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A B S T R A C T

We present a simple modification of the direct-forcing immersed boundary method (IBM) proposed by Uhlmann
(2005) in order to enable it to be applied to particulate flows with solid-to-fluid density ratios around unity.
The main difference with respect to the original formulation lies in the particle velocity update which is
performed directly after the preliminary velocity field has been computed in the absence of any IBM volume
forcing term. In addition, we apply the forcing term to the entire space occupied by the immersed solid object
(instead of to the vicinity of its interface only). The present approach requires the evaluation of integrals of the
velocity field over the volume occupied by the solid particle, which are evaluated efficiently as sums over the
respective quantities available at particle-attached force points. The resulting method can be used seamlessly
for density ratios down to 𝜌𝑝∕𝜌𝑓 > 0.5. The new formulation has been validated using three configurations:
(i) lateral migration of a neutrally buoyant circular particle in two-dimensional Couette flow; (ii) the release
from rest of a neutrally buoyant sphere in a free stream; (iii) the release of a particle in a free stream after an
initial phase in which it is translationally fixed with an imposed angular velocity. In all three test cases the
present IBM formulation yields a very good agreement with the available reference data. Thus, the proposed
approach is a cost-efficient and accurate modification of the original method which allows for the simulation
of fluid systems involving density-matched solid particles.
1. Introduction

Over the last 20 years the numerical simulation of particle-laden
flows has reached a certain level of maturity. There is now a large
number of particle-resolved techniques available in the literature [1–3].
Among them, the immersed boundary method (IBM) [4,5] is a popular
approach mainly due to the fact that the underlying computational
grid does not need to be adapted over time, leading to relatively
simple algorithms. The IBM was first developed by Peskin [6,7] in the
context of heart flow simulations and since then multiple variations
have been published and are in use today for a variety of problems [8–
12]. One method that has found widespread use is the direct-forcing
IBM developed by Uhlmann [13]. As recently pointed out by Zhou
and Balachandar [14], ‘‘[it] is very popular because it is easy to
implement and flexible to simulate various problems’’. Over the years
the method of Uhlmann has been modified and improved by several
authors [15–18].

Despite its success, the method of Uhlmann has a number of lim-
itations. One of them arises from the weak coupling between the

∗ Corresponding author.
E-mail address: manuel.garcia-villalba@tuwien.ac.at (M. García-Villalba).

Navier–Stokes equations for the fluid phase and the Newton–Euler
equations for the particle motion, leading to a lower limit for the
density ratio between solid and fluid phase of about 1.2. For lighter
particles the computations are unstable which is unsurprising due to the
singularity of the formulation for the neutrally buoyant case. In order
to overcome this limitation there have been several proposals in the
literature. Kim and Choi [19] presented a method in which the particle
equations are integrated with an implicit method and then showed how
the evaluation of the hydrodynamic force at the new (unknown) time
level can be avoided by using Lagrangian quantities. This results in a
non-iterative and non-singular formulation for the neutrally buoyant
case. However, to the best of our knowledge, this method has not
been applied yet to the motion of light particles. A different approach
was proposed by Schwarz et al. [20] by adding a stabilizing term to
both sides of the Newton–Euler equation. This term is denoted virtual
mass force and allows for small density ratios to be computed without
stability issues. A modification of Schwarz et al.’s method has been
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reported by Tavanashad and Subramaniam [21] for the case of larger
volume fractions.

A further improvement of Schwarz et al.’s method was reported by
Tschisgale et al. [22]. These authors restrict the rigid-body assumption
to a finite-thickness interface layer and modify the coupling between
fluid equations and particle equations, leading to a non-interative semi-
implicit coupling. The resulting method is non-singular and remains
valid even in the limit of vanishing particle mass. The authors however
report a weak oscillation of the particle velocity when the particle
moves free of external forces, a feature that they attribute to the
numerical integration of the virtual mass force. In the present work,
using some of the ideas of Tschisgale et al. [22], we propose and
validate a new modification of the original method of Uhlmann [13]
for the computation of neutrally buoyant spheres. As will be shown
below, the new method is free of spurious oscillations.

In order to validate the present technique, a new flow configuration
is proposed, in which the response of a neutrally buoyant particle
involves non-trivial angular motion. In this context, we have generated
new high-fidelity reference data with the aid of a spectral-element
method on a particle-attached conforming grid [23].

The manuscript is organized as follows. First, the formulation of
the problem, the governing equations and a discussion of the fluid-
particle coupling are provided in Section 2. This is followed by the
numerical details and a complete description of the proposed method in
Section 3. We have performed three test cases for the validation of the
methodology. The first is the migration of a neutrally buoyant disk in
2D Couette flow (Section 4.1). The second is a neutrally buoyant sphere
released from rest in a free stream (Section 4.2). The third and final case
is an initially rotating sphere released in a free-stream (Section 4.3).
The manuscript ends with some final remarks and conclusions.

2. Formulation of the problem

The physical problem under consideration consists of the interaction
of rigid particles of constant density, 𝜌𝑝, with a surrounding viscous
fluid of constant kinematic viscosity, 𝜈, and constant density, 𝜌𝑓 , in
the incompressible flow limit. For simplicity, we limit the discussion
to a single particle, but the extension to several particles is trivial and
has been discussed elsewhere [13]. In this work we only consider a
circular particle in 2D or a sphere in 3D. The extension of the method to
particles of arbitrary shape does not present fundamental problems but
only the added complexity of tracking the orientation of the particles.
This has already been illustrated for related methods in the literature
[24–26].

2.1. Fluid phase equations

The governing equations for the fluid phase are the Navier–Stokes
of the incompressible flow for a Newtonian fluid

∇ ⋅ 𝒖 = 0, (1)
𝜕𝒖
𝜕𝑡

+ (𝒖 ⋅ ∇)𝒖 = −∇𝑝 + 𝜈∇2𝒖 + 𝒇 , (2)

where 𝒖 = (𝑢, 𝑣,𝑤) is the fluid velocity, 𝑝 is the pressure divided by the
fluid density, and 𝒇 is a specific volume force term. As in the original
method, the equations are enforced throughout the entire domain, 𝛺,
comprising the fluid domain, 𝛺𝑓 and the space occupied by the particle,
𝑆. These equations need to be supplemented with initial and suitable
boundary conditions at the outer boundary. The volume force 𝒇 is
formulated in order to enforce the no-slip boundary condition on the
surface of the particle, as discussed in the following sections. In the
original method, the forcing was restricted to a layer around the solid–
fluid interface. However, recent work has shown that good results are
obtained extending the forcing to the interior of the particle [26]. Here,
we use the latter approach, as it was found beneficial to treat neutrally
buoyant particles by other authors [27].
2

2.2. Solid phase equations

The motion of the particle is governed by the Newton–Euler equa-
tions for the motion of a rigid body under the action of hydrodynamic
and gravity forces

𝜌𝑝𝑉𝑐
d𝒖𝒑
d𝑡

= 𝜌𝑓 ∮𝜕𝑆
𝝉 ⋅ 𝒏 d𝜎 + (𝜌𝑝 − 𝜌𝑓 )𝑉𝑐𝒈, (3)

𝐼𝑝
d𝝎𝒑

d𝑡
= 𝜌𝑓 ∮𝜕𝑆

𝒓 × (𝝉 ⋅ 𝒏) d𝜎, (4)

here 𝑉𝑐 is the volume of the particle, 𝒖𝒑 = (𝑢𝑝, 𝑣𝑝, 𝑤𝑝) the velocity of
he center of mass of the particle (located at 𝒙𝒑), 𝒈 the gravitational
cceleration, 𝝎𝒑 = (𝜔𝑝𝑥, 𝜔𝑝𝑦, 𝜔𝑝𝑧) the angular velocity of the particle,
= 𝒙 − 𝒙𝒑 the position vector of any point in the body with respect to

he center of mass, 𝒏 the outward-pointing normal unit vector at the
article surface and 𝝉 = −𝑝𝑰 + 𝜈(∇𝒖 + ∇𝒖𝑇 ) is the hydrodynamic stress
ensor with 𝑰 being the identity tensor. In 3D 𝐼𝑝 is the moment of inertia
ith respect to any axis that passes through the center of mass, while in
D 𝐼𝑝 is the moment of inertia with respect to the axis passing through
he center of mass and perpendicular to the motion. For convenience,
e also introduce the specific moment of inertia 𝐼𝑝 = 𝐼𝑝∕𝜌𝑝. With

espect to the hydrodynamic force and torque, following [13] we can
rite

∮𝜕𝑆
𝝉 ⋅ 𝒏 d𝜎 = −∫𝑆

𝒇d𝒙 + d
d𝑡 ∫𝑆

𝒖d𝒙, (5)

𝜕𝑆
𝒓 × (𝝉 ⋅ 𝒏) d𝜎 = −∫𝑆

(𝒓 × 𝒇 )d𝒙 + d
d𝑡 ∫𝑆

(𝒓 × 𝒖)d𝒙. (6)

In case of rigid body motion, it can be shown that the following
equations hold

d
d𝑡 ∫𝑆

𝒖d𝒙 = 𝑉𝑐
d𝒖𝒑
d𝑡

, (7)

d
d𝑡 ∫𝑆

(𝒓 × 𝒖)d𝒙 =
𝐼𝑝
𝜌𝑝

d𝝎𝒑

d𝑡
. (8)

hen, we can rewrite Eqs. (3)–(4) as

(𝜌𝑝 − 𝜌𝑓 )𝑉𝑐
d𝒖𝒑
d𝑡

= −𝜌𝑓 ∫𝑆
𝒇d𝒙 + (𝜌𝑝 − 𝜌𝑓 )𝑉𝑐𝒈, (9)

1 −
𝜌𝑓
𝜌𝑝

)

𝐼𝑝
d𝝎𝒑

d𝑡
= −𝜌𝑓 ∫𝑆

(𝒓 × 𝒇 )d𝒙. (10)

2.3. Fluid–solid coupling

The coupling between the particle motion and the fluid motion is
realized via the volume force term 𝒇 . We can solve for 𝒇 in Eq. (2),
and grouping together convective, pressure and viscous terms into the
variable 𝐫𝐡𝐬, we may write

𝒇 = 𝜕𝒖
𝜕𝑡

− 𝐫𝐡𝐬. (11)

Following [22], we integrate Eq. (11) over a time interval [𝑡𝑛−1, 𝑡𝑛]

∫

𝑡𝑛

𝑡𝑛−1
𝒇d𝑡 = ∫

𝑡𝑛

𝑡𝑛−1

( 𝜕𝒖
𝜕𝑡

− 𝐫𝐡𝐬
)

d𝑡 = 𝒖𝑛 − 𝒖𝑛−1 − ∫

𝑡𝑛

𝑡𝑛−1
𝐫𝐡𝐬 d𝑡, (12)

where 𝒖𝑛 is the fluid velocity at the time instant 𝑡𝑛. Now we link
the fluid and particle motions, by imposing that the fluid velocity of
any interior point at the time instant 𝑡𝑛 coincides with the rigid body
velocity

𝒖𝑛 = 𝒖𝒑 + 𝝎𝒑 × 𝒓 ∀𝒙 ∈ 𝑆. (13)

We also introduce a preliminary velocity field obtained without the
contribution of the forcing term

�̃� = 𝒖𝑛−1 +
𝑡𝑛

𝐫𝐡𝐬 d𝑡. (14)
∫𝑡𝑛−1
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Then, we can rewrite Eq. (12) as

∫

𝑡𝑛

𝑡𝑛−1
𝒇d𝑡 = 𝒖𝑛 − �̃� ∀𝒙 ∈ 𝑆. (15)

Note that, a similar analysis has been performed by [22]. A key
ifference, however, is that these authors only include the forcing term
n a layer surrounding the particle boundary in order to impose the
o-slip boundary condition. In the present work, we also include the
orcing term in the particle interior so that the fluid velocity in the
nterior of the particle is forced to follow the rigid-body motion.

We can now also integrate the Eqs. (9)–(10) over the time interval
𝑡𝑛−1, 𝑡𝑛]

(𝜌𝑝 − 𝜌𝑓 )𝑉𝑐
(

𝒖𝑛𝒑 − 𝒖𝑛−1𝒑

)

= −𝜌𝑓 ∫𝑆 ∫

𝑡𝑛

𝑡𝑛−1
𝒇d𝑡d𝒙 + (𝜌𝑝 − 𝜌𝑓 )𝑉𝑐𝒈𝛥𝑡, (16)

(

1 −
𝜌𝑓
𝜌𝑝

)

𝐼𝑝
(

𝝎𝑛
𝒑 − 𝝎𝑛−1

𝒑

)

= −𝜌𝑓 ∫𝑆 ∫

𝑡𝑛

𝑡𝑛−1
(𝒓 × 𝒇 )d𝑡d𝒙, (17)

where 𝛥𝑡 = 𝑡𝑛 − 𝑡𝑛−1. On the right hand side of Eqs. (16) and (17),
the order of integration has been exchanged, as discussed in detail in
Appendix A of Tschisgale et al. [22]. Using Eqs. (13) and (15) we can
write

∫𝑆 ∫

𝑡𝑛

𝑡𝑛−1
𝒇d𝑡d𝒙 = ∫𝑆

(𝒖𝑛𝒑 + 𝝎𝑛
𝒑 × 𝒓 − �̃�)d𝒙 = 𝑉𝑐𝒖𝑛𝒑 − ∫𝑆

�̃�d𝒙, (18)

∫𝑆 ∫

𝑡𝑛

𝑡𝑛−1
(𝒓 × 𝒇 )d𝑡d𝒙 = ∫𝑆

[

𝒓 ×
(

𝒖𝑛𝒑 + 𝝎𝑛
𝒑 × 𝒓 − �̃�

)]

d𝒙 =
𝐼𝑝
𝜌𝑝

𝝎𝑛
𝒑 − ∫𝑆

𝒓 × �̃�d𝒙.

(19)

ntroducing Eqs. (18)–(19) into Eqs. (16)–(17) and re-arranging terms
e obtain

𝒖𝑛𝒑 =
(

1 −
𝜌𝑓
𝜌𝑝

)

𝒖𝑛−1𝒑 + 1
𝑉𝑐

𝜌𝑓
𝜌𝑝 ∫𝑆

�̃�d𝒙 + 𝛥𝑡
(

1 −
𝜌𝑓
𝜌𝑝

)

𝒈, (20)

𝝎𝑛
𝒑 =

(

1 −
𝜌𝑓
𝜌𝑝

)

𝝎𝑛−1
𝒑 + 1

𝐼𝑝

𝜌𝑓
𝜌𝑝 ∫𝑆

𝒓 × �̃�d𝒙. (21)

he formulation (20)–(21) does not present a singularity at 𝜌𝑝∕𝜌𝑓 = 1,
ut it does in the limit 𝜌𝑝∕𝜌𝑓 → 0. However, the method is numerically
nstable for 𝜌𝑝∕𝜌𝑓 < 0.5. This is because the coefficient that multiplies
𝑛−1
𝒑 in Eq. (20) becomes larger than 1 in absolute value for 𝜌𝑝∕𝜌𝑓 < 0.5,
ielding an unstable algorithm (see for example pages 13–14 in [28]).
or neutrally buoyant particles, 𝜌𝑝∕𝜌𝑓 = 1, expressions (20)–(21)

simplify to

𝒖𝑛𝒑 = 1
𝑉𝑐 ∫𝑆

�̃�d𝒙, (22)

𝝎𝑛
𝒑 = 1

𝐼𝑝

𝜌𝑓
𝜌𝑝 ∫𝑆

𝒓 × �̃�d𝒙, (23)

which has already been proposed by [29]. Note that in the neutrally
buoyant limit, 𝒖𝑛𝒑 does not depend explicitly on 𝒖𝑛−1𝒑 , so that the motion
f the particle and the motion of the virtual fluid occupying the position
f the particle have to be compatible from the initial time. In other
ords, the initial velocity field assigned in the interior of a particle
eeds to be compatible with the initial (linear and angular) particle
elocity, according to rigid body motion, Eq. (13). This is not the case
hen 𝜌𝑓 ≠ 𝜌𝑝.

. Numerical methodology

The numerical method to solve the governing equations is then
ery similar to the original method proposed by [13]. In particular we
mploy the same flow solver, using second-order finite differences on a
taggered grid and a semi-implicit 3-stage Runge–Kutta scheme where
he linear, viscous terms are treated implicitly and the convective,
on-linear terms are treated explicitly.

We also employ separate discretizations for the Eulerian and La-
3

rangian quantities. We denote Eulerian quantities with lowercase o
etters and Lagrangian quantities with uppercase letters. For the Eu-
erian discretization, we use a fixed, uniform, Cartesian grid 𝑔ℎ of grid

spacing ℎ. The location of the grid points is denoted 𝒙𝛽𝑖𝑗𝑘, where the
uperscript 𝛽 = 1, 2, 3 refers to the staggered grid associated with the
elocity component 𝑢𝛽 . For the Lagrangian grid, we evenly distribute
𝐿 points throughout the volume occupied by the particle 𝑆. The

Lagrangian locations are denoted 𝑿𝓁 ∈ 𝑆 with 1 ≤ 𝓁 ≤ 𝑁𝐿. To
each point we associate a discrete volume 𝛥𝑉𝓁 , such that the sum of
these volumes equals the total volume of the particle. The transfer
of quantities between Lagrangian and Eulerian locations is based on
the same regularized delta function 𝛿ℎ introduced by [7] and defined
y [30], as in the original method [13], where additional details can
e found.

It is now possible to describe the new proposed algorithm. This is
one here in 3D, the reduction to 2D being straightforward. For the
th Runge–Kutta stage, first compute the preliminary fluid velocity �̃�
ithout accounting for the effect of the immersed boundary, viz.

̃ = 𝒖𝑘−1+𝛥𝑡
(

2𝛼𝑘𝜈∇2𝒖𝑘−1 − 2𝛼𝑘∇𝑝𝑘−1 − 𝛾𝑘[(𝒖 ⋅ ∇)𝒖]𝑘−1 − 𝜉𝑘[(𝒖 ⋅ ∇)𝒖]𝑘−2
)

,

(24)

here the coefficients 𝛼𝑘, 𝛾𝑘, 𝜉𝑘 (1 ≤ 𝑘 ≤ 3) are taken from [31].
ext, we transfer the preliminary velocity from the Eulerian to the
agrangian grid

̃𝛽 (𝑿𝓁) =
∑

𝑖,𝑗,𝑘
�̃�𝛽 (𝒙

𝛽
𝑖𝑗𝑘) 𝛿ℎ(𝒙

𝛽
𝑖𝑗𝑘 −𝑿𝓁)ℎ3 ∀𝓁; 1 ≤ 𝛽 ≤ 3. (25)

The next step in the original algorithm is the computation of the
orce volume term using the desired velocity at the Lagrangian points
omputed from the values of the previous stage 𝑘 − 1. In the present
lgorithm we instead compute next the new velocity of the center of
ass of the particle, 𝒖𝑘𝒑, and the new particle angular velocity, 𝝎𝑘

𝒑,
sing Eqs. (20)–(21), or for the neutrally buoyant case the simpler
qs. (22)–(23). In any case, the integrals of the preliminary velocity
eed to be computed. One of the benefits of using Lagrangian points
lso in the interior of the particles is that these two integrals can be
asily approximated using discrete sums

∫𝑆
�̃�d𝒙 ≈

𝑁𝐿
∑

𝓁=1
�̃� (𝑿𝓁)𝛥𝑉𝓁 , (26)

𝑆
𝒓 × �̃�d𝑉 ≈

𝑁𝐿
∑

𝓁=1
𝑹(𝑿𝓁) × �̃� (𝑿𝓁)𝛥𝑉𝓁 , (27)

here 𝑹(𝑿𝓁) = 𝑿𝓁 − 𝒙𝒑 is the 𝓁-th Lagrangian point’s position with
espect to the particle’s center of mass. If the distribution of Lagrangian
oints is sufficiently homogeneous and uniform the discrete sums re-
ult in a second-order approximation to the integrals, which we have
erified numerically. For a discussion about how to distribute points
niformly and associate them the corresponding discrete volumes see
ppendix B2 of [26].

Introducing the above expressions into Eqs. (20)–(21), we obtain

𝒖𝑘𝒑 =
(

1 −
𝜌𝑓
𝜌𝑝

)

𝒖𝑘−1𝒑 + 1
𝑉𝑐

𝜌𝑓
𝜌𝑝

𝑁𝐿
∑

𝓁=1
�̃� (𝑿𝓁)𝛥𝑉𝓁 + 2𝛼𝑘𝛥𝑡

(

1 −
𝜌𝑓
𝜌𝑝

)

𝒈, (28)

𝑘
𝒑 =

(

1 −
𝜌𝑓
𝜌𝑝

)

𝝎𝑘−1
𝒑 + 1

𝐼𝑝

𝜌𝑓
𝜌𝑝

𝑁𝐿
∑

𝓁=1

[

𝑹(𝑿𝓁) × �̃� (𝑿𝓁)
]

𝛥𝑉𝓁 . (29)

In Eq. (28) the coefficient 2𝛼𝑘 appears because the derivation of Eq. (20)
was done for a generic interval with time step 𝛥𝑡, while the time step
between the two Runge–Kutta stages 𝑘− 1 and 𝑘 is 2𝛼𝑘𝛥𝑡. We compute
ow the new desired velocity by using the velocity field of the rigid
ody
(𝑑)(𝑿𝓁) = 𝒖𝑘𝒑 + 𝝎𝑘

𝒑 ×𝑹(𝑿𝓁) ∀𝓁. (30)

nce the new desired velocity has been computed, the remaining steps
f the original algorithm for the fluid phase are unmodified. Therefore,
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p
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we have the following sequence of operations:

𝑭 (𝑿𝓁) =
𝑼 (𝑑)(𝑿𝓁) − �̃� (𝑿𝓁)

𝛥𝑡
∀𝓁, (31)

𝑓𝑘
𝛽 (𝒙

𝛽
𝑖𝑗𝑘) =

𝑁𝐿
∑

𝓁=1
𝐹𝛽 (𝑿𝓁) 𝛿ℎ(𝒙

𝛽
𝑖𝑗𝑘 −𝑿𝓁)𝛥𝑉𝓁 ∀ 𝑖, 𝑗, 𝑘; 1 ≤ 𝛽 ≤ 3, (32)

∇2𝒖∗ − 𝒖∗
𝜈𝛼𝑘𝛥𝑡

= − 1
𝜈𝛼𝑘

( �̃�
𝛥𝑡

+ 𝒇𝑘
)

+ ∇2𝒖𝑘−1, (33)

∇2𝜙𝑘 = ∇ ⋅ 𝒖∗
2𝛼𝑘𝛥𝑡

, (34)

𝒖𝑘 = 𝒖∗ − 2𝛼𝑘𝛥𝑡∇𝜙𝑘, (35)

𝑝𝑘 = 𝑝𝑘−1 + 𝜙𝑘 − 𝛼𝑘𝛥𝑡𝜈∇2𝜙𝑘, (36)

where 𝜙 is the pseudo-pressure. Finally, we compute the new position
of the center of mass of the particle

𝒙𝑘𝒑 = 𝒙𝑘−1𝒑 + 𝛼𝑘𝛥𝑡
(

𝒖𝑘−1𝒑 + 𝒖𝑘𝒑
)

, (37)

and with this calculation the Runge–Kutta stage is completed. Note that
Eq. (37) is independent of some of the previous steps and therefore can
be computed at any point after Eq. (32). As a conclusion, the overall
algorithm comprises equations ((24)–(25), (28)–(37)) per Runge–Kutta
stage.

While the scope of the present work is restricted to an isolated parti-
cle, let us note that the treatment of multi-particle configurations does
not present any fundamental difficulty. More specifically, one needs to
address the particle–particle (and particle–wall) interactions through
some suitable contact model, such as e.g. a soft-sphere discrete element
method [32–34]. The force and torque arising through solid–solid
contact are added to the right-hand-side of the Newton–Euler Eqs. (3)–
(4), and then these terms propagate along the derivation such that they
enter the final algorithm in Eqs. (28)–(29). A test of multiple interacting
particles in the framework of the present formulation, however, is left
for future work.

4. Validation

4.1. Neutrally buoyant particle in 2D Couette flow

As a first validation test case we have selected the lateral migration
of a neutrally buoyant circular particle in 2D Couette flow [35–37].
When the neutrally buoyant particle is released from the centerline,
the particle remains at that position. However, if the particle is released
off the centerline, it has been found that the particle has an additional
equilibrium position that depends on the particle Reynolds number [36,
37].

In the present study we have chosen the setup and data of Pan
et al. [36] as reference. These authors employed a fictitious domain
formulation with distributed Lagrange multipliers for the simulation
of neutrally buoyant circular and elliptic particles in 2D. Their com-
putational methodology was based on finite element methods and an
operator splitting technique. The following notation and definitions
are employed. The distance between the walls is 𝐻 and their velocity
difference is 𝛥𝑈 . A neutrally buoyant particle, 𝜌𝑝∕𝜌𝑓 = 1, of radius
𝑎 = 𝐷∕2 = 𝐻∕8 is released at a distance to the wall 𝑦0 = 0.4𝐻 ,
with initial linear and angular velocities compatible with unperturbed
Couette flow at 𝑦0 (see the discussion at the end of Section 2.3). We
define the particle Reynolds number as

𝑅𝑒𝑝 =
𝛥𝑈𝑎2

𝐻𝜈
,

where 𝜈 is the kinematic viscosity. The length of the computational
domain is 𝐿𝑥 = 2𝐻 . We impose no-slip conditions at the walls and
eriodicity along the streamwise direction. We employ a uniform grid
ith grid spacing 𝛥𝑥. We have performed several simulations varying

he values of 𝑅𝑒 in the range [1,10] for three grid spacings 𝐷∕𝛥𝑥 = 25,
4
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Fig. 1. Equilibrium position, 𝑦𝑒𝑞∕𝐻 , as a function of 𝑅𝑒𝑝. Red squares, present results
for 𝐷∕𝛥𝑥 = 75. Blue circles, data digitized from Ref. [36].

50 and 75. The corresponding time steps for each grid resolution are
𝛥𝑡∕(𝐻∕𝛥𝑈 ) = 0.005, 0.0025 and 0.00167, respectively.

For all the cases considered, after the particle is released it migrates
laterally until reaching an equilibrium position denoted by 𝑦𝑒𝑞 with
constant angular velocity 𝜔𝑝. For 𝑅𝑒𝑝 = 1 and 2, the particle settles
at the centerline. For 𝑅𝑒𝑝 ≥ 3, the equilibrium position is found off
the centerline. The values of 𝑦𝑒𝑞 for all cases are reported in Table 1
and a comparison with the results of Pan et al. [36] is provided in
Fig. 1, showing a very good agreement. The values of 𝜔𝑝 are reported
in Table 2; this quantity was not available in the reference. The time
evolution of the vertical position of the particle center of mass, 𝑦𝑝, and
the particle angular velocity, 𝜔𝑝, are shown in Fig. 2 for the two cases
reported by Pan et al. [36], 𝑅𝑒𝑝 = 1 and 5. The agreement is also very
good.

When comparing the data for the various grid resolutions reported
in Tables 1 and 2, it is apparent that the steady-state quantities do
not change much with the grid resolution. In particular, the data for
𝐷∕𝛥𝑥 = 50 and 75 are very close for all Reynolds numbers considered.
The lower resolution case, 𝐷∕𝛥𝑥 = 25, presents more deviations with
respect to the higher resolution cases. These deviations are not large,
with the exception of the case 𝑅𝑒𝑝 = 10 for which, in the low resolution
case, the particle migrates to the centerline.

When considering the transient behavior, some differences are ob-
served among the various grid resolutions. When comparing the cases
with 𝐷∕𝛥𝑥 = 25 and 50, small but visible differences in the time
evolution of 𝑦𝑝 appear for 𝑅𝑒𝑝 ≥ 3. When comparing the cases with
𝐷∕𝛥𝑥 = 50 and 75, differences in the time evolution of 𝑦𝑝 appear for
𝑅𝑒𝑝 > 7. The trend is that the lower the resolution, the longer the time
required for the particle to settle at the equilibrium position. These
differences are not shown for the sake of brevity.

4.2. Neutrally buoyant sphere released from rest in a free stream

As a second test case, we have studied the release from rest of
a neutrally buoyant sphere (𝜌𝑝∕𝜌𝑓 = 1) of diameter 𝐷 in a uniform
free stream of speed 𝑈 . Reference data for 𝑅𝑒𝑝 = 𝑈𝐷∕𝜈 = 20 and
100 was obtained with a spectral element code as described in the
Appendix. The simulations with the IBM proposed here are performed

in a computational domain of size 𝐿𝑥 = 30𝐷, 𝐿𝑦 = 𝐿𝑧 = 5.34𝐷. The
lateral dimensions coincide with those of the study of [23]. At the inlet
boundary we impose a Dirichlet boundary condition, (𝑢, 𝑣,𝑤) = (𝑈, 0, 0),
t the outflow boundary a convective boundary condition and at the
ateral boundaries free-slip boundary conditions. We have performed
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Fig. 2. Time evolution of (a) vertical position of particle center, 𝑦𝑝∕𝐻 , and (b) particle angular velocity, 𝜔𝑝𝐻∕𝛥𝑈 . 𝑅𝑒𝑝 = 1, Blue. 𝑅𝑒𝑝 = 5, Red. Solid lines, present simulations
with 𝐷∕𝛥𝑥 = 50. Dashed lines, data digitized from Pan et al. [36].
Fig. 3. Time evolution of (a) particle streamwise velocity component, 𝑢𝑝∕𝑈 , and (b) error with respect to reference data, 𝜖𝑢. Green lines, reference data. 𝑅𝑒𝑝 = 20, solid lines.
𝑅𝑒𝑝 = 100, dashed lines. 𝐷∕𝛥𝑥 = 18, Black. 𝐷∕𝛥𝑥 = 24, Red. 𝐷∕𝛥𝑥 = 36, Blue. Inset in (a) highlights the initial phase.
Table 1
Vertical equilibrium position 𝑦𝑒𝑞∕𝐻 as a function of 𝑅𝑒𝑝 and 𝐷∕𝛥𝑥.

𝑅𝑒𝑝 1 2 3 4 5 6 7 8 9 10

𝐷∕𝛥𝑥 = 25 0.5 0.4988 0.3962 0.3538 0.3272 0.3084 0.2946 0.2836 0.2746 0.4896
𝐷∕𝛥𝑥 = 50 0.5 0.5 0.3951 0.3516 0.3250 0.3058 0.2914 0.2801 0.2708 0.2632
𝐷∕𝛥𝑥 = 75 0.5 0.5 0.3952 0.3517 0.3249 0.3056 0.2912 0.2797 0.2705 0.2626
Table 2
Particle angular velocity 𝜔𝑝𝐻∕𝛥𝑈 at equilibrium as a function of 𝑅𝑒𝑝 and 𝐷∕𝛥𝑥.

𝑅𝑒𝑝 1 2 3 4 5 6 7 8 9 10

𝐷∕𝛥𝑥 = 25 0.4612 0.4287 0.4094 0.3957 0.3845 0.3749 0.3666 0.3589 0.3522 0.3411
𝐷∕𝛥𝑥 = 50 0.4610 0.4281 0.4090 0.3955 0.3846 0.3754 0.3675 0.3605 0.3541 0.3483
𝐷∕𝛥𝑥 = 75 0.4608 0.4281 0.4088 0.3955 0.3845 0.3753 0.3675 0.3605 0.3542 0.3485
simulations at 𝑅𝑒𝑝 = 20 and 100, with grid resolutions 𝐷∕𝛥𝑥 = 18, 24
and 36. The time step has been adapted so that the 𝐶𝐹𝐿 number is
approximately 0.1.

The simulations are performed in two phases. In the first phase,
the flow is computed with the particle fixed at a distance to the inlet
plane 𝑥0 = 5𝐷. Once the flow has reached a steady state (i.e the drag
force becomes time independent), we release the particle which is then
accelerated until it ultimately reaches an equilibrium state with 𝑢𝑝 = 𝑈 .
Table 3 provides the drag coefficient of the particle before it is released,
for both values of 𝑅𝑒𝑝. The variation with the grid resolution is small
in all cases. For 𝑅𝑒 = 20 (𝑅𝑒 = 100), 𝐶 changes by 0.4% (0.2%)
5
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between 𝐷∕𝛥𝑥 = 18 and 𝐷∕𝛥𝑥 = 36. The differences observed when
comparing the IBM data and the spectral element data are somewhat
larger. For 𝑅𝑒𝑝 = 20 (𝑅𝑒𝑝 = 100), 𝐶𝐷 differs by 1.8% (2.2%) between
the IBM case with 𝐷∕𝛥𝑥 = 36 and the spectral element data. Note that
these variations are still reasonably small, and that similar differences
have already been observed in previous studies where results from
boundary-conforming spectral/spectral-element simulations in cylindri-
cal domains were compared to those from immersed-boundary-type
non-conforming methods on Cartesian grids [23,26,38]. The remaining
differences can be attributed to the larger computational domain of
the reference simulation (featuring a larger distance to the inflow
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Fig. 4. (a) Time evolution of particle streamwise velocity component, 𝑢𝑝∕𝑈 . Dashed lines with symbols, reference data from Tschisgale et al. [22]. Solid lines, present results.
Blue, 𝜌𝑝∕𝜌𝑓 = 1.05. Red, 𝜌𝑝∕𝜌𝑓 = 5. (b) Zoom of (a).
Fig. 5. Flow visualization of wake structure before the rotating particle is released.
Two side views of an iso-surface of the second invariant of the velocity gradient tensor,
𝑄 = 0.05𝑈 2∕𝐷2. Data correspond to the IBM simulation with 𝐷∕𝛥𝑥 = 36.

boundary), to the different shape of the domain, and to the different
lateral boundary conditions.

Fig. 3𝑎 shows the time evolution of the particle streamwise velocity
component, 𝑢𝑝, for both Reynolds numbers. The lower the Reynolds
number, the faster the velocity of the particle approaches the free-
stream velocity. This effect is well captured by the simulations with the
IBM method. The agreement with the reference data is good although
some differences are visible in the figure. In order to quantify these
differences, Fig. 3𝑏, shows the error of the streamwise component of the
particle’s velocity with respect to the reference data, 𝜖𝑢, as a function
of time. Note that the normalized error for any quantity 𝜙 here and in
the following is defined as

𝜖𝜙(𝑡) =
(

𝜙(𝑡) − 𝜙𝑟𝑒𝑓 (𝑡)
)

∕𝜙𝑛𝑜𝑟𝑚 , (38)

where 𝜙𝑟𝑒𝑓 is the reference value and 𝜙𝑛𝑜𝑟𝑚 the scale used for normaliza-
tion. In measuring the error of the streamwise particle velocity (𝜙 = 𝑢𝑝)
we use 𝜙𝑛𝑜𝑟𝑚 = 𝑈 .

The data in Fig. 3𝑏 shows that the IBM simulations are generally in
better agreement with the reference simulations for 𝑅𝑒 = 100 than for
6
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Table 3
Drag coefficient, 𝐶𝐷 , of a fixed sphere in a uniform flow as a function
of Reynolds number, 𝑅𝑒, and grid resolution, 𝐷∕𝛥𝑥. Reference data
corresponds to the computations with the spectral element code.

Reference 𝐷∕𝛥𝑥 = 18 𝐷∕𝛥𝑥 = 24 𝐷∕𝛥𝑥 = 36

𝑅𝑒 = 20 2.7753 2.8152 2.8195 2.8261
𝑅𝑒 = 100 1.0962 1.1179 1.1185 1.1201

𝑅𝑒𝑝 = 20. For long times, 𝑡 𝑈∕𝐷 > 5 the error presents a plateau with
a value of about 2.3% (1.5%) for 𝑅𝑒𝑝 = 20 (𝑅𝑒𝑝 = 100). The effect of
the grid resolution is barely visible for 𝑅𝑒𝑝 = 20 with the three solid
lines collapsing in Fig. 3𝑏, except for very short times, 𝑡 𝑈∕𝐷 < 1. In
the case of 𝑅𝑒𝑝 = 100, some differences are visible, with the temporal
evolution of the error showing a cross-over at about 𝑡 𝑈∕𝐷 ≈ 5. The
finest grid with 𝐷∕𝛥𝑥 = 36 presents the lowest error of the three in
the plateau region, although the differences are small. This indicates
that, for this configuration, a grid resolution of 𝐷∕𝛥𝑥 = 18 provides
reasonable accuracy for simulations at these Reynolds numbers.

A very similar configuration has been studied by other authors [17,
20,22]. Here we have reproduced their setup to provide a direct as-
sessment of the present methodology. The size of the computational
domain is 𝐿𝑥 = 30𝐷, 𝐿𝑦 = 𝐿𝑧 = 15𝐷. The center of the particle is
initially located at 10𝐷 from the inflow plane and centered with respect
to the lateral planes. The number of grid points is 512 × 256 × 256
which corresponds to a grid resolution of 𝐷∕𝛥𝑥 ≈ 17. The Reynolds
number is 𝑅𝑒𝑝 = 20 and the time step has been adapted so that the 𝐶𝐹𝐿
number is approximately 0.1. With respect to the simulations discussed
above, an additional difference is that Dirichlet boundary conditions
are applied at the lateral boundaries, where the velocity of the fluid
is set equal to the free stream velocity, 𝑈 . Two simulations have been
performed for the density ratios 𝜌𝑝∕𝜌𝑓 = 1.05 and 5. Fig. 4𝑎 shows the
time evolution of the particle streamwise velocity component, 𝑢𝑝, for
both density ratios. The present results are in good agreement with the
data from Tschisgale et al. [22]. Fig. 4𝑏 shows a zoom of panel (𝑎)
towards the end of the simulated interval. This figure illustrates that
the present method is free of spurious oscillations.

4.3. Sphere with initial rotation released in a free stream

The test case considered in the previous section is rather simple with
unidirectional motion and not involving the rotation of the particle.
Therefore, for the final test case, we have tried to avoid those two
limitations by defining a test case not reported before. First, while the
particle is kept at a fixed location with a uniform inflow velocity, a
constant angular particle velocity is imposed so that both lift and drag
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Fig. 6. Contours of streamwise velocity of the fluid phase, 𝑢, in the plane 𝑧 = 0 for the neutrally buoyant particle which is released after initially rotating at constant angular
velocity. Data correspond to the IBM simulation with 𝐷∕𝛥𝑥 = 36. From top to bottom, the time instants are 𝑡 𝑈∕𝐷 = 0, 2.5, 5, 7.5 and 10 after particle release. The red line in
panel (𝑎) corresponds to 𝑢∕𝑈 = 0. The black lines correspond to 𝑢∕𝑈 = [−0.1, 0.2, 0.5, 0.8, 1.1].
develop. Once the lift and drag forces have converged, we release the
particle (at an instant 𝑡 = 𝑡1 that we arbitrarily set to zero, i.e. 𝑡1 = 0). In
the subsequent evolution, the particle is accelerated in the streamwise
direction while, due to the initial lift, a lateral motion is generated. As a
consequence, the particle experiences both rotation and lateral motion,
which are both damped as time evolves.

We have performed simulations with 𝑅𝑒𝑝 = 100 and with an initial
angular velocity 𝜔𝑝𝑧(𝑡 ≤ 𝑡1) = −𝛺 with 𝛺𝐷∕𝑈 = 1. Reference data
was again obtained with the spectral element code described in the
Appendix. The computational domain and boundary conditions at

inflow and outflow boundaries used in the IBM simulations are the
same as in the previous section. However, due to the lateral motion
it was not possible to use free-slip conditions at the lateral boundaries
since the particle may approach one of the boundaries after it has been
released. As a consequence, periodic conditions have been employed
at the lateral boundaries. The grid resolution has been varied as in
the previous section, with values 𝐷∕𝛥𝑥 = 18, 24 and 36, and the time
7

step has been adjusted so that 𝐶𝐹𝐿 ≈ 0.1. In this section, we consider
neutrally buoyant particles (𝜌𝑝∕𝜌𝑓 = 1) and also particles with other
density ratios to illustrate the capabilities of the proposed method. Note
that gravity is set to zero in all cases, so that the effect of the density
ratio only affects the problem via the inertia term.

First, let us characterize the initial state before the particle is
released. Table 4 provides the drag and lift coefficients. The effect of
grid resolution is once again small: 𝐶𝐷 (𝐶𝐿) varies by approximately
0.1% (0.5%) when comparing the simulations with 𝐷∕𝛥𝑥 = 18 and
36. When comparing with the reference data, we observe that the lift
coefficient is closer to the reference data (0.5% difference) than the
drag coefficient (2.7% difference). Note that the difference in drag
coefficient is of the same order of magnitude as the one observed for the
case without rotation of the particle in Section 4.2. This might indicate
that the drag coefficient may be more influenced by the differences
in shape of the computational domain and lateral boundary conditions
than the lift coefficient, the latter being caused by the rotation of the
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Fig. 7. Time evolution of (a) particle streamwise velocity, 𝑢𝑝∕𝑈 , (c) particle lateral velocity, 𝑣𝑝∕𝑈 , (e) particle angular velocity, 𝜔𝑝𝑧𝐷∕𝑈 , and error with respect to reference data
of (b) streamwise velocity, 𝜖𝑢, (d) lateral velocity, 𝜖𝑣, (f ) angular velocity, 𝜖𝜔. Green lines, reference data. 𝐷∕𝛥𝑥 = 18, Black. 𝐷∕𝛥𝑥 = 24, Red. 𝐷∕𝛥𝑥 = 36, Blue. Insets in (a) and

(c) highlight the initial phase. In (a), (c), (e) only the results with 𝐷∕𝛥𝑥 = 24 are compared to the reference data.
Table 4
Drag and lift coefficients of a fixed, rotating sphere in a uniform flow
as a function of grid resolution, 𝐷∕𝛥𝑥. Reference data corresponds to
the computations with the spectral element code.

Reference 𝐷∕𝛥𝑥 = 18 𝐷∕𝛥𝑥 = 24 𝐷∕𝛥𝑥 = 36

𝐶𝐷 1.2217 1.2539 1.2540 1.2550
𝐶𝐿 0.4972 0.4973 0.4990 0.5002

particle and therefore having a more local origin. The wake structure
of the rotating particle (while it is still held fixed) is visualized from
two angles in Fig. 5 with an iso-surface of the second invariant of the
velocity gradient tensor, 𝑄. Note that the rotation axis is the 𝑧-axis so
that the lift force points in the 𝑦−direction. Consequently, when the
flow is visualized from the 𝑧-axis, Fig. 5𝑎, an asymmetry with respect to
the 𝑥𝑧−plane is observed. When the flow is visualized from the 𝑦-axis,
Fig. 5𝑏, the double threaded structure of the wake is revealed.
8

Let us first consider the case of a neutrally buoyant particle. Fig. 6
shows snapshots of the streamwise velocity of the fluid phase in the
plane 𝑧 = 0 at several instants. We restrict the analysis to the 𝑧 = 0
plane since the particle does not move laterally along the 𝑧-axis as time
evolves, being 𝑤𝑝∕𝑈 = 0 for all times. Before the particle is released
(panel 𝑎) the fluid velocity in this plane is in the range 𝑢∕𝑈 ∈ [−0.3, 1.2]
with the smallest values concentrated directly behind the sphere. As
time evolves subsequent to the particle’s release, the fluid velocity
approaches the free stream velocity 𝑈 . As an example, for 𝑡 𝑈∕𝐷 = 10
(panel 𝑒) the fluid velocity is in the range 𝑢∕𝑈 ∈ [0.6, 1.05]. Once the
particle is released, it starts moving downstream, while also migrating
laterally towards positive values of the 𝑦 coordinate. Thus, the particle
becomes detached from its initial wake. As time evolves the particle
separates further from the wake and gradually passes the region with
low fluid velocities, as clearly seen in panels (𝑐) to (𝑒).

Fig. 7(𝑎, 𝑐, 𝑒) shows the time evolution of the particle’s streamwise
and lateral velocity components and the particle’s angular velocity.
The corresponding error evolutions according to the definition (38) are
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Fig. 8. Time evolution of (a) particle streamwise velocity component, 𝑢𝑝∕𝑈 , (b) particle lateral velocity component, 𝑣𝑝∕𝑈 , and (c) particle spanwise angular velocity component,
𝜔𝑝𝑧𝐷∕𝑈 . Solid lines, reference data. Dashed lines, present results with 𝐷∕𝛥𝑥 = 24. Blue, 𝜌𝑝∕𝜌𝑓 = 0.6. Green, 𝜌𝑝∕𝜌𝑓 = 1. Blue, 𝜌𝑝∕𝜌𝑓 = 1.5. Insets in (a) and (c) highlight the initial
phase.
shown in panels Fig. 7(𝑏, 𝑑, 𝑓 ), where we use 𝜙𝑛𝑜𝑟𝑚 = 𝑈 for the lateral
velocity and 𝜙𝑛𝑜𝑟𝑚 = 𝑈∕𝐷 for the angular velocity. The agreement
with the reference data is generally very good for all three quantities.
The largest error amplitudes (smaller than 2.5% at any time during the
simulation interval) are recorded for the streamwise velocity. This is
in line with our observations in the case of a non-rotating sphere in a
uniform flow at the same Reynolds number (Section 4.2), with even the
temporal evolution of the errors featuring an analogous cross-over at
some intermediate time, and the finest grid yielding the smallest error
at later times. It can also be seen that the lateral linear particle velocity
as well as its angular velocity are already extremely well captured on
the coarsest grid.

Finally, we have performed analogous simulations for a particle
with excess density (𝜌𝑝∕𝜌𝑓 = 1.5) and for a less dense particle (𝜌𝑝∕𝜌𝑓 =
0.6) at a fixed numerical resolution 𝐷∕𝛥𝑥 = 24. Fig. 8 shows the
time evolution of the Lagrangian quantities (the particle’s streamwise
and lateral velocity components and its angular velocity) for the three
density ratios considered. The lower the density ratio the more rapid is
the particle response after its release, i.e. a steeper slope is encountered
for short times for all three of these quantities. This effect is very
well captured by the IBM simulations, which yield a similarly good
agreement with respect to the reference simulations irrespective of the
value for the density ratio. This means that the present approach to
treating density-matched particles can also be applied with very good
results to non-density-matched particles.
9

5. Conclusions

In this work we have presented a simple modification of the direct-
forcing immersed boundary method (IBM) originally proposed by
Uhlmann [13] in order to enable it to be applied to particulate flows
with solid-to-fluid density ratios around unity. Whereas the original for-
mulation features a singularity for neutrally buoyant mobile particles,
the present approach is free from such a singularity. The idea is similar
to the approach taken by Tschisgale et al. [22]; however, in the present
case we apply the volume forcing term to the entire space occupied by
the immersed solid object (instead of to the vicinity of its interface
only). This leads to a method which can be used seamlessly for density
ratios down to 𝜌𝑝∕𝜌𝑓 > 0.5. As compared to previous approaches the
method is free from spurious oscillations. At the same time it is of a
similar computational complexity as the method of Tschisgale et al.
[22] which requires an integral over the volume of the particle to be
evaluated.

The main difference with respect to the original formulation in [13]
lies in the particle velocity update which is performed directly after
the preliminary (composite) velocity field has been computed in the
absence of any IBM forcing terms. Then the subsequent computation
of the volume force at the Lagrangian positions already takes into
account the updated velocity. One additional ingredient which arises
through this procedure is the necessity to evaluate integrals of the

linear and angular velocity field over the volume occupied by the solid
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particle [similar to 17], which can be evaluated efficiently at second-
order accuracy as sums over the respective quantities available at the
Lagrangian force points.

In a first step, the new formulation has been validated using two
flow configurations which have been previously established in the
literature: (i) lateral migration of a neutrally buoyant circular parti-
cle in two-dimensional Couette flow for which reference data gener-
ated with a fictitious domain method with Lagrange multipliers and
a finite-element discretization [36] is available; (ii) the release from
rest of a neutrally buoyant sphere in a free stream with reference data
from spectral-element computations using a body-conforming particle-
attached mesh [22,39]. In the latter case, the resulting motion of
the particle is unidirectional without rotation. In order to subject the
present method to a more demanding test, we have introduced a
new configuration in which a particle in a free stream is released
after an initial phase in which it is translationally fixed with an im-
posed constant angular velocity. The ensuing unconstrained motion
then features time-dependent streamwise and lateral motion as well
as rotational dynamics. For this case we have generated high-fidelity
reference data with the aid of the spectral-element method of Jenny
and Dušek [39] which can henceforth be used for the cross-validation
of numerical approaches. We have tested an implementation of our
new IBM formulation in a fractional-step context, using a standard
semi-implicit Runge–Kutta method in conjunction with second-order
finite-differences on a staggered, uniform grid. In all three test cases
the present formulation yields a very good agreement with the avail-
able reference data. We conclude from our study that the proposed
approach is a cost-efficient and accurate modification of the original
method which allows for the simulation of fluid systems involving
density-matched solid particles. One of the questions which we will
address with the aid of the present method in a future investigation is
the occurrence of preferential concentration in homogeneous-isotropic
turbulence for finite-size, neutrally buoyant particles [40]. In a future
communication we will consider the case of neutrally-buoyant non-
spherical particles. The present method appears well-suited to that case,
as it can be applied with only minor adjustments.
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Appendix. Description of reference computations with a spectral
element method

The numerical method utilized for the reference computations is
identical to the one employed in Uhlmann and Dušek [23], as previ-
ously developed in a series of papers [39,41,42]. It utilizes a body-
conforming mesh which translates with the particle’s center of mass.
The computational domain is of cylindrical shape with the cylinder
axis aligned in the vertical direction, a radius equal to 8𝐷 and a height
of 37𝐷 (with the particle center located at a distance 12𝐷 from the
ylinder base). The spatial discretization uses truncated Fourier series
n the azimuthal direction and a spectral-element approach in the
xial-radial plane (with two-dimensional Legendre polynomial approx-
mation inside the elements). The particle motion is strongly coupled
o the fluid solver, as proposed in Jenny and Dušek [39], and a third-
rder Adams–Bashforth method is used for the temporal discretization.
mbient flow conditions are imposed at the cylinder base, while a zero-
tress condition is used at the upper cylinder boundary and at the sides.
ikewise, the pressure is set to zero on the boundaries. The azimuthal
omplex Fourier expansion was truncated at the 7-th mode, and for all
lements 6 collocation points were used in each of the two respective
patial directions. The element mesh was the same as that shown
n figure 3b of Uhlmann and Dušek [23] around the sphere but was
xtended to larger radius and height resulting in a larger number of ele-
ents (203). The time step was adjusted such that the maximum 𝐶𝐹𝐿

number equals 0.25. The accuracy of the reference simulations with
this choice of numerical parameters has been demonstrated through
extensive validation in previous publications [39,43].
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