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Significance

During the interphase of the cell 
cycle, chromatin is accessible to 
the transcription machinery, 
which allows gene expression. 
When cells enter mitosis, 
chromosomes strongly condense, 
which facilitates their symmetrical 
segregation at the end of mitosis. 
However, condensed mitotic 
chromosomes prevent 
interactions between the DNA 
and many transcription factors, 
which correlates with a reduction 
in gene expression. This 
transcriptional silencing is 
generally regarded as a passive 
consequence of mitotic chromatin 
condensation. In this study, we 
show that mitotic chromosome 
condensation has an unexpected 
biological significance beyond 
mitosis: It resets the 
transcriptome to protect cells 
from uncontrolled transcriptional 
drift during the following 
interphase. Therefore, by 
resetting the chromatin, mitotic 
chromosome condensation 
contributes to the homeostatic 
control of transcription and gene 
expression regulation.

The authors declare no competing interest.

This article is a PNAS Direct Submission.

Copyright © 2023 the Author(s). Published by PNAS.  
This open access article is distributed under Creative 
Commons Attribution-NonCommercial-NoDerivatives 
License 4.0 (CC BY-NC-ND).
1L.R.-A. and P.H. contributed equally to this work.
2To whom correspondence may be addressed. Email: 
yves.barral@bc.biol.ethz.ch, j.m.enserink@ibv.uio.no, or 
pierre.chymkowitch@ibv.uio.no.

This article contains supporting information online at 
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas. 
2210593120/-/DCSupplemental.

Published January 19, 2023.

CELL BIOLOGY
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Mitotic entry correlates with the condensation of the chromosomes, changes in histone 
modifications, exclusion of transcription factors from DNA, and the broad downregula-
tion of transcription. However, whether mitotic condensation influences transcription 
in the subsequent interphase is unknown. Here, we show that preventing one chromo-
some to condense during mitosis causes it to fail resetting of transcription. Rather, in 
the following interphase, the affected chromosome contains unusually high levels of 
the transcription machinery, resulting in abnormally high expression levels of genes in 
cis, including various transcription factors. This subsequently causes the activation of 
inducible transcriptional programs in trans, such as the GAL genes, even in the absence 
of the relevant stimuli. Thus, mitotic chromosome condensation exerts stringent control 
on interphase gene expression to ensure the maintenance of basic cellular functions 
and cell identity across cell divisions. Together, our study identifies the maintenance 
of transcriptional homeostasis during interphase as an unexpected function of mitosis 
and mitotic chromosome condensation.

transcription | mitosis | chromatin | chromosomes | cell cycle

During mitotic entry, eukaryotic chromosomes undergo condensation, a drastic compac-
tion process that makes them manageable units for the mitotic spindle to segregate them 
between daughter cells (1). In addition, mitotic chromosome compaction remodels 
genome architecture, preventing the association of many transcription and chromatin 
regulators to cis regulatory elements and shutting down many interphase genes (2, 3). At 
the same time, it has been shown in yeast but also in mammals that active RNA polymerase 
II is present on chromatin during mitosis to maintain cell cycle regulation and basic cellular 
functions (3–6). At the end of mitosis, interphase chromatin structures and gene expression 
programs are reestablished in a precise and timely coordinated manner (7, 8). First, cells 
enhance the expression of housekeeping genes, whereas genes involved in the maintenance 
of cellular identity and functions are reactivated later (4, 9). This correlates with the timely 
reestablishment of interphase chromatin architecture and reloading of the transcription 
machinery. Although mitotic promoter bookmarking and histone modifications partici-
pate, the mechanisms enforcing controlled genome reactivation at mitotic exit remain 
unclear (7, 9, 10). While the relative transcriptional silencing of mitotic chromosomes 
has been observed and accepted a long time ago, it is typically regarded as a passive con-
sequence of mitotic chromatin condensation and it remains unclear whether it has any 
biological significance beyond the M phase. Here, we investigated the effect of mitotic 
chromosome condensation on regulation of gene expression and discovered that it is 
important for transcriptional homeostasis during interphase.

Results

To investigate the possible consequences of mitotic chromosome condensation on gene 
expression in the next cell cycle, we took advantage of a recently developed approach that 
allows one to interfere with the condensation of a single chromosome at a time. Indeed, 
beyond preventing kinetochore assembly excision of a single yeast centromere prevents 
the condensation of the entire host chromosome (11, 12). This observation established 
that at least in budding yeast, condensation is a chromosome-autonomous process, is 
initiated at centromeres, and proceeds through the sequential mobilization of the kinase 
Ipl1, the protein shugoshin (Sgo1), and the sirtuin Hst2. These proteins mediated histone 
deacetylation, chromatin compaction, and condensin-dependent contraction of the chro-
mosome arms (11–13). In the present study, we investigated the effect of preventing the 
condensation of a single chromosome (chr IV) on its transcription by precisely deleting 
the 444 nucleotides forming its centromere (CEN4). CEN4, flanked by lox recombination 
sites (CEN4*; Fig. 1A) (12, 14), was excised on demand through activation of a chimeric 
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Cre protein fused to an estradiol-binding domain. We confirmed 
that CEN4* was quickly and efficiently excised from the chromo-
some in the majority of the cell population 30 minutes after estra-
diol treatment (SI Appendix, Fig. S1A).

RNA-sequencing (RNAseq) at several time points after CEN4* 
excision (see SI Appendix, Fig. S1B for principal component anal-
ysis, PCA) enabled us to analyze the effect of CEN4* excision on 
gene expression of all yeast chromosomes, using increasingly strin-
gent P-adj cutoffs. Strikingly, CEN4* excision was followed by a 
specific, significant, and progressive upregulation of transcription 
of genes located on chromosome IV. The amplitude (Log2 FC) of 
this increase and its significance were much more pronounced than 
at any other chromosome (Fig. 1B and SI Appendix, Fig. S1 C–E 
and Tables S1 and S2). These transcriptional changes became apparent 
60 min after excision of CEN4*, although at present, we cannot 
exclude that at earlier time points changes in the transcriptome 
occurred but were obfuscated by the experimental approach. The 
enrichment of upregulated genes at chromosome IV was confirmed 
by unbiased hierarchical clustering. These analyses identified a large 
cluster of upregulated genes that were significantly enriched for 
genes located on chromosome IV (SI Appendix, Fig. S2 A–D). In 
contrast, other clusters contained genes that were either upregu-
lated, downregulated, or unaffected upon CEN4* excision and 
were not enriched for genes belonging to chromosome IV 

(SI Appendix, Fig. S2 A–D). Consistent with the notion that upreg-
ulation of the genes on chromosome IV upon CEN4* excision 
resulted simply from their localization, Gene Ontology (GO) 
analysis could not classify them into any specific pathway 
(SI Appendix, Fig. S3 A and B). As a formal control, we also excised 
a random patch of noncentromeric DNA on one arm of chromo-
some IV using the same cre/lox system (SI Appendix, Fig. S4 A and B). 
However, this had no significant effect on gene expression 
(SI Appendix, Fig. S4 C and D), demonstrating that transcriptional 
deregulation is specific to the excision of CEN4*.

Beyond affecting its condensation cycle, deleting the cen-
tromere of a chromosome prevents it to segregate to the bud at 
mitosis, possibly causing changes in chromosome copy number 
in the population over time. Although the time frame of our 
experiment is probably too short for having a strong impact on 
chromosome IV copy number in the population (the cells undergo 
in average 1.5 divisions during the 180 min of the time course), 
we still wanted to know next what is the contribution of chromo-
some condensation, specifically, on the expression of chromosome 
IV upon excision of its centromere. Yeast centromeres gate the 
condensation of host chromosomes through recruitment of aurora 
B/Ipl1, which in turn initiates the condensation of the chromo-
some arms through phosphorylating Serine 10 of histone H3 
(H3S10). As a consequence, the condensation defect resulting 
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Fig. 1. Failure to achieve mitotic chromosome condensation results in general upregulation of gene expression in cis. (A) The centromere excision assay. 
(B) RNAseq assessment of gene expression at each chromosome and at different time points after CEN4* excision. (C) RNAseq assessment of gene expression 
at each chromosome 180 min after CEN4* excision in CEN4* and CEN4* H3S10D cells.
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from the loss of the centromere is largely suppressed in cells 
expressing phospho-mimicking H3S10D (12). To test whether 
the increased gene expression observed on chromosome IV upon 
CEN4* excision was specifically caused by the failure of this chro-
mosome to condense at mitosis, we asked whether this effect was 
suppressed in H3S10D-expressing cells. As expected, gene expres-
sion at chromosome IV was upregulated in CEN4* cells 180 min 
after CEN4 excision, while other chromosomes were not affected. 
However, in CEN4* H3S10D cells, in which chromatin conden-
sation is constitutive throughout the cell cycle (12), the effect of 
centromere excision on gene expression at chromosome IV was 
substantially and significantly reduced (Fig. 1C). Since H3S10D 
suppresses specifically the condensation defects of cen-less 

chromosomes and not kinetochore assembly, we conclude that 
the centromere limits gene expression in cis through its function 
in licensing mitotic chromosome condensation and not through 
its role in chromosome copy number, at least in the time frame 
of our experiment.

Since gene transcription on chromosome IV was by far most 
significantly affected, we wondered how CEN4* excision affected 
genes on other chromosomes. GO analysis indicated an enrich-
ment of a number of terms, such as carbohydrate metabolic pro-
cess (SI Appendix, Fig. S3A). This included several genes involved 
in galactose metabolism like GAL1, GAL2, GAL7, and GAL10 
(SI Appendix, Fig. S5A). These genes operate downstream of 
GAL3, which is a galactose-inducible transcription activator (15). 
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ow
nl

oa
de

d 
fr

om
 h

ttp
s:

//w
w

w
.p

na
s.

or
g 

by
 U

N
IV

E
R

SI
T

E
 D

E
 S

T
R

A
SB

O
U

R
G

 S
C

D
 E

L
E

C
T

R
O

N
IQ

 o
n 

M
ay

 1
4,

 2
02

3 
fr

om
 I

P 
ad

dr
es

s 
13

0.
79

.1
4.

14
0.

http://www.pnas.org/lookup/doi/10.1073/pnas.2210593120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2210593120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2210593120#supplementary-materials


4 of 8   https://doi.org/10.1073/pnas.2210593120 pnas.org

Strikingly, GAL3 is located on chromosome IV, and therefore, we 
hypothesized that activation of GAL genes might be the conse-
quence of increased expression of GAL3. Indeed, even in absence 
of galactose, GAL3 was progressively activated over time upon 

CEN4* excision (SI Appendix, Fig. S5A), suggesting that unsched-
uled activation of GAL genes located outside chromosome IV is 
caused by aberrant expression of GAL3 (SI Appendix, Fig. S5A). 
A similar effect was observed for the INO2 gene, which encodes 
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Fig. 3. Lack of mitotic condensation triggers spontaneous transcriptional initiation. Assessment of H3K4me3 (A), Pol II (C), Pol II CTD-S5p (E), and Pol II CTD-
S2p (G) occurrence using ChIPseq at each chromosome and at different time points after CEN4* excision. Metagene analysis of the top 20% ChIP signals shows 
increasing presence of H3K4me3 (B), Pol II (D), Pol II CTD-S5p (F), and Pol II CTD-S2p (H) at chromosome IV genes and a decrease at other chromosomes after 
centromere excision.
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an activator of phospholipid synthesis genes on chromosome IV 
as well (16) (SI Appendix, Fig. S5B). INO2 expression increased 
significantly upon excision of CEN4*, which was followed by 
induction of its target genes INO1, CHO1, ACS2, and ACC1 
(SI Appendix, Fig. S5B), all of which are on other chromosomes. 
Thus, loss of CEN4* unleashes the expression of chromosome IV 
genes, even in absence of cognate signals, subsequently impacting 
the expression of downstream genes located on other chromo-
somes (SI Appendix, Fig. S5C).

Interestingly, in addition to causing aberrant expression of spe-
cific transcriptional programs, such as the GAL or INO systems, 
excision of CEN4* also affected several genes located outside chro-
mosome IV that are involved in the regulation of translation, 
ribosome biogenesis, and metabolism. These pathways are often 
downregulated in response to stress and partially overlapped with 
the environmental stress response (ESR) program (17, 18) 
(SI Appendix, Figs. S3 A and B and S5D). We are not aware of the 
presence of any ESR transcription factors on chromosome IV, but 
we did notice upregulation of the two main activators of the ESR, 
MSN2 and MSN4 (Dataset S1), which are located on chromo-
some XIII and XI, respectively. Thus, although the mechanism 
remains to be identified, the loss of a single centromere may be 
sensed by the cell, leading to activation of the ESR (SI Appendix, 
Fig. S5C). Possibly, this response was due to an imbalance in gene 
expression, a process known to compromise proteostasis and cause 
ESR activation, such as for example in aneuploid cells or cells 

subjected to replication stress (12, 19–21). Taken together, these 
data show that centromeres suppress unscheduled activation of 
transcription in cis and that loss of a single centromere induces 
the ESR.

Given that the histone deacetylase Hst2 mediates mitotic chro-
matin condensation downstream of centromeres (11, 12), we won-
dered whether upregulation of gene expression at chr IV correlated 
with corresponding chromosome-specific chromatin alterations. 
Supporting this idea, the occurrence of H4K12ac and H4K16ac 
on chromosome IV was substantially increased over time after 
CEN4* excision, as determined by ChIP-sequencing (ChIPseq) (see 
SI Appendix, Fig. S6 A and B for PCA), whereas the other chromo-
somes remained largely unaffected (Fig. 2 A–D and SI Appendix, 
Figs. S7 A and B and S8 A and B). Consistently, ATACseq experi-
ments revealed a strong increase in chromatin accessibility on chro-
mosome IV specifically (Fig. 2E and SI Appendix, Fig. S8C), 
showing that centromere inactivation causes chromatin opening, 
or prevents chromatin compaction, relative to the other chromo-
somes. Supporting this interpretation, the occurrence of the active 
promoter mark H3K4me3 was significantly increased at promoters 
on chromosome IV after β-estradiol treatment (Fig. 3 A and 
B and SI Appendix, Figs. S6C, S7 A and B, and S9A for PCA). This 
was associated with a clear increase in total RNA polymerase II (Pol 
II) levels at chromosome IV, as well as the transcriptionally active 
forms of Pol II, CTD-S5p and CTD-S2p (Fig. 3 C–H and 
SI Appendix, Figs. S6 D–F, S7 A and B. and S9 B–D for PCA). 
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In contrast, Pol II levels at other chromosomes declined upon 
CEN4* excision (Fig. 3 D, F, and H and SI Appendix, Fig. S9 B–D), 
suggesting that upregulation of gene expression at chromosome IV 
titrates Pol II. These data would suggest that yeast genes compete 
for the pool of Pol II and are therefore consistent with the notion 
that Pol II is present in limiting amounts (22). Importantly, acetyl-
ation of histones on chromosome IV peaked 120 min after CEN4* 
excision (Fig. 2 A and C) while the occurrence of H3K4me3, Pol 
II, Pol II CTD-S5p, and Pol II CTD-S2p was maximal at 180 min 
(Fig. 3 A, C, E, and G). Note that we have observed a mild increase 
of the number of mapped reads at chromosome IV in ChIPseq 
input samples over time and that precautions were taken to prevent 
bias during our above differential analysis (see Materials and Methods 
and SI Appendix, Fig. S10). The fact that this normalization does 
not affect the conclusion of our experiment supports our conclusion 
that the increased recruitment of Pol II on centromere-less chro-
mosome IV is more merely due to an increased copy number of 
that chromosome. Together, these data indicate that the failure to 
recruit Hst2 and condense the chromosome in cen4- cells results 
first in increased histone acetylation and chromatin opening and 
subsequently in increased H3K4 methylation at promoters and 
transcription initiation.

Importantly, the condensation defect provoked by CEN4* exci-
sion emerged as the most likely mechanism for the deregulation 
of individual genes: Unbiased hierarchical clustering analysis high-
lighted a cluster of genes at which an increase in positive histone 
marks and active Pol II clearly correlated with increased gene 
expression. This cluster was highly significantly enriched for chro-
mosome IV genes (SI Appendix, Fig. S11A). While some of the 
other clusters were enriched for certain GO terms, this “chromo-
some IV” cluster was not enriched for any particular pathway 

(SI Appendix, Fig. S11B). Thus, the lack of histone deacetylation, 
Pol II removal, and demethylation of chromatin on active genes 
was indeed the reason for the overactivation of genes on chromo-
some IV upon CEN4* excision (SI Appendix, Fig. S11C).

Given the fact that in budding yeast mitotic condensation has 
only a modest effect on gene expression during the M phase (5, 9), 
we hypothesized that centromere inactivation rather affected gene 
expression in the next interphase. In agreement with this idea, 
cells arrested in their cell cycle prior to chromosome condensation 
using hydroxyurea (HU), which arrests yeast cells in the S phase 
right before anaphase onset (S phase partially overlaps with early 
phases of mitosis in budding yeast) (23–25), did not upregulate 
chromosome IV genes upon CEN4* excision, as determined using 
a panel of strongly upregulated genes as reporters (Fig. 4 A and B). 
The expression of these genes was normalized to control gene 
MNN2 (SI Appendix, Fig. S11D). Similar results were obtained 
with cells arrested in G1 using alpha-factor or in prometaphase 
using nocodazole (Fig. 5 A–D). Thus, excision of CEN4* does 
not affect gene expression when cells are arrested prior to chro-
mosome condensation, which takes place at the metaphase-to-an-
aphase transition in yeast. In stark contrast, when cells were 
released from HU arrest into mitosis CEN4* excision had a strong 
effect on transcriptional activation within 90 min, i.e., after the 
cells had traversed and completed mitosis, and remained high 
afterward (150 min time point; Fig. 4 B and C). These data estab-
lish that i) progression through mitosis is required for centromere 
excision to cause aberrant gene upregulation and ii) expression 
of genes located on chromosome IV remains abnormally high 
even after the cell has exited from mitosis. We conclude that 
chromosome condensation is important for setting correct tran-
scriptional  output levels during interphase. Thus, centromeres 
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help maintain transcriptional homeostasis through their role in 
mitotic chromosome condensation.

Discussion. Together, our data demonstrate that chromosome 
condensation has an important effect on regulation of gene expression 
in the following interphase. Failure of a mitotic chromosome 
to condense in mitosis results in spontaneous recruitment of the 
transcription machinery to an excessively relaxed chromatin, 
triggering deregulated transcription of the entire chromosome in the 
next interphase, and liberating genes from transcriptional control 
by upstream regulatory pathways (SI Appendix, Fig. S11E). Since 
yeast and mammalian chromatin remain significantly active during 
mitosis (4, 5), we propose that mitotic condensation, rather than 
passively silencing chromatin by physically excluding transcription 
factors in the M phase, serves as a mechanism for the cell to maintain 
transcriptional homeostasis in the following interphase by preventing 
unlicensed transcription. In this regard, it is interesting that a single 
locus, the centromere, instructs histone deacetylation and limits 
whole-chromosome gene expression in cis. Whether centromeres 
only contribute to regulating transcription via spreading of histone 
deacetylation or if they support additional regulatory mechanisms 
like histone methylation remains to be investigated (11, 12, 26–29). 
Our results also indicate that preventing chromatin condensation 
is sufficient to uncouple inducible genes, like the GAL genes, from 
their cognate signals. This stresses an underestimated prominence 
of chromatin regulation during adaptive activation and repression 
of transcription.

The effect of chromosome condensation on epigenetic markers 
and on gene expression in the ensuing interphase could also be 
relevant for asymmetrically dividing cells, such as stem cells, in 
which gene expression programs need to be reset to allow for 
maintenance of pluripotency, cellular identity, and determining 
cell fate (4, 10, 26, 27, 30, 31). Our study reveals an unexpected 
mechanism by which cells prevent postmitotic transcriptional 
drifting, providing new inroads for the exploration of mechanisms 
that promote the timely reactivation of gene expression at mitosis 
exit and thus safeguard cell identity and homeostasis (4). Our 
results may also contribute to a better understanding of the etiol-
ogy of diseases involving malfunctioning centromeres (32, 33).

Materials and Methods

Strains and Culture Conditions. All strains used in this study (SI Appendix, 
Table S3) are derived from the Winston S288c genetic background and were 
grown at 30 °C in a YPD medium [1% (w/v) yeast extract, 2% (w/v) peptone, and 
2% (w/v) dextrose]. 

CEN4* and mCh* Excision Assays. Excision assays and assessment of excision 
efficiency were performed as in ref. 12 with minor modifications (SI Appendix, 
SI Materials and Methods).

RNA Sequencing. Total RNA purification was performed as in ref. 34. Library 
preparation, sequencing, and data analysis are described in SI  Appendix, 
SI Materials and Methods.

Cell Synchronization. Cells were arrested in G1, S, and M phases using a-factor, 
HU, and nocodazole, respectively. For detailed procedures and analysis of cell 
cycle by flow cytometry, see SI Appendix, SI Materials and Methods.

Real-Time qPCR (RT-qPCR). Total RNA purification and reverse transcriptions 
were performed as in ref. 35 (SI Appendix, SI Materials and Methods). A complete 
list of primers used for RT-qPCR can be found in SI Appendix, Table S4.

Chromatin Immunoprecipitation Sequencing (ChIPseq). Our ChIPseq proce-
dure was adapted from ref. 12. For details about sample and library preparation, 
sequencing, and data analysis, see SI Appendix, SI Materials and Methods.

ATAC Sequencing. Library preparation of ATAC-seq samples was performed 
as described in ref. 36 (SI Appendix, SI Materials and Methods). Details about 
sequencing of libraries and data analysis are available in SI Appendix, SI Materials 
and Methods.

Statistical Analysis. Data processing, data visualization, and statistical methods 
are described in SI Appendix, SI Materials and Methods.

Data, Materials, and Software Availability. The RNAseq, ATACseq and 
H4K12ac, H4K16ac, H3K4me3, Pol II, Pol II CTD-S2p, and Pol II CTD-S5p ChIPseq 
data have been deposited to the Gene Expression Omnibus with accession num-
ber GSE20225. All study data are included in the article and/or SI Appendix.
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