction of nonlinear components [57]. Also electri-

cal, thermal and micro-electromechanical systems have

been also studied [58]. More recently, works dealing

with either OPF or PLF using order reduction tech-

niques rely on Sparse Grid approaches [73, 105, 126] or

Sparse Tensor Recovery [128]. Both techniques can be

classified as collocation approaches, since the solution

is reconstructed in the high dimensional space from the

values it assumes in a set of particular and well-chosen

points called the collocation points.

In this work, ROM techniques are not intended to

reduce the degrees of freedom of the physical system but

the computational complexity associated to the resolu-

tion of high-dimensional parametric equations. For that

reason, Proper Generalized Decomposition technique is

suitable for the power flow problem. In [30], it is claimed

that the technique is based on DEIM, and thus the

nonlinear term is interpolated using the reduced basis

instead of being fully evaluated. It is remarkable that

although PDG is based on these methods, it is a pri-

ori model reduction method because it does not depend

on previously computed snapshots. PGD discovers the

true dimensionality of the model as a part of the solu-

tion of the parametrized equations and does not need

train simulations. A careful treatment of the nonlinear-

ity is required when using PGD. Diversified strategies

exist, depending on the problem at hand, and can be

found in the specialized literature [27, 30]. In this work,

we combined the non-linear algebraic solver illustrated

in section 3.4 with the PGD strategy.

4.2 Proper Generalized Decomposition for the Power

Flow problem

The goal of this section is to apply the PGD technique

to the power flow equations. The output of PGD is a full

parametric solution in a compact separated-variables

format. As has been mentioned before, the objective is

to calculate the optimal location and sizing of a genera-

tor set in the network that minimizes the system losses.

Thus, the parameters are the location and the nominal

power of the generator, denoted by q and r respectively,

and also the time t accounting for the hours in a year.

The solution of equation (3) is sought using the itera-

tive algorithm explained in section 3.4 combined with

a PGD approximation.

It is assumed that the input data S(q, r, t) is repre-

sented as a separated variables,

S(q, r, t) =

H∑

h=1

αhS S
hQ̆h(q)R̆h(r)T̆ h(t) , (39)

where H is the number of terms in the S expansion, and

for h = 1, . . . ,H, αhS are positive scalars, Sh ∈ Cn are

the unit vector modes of powers, and Q̆h(q), R̆h(r) and
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T̆ h(t) are the unit parametric modes. We also assume

that the PGD approximation Va has a separated form,

that means, Va is a sum of M terms, each of them being

the product of functions depending on only one of the

parameters, namely

V (q, r, t) ≈ Va(q, r, t) =

M∑

m=1

αmV V
mQm(q)Rm(r)T m(t) ,

(40)

where, for m = 1, . . . ,M , αmV are positive scalars, V m ∈
Cn are the unit vector modes of voltages, and Qm(q),

Rm(r) and T m(t) are the unit parametric modes. The

modes are normalized and the positive scalar αmV col-

lects the amplitude of each term.

In practice, the parametric dimensions are discretized

in a Finite Element fashion. Let nq, nr and nt denote

the number of degrees of freedom discretizing the three

parametric dimensions. Thus, function Qm(q) is iden-

tified with vector Qm ∈ Cnq , similarly vectors Rm ∈
Cnr and T m ∈ Cnt represent functions Rm(r) and

T m(t). Thus, the multivariate function Va(q, r, t) (from

Iq×Ir×It to Cnr ) is also described by a n×nq×nr×nt
complex tensor Va, such that

Va =

M∑

m=1

αmV V
m ⊗Qm ⊗Rm ⊗ T m . (41)

Adapting the iterative strategy presented in section

3.4 (the so-called Z-matrix bus method) to the paramet-

ric context can be summarized in rewriting (3) with the

explicit parametric dependence, i.e.

V [γ+1]
a (q, r, t) = Y−1

(
S∗(q, r, t)� V ∗a [γ](q, r, t) + I0

)
.

(42)

For algorithmic purposes, and following the ideas pre-

sented in section 3.4, this operation is split into two

steps: i)First, an intermediate quantity I is computed

such that

I(q, r, t) = S∗(q, r, t)� V ∗a [γ](q, r, t) , (43)

then, ii)the second step consists in solving the global

(but linear) system, that is in computing

V [γ+1]
a (q, r, t) = Y−1 (I(q, r, t) + I0) . (44)

Note that in (42), the operations are not as trivial

as in their algebraic version. For instance, for S and

Va in Cn, computing I = S∗ � Va is a simple division

for each component: [I]l = [S]∗l /[V ]∗l for l = 1, . . . , n.

For Va(q, r, t) and S(q, r, t) represented in the separable

forms (40) and (39), the operation (43) requires solv-

ing a PGD problem. That is (for each iteration γ) to

solve a problem of the type: find I(q, r, t) such that

I(q, r, t)�V ∗a [γ](q, r, t) = S∗(q, r, t). The standard PGD

procedure consists in computing sequentially the terms

of the PGD expansion of I(q, r, t) (loop on M) and for

each term iterate in the alternated directions scheme

(this is going to be denoted as a loop on k). The PGD

solver uses a greedy algorithm to compute these terms

in the expansion (40) (or its tensorial form (41)), see

[28–31]. The second step is straightforward, since the

matrix Y does not depend on the parameters q, r and

t, it is possible to conclude that the voltage inherits the

same parametric modes of the current, while the vector

coefficients are multiplied by Y−1, for allm = 1, . . . ,M .

Thus, in this context, the PGD algorithm involves

three nested loops:

– The external one corresponds to the nonlinear solver

and iterates in γ

– The second is the greedy part of the PGD algorithm

to solve (43) (loop on the number of terms of the

PGD expansion M)

– The inner loop iterates (for k = 1, 2, . . .) in the al-

ternated direction scheme for each of the parametric

dimensions.

The initial solution is typically provided after the

slack node intensity, I0, namely

V [0]
a = Y−1I0. (45)

The global idea of the PDG procedure is very well

described and illustrated in [47] and [12].

4.3 Parametric version of the error assessment

As in the case of the algebraic problem, this section is

oriented to focus on the methodology to assess the error

for the parametric version of the problem.

Although, diverse parameters can be considered, for

the sake of simplicity and without losing generality, we

present the equations for the parameter r. Note that

the behavior of the q and t parametric dimensions is

analogous to the r dimension.

Taking the tensorial representation of the solution

Va, the error and the residual are also complex matrices

in Cn×nr ,

E = V −Va, (46)

R(V) = S∗ −V∗ � (YV − I0). (47)

Now, QoI is taken as the integration with respect to

the parametric dimensions of some nonparametric QoI

l(·), namely

L(Va(r)) =

∫

r

l(Va(r)) dr. (48)
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Integration respect to the parameter r is determined

by the mass matrix Mr (associated with the 1D mesh

discretizing the parameter r) multiplied by vector 1nr =

[1, 1, . . . , 1]T ∈ Cnr . This is possible because the equiv-

alence between the functional and tensorial representa-

tions in (40) and (41):

L(Va) = 1T
nrMrl(Va), (49)

where l(·) is now the generalization to the tensor intro-

duced in equation (31). The result produces a vector of

nr components, namely

l(Va) = diag((V∗a
TYLVa)Re), (50)

where the operator diag(·) maps the elements of the di-

agonal of the input matrix of size nr×nr into a column

vector of size nr. Similarly as in (32),

l(V) = l(Va) + diag((FE)Re) + diag((GE∗)Re) (51)

where F = V∗a
TYL and G = (YLVa)T are matrices

in Cnr×n. Using now the Cartesian representation, this

equation is rewritten as:

l(V) = l(Va) + diag(λ̂
T

p Ê) (52)

where

λ̂p =

(
FRe + GRe

−FIm + GIm

)
, Ê =

(
ERe

EIm

)
∈ R2n×nr .

Using the tensor contraction notation, equation (52)

becomes:

L(V) = L(Va) + λ̂
T

: Ê (53)

where λ̂ = (12n1T
nrMr)� λ̂p ∈ R2n×nr .

The error equation is derived following the same

ideas as in section 3.5:

V∗a �Y E + E∗ � (YVa − I0) = R(Va). (54)

Taking every column of the matrix Va, it is possi-

ble to build two tensors A(·, ·, `) = Diag(V∗a(·, `))Y
and B(·, ·, `) = Diag((YVa(·, `) − I0(·, `)))Y for ` =

1, . . . , nr in Cn×n×nr . Thus, (54) is rewritten as:

A
·
�E + B

·
�E∗ = R(Va) (55)

where the operation
·
� denotes a contraction of one in-

dex and a Hadamard product in another index. For

instance, in the particular case of A ∈ Cn×n×nr and

E ∈ Cn×nr , it reads

[
A
·
�E

]
i`

=

n∑

j=1

Aij`Ej` , with no sum on `. (56)

Note that the definition is general for any field and

for the dimensions of the tensors, the only restriction

being that the two last indices of tensor A have the

same range as the the two indices of tensor E.

Using the Cartesian representation, the equation be-

comes linear:

C
·
� Ê = R̂(Va), (57)

where

R̂ =

(
ERe

RIm

)
∈ R2n×nr .

The dual problem is readily introduced as:

CT ·� ρ̂ = λ̂, (58)

where CT(·, ·, `) = C(·, ·, `)T, ∀` (transposing only the

two first dimensions of the tensor). Hence the error in

the quantity of interest using equation (57) is:

EQoI = L(V)− L(Va) = λ̂
T

: Ê = λ̂ : (C†
·
� R̂(Va))

= ρ̂T : R̂(Va)

(59)

where C†(·, ·, `) = C−1(·, ·, `), ∀` (sectionally inverting

the two first dimensions of the tensor).

The error assessment technique using the solution

ρ̂T of (58) and the error representation (59) is, in prac-

tice, computationally unaffordable. This is due to the

multidimensional character of both ρ̂T and R̂(Va), which

are tensors of order n×nq×nr×nt. Moreover, once ρ̂T

and R̂(Va) are obtained, all the tensorial dimensions
must be contracted (this requires four nested loops) to

compute the scalar quantity EQoI .

In the following, we introduce a numerical strategy

that condensates all the parametric dimensions in or-

der to devise an amenable error assessment methodol-

ogy. In this regard, the QoI introduced in (48) is inte-

grating the effect of the parametric dimensions and the

resulting problem depends only on the physical dimen-

sion (represented here by the vector of voltages of size

n). Accordingly, the error representation is expected to

have the form

EQoI = (ρ̂A)TR̂A(Va), (60)

where ρ̂A and R̂A(Va) are vectors in R2n that have

to be obtained condensing the parametric dimensions

(here, integrating with respect to parameter r).

The condensation of R̂(Va) ∈ R2n×nr and C ∈
R2n×2n×nr into R̂A(Va) ∈ R2n and CA ∈ R2n×2n (su-

perscript A is used to denote that the quantities are
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condensed into an accumulated value) is readily ob-

tained by just integrating the parametric dimension,

namely

R̂A(Va) =

∫

r

R̂(·, r) dr = R̂(Va)Mr1nr , (61)

and

CA =

∫

r

C(·, ·, r) dr = C Mr1nr .

It is assumed that there exists some vector ÊA ∈
R2n, representing an average value of Ê(·, r), such that
∫

r

C(·, ·, r)
·
� Ê(·, r) dr = CAÊA. (62)

Consequently, the equation for the mean error ÊA is

precisely the following linear system of dimension 2n

CAÊA = R̂A(Va). (63)

Note that the existence of vector ÊA is guaranteed by

the integral Mean Value Theorem applied to the left-

hand-side of (57), under the hypothesis of having a con-

tinuous dependence on Ê(·, r) on r. In this case, there

exists some value of r such that ÊA = Ê(·, r). Note

that continuity of Ê(·, r) is ensured by the continuity

of the parametric description of the solution Va(r). If

the modes are not continuous, the existence of ÊA is

also guaranteed provided that CA is a regular matrix.

In this case, ÊA does not necessarily coincide with any

value of Ê(·, r).
In the parametric case, the error in the QoI reads

EQoI =L(V)− L(Va) =

∫

r

diag(λ̂p(·, r)TÊ(·, r)) dr

= diag(λ̂
T

p Ê)Mr1nr ,

(64)

where the last term in the right uses the multidimen-

sional tensor structure to express the integrals along

the r range by a scalar product.

An accumulated value of λ̂p, λ̂
A ∈ R2n, is readily

introduced

λ̂A =

∫

r

λ̂p(·, r) dr = λ̂pMr1nr .

In order to obtain a suitable error representation, it

must be assumed that the following hypothesis is true.

Assumption 1 The quantity of interest EQoI is ex-

pressed using the accumulated value of λ̂p and the vec-

tor ÊA, that is to say,

EQoI = (λ̂A)TÊA.

This can be interpreted as a new application of the

mean value theorem in (64), with the additional as-

sumption that the average value of Ê is again ÊA. Ac-

tually, in this case there is not a unique average value:

there exists an affine space of dimension 2n − 1 where

lie all the possible vectors ÊA fulfilling the equation de-

fined in 1. Thus, the assumption claiming that ÊA from

equation (62) fulfils also (64) (at least approximately)

is very likely to hold. This assumption is further sup-

ported by noting that the dependence on r of C and

λ̂p is directly given by the dependence on r of Va (the

matrices F, G, A and B and the tensors A and B

depend on the solution Va linearly). Thus, the domi-

nant r mode in Va is going to be the dominant r mode

also in C and λ̂p and hence ÊA from equation (62) is

expected to fulfil also (64). An error indicator is intro-

duced in section 5.1 in order to numerically check the

validity of Assumption 1.

Hence, the dual problem in the condensed form reads

CAT
ρ̂A = λ̂A , (65)

and the corresponding error representation is

EQoI = (ρ̂A)TR̂A(Va) . (66)

Thus, also in the parametric form of the problem, the

error in the quantity of interest can be affordably as-

sessed by solving the condensed dual problem (65) and

computing the error estimate using (66).

The aim of introducing the goal-oriented error es-

timations in the algorithm presented in section 4.3 is

to control the accuracy of the approximation solution

through the incorporation of stopping criteria into the

procedure. An extended version of the development of

the above equations is presented in [46].

5 Numerical examples

In this section, the proposed methodology has been ap-

plied to the IEEE 57 bus network. The model is one-

phase grid consisting of 7 generators, 57 buses intercon-

nected by 63 lines and 17 transformers, thus the number

of degrees of freedom is n = 57. This network contains

PV nodes, although we converted them into PQ nodes

without loss of generality by fixing the power vector

S. Otherwise, another new loop must be added to the

implemented method in order to control the power in

the PV nodes, more details about this idea are given in

[13]. The diagram of the network is shown in Figure 1

while the data system can be found in [1].

The main objective in the below examples is to solve

an optimization problem: find the optimal location and

power of a generator that minimizes the system losses,
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Fig. 1 Single-line diagram of standard IEEE 57 bus test sys-
tem

quantity of interest in this work. Since the test system

is a transmission one, the concept of generation changes

from distributed generator to just generator. As a first

step, we compute the solution while we evaluate it for

calculating the losses. Secondly, in the post-processing

of the results, we look for the value that optimizes the

problem statement. In the first step the error assess-

ment is taking into account in the implementation of

the solver using some stopping criteria defined in sec-

tion 5.1.

The original data is given in p.u. and we have se-

lected a 100 MVA base for the system structure. It is

known that all the buses can be considered as candi-

dates for installing generators and the capacity of the

units were chosen between zero and 2 MW.

5.1 Tolerances and stopping criteria.

The goal-oriented error estimated defined in the previ-

ous section are used to define the stopping criteria in

the algorithm described in section 4.2.

Let us introduce the error indicators ξ�? , where �
accounts for the type of error measured (� = R for a

purely residual estimate; � = S for a measure of the

stationarity in the loop or � = QoI for the error in

the quantity of interest), and ? denotes the loop where

it is used (? = γ; ? = M ; or ? = k). Thus, the differ-

ent stopping criteria are expressed as: continue with the

loop while ξ�? > tol�? , tol�? being the different tolerances

prescribed for the different criteria.

The definitions of the different error indicators are

listed below:

1. Loop in γ

ξRγ =
‖R̂A(V

[γ+1]
a )‖2

‖ŜA‖2
, ξSγ =

‖V[γ+1]
a −V

[γ]
a ‖2

‖V[γ+1]
a ‖2

and

ξQoIγ =
|(ρ̂A)TR̂A(V

[γ+1]
a )|

|L(V
[γ+1]
a )|

(67)

where ŜA = S Mr1nr and ‖ · ‖2 stands for either

the L2-norm or the Frobenius norm (depending on

whether the argument is a vector or a matrix).

2. Loop in M

ξRM =
‖R̂AI (Ia)‖2
‖ŜA‖2

, ξSM =
|αMI |
|α1
I |

and

ξQoIM =
|λ̂T(V

[γ],M
a −V

[γ],M−1
a )|

|L(V
[γ]
a )|

,

(68)

where R̂AI (Ia) = (S−Va � Ia)Mr1nr .
3. Loop in k

ξS1

k =
‖(VM )k+1 − (VM )k‖2

‖(VM )k+1‖2
and

ξS2

k =
‖(RM )k+1 − (RM )k‖2

‖(RM )k+1‖2
.

(69)

Moreover, in order to check the stabilization of ρ̂,

the following indicator is introduced:

dρ =
‖ρ̂[γ+1] − ρ̂[γ]‖2
‖ρ̂[γ+1]‖2

. (70)

If the value of dρ is small enough, the assumption on

the stability of ρ̂A is going to be confirmed. Besides, for

checking that the Assumption 1 holds, another indica-

tor is introduced:

eÊ =
|EQoI − (λ̂A)TÊA|

|EQoI |
. (71)

Note that ÊA is computed using equation (63) straight-

forwardly.

Similarly, the verification of the obtained solution

and the corresponding losses is performed with the fol-

lowing error measures (with respect to a reference so-

lution V):

eV =
‖V −Va‖2
‖V‖2

(72)

eL =
‖l(V)− l(Va)‖2
‖l(V)‖2

. (73)
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5.2 Algebraic approach

Here we show a case study where an algebraic version of

the power flow problem, associated with the parameters

q, r and t, is solved. Particularly, the location of the

generator is fixed in the node q = 25, its power is r = 2

p.u. and the hour of the year t = 3454. Consequently,

nq, nr, nt = 1 and the number of degrees of freedom is

n = 57.

Figure 2 illustrates how the error in the quantity of

interest ξQoIγ barely changes when the solution of the

dual problem ρ̂ is calculated until the tolerance for the

indicator dρ (in this case 10−4) is reached. Note that

we introduce the notation ξQoIγ̂ for indicating that the

vector ρ̂ is computed until the tolerance is reached. The

standard notation ξQoIγ implies that the dual problem

is solved at every single iteration. Moreover, Figure 3

shows that the stability of ρ̂ is evident. Since the same

fact was noticed in other simulations, from now on in

the examples below, once we reached the tolerance for

the indicator dρ, the vector ρ̂ is reused in the following

iterations. As a result, at every γ iteration significant

computational time is saved. Hence at some point, the

cost of calculating the error in the quantity of interest

has the same computational cost as the residual calcu-

lation because we do not need to update C, λ̂ or ρ̂.
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In order to show the e�ciency of the procedure

for linearizing the residual and the losses equation ex-

plained in section 3.5, the e↵ectivity index is plotted in

Figure 4 comparing the relative error with respect to

the reference solution eL. Note that for computing the
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Fig. 3 Convergence diagram of stagnation criteria for the
solution of the dual problem ⇢.

relative errors, that is to say, eL or eV , we consider as

real solution the one calculated using Newton-Raphson
algorithm while tolerances tolR� , tolS� and tolQoI

� are

10�8.
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Fig. 4 E↵ectivity index in the losses.

5.3 Parametric approach

Our goal in this section is to solve the optimization

problem defined in section 1 of finding the optimal val-

ues of the parameters q, r and t when generators are

set in the test system. Thus, a parametric version of the

power flow problem is involved.

Fig. 2 Convergence diagram of the error in the quantity of
interest with the iteration index γ.

In order to show the efficiency of the procedure

for linearizing the residual and the losses equation ex-

plained in section 3.5, the effectivity index is plotted in

Figure 4 comparing the relative error with respect to

the reference solution eL. Note that for computing the

relative errors, that is to say, eL or eV , we consider as
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5.3 Parametric approach
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ues of the parameters q, r and t when generators are

set in the test system. Thus, a parametric version of the
power flow problem is involved.

Fig. 3 Convergence diagram of stagnation criteria for the
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real solution the one calculated using Newton-Raphson

algorithm while tolerances tolRγ , tolSγ and tolQoIγ are

10−8.
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5.3 Parametric approach

Our goal in this section is to solve the optimization

problem defined in section 1 of finding the optimal val-

ues of the parameters q, r and t when generators are

set in the test system. Thus, a parametric version of the

power flow problem is involved.
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5.3.1 Optimal nominal power and location of a

generator with fixed loads.

As a first example, the parameter t is fixed while q and

r vary. Hence, we seek the value of the parameters q

and r that minimize the system losses. Since the loads

are fixed, the problem consists in finding the voltage

solution as a separated representation:

Va =

M∑

m

αmV V
m ⊗Qm ⊗Rm , (74)

where r belongs to a set of possible values of power that

the generator can provide. That is, the partition of the

interval [0, rmax] where the increment is rmax/(nr − 1)

with rmax = 2 p.u and nr is the number of samples,

particularly in this example nr = 100. We set the gener-

ator in different nodes along the network corresponding

with q = 2, . . . , 26, being nq = 25 while nt = 1. Note

that the number of degrees of freedom is n×nq ×nr =

57× 25× 100.

The separated representation of the input data S is:

S = α1
SS1 ⊗ 1nr + α2

SQ2 ⊗ r2 (75)

where S1 is the vector of demand loads with dimension

n, 1nr is a vector of ones with dimension nr,Q2 is a zero

vector except for the location of the generator where 1 is

placed, r2 is a vector in Rnr where [r2]h = (h/nr)·rmax,

for all h = 0, . . . , nr and α1
S , α2

S are positive scalars.

The novice of the presented technique is that it

makes possible to control the quality of the solution in

term of the losses, the quantity of interest in this case,

during the iterative process. Thus, the goal is to set dif-

ferent tolerances and compare the obtained solutions in

order to validate the goal-oriented error estimates. The

first list of tolerances is tol�γ = 10−5, tol�M = 10−6 and

tol�k = 10−7 for � = S,R,QoI. Figure 5 and 6 show the

stopping criteria for γ and M respectively. The num-

bers in Figure 5 represent the amount of modes that the

solution contains at every iteration γ. In this case, the

final solution consists of 10 modes after 20 iterations.

The same quantities are shown in Figures 7 and 8

but the fixed tolerances are tol�γ = 10−7, tol�M = 10−9

and tol�k = 10−10 for � = S,R,QoI in this case. As we

can see, the amount of terms of the solution changes,

we need more than the double of terms (a total of 21)

in this simulation. In both cases, after a few iterations

the number of modes that the solutions contain are sta-

bilized.

The relative errors for the losses eL and the refer-

ence solution eV are shown in Figures 9 and 10 respec-

tively. It is observed that the solution that contains

more terms is more accurate. This is because at every
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where r belongs to a set of possible values of power that

the generator can provide. That is, the partition of the

interval [0, rmax] where the increment is rmax/(nr � 1)

with rmax = 2 p.u and nr is the number of samples,

particularly in this example nr = 100. We set the gener-

ator in di↵erent nodes along the network corresponding

with q = 2, . . . , 26, being nq = 25 while nt = 1. Note

that the number of degrees of freedom is n⇥nq ⇥nr =

57 ⇥ 25 ⇥ 100.

The separated representation of the input data S is:

S = ↵1
SS1 ⌦ 1nr + ↵2

SQ2 ⌦ r2 (75)

where S1 is the vector of demand loads with dimension

n, 1nr
is a vector of ones with dimension nr, Q2 is a zero

vector except for the location of the generator where 1 is

placed, r2 is a vector in Rnr where [r2]h = (h/nr)·rmax,

for all h = 0, . . . , nr and ↵1
S , ↵2

S are positive scalars.

The novice of the presented technique is that it

makes possible to control the quality of the solution in

term of the losses, the quantity of interest in this case,

during the iterative process. Thus, the goal is to set dif-

ferent tolerances and compare the obtained solutions in

order to validate the goal-oriented error estimates. The

first list of tolerances is tol⇤� = 10�5, tol⇤M = 10�6 and

tol⇤k = 10�7 for ⇤ = S, R, QoI. Figure 5 and 6 show the

stopping criteria for � and M respectively. The num-

bers in Figure 5 represent the amount of modes that the

solution contains at every iteration �. In this case, the

final solution consists of 10 modes after 20 iterations.

The same quantities are shown in Figures 7 and 8

but the fixed tolerances are tol⇤� = 10�7, tol⇤M = 10�9

and tol⇤k = 10�10 for ⇤ = S, R, QoI in this case. As we

can see, the amount of terms of the solution changes,

we need more than the double of terms (a total of 21)

in this simulation. In both cases, after a few iterations

the number of modes that the solutions contain are sta-

bilized.

The relative errors for the losses eL and the refer-

ence solution eV are shown in Figures 9 and 10 respec-

tively. It is observed that the solution that contains

more terms is more accurate. This is because at every
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iteration M , we add a new term hence more information

is considered. Clearly, this added information is enough

for changing significantly the quality of the solution.

Based on the numerical results, the introduction of

error estimators in the procedure allows to control the

whole procedure and specifically the construction of the

solution V. But, a priori we neglected some terms in

the equations assuming that the achieved result will

be accurate enough and also taking into account the

above-mentioned Assumption 1.
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10−5, tol�M = 10−6 and tol�k = 10−7. The numbers along
the curves refer to the number of modes that the solution
contains.
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Figures 11 and 12 illustrate the validity of these two

assumptions based on this numerical example. Specif-

ically, Figure 11 proves that the Assumption 1 holds

in the numerical example using the error indicator eÊ

while Figure 12 shows the e↵ectivity index comparing

the relative error in losses eL and the error indicator of

the quantity of interest ⇠QoI
� .

Once we get the approximation Va, the losses are

calculated using the operator L. The two dimensional

representation of the losses is presented in Figure 13

where we can observe that the minimum value of the
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losses corresponds to a generator situated in the node

q = 12. The minimum loss is 0.201 p.u. given when the

power of the generator is r = 0.78 p.u. The optimization

step could be carried out using any algorithm, however

since the objective function is now explicitly available,

it just required a simple evaluation.

5.3.2 Optimal location of a generator with time

varying loads.

In this second example, a parametric power flow prob-

lem is solved for seeking the values of q and r that

minimize losses when the parameter time t is also con-

Fig. 7 Convergence diagram of the stopping criteria for the
outer loop with the iteration index γ for tolerances tol�γ =

10−7, tol�M = 10−9 and tol�k = 10−10. The numbers along
the curves refer to the number of modes that the solution
contains.
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Figures 11 and 12 illustrate the validity of these two

assumptions based on this numerical example. Specif-

ically, Figure 11 proves that the Assumption 1 holds

in the numerical example using the error indicator eÊ
while Figure 12 shows the effectivity index comparing

the relative error in losses eL and the error indicator of

the quantity of interest ξQoIγ . Once we get the approxi-

mation Va, the losses are calculated using the operator

L. The two dimensional representation of the losses is
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q = 12. The minimum loss is 0.201 p.u. given when the
power of the generator is r = 0.78 p.u. The optimization
step could be carried out using any algorithm, however
since the objective function is now explicitly available,

it just required a simple evaluation.
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varying loads.

In this second example, a parametric power flow prob-

lem is solved for seeking the values of q and r that
minimize losses when the parameter time t is also con-
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presented in Figure 13 where we can observe that the

minimum value of the losses corresponds to a generator

situated in the node q = 12. The minimum loss is 0.201

p.u. given when the power of the generator is r = 0.78

p.u. The optimization step could be carried out using

any algorithm, however since the objective function is

now explicitly available, it just required a simple eval-

uation.
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sidered. The solution in this case reads as:

Va =
MX

m

↵m
V V m ⌦ Qm ⌦ Rm ⌦ T m , (76)

while the representation of the data load term S re-
quires more terms:

S =
5X

h=1

↵h
SS̆h ⌦ Q̆h ⌦ R̆h ⌦ T̆ h + ↵1S1 ⌦ Q1 ⌦ R1 ⌦ T 1

(77)

where S1 and S̆h are n vectors representing the nodal
positions of the network, Q1 and Q̆h are zero vectors

of nq components except for the location of the gen-
erator varying from 25 to 50 in the second term, thus
nq = 25, and R1 and R̆h corresponds to the varia-

tion of the power, for all h = 1, . . . , 5. In this case, the
maximum power is rmax = 1.5 p.u. and the number
of samples is nr = 100. In order to represent the time
in the test system, the load demand and the generation

profiles during a year are represented by the load curves
T̆ h(t), 8h = 1, . . . , 5 for the nodes and T 1 fot the gen-
erator. These curves were generated using the software

HOMER described in [69] for the test system described
in a former work, see [46]. The curves vary from 1 to
8760 with a time step of 1h, thus nt = 8760.

Following the same procedure as before, we fix the
same two shorts list of tolerances. In the first case, the
tolerances are tol⇤� = 10�5, tol⇤M = 10�6 and tol⇤k =

10�7 and in the second case, these are tol⇤� = 10�7,

tol⇤M = 10�8 and tol⇤k = 10�10 for ⇤ = S, R, QoI.

The number of degrees of freedom in both cases is
n ⇥ nq ⇥ nr ⇥ nt = 57 ⇥ 25 ⇥ 100 ⇥ 8760. That is the
reason of why the number of � iterations for reaching

the tolerances in both examples are higher comparing
to the numerical example above, 33 versus 50 iterations
when the fixed tolerances are smaller. Accordingly, the
number of modes of the final solution also varies, 14

versus 31 modes. This fact is shown in Figures 14, 15,
16 and 17 where the convergence diagram of the stop-
ping criteria in the greedy algorithm are also plotted.

It is worth mentioning that in all M iterations, at some
point the criterion ⇠R

M stabilizes after some iterations.
This might be because at every iteration M , we add a

new term hence more information is considered. How-
ever, it is possible that the added information is not
enough for changing significantly the quality of the so-
lution, thus the residual in the first step of the algorithm

does not decrease.

The diagrams of the relative errors comparing both
approximations with the reference solution and their

losses are shown in Figures 18 and 19. It is observed

Fig. 11 Convergence diagram of the error indicator eÊ with
the iteration index γ.
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sidered. The solution in this case reads as:

Va =
MX

m

↵m
V V m ⌦ Qm ⌦ Rm ⌦ T m , (76)

while the representation of the data load term S re-
quires more terms:

S =
5X

h=1

↵h
SS̆h ⌦ Q̆h ⌦ R̆h ⌦ T̆ h + ↵1S1 ⌦ Q1 ⌦ R1 ⌦ T 1

(77)

where S1 and S̆h are n vectors representing the nodal
positions of the network, Q1 and Q̆h are zero vectors

of nq components except for the location of the gen-
erator varying from 25 to 50 in the second term, thus
nq = 25, and R1 and R̆h corresponds to the varia-

tion of the power, for all h = 1, . . . , 5. In this case, the
maximum power is rmax = 1.5 p.u. and the number
of samples is nr = 100. In order to represent the time
in the test system, the load demand and the generation

profiles during a year are represented by the load curves
T̆ h(t), 8h = 1, . . . , 5 for the nodes and T 1 fot the gen-
erator. These curves were generated using the software

HOMER described in [69] for the test system described
in a former work, see [46]. The curves vary from 1 to
8760 with a time step of 1h, thus nt = 8760.

Following the same procedure as before, we fix the
same two shorts list of tolerances. In the first case, the
tolerances are tol⇤� = 10�5, tol⇤M = 10�6 and tol⇤k =
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reason of why the number of � iterations for reaching

the tolerances in both examples are higher comparing
to the numerical example above, 33 versus 50 iterations
when the fixed tolerances are smaller. Accordingly, the
number of modes of the final solution also varies, 14

versus 31 modes. This fact is shown in Figures 14, 15,
16 and 17 where the convergence diagram of the stop-
ping criteria in the greedy algorithm are also plotted.

It is worth mentioning that in all M iterations, at some
point the criterion ⇠R

M stabilizes after some iterations.
This might be because at every iteration M , we add a

new term hence more information is considered. How-
ever, it is possible that the added information is not
enough for changing significantly the quality of the so-
lution, thus the residual in the first step of the algorithm

does not decrease.

The diagrams of the relative errors comparing both
approximations with the reference solution and their

losses are shown in Figures 18 and 19. It is observed
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while the representation of the data load term S re-
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that the solution that contains more modes is signifi-
cantly more accurate than the one obtained when the
tolerances are higher.

When the parameter t is involved in the parametric
power flow problem, the losses are annual, that means,

at each node the operador L is the sum of the losses
at every hour of the year. Hence, the reconstruction of
the losses shown in Figure 20 is two dimensional. The

location of the generator that provides a minimal losses,
0.712 p.u., is q = 23 while the power is r = 1.2 p.u.
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In this paper we presented a review of methods involved

in solving the power flow problem in both algebraic and
parametric versions. Additionally, a brief summary of
our contributions in this field is also introduced.

The classification of solvers for the power flow alge-
braic equation is based on their historical appearance,
but also on their main characteristics: rate of conver-

gence, robustness (in terms of converging to the high
voltage solution or the computational time) and mem-
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The classification of solvers for the power flow alge-

braic equation is based on their historical appearance,

but also on their main characteristics: rate of conver-

gence, robustness (in terms of converging to the high

voltage solution or the computational time) and mem-

ory storage during the procedure. The application of

the Alternating Search Directions methods applied to

this version of the problem provides a family of meth-

ods able to recover some classical ones as NR or GS.
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ory storage during the procedure. The application of

the Alternating Search Directions methods applied to
this version of the problem provides a family of meth-
ods able to recover some classical ones as NR or GS.

Besides, it achieves a good performance in terms of ac-
curacy and computational time.

Parametric solvers are analyzed, mainly the PLF
and OPF, pointing out specifically their competency

for solving optimization problems when generators are
set in the networks. In order to avoid the curse of di-
mensionality when Parametric Power Flow problem is

solved, Reduced Order Models are introduced. Particu-
larly, PGD technique is the strategy adopted for solving
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the parametric version of the problem since it presents a

double advantage: the separated representation of the
solution scales linearly the dimension of the problem,
and it is easily computed as a succession of one dimen-

sional problems.

In both versions of the problem, a goal-oriented er-
ror estimation strategy is introduced. This technique

provides consistent stopping criteria for all the itera-
tive schemes of the PGD algorithm. The error is based
on the residual and the losses equation which have to

be linearized neglecting the quadratic terms. Further-
more, a Cartesian representation is needed since the
conjugate function is not holomorphic.

The standard strategy in the context of the error as-
sessment requires the definition of an adjoint (or dual)
problem. In practice, as it can be seen in the numerical
examples, it is observed to be stationary along the iter-

ative process saving computational resources. Another
singular characteristic of the proposed error strategy is
that the parametric dimensions need to be condensed.

This is done integrating respect to the corresponding
parameters the error and the losses equation. It is essen-
tial to assume that accumulated error values coincide

after integrating both equations. The numerical exam-
ples show that this Assumption is accurately fulfilled.

This new computational strategy is used in opti-

mization problems when generators are set in a grid,
based on losses minimization. The novelty of this pro-
cedure is that the admissible error in the losses is fixed
a priori, therefore the solution is built adding the nec-

essary terms in its PGD representation.
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that the parametric dimensions need to be condensed.

This is done integrating respect to the corresponding
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after integrating both equations. The numerical exam-

ples show that this Assumption is accurately fulfilled.

This new computational strategy is used in opti-

mization problems when generators are set in a grid,

based on losses minimization. The novelty of this pro-

cedure is that the admissible error in the losses is fixed

a priori, therefore the solution is built adding the nec-

essary terms in its PGD representation.
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