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Abstract

We consider the Lifshitz–Slyozov model with inflow boundary conditions of nu-
cleation type. We show that for a collection of representative rate functions the size
distributions approach degenerate states concentrated at zero size for sufficiently large
times. The proof relies on monotonicity properties of some quantities associated to an
entropy functional. Moreover, we give numerical evidence on the fact that the conver-
gence rate to the goal state is algebraic in time. Besides their mathematical interest,
these results can be relevant for the interpretation of experimental data.
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1 Introduction

In this work we study the long time behavior of the Lifshitz–Slyozov (LS) model with
nucleation boundary conditions. The model reads:

𝜕𝑓(𝑡, 𝑥)
𝜕𝑡

+
𝜕{(𝑎(𝑥)𝑢(𝑡) − 𝑏(𝑥))𝑓(𝑡, 𝑥)}

𝜕𝑥
= 0 , 𝑡 > 0 , 𝑥 ∈ (0,∞) , (1)

with
𝑢(𝑡) + ∫

∞

0
𝑥𝑓(𝑡, 𝑥) 𝑑𝑥 = 𝜌 , 𝑡 > 0 , (2)
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for some given 𝜌 > 0, subject to the boundary condition

((𝑎(𝑥)𝑢(𝑡) − 𝑏(𝑥))𝑓(𝑡, 𝑥))|𝑥=0 = 𝔫(𝑢(𝑡)) , 𝑡 ∈ {𝑠 > 0 ∶ 𝑢(𝑠) > Φ0} , (3)

where Φ0 = lim𝑥→0+
𝑏(𝑥)

𝑎(𝑥)
, and the initial condition

𝑓(0, 𝑥) = 𝑓𝑖𝑛(𝑥) , 𝑥 ∈ (0,∞) . (4)

The LS model describes the temporal evolution of a mixture of monomers and aggregates
that undergo the following interactions: a monomer can join an existing aggregate of size 𝑥,
with an attachment rate 𝑎(𝑥), and amonomer can detach from an existing aggregate of size 𝑥,
with a detachment rate 𝑏(𝑥). The variable 𝑥 describes the size of the aggregates, so that𝑓(𝑡, 𝑥)
is the number density of aggregates at time 𝑡, whereas 𝑢(𝑡) stands formonomer concentration
at time 𝑡. Equation (2) simply encodes the fact that the total mass 𝜌 is preserved.

Depending on the specific rates 𝑎(𝑥) and 𝑏(𝑥), themodelmay ormay not need a boundary
condition. No boundary condition is needed for the original Lifshitz–Slyozov version of the
model [19], and this is also the case for the various instances of “Ostwald ripening” that have
been analyzed in the literature, e.g. [6, 7, 9, 15, 22–24]. In this article we are interested in
situations where the kinetic rates are such that a boundary condition is needed tomake sense
of the model. Classical examples are power-law rates like 𝑎(𝑥) ∝ 𝑥𝛼 and 𝑏(𝑥) ∝ 𝑥𝛽 with
0 ≤ 𝛼 ≤ 𝛽 ≤ 1. To our knowledge, only the special power-law case with equal power (𝛼 = 𝛽)
has been considered in the literature, see [6] with zero Dirichlet boundary conditions. For
the main applications we have in mind the nucleation rate 𝔫 in equation (3) follows a mass
action kinetics, that is 𝔫(𝑢) ∝ 𝑢𝑖0 with 𝑖0 ∈ ℕ∗.

The boundary condition (3) encodes the creation of new aggregates from the available
pool of monomers. We understand this as an effective description of a nucleation process,
that may be described by a more detailed discrete model. Connections between the discrete-
size Becker–Döring model and the continuous-size Lifshitz–Slyozov model are indeed well
known [8, 16, 30]. A boundary condition of the form (3) has been deduced from appropriate
scaling limits of the Becker–Döring model in the case of a second order nucleation kinetics,
see [8, 12] for details. Higher order mass action kinetics can also be used to describe the
nucleation process in a phenomenological way [1, 27, 33]; such boundary conditions arise
as scaling limits of modified versions of the Becker–Döring model. It is also interesting
to note that some nucleation boundary conditions were derived in [12] that do not follow
mass action kinetics. This can be relevant for the description of protein polymerization
phenomena. All in all, this is a first step towards a number of important applications in the
science of materials and in the field of neurodegenerative diseases [27–29,31].

We prove below that under generic conditions, when the function 𝑏

𝑎
is strictly increasing,

solutions will concentrate at vanishing aggregate sizes, while the concentration of available
monomers drops down to the activation threshold Φ0 in equation (3). Under more specific
hypotheses we can get more precise information about the temporal rates at which this
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dynamics takes place. We complement this with a numerical investigation. The general
picture that emerges points to the fact that the concentration dynamics is quite slow, actually
taking place with algebraic rates (that depend on 𝛼, 𝛽 and 𝔫). These results are in line
with previously known results for the case of outgoing characteristics, which indicate that
degenerate steady states are approached at an algebraic rate, see [5, 9].

Since the transient behavior for equations (1)–(3) spans a wide temporal scale, this
model is thus suitable for comparison with experimental data, e.g. those originating in
protein polymerization experiments in vitro. It would be interesting to investigate whether
potential asymptotic profiles, after suitable normalisation, could be universal or not, in
comparison to the outgoing case [5, 9]. Note also that transient oscillatory behavior, for
specific initial conditions, cannot be ruled out by our results, see e.g. [18]. However, if we
are interested in very long time scales the concentration behavior will take over and then
it seems advisable to introduce corrections to the model (e.g. size-diffusion corrections,
coagulation-fragmentation operators...) in order to get a more realistic goal state, see for
instance [3, 8, 10,11,14, 20,21, 30,32]. Similarly, if persistent oscillations are required, one
should consider extra mechanisms, see e.g. [13, 25, 26].

2 Statement of the problem and results

Here below ℝ+ = (0, +∞) and (1 + 𝑥)𝑑𝑥 denotes the measure with density 𝑥 ↦→ (1 + 𝑥)
with respect to the Lebesgue measure onℝ+. The space 𝐿1(ℝ+, (1 + 𝑥)𝑑𝑥) denotes the space
of integrable function w.r.t. the former measure. This space might be endowed with the
weak topology denoted by 𝑤 whose convergence is characterized against bounded functions.
Finally, 𝒞([0,∞), 𝑤 − 𝐿1(ℝ+, (1 + 𝑥)𝑑𝑥)) is the set of continuous functions from [0, +∞)
into 𝐿1(ℝ+, (1 + 𝑥)𝑑𝑥) equipped with its weak topology that is, for such 𝑓,

𝑡 ↦→ ∫
∞

0
𝑓(𝑡, 𝑥)𝜑(𝑥)(1 + 𝑥)𝑑𝑥 ,

is continuous on [0,∞) for all 𝜑 ∈ 𝐿∞(0,∞). Here and in the sequel 𝐿𝑝 refers to the standard
Lebesgue spaces and𝑊1,𝑝 refers to the standard Sobolev spaces. We may add a subscript
to it, so that the integration variable is made clear. 𝒞𝑘 is the space of continuous function
whose 𝑘𝑡ℎ derivatives are continuous, and 𝒞𝑘𝑐 stands for its subspace consisting of compactly
supported functions.

In the remainder the rates 𝑎, 𝑏 and 𝔫 are assumed nonnegative and continuous functions
on [0,∞) and such that

∀𝑥 > 0 , 𝑎(𝑥) > 0 and Φ(𝑥) ∶=
𝑏(𝑥)
𝑎(𝑥)

→𝑥→0+ Φ0 . (H0)

We deal with global solutions for which the boundary condition is defined for all time,
namely solutions defined in the following sense:
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Definition 2.1. Let 0 ≤ 𝑓in ∈ 𝐿1(ℝ+, (1 + 𝑥)𝑑𝑥) and 𝜌 > 0. We say that 0 ≤ 𝑓 ∈
𝒞([0,∞), 𝑤 − 𝐿1(ℝ+, (1 + 𝑥)𝑑𝑥)) is a (global) solution to the LS equation with nucleation
(1)-(4) provided that:

1. For all 𝑡 ≥ 0 and for every 𝜑 ∈ 𝒞0([0,∞)) such that 𝜑′ ∈ 𝐿∞(0,∞), we have

∫
∞

0
𝜑(𝑥)𝑓(𝑡, 𝑥) 𝑑𝑥 = ∫

∞

0
𝜑(𝑥)𝑓in(𝑥) 𝑑𝑥+∫

𝑡

0
∫

∞

0
(𝑎(𝑥)𝑢(𝑠)−𝑏(𝑥))𝜑′(𝑥)𝑓(𝑠, 𝑥) 𝑑𝑥 𝑑𝑠

+ ∫
𝑡

0
𝜑(0)𝔫(𝑢(𝑠)) 𝑑𝑡 . (5)

2. For all 𝑡 ≥ 0,

𝑢(𝑡) ∶= 𝜌 − ∫
∞

0
𝑥𝑓(𝑡, 𝑥)𝑑𝑥 > Φ0.

Note that for any smooth test function𝜑, a solution as defined above satisfies the following
moment equation:

𝑑
𝑑𝑡

∫
∞

0
𝜑(𝑥)𝑓(𝑡, 𝑥) = 𝜑(0)𝔫(𝑢(𝑡)) + ∫

∞

0
(𝑎(𝑥)𝑢(𝑡) − 𝑏(𝑥))𝜑′(𝑥)𝑓(𝑡, 𝑥) . (6)

Our main hypothesis relies on the monotonicity of Φ. Namely, we suppose that

Φ is strictly increasing . (H1)

We shall assume some technical hypotheses as well: First, for any 𝜀 > 0,

𝑎′ , 𝑏′ ∈ 𝐿∞(𝜀,∞) , (H2)

which entails the existence of a constant 𝐶 > 0 such that, for all 𝑥 ≥ 0,

𝑎(𝑥) + 𝑏(𝑥) ≤ 𝐶(1 + 𝑥) . (7)

Next, we suppose
inf

𝑥∈(1,∞)
𝑎(𝑥) > 0 , and 1

𝑎 ∈ 𝐿1(0, 1) , (H3)

and that there exists a constant 𝐶 > 0 such that, for all 𝑥 ≥ 0,

𝑏(𝑥)Φ(𝑥) ≥ 1

𝐶
min(1, 𝑥2) . (H4)

Concerning the nucleation rate, we assume that there exist two constants 𝑐 > 0 and 𝑘0 ≥ 1
such that for all 𝑧 ≥ 0

𝔫(𝑧) ≥ 𝑐𝑧𝑘0 . (H5)

Finally, we will assume that the initial condition 𝑓in belongs to 𝐿1(ℝ+, (1 + 𝑥)𝑑𝑥), is non-
negative and moreover

∫
∞

0
(∫

𝑥

0
Φ(𝑧)𝑑𝑧 + 𝑥2)𝑓in(𝑥)𝑑𝑥 < ∞ . (H6)
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The well-posedness of equations (1)-(4) was studied in [4] under some additional con-
ditions of a technical nature -which are probably non-optimal. At any rate, taking (H1)
for granted we know for sure that solutions (should they exist) will be global in time with
𝑢(𝑡) > Φ0 for all times. Therefore, during the rest of the document we will only concentrate
on the set of assumptions needed for our analysis of the long time behavior.

Some comments are in order concerning our set of hypotheses. Besides ensuring well-
posedness, hypothesis (H1) is the natural counterpart to the typical Ostwald Ripening
phenomena where, Φ(𝑥) = 𝑥−1∕3 for which the long-time asymptotics have been studied
e.g. [9]. Note that hypothesis (H2) is not that demanding; actually, blow-up phenomena
may take place for strictly superlinear rates [6]. Hypothesis (H3), has been required in
connection with the well-posedness of the problem, so that characteristics go back to 𝑥 = 0
in finite time and render the boundary condition relevant. Condition (H4) is purely technical
and does not imply a strong restriction, recall the power law rates introduced in Section 1,
namely 𝑎(𝑥) ∝ 𝑥𝛼 and 𝑏(𝑥) ∝ 𝑥𝛽 with 0 ≤ 𝛼 ≤ 𝛽 ≤ 1. Indeed, such rates satisfy all our
hypotheses. Concerning the nucleation rate, any mass action kinetics can be considered
under hypothesis (H5). Finally, hypothesis (H6) imposes just a mild technical requirement
on the initial condition.

In order to ascertain the temporal evolution of the system, the number of aggregates
constitutes an important quantity that is defined as

𝑀0(𝑡) ∶= ∫
∞

0
𝑓(𝑡, 𝑥) 𝑑𝑥 .

According to the boundary condition (3), this evolves in time via

𝑑𝑀0

𝑑𝑡
= 𝔫(𝑢) .

To discuss concentration phenomena, we defineℳ+
𝜌 ([0, +∞)) the set of nonnegative

Radonmeasures on [0, +∞)with total variation less or equal to 𝜌. This space can be equipped
with the weak topology whose convergence corresponds to the convergence against any
continuous and bounded function.

Our main results in this document describe concentration phenomena for the long-time
evolution of the LS equation with nucleation boundary conditions:

Theorem 2.2. Under hypotheses (H0-H6), any global solution in the sense of Definition 2.1
satisfies

• lim𝑡→+∞𝑀0(𝑡) = +∞,

• lim𝑡→+∞ 𝑢(𝑡) = Φ0,

• lim𝑡→+∞ 𝑥𝑓(𝑡, 𝑥)𝑑𝑥 = (𝜌 − Φ0)𝛿0, weakly inℳ+
𝜌 ([0,∞)).
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The proof relies on a Lyapunov functional, which we introduce in Section 3. Right after
that we proceed with the proof of Theorem 2.2 in Section 4.

Note that Theorem 2.2 is a generalisation of an earlier result proved in [3] for 𝑎(𝑥) = 1
and 𝑏(𝑥) such that 0 < 𝑐1 ≤ 𝑏′(𝑥) ≤ 𝑐2 for some constants 𝑐1 and 𝑐2. In that particular case,
the rates can be computed explicitly. Those are algebraic and depend on the specific form
of the nucleation rate, but are nevertheless quite slow. For more general coefficients, our
method of proof cannot provide specific estimates and therefore we cannot ascertain the
timescales over which the average aggregate size tends to zero. However, we performed
numerical simulations, whose results suggest that this algebraic trend is actually what we
should expect generically. This is discussed in Section 5. Our results are complemented
with an analysis of the case of constant Φ, which requires a separate treatment. Its long time
behavior is analyzed in Section 6 and expands on the results given in [6, 7].

One of the main points underlying the previous results is to discriminate whether the
system will be able to fuel nucleation reactions to the extent that the number of fragments
grows without control. We actually show that this is the case for a representative number of
situations. Since the total mass is preserved, this suggests that the average aggregate size
becomes smaller and smaller, which is an instance of dust formation.

3 Lyapunov functional

We shall introduce a Lyapunov functional in the vein of [3,9]. For 𝑘 a continuous and positive
function on [0, +∞) with continuous derivative and 𝑓 a solution of equations (1)–(4), we
define for all 𝑡 ≥ 0,

𝐻𝑘(𝑡) = ∫
∞

0
𝑘(𝑥)𝑓(𝑡, 𝑥)𝑑𝑥 + 𝐾(𝑢(𝑡)) , (8)

with 𝐾(𝑣) = ∫ 𝑣
0 𝑘

′◦Φ−1(𝑧)𝑑𝑧. This makes sense since Φ is monotonous. The functional𝐻𝑘

is a Lyapunov functional and its time derivative 𝐷𝑘 is called its dissipation, as the following
result makes clear.

Proposition 3.1. Assume 0 ≤ 𝑘 ∈ 𝒞1([0, +∞)) is convex with 𝑘(0) = 0 and 𝑓 is a solution in
the sense of Definition 2.1. If𝐻𝑘(0) < ∞, then 𝑡 ↦→ 𝐻(𝑡) is non-increasing, non-negative and
for all 𝑡 ≥ 0

𝐻𝑘(𝑡) + ∫
𝑡

𝑠
𝐷𝑘(𝑠)𝑑𝑠 ≤ 𝐻𝑘(𝑠) , ∀ 0 ≤ 𝑠 < 𝑡 , (9)

where

0 ≤ 𝐷𝑘(𝑡) = ∫
∞

0
(𝐾′(𝑢(𝑡)) − 𝐾′(Φ(𝑥)))) (𝑢(𝑡) − Φ(𝑥)) 𝑎(𝑥)𝑓(𝑡, 𝑥)𝑑𝑥 ,

belongs to 𝐿1𝑡 (0,∞).

Proof. Let 𝑅 > 0, 𝑘𝑅(𝑥) = 𝑘(𝑥) for 𝑥 < 𝑅 and 𝑘𝑅(𝑥) = 𝑘′(𝑅)(𝑥 −𝑅)+ 𝑘(𝑅) for 𝑥 ≥ 𝑅. Notice
that 𝑘𝑅 can be used as a test function in (5). Moreover, 𝑘𝑅 is convex. We construct𝐻𝑘𝑅 via
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formula (8) and we compute the dissipative part, which is nonnegative because𝐾′ = 𝑘′𝑅◦Φ
−1

is increasing. Then we conclude by Fatou’s lemma.

As a straightforward consequence with 𝑘(𝑥) = 1

2
𝑥2 we get the following result:

Corollary 3.2. Assume hypothesis (H6) and let 𝑓 be a solution in the sense of Definition 2.1.
We define

𝐻(𝑡) = 1
2 ∫

∞

0
𝑥2𝑓(𝑡, 𝑥)𝑑𝑥 + Ψ(𝑢(𝑡)) , (10)

with Ψ(𝑣) = ∫ 𝑣
0 Φ

−1(𝑧)𝑑𝑧. We have that 𝐻(0) < ∞ and 𝑡 ↦→ 𝐻(𝑡) is non-increasing, non-
negative and the dissipation part is given, for all 𝑡 ≥ 0, by

𝐷(𝑡) = ∫
∞

0

(
Φ−1(𝑢(𝑡)) − Φ−1(Φ(𝑥))

)
(𝑢(𝑡) − Φ(𝑥)) 𝑎(𝑥)𝑓(𝑡, 𝑥)𝑑𝑥 .

Remark 3.3. There are other useful choices of the function 𝑘. We will make use of 𝑘(𝑥) =
∫ 𝑥
0 Φ(𝑦)𝑑𝑦 which leads to 𝑘′◦Φ−1 = 𝐼𝑑 and then

𝑑
𝑑𝑡
𝐻𝑘 ≤ −∫

∞

0
(𝑢(𝑡) − Φ(𝑥))2𝑎(𝑥)𝑓(𝑡, 𝑥)𝑑𝑥 ∈ 𝐿1𝑡 (0,∞). (11)

We may also take 𝑘(𝑥) = 𝑥𝜂 with 𝜂 ≥ 1 to control moments of the form

𝑀𝜂(𝑡) ∶= ∫
∞

0
𝑥𝜂𝑓(𝑡, 𝑥)𝑑𝑥 .

Indeed, for any moment greater than 1 which is initially finite, we have a uniform bound for
every positive time.

4 Proof of the main result

4.1 The number of fragments diverges

We prove first a generic result showing that a shattering phenomenon takes place on long
time intervals: the number of fragments diverges.

Proposition 4.1. Assume hypotheses (H0, H2,H4-H6). Then, for every solution in the sense of
Definition 2.1, there holds that lim𝑡→+∞𝑀0(𝑡) = +∞.

Proof. Taking 𝟏 as a test function in (5) we have

𝑀0(𝑡) = 𝑀0(0) + ∫
𝑡

0
𝔫(𝑢(𝑠))𝑑𝑠 ,

thus 𝑀0 is monotonically increasing. The result follows directly in the case Φ0 > 0 by
hypothesis (H5). Therefore, we provide a proof for Φ0 = 0. We argue by contradiction.
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Suppose𝑀0 is bounded above independently of time. By equation (5) with 𝜑(𝑥) = 𝑥 and
noticing inequality (7) and 0 ≤ 𝑢(𝑡) ≤ 𝜌, we deduce

𝑢′(𝑡) = −𝑢(𝑡) ∫
∞

0
𝑎(𝑥)𝑓(𝑡, 𝑥) + ∫

∞

0
𝑏(𝑥)𝑓(𝑡, 𝑥)𝑑𝑥 ∈ 𝐿∞𝑡 (0,∞) .

This entails 𝑢 ∈ 𝑊1,∞(0,∞). Moreover, using Cauchy-Schwarz’s inequality,

|𝑢′(𝑡)| ≤ (∫
∞

0
𝑎(𝑥)𝑓(𝑡, 𝑥)𝑑𝑥)

1

2
(∫

∞

0
𝑎(𝑥)(𝑢(𝑡) − Φ(𝑥))2𝑓(𝑡, 𝑥)𝑑𝑥)

1

2
.

By (H6) and Proposition 3.1 with 𝑘(𝑥) = ∫ 𝑥
0 Φ(𝑦)𝑑𝑦 -see also Remark 3.3, we have

𝐷𝑘(𝑡) = ∫
∞

0
𝑎(𝑥)(𝑢(𝑡) − Φ(𝑥))2𝑓(𝑡, 𝑥)𝑑𝑥 ∈ 𝐿1𝑡 (0,∞) . (12)

Thus, with inequality (7), we deduce that 𝑢′ ∈ 𝐿2(0,∞).

Next, we notice that 𝑢𝑘0 ∈ 𝐿1(0,∞); this is due to hypothesis (H5) and

𝑐 ∫
∞

0
𝑢𝑘0(𝑡)𝑑𝑡 ≤ ∫

∞

0
𝔫(𝑢(𝑡))𝑑𝑡 ≤ lim sup

𝑡→∞
𝑀0(𝑡) − 𝑀0(0),

together with the supposed bound on the 0𝑡ℎ-order moment. Let 𝑝 > max(2, 𝑘0), we have

∫
∞

0
𝑢𝑝(𝑡)𝑑𝑡 = ∫

∞

0
𝑢𝑝−𝑘0(𝑡)𝑢𝑘0(𝑡) ≤ 𝜌𝑝−𝑘0‖𝑢𝑘0‖𝐿1(0,∞) ,

thus 𝑢𝑝 ∈ 𝐿1(0,∞). Moreover (𝑢𝑝)′ = 𝑝𝑢′𝑢𝑝−1 belongs to 𝐿1(0,∞) because

∫
∞

0
|𝑢′𝑢𝑝−1|𝑑𝑡 ≤ (∫

∞

0
|𝑢′|2)

1

2
∫

∞

0
𝑢2(𝑝−1)𝑑𝑡 ≤ ‖𝑢′‖𝐿2 ∫

∞

0
𝑢2(𝑝−1)−𝑘0+𝑘0𝑑𝑡 .

But 2𝑝 − 2 − 𝑘0 > 0, thus 𝑢2(𝑝−1)−𝑘0 ≤ 𝜌2(𝑝−1)−𝑘0 and therefore (𝑢𝑝)′ belongs to 𝐿1(0,∞)
because 𝑢𝑘0 does. This implies that 𝑢𝑝 ∈ 𝑊1,1(0,∞) and hence 𝑢(𝑡)𝑝 → 0 as 𝑡 → +∞.

We now turn to the dissipation part, equation (12). There exists a sequence of times
𝑡𝑛 → +∞ such that 𝐷𝑘(𝑡𝑛) → 0 by integrability. Actually the dissipation reads

𝐷𝑘(𝑡) = 𝑢2(𝑡) ∫
∞

0
𝑎(𝑥)𝑓(𝑡, 𝑥) 𝑑𝑥 + ∫

∞

0
𝑏(𝑥)Φ(𝑥)𝑓(𝑡, 𝑥) 𝑑𝑥 − 2𝑢(𝑡) ∫

∞

0
𝑏(𝑥)𝑓(𝑡, 𝑥) 𝑑𝑥 .

Using inequality (7) and the definition of solution, the first and last integrals are continuous
and bounded in time. Together with the fact that 𝑢(𝑡) → 0 as 𝑡 → ∞ we have that

lim
𝑛→+∞

∫
∞

0
𝑏(𝑥)Φ(𝑥)𝑓(𝑡𝑛, 𝑥)𝑑𝑥 = 0.

Thanks to hypothesis (H4) and Cauchy–Swartz’s inequality we get

∫
∞

0
𝑥𝑓(𝑡, 𝑥)𝑑𝑥 ≤ (∫

∞

0
𝑏(𝑥)Φ(𝑥)𝑓(𝑡, 𝑥)𝑑𝑥)

1

2
(∫

∞

0
𝐶(1 + 𝑥2)𝑓(𝑡, 𝑥)𝑑𝑥)

1

2
.
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Since the 0𝑡ℎ-order moment is bounded and the second order moment as well by Corollary
3.2, we obtain

lim
𝑛→+∞

∫
∞

0
𝑥𝑓(𝑡𝑛, 𝑥)𝑑𝑥 = 0.

This contradicts the fact that 𝑢(𝑡𝑛) = 𝜌 − ∫ ∞
0 𝑥𝑓(𝑡𝑛, 𝑥)𝑑𝑥 → 0.

Since mass is preserved, the divergence of𝑀0 implies that the average aggregate size
tends to zero.

4.2 Concentration behavior for the mass density

We can use the dissipation to extract some information on the long-time asymptotic. We
proceed by standard Lasalle’s invariance principle arguments, proving that the orbits are
relatively compact and we identify trajectories in the 𝜔-limit set to be time independent. In
fact we shall work out the argument from scratch because we lack the continuity of our
Lyapunov functional.

In this section we assume that our hypotheses (H0-H5) hold true and we take 𝑓 a solution
in the sense of Definition 2.1 with initial data 𝑓in satisfying hypothesis (H6). We let {𝑡𝑛}
an arbitrary increasing sequence of times with lim𝑛→+∞ 𝑡𝑛 = +∞. Let 𝑇 > 0 arbitrary, we
define for 𝑡 ∈ [0, 𝑇]

𝑓𝑛(𝑡, 𝑥) = 𝑓(𝑡 + 𝑡𝑛, 𝑥) and 𝜇𝑛𝑡 (𝑑𝑥) = 𝑥𝑓𝑛(𝑡, 𝑥)𝑑𝑥 .

The measures 𝜇𝑛𝑡 are bounded nonnegative Radon measures on (0, +∞) with 𝜇𝑛𝑡 ((0, +∞)) =
𝜌. Let𝐻 be given by (10) and𝐻𝑛(𝑡) = 𝐻(𝑡 + 𝑡𝑛).

Letℳ+
𝜌 (0, +∞) the set of nonnegative Radon measures on (0, +∞) with mass less or

equal to 𝜌. The topology induced by the dual of 𝒞0𝑐(0,∞) on ℳ+
𝜌 (0,∞) is called vague

topology. We denote this space with such topology by 𝑣−ℳ+
𝜌 (0,∞). This space is metrizable

and compact [2], with metric

𝑑(𝜇, 𝜈) =
∑

𝑘≥0

2−𝑘min(1, |⟨𝜇, 𝜑𝑘⟩ − ⟨𝜈, 𝜑𝑘⟩|) ,

for all 𝜇, 𝜈 inℳ+
𝜌 (0,∞) where (𝜑𝑘)𝑘≥0 ∈ 𝒞∞𝑐 (0,∞) is dense in 𝒞0𝑐(0,∞) and ⟨𝜇, 𝜑⟩ = ∫ 𝜑 𝑑𝜇

denotes the duality pairing.

Lemma 4.2. {𝜇𝑛} is relatively sequentially compact in 𝒞0([0, 𝑇]), 𝑣 −ℳ+
𝜌 (0,∞)).

Proof. Let 𝜑 ∈ 𝒞∞𝑐 (0,∞), we have by (5) that

𝑑
𝑑𝑡

∫
∞

0
𝜑(𝑥)𝑥𝑓(𝑡, 𝑥)𝑑𝑥 = ∫

∞

0
(𝑥𝜑)′𝑎(𝑥)(𝑢(𝑡) − Φ(𝑥))𝑓(𝑡, 𝑥)𝑑𝑥 .
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As 𝜑 is compactly supported and 𝑢 is bounded by 𝜌, there exists a constant 𝐶𝜑 > 0, such that
|(𝑥𝜑)′𝑎(𝑥)(𝑢(𝑡) − Φ(𝑥))| ≤ 𝐶𝜑𝑥, thus for all 𝑡 ≥ 0,

||||||||

𝑑
𝑑𝑡

∫
∞

0
𝜑(𝑥)𝑥𝑓(𝑡, 𝑥)𝑑𝑥

||||||||
≤ 𝐶𝜑𝜌 .

Hence, for any 𝑡0 ∈ [0, 𝑇],

lim sup
𝑡→𝑡0

sup
𝑛
𝑑(𝜇𝑛𝑡 , 𝜇

𝑛
𝑡0) ≤ lim sup

𝑡→𝑡0

∑

𝑘≥0

2−𝑘min(1, 𝐶𝜑𝑘𝜌|𝑡 − 𝑡0|) = 0 ,

and thus the sequence is equicontinuous on [0, 𝑇]. We conclude by the Arzelà-Ascoli
theorem.

Lemma 4.3. There exist 𝑢 ∈ 𝒞0([0, 𝑇]) with 0 ≤ 𝑢 ≤ 𝜌 and a subsequence of {𝑢𝑛} which
converges to 𝑢 pointwise on [0, 𝑇].

Proof. Notice that by standard truncation arguments with equations (5), (7) and hypothesis
(H6),

||||||||

𝑑
𝑑𝑡

∫
∞

0
𝑥2𝑓(𝑡, 𝑥)𝑑𝑥

||||||||
≤ 𝐾(𝜌 + 1) ∫

∞

0
𝑥(1 + 𝑥)𝑓(𝑡, 𝑥)𝑑𝑥 .

The latter is uniformly bounded in time. By Arzelà-Ascoli we may extract a subsequence of
𝑡 ↦→ ∫ ∞

0 𝑥2𝑓𝑛(𝑡, 𝑥)𝑑𝑥 which converges uniformly on [0, 𝑇]. Moreover, by the monotonicity
and nonegativity of𝐻(𝑡) it has a limit𝐻∞ as 𝑡 → ∞ and𝐻𝑛 converges uniformly on [0, 𝑇] to
𝐻∞. This proves thatΨ(𝑢𝑛(𝑡)) = 𝐻𝑛(𝑡)− ∫ ∞

0 𝑥2𝑓𝑛(𝑡, 𝑥)𝑑𝑥 converges uniformly to a function
Ψ(𝑡) on [0, 𝑇]. Note that Ψ = ∫ 𝑥

0 Φ
−1(𝑦)𝑑𝑦 is continuous and strictly increasing (because

Φ−1 > 0), thus 𝑢𝑛(𝑡) converges to 𝑢(𝑡) ∶= Ψ−1(Ψ(𝑡)) pointwise.

Remark 4.4. We might replace 𝑥2 above by 𝑥1+𝜂, provided that (𝑎(𝑥) + 𝑏(𝑥))𝑥𝜃 ≤ 𝐶𝑥 for
some 𝜃 ≥ 0 and 𝐶 > 0.

Proposition 4.5. The measure 𝑥𝑓(𝑡, 𝑥)𝑑𝑥 converges to 0 in 𝑣 −ℳ+
𝜌 (0, +∞) as 𝑡 → +∞.

Proof. By the previous two Lemmas we can extract a subsequence such that 𝜇𝑛 converges
to some 𝜇 in 𝒞0([0, 𝑇]), 𝑣 − ℳ+

𝜌 (0,∞)) and 𝑢𝑛 converges poinwise to some 𝑢 ∈ 𝒞0([0, 𝑇]).
Given that 𝐻𝑛(𝑡) converges to𝐻∞ for all 𝑡 ∈ [0, 𝑇], we use Corollary 3.2 and equation (9) to
deduce that

lim
𝑛→+∞

∫
𝑇

0
∫

∞

0

(
Φ−1(𝑢𝑛(𝑡)) − Φ−1(Φ(𝑥))

)
(𝑢𝑛(𝑡) − Φ(𝑥)) 𝑎(𝑥)𝑓𝑛(𝑡, 𝑥)𝑑𝑥𝑑𝑡 = 0 .

Let 𝑚 ≥ 1 and 𝐾𝑚 = [ 1
𝑚
, 𝑚] and define 𝜒𝑚 a nonnegative continuous function with

compact support in (0,∞), equal to a positive constant on𝐾𝑚 and such that 𝜒𝑚(𝑥) ≤ 𝑎(𝑥)∕𝑥
for all 𝑥 > 0. This is possible by the continuity and positivity of 𝑎. Hence,

lim
𝑛→+∞

∫
𝑇

0
∫

∞

0

(
Φ−1(𝑢𝑛(𝑡)) − Φ−1(Φ(𝑥)))

)
(𝑢𝑛(𝑡) − Φ(𝑥)) 𝜒𝑚(𝑥)𝜇𝑛𝑡 (𝑑𝑥)𝑑𝑡 = 0 . (13)
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Expanding the product, we easily see that space integrals converge uniformly in time on
[0, 𝑇]. Moreover, 𝑢𝑛 converges pointwise and is bounded, hence the above limit can be
interchanged with the time integrals and we conclude that

∫
𝑇

0
∫
𝐾𝑚

(
Φ−1(𝑢(𝑡)) − Φ−1(Φ(𝑥)))

)
(𝑢(𝑡) − Φ(𝑥)) 𝜒𝑚(𝑥)𝜇𝑡(𝑑𝑥)𝑑𝑡 = 0 ,

for all𝑚 ≥ 1. Thus, a.e. 𝑡 ∈ [0, 𝑇] we have the following measure equality
(
Φ−1(𝑢(𝑡)) − Φ−1(Φ(𝑥)))

)
(𝑢(𝑡) − Φ(𝑥)) 𝜇𝑡(𝑑𝑥) = 0 .

As 𝑢 is continuous, the above equality is achieved for all 𝑡 ∈ [0, 𝑇]. Noticing that Φ−1 is
increasing, for all 𝑡 ∈ [0, 𝑇], either 𝜇𝑡 = 0 or both 𝑢(𝑡) > Φ0 and there exists𝑚𝑡 ∶ [0, 𝑇] →
(0, 𝜌] such that 𝜇𝑡 = 𝑚𝑡𝛿Φ−1(𝑢(𝑡)).

We should prove the second alternative could not occur. Indeed, let 𝑡0 such that 𝜇𝑡0 =
𝑚𝑡0𝛿𝑥0 with 𝑥0 = Φ−1(𝑢(𝑡0)) > 0 -because 𝑢(𝑡0) > Φ0. For all 𝜑 ∈ 𝒞0𝑐(0,∞),

lim
𝑥→+∞

∫
∞

0
𝜑(𝑥)𝑓𝑛(𝑡0, 𝑥)𝑑𝑥 = 𝑚𝑡0

𝜑(𝑥0)
𝑥0

,

which proves that 𝑓𝑛(𝑡0, 𝑥)𝑑𝑥 converges inℳ+
𝜌 (0,∞) and contradicts that the 0𝑡ℎ-moment

𝑀0(𝑡0 + 𝑡𝑛) goes to∞ as 𝑛 → ∞, by Prop. 4.1.

Hence, we have shown that lim𝑛→∞ 𝜇𝑛𝑡 = 0. Note that we have 𝜇𝑛𝑡 = 𝑥𝑓(𝑡 + 𝑡𝑛, 𝑥)𝑑𝑥.
Taking 𝑡 = 0 we deduce that

lim
𝑛→∞

𝑥𝑓(𝑡𝑛, 𝑥)𝑑𝑥 = lim
𝑛→∞

𝜇𝑛0 = 0 , vaguely inℳ+
𝜌 ((0, +∞)) ,

and this holds true for any sequence 𝑡𝑛 → ∞. Therefore, we have proved that 𝑥𝑓(𝑡, 𝑥)𝑑𝑥
has a limit as 𝑡 → ∞ and this limit is 0.

We conclude that the limit measure concentrates at the origin.

Lemma 4.6. There exists𝑚 > 0 and a subsequence (not relabelled) such that

lim
𝑛→∞

𝑥𝑓(𝑡𝑛, 𝑥)𝑑𝑥 = 𝑚𝛿0 , weakly inℳ+
𝜌 ([0, +∞)) .

Proof. Note that 𝜈𝑛 = 𝑥𝑓(𝑡𝑛, 𝑥)𝑑𝑥 defines a sequence of measures on [0, +∞), such that
𝜈𝑛|(0,+∞) = 𝜇𝑛. The sequence {𝜈𝑛} is bounded and thus admits a subsequence which converges
𝑣−ℳ+

𝜌 ([0, +∞)); recall that this is the dual of 𝒞0𝑐([0,∞)). By the previous results, the limit 𝜈
verifies that 𝜈|(0,+∞) = 0 as measures. Thus 𝜈 = 𝑚𝛿0 for some𝑚 ≥ 0. We recall that ⟨𝜈𝑛, 𝑥⟩ is
uniformly bounded in 𝑛; this control allows to improve the convergence to ⟨𝜈𝑛, 𝜑⟩ → ⟨𝜈, 𝜑⟩
for all 𝜑 ∈ 𝒞𝑏([0, +∞)), the set of continuous and bounded functions.

It remains to identify𝑚 which will be the result of the next section.
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4.3 Identification of the concentrated mass

This paragraph is devoted to the proof that 𝑢(𝑡) approaches the critical value Φ0; by mass
conservation, the concentrated mass𝑚 in Lemma 4.6 is therefore 𝜌 −Φ0. This will conclude
the proof of Theorem 2.2. In this section we still assume that our Hypotheses (H0-H5) hold
true and we take 𝑓 a solution in the sense of Definition 2.1 with initial datum 𝑓in satisfying
hypothesis (H6).

Lemma 4.7. We have that lim
𝑡→+∞

∫
∞

0
𝑥2𝑓(𝑡, 𝑥)𝑑𝑥 = 0.

Proof. By hypothesis (H6) and a (refined) de La Vallé Poussin’s lemma [17] there exists
𝛽 ∈ 𝒞1([0,∞)), nonegative, increasing, convex, such that lim𝑥→∞ 𝛽(𝑥)∕𝑥 = +∞ and

∫
∞

0
𝛽(𝑥)𝑥𝑓in(𝑥)𝑑𝑥 < ∞ .

According to Remark 3.3 we may use the Lyapunov functional (8) with 𝑘(𝑥) = 𝛽(𝑥)𝑥, which
is convex too, to deduce that

sup
𝑡>0

∫
∞

0
𝛽(𝑥)𝑥𝑓(𝑡, 𝑥)𝑑𝑥 < ∞.

Let a sequence of times 𝑡𝑛 ↗ ∞; Lemma 4.6 ensures that there exists a subsequence (not
relabelled) such that 𝑥𝑓(𝑡𝑛, 𝑥)𝑑𝑥 → 𝑚𝛿0 weakly. Thus, we let 𝜒𝑅 = min(𝑥, 𝑅), so that

∫
∞

0
𝑥2𝑓(𝑡𝑛, 𝑥)𝑑𝑥 ≤ ∫

∞

0
𝜒𝑅(𝑥)𝑥𝑓(𝑡𝑛, 𝑥)𝑑𝑥 + ∫

∞

𝑅
𝑥2𝑓(𝑡𝑛, 𝑥)𝑑𝑥

≤ ∫
∞

0
𝜒𝑅(𝑥)𝑥𝑓(𝑡𝑛, 𝑥)𝑑𝑥 + sup

𝑧>𝑅
(

𝑧
𝛽(𝑧)

) sup
𝑡>0

∫
∞

0
𝛽(𝑥)𝑥𝑓(𝑡, 𝑥)𝑑𝑥 . (14)

We take the limit 𝑛 → +∞; the first term on the right hand side goes to 0 since 𝑥𝑓(𝑡𝑛, 𝑥)𝑑𝑥 →
𝑚𝛿0 and 𝜒𝑅(0) = 0. Finally we take the limit 𝑅 → +∞ and the remaining term goes to 0.
Since this is true for all sequences, we get the full limit.

Remark 4.8. Here again we might deal with 𝑥1+𝜂 instead of 𝑥2 as in Remark 4.4.

Lemma 4.9. There holds that lim𝑡→+∞ 𝑢(𝑡) = Φ0.

Proof. The convergence of 𝐻(𝑡) as 𝑡 → ∞ together with the previous lemma entails that
Ψ(𝑢(𝑡)) converges to some constant 𝑐. By the (strict) monotonicity of Ψ and its continuity,
Ψ−1 is also continuous and thus 𝑢(𝑡) converges to 𝜃 ∶= Ψ−1(𝑐). Assume that 𝜃 > Φ0. We
will prove a contradiction. We introduce the function 𝐴(𝑥) = ∫ 𝑥

0
1

𝑎
, well-defined thanks to

hypotheses (H0) and (H3). Letting 𝐴𝑛(𝑥) = ∫ 𝑥
1∕𝑛

1

𝑎
for 𝑥 > 1∕𝑛 and 𝐴𝑛(𝑥) = 0 otherwise,

we get that 𝐴𝑛 is continuous and 𝐴𝑛′ ∈ 𝐿∞. Thus we can use 𝐴𝑛 as a test function in the
moment equation (5) and pass to the limit (𝐴𝑛 ≤ 𝐴) to get

𝑑
𝑑𝑡

∫
∞

0
𝐴(𝑥)𝑓(𝑡, 𝑥)𝑑𝑥 = 𝑢(𝑡)𝑀0(𝑡) − ∫

∞

0
Φ(𝑥)𝑓(𝑡, 𝑥)𝑑𝑥 .
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This is justified since the function Φ is continuous on [0, 𝜀], thus bounded, and there exists
𝐾𝜀 > 0 such that Φ(𝑥) = 𝑏(𝑥)∕𝑎(𝑥) ≤ 𝐾𝜀𝑥 for all 𝑥 > 𝜀 thanks to hypothesis (H0) and
inequality (7).

As 𝜃 > Φ0, we may find 𝛿, 𝑡0 > 0 such that 𝑢(𝑡) > Φ0 + 2𝛿 for all 𝑡 > 𝑡0. Next, we may
find 𝜖 > 0 such that sup𝑥∈[0,𝜀]Φ(𝑥) < 𝛿 + Φ0. Then

∫
∞

0
Φ(𝑥)𝑓(𝑡, 𝑥)𝑑𝑥 ≤ (𝛿 + Φ0)𝑀0(𝑡) + 𝐾𝜀𝜌 ,

and collecting both estimates we arrive to

𝑑
𝑑𝑡

∫
∞

0
𝐴(𝑥)𝑓(𝑡, 𝑥)𝑑𝑥 ≥ 𝛿𝑀0(𝑡) − 𝐾𝜀𝜌 for all 𝑡 > 𝑡0.

Since𝑀0(𝑡) → +∞ we derive that

lim
𝑡→+∞

1
𝑡 ∫

∞

0
𝐴(𝑥)𝑓(𝑡, 𝑥)𝑑𝑥 = +∞.

But, with hypothesis (H3), there exists 𝐾𝐴 such that 𝐴(𝑥) ≤ 𝐾𝐴(1 + 𝑥) for all 𝑥 > 0, thus

∫
∞

0
𝐴(𝑥)𝑓(𝑡, 𝑥)𝑑𝑥 ≤ 𝐾𝐴 ∫

∞

0
(1 + 𝑥)𝑓(𝑡, 𝑥)𝑑𝑥 ≤ 𝐾𝐴𝑀0(𝑡) + 𝐾𝐴𝜌 .

Given that𝑀0(𝑡)∕𝑡 is bounded we have a contradiction. Hence 𝑢(𝑡) → Φ0 as 𝑡 → ∞.

As a consequence of the previous result and mass conservation, we have𝑚 = 𝜌 − Φ0 in
the representation of the limit measure 𝜈 = 𝑚𝛿0. This concludes the proof of Theorem 2.2.

Corollary 4.10. Under the same hypotheses of the theorem, we have that all moments𝑀𝜃(𝑡)
with 𝜃 ∈ [0, 1) diverge as 𝑡 → ∞.

This follows from Lemma 4.7, by interpolating the first moment between moments of
order 𝜃 and two.

5 Long time behavior for power-law rates and numerics

5.1 Rate of convergence for special cases

The purpose of this section is to provide more detailed information of the long time behavior
in specific power-law cases. Here we assume 𝑎(𝑥) = 𝑎𝑥𝛼 and 𝑏(𝑥) = 𝑏𝑥𝛽 with 𝑎, 𝑏 > 0 and
0 ≤ 𝛼 < 𝛽 ≤ 1. Then Φ(𝑥) = 𝑏

𝑎
𝑥𝛽−𝛼 verifies Φ0 = 0 and is monotonically increasing.

We may define the classical moments of 𝑓 as

𝑀𝑘(𝑡) ∶= ∫
∞

0
𝑥𝑘𝑓(𝑡, 𝑥) 𝑑𝑥, 𝑘 ∈ ℝ+.
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In the case of power-law kinetic rates, the time derivative of the classical moments reads

𝑑𝑀𝑘

𝑑𝑡
= 𝑘𝑎𝑢(𝑡)𝑀𝑘+𝛼−1(𝑡) − 𝑘𝑏𝑀𝑘+𝛽−1(𝑡) .

In what follows we consider some particular choices of the exponents 𝛼 and 𝛽 for which
more specific information can be given (this works also as a guide to numerical conjectures
for the general case, see Section 5.2 below).

Lemma 5.1 (Case 𝛼 = 0). Assume that 𝔫(𝑢) = 𝑢𝑖0 -a bound from above by a power law works
the same way. Then there exists some 𝐶 > 0 such that, for advanced 𝑡

𝑀0(𝑡) ≤ 𝐶𝑡
1

1+𝑖0𝛽 , 𝑢(𝑡) ≤ 𝐶𝑡−
𝛽

1+𝑖0𝛽 .

Proof. First we prove that 𝑢(𝑡)𝑀𝛽
0 (𝑡) ≤ 𝐶 for every 𝑡 ≥ 0. For that aim, let 𝑦(𝑡) = 𝑢(𝑡)𝑀𝛽

0 (𝑡).
We readily compute

𝑦′ = (𝑏𝑀𝛽 − 𝑢𝑎𝑀0)𝑀
𝛽
0 + 𝛽𝑢𝔫(𝑢)𝑀𝛽−1

0 .

Here we can use that moment interpolation yields the estimate

𝑀𝛽(𝑡) ≤ 𝑀𝛽
1 (𝑡)𝑀

1−𝛽
0 (𝑡) ≤ 𝜌𝛽𝑀1−𝛽

0 (𝑡).

Therefore,
𝑦′ ≤ 𝜑(𝑡) + 𝑏𝜌𝛽𝑀0 − 𝑎𝑢𝑀0𝑀

𝛽
0 = 𝑀0(𝑏𝜌𝛽 − 𝑎𝑦) + 𝜑(𝑡) ,

with 𝜑(𝑡) → 0 as 𝑡 → ∞. This implies that 𝑦(𝑡) belongs to [0, 𝜌𝛽𝑏∕𝑎] for advanced times.

Thanks to our assumption on 𝔫 we have

𝑀′
0 =

𝑢𝑖0𝑀𝛽𝑖0
0

𝑀𝛽𝑖0
0

≤
𝜌𝛽𝑖0(𝑏∕𝑎)𝑖0

𝑀𝛽𝑖0
0

,

and therefore
𝑑
𝑑𝑡
𝑀1+𝑖0𝛽

0 ≤ (1 + 𝑖0𝛽)𝜌𝑖0𝛽(𝑏∕𝑎)𝑖0 .

Our statements follow easily from here.

We expect to have equality in the previous estimates. Actually, in the general case 𝛼 < 𝛽
we conjecture that:

𝑀0(𝑡) ∼ 𝑡
1

1+𝑖0(𝛽−𝛼) , 𝑢(𝑡) ∼ 𝑡−
𝛽−𝛼

1+𝑖0(𝛽−𝛼) . (15)

for advanced 𝑡. Likewise, we expect that 𝑢(𝑡)𝑀𝛽−𝛼
0 (𝑡) will have a finite limit. Compare with

the numerical simulations below.

We prove another partial result along the same lines.

Lemma 5.2 (case 𝛽 = 1). There holds that

lim
𝑡→∞

𝑢(𝑡)𝑀𝛼(𝑡) = 𝑏𝜌∕𝑎.
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Proof. In this specific case we have

𝑑𝑀1

𝑑𝑡
= 𝑎𝑢𝑀𝛼 − 𝑏𝑀1.

This is integrated as

𝑀1(𝑡) = 𝑀1(0)𝑒−𝑏𝑡 + 𝑎𝑒−𝑏𝑡 ∫
𝑡

0
𝑢(𝜏)𝑀𝛼(𝜏)𝑒𝑏𝜏 𝑑𝜏 .

Since 𝑢(𝑡) → 0 as 𝑡 → ∞, we have that𝑀1 → 𝜌 as 𝑡 → ∞. Now we argue by contradiction.
Assume that lim inf 𝑡→∞ 𝑢𝑀𝛼 > 𝑏𝜌∕𝑎. Then, given 𝜖 > 0 there exists some 𝑇 > 0 such that
𝑢𝑀𝛼 > 𝑏𝜌∕𝑎 + 𝜖 for 𝑡 ≥ 𝑇. Therefore, for each 𝑡 > 𝑇,

𝑀1(𝑡) ≥ 𝑀1(0)𝑒−𝑏𝑡 + 𝑎𝑒−𝑏𝑡 ∫
𝑇

0
𝑢(𝜏)𝑀𝛼(𝜏)𝑒𝑏𝜏 𝑑𝜏 + 𝑎(𝑏𝜌∕𝑎 + 𝜖)𝑒−𝑏𝑡 ∫

𝑡

𝑇
𝑒𝑏𝜏 𝑑𝜏

= 𝑒−𝑏𝑡 (𝑀1(0) + 𝑎 ∫
𝑇

0
𝑢(𝜏)𝑀𝛼(𝜏)𝑒𝑏𝜏 𝑑𝜏) + 𝑒−𝑏𝑡𝑎(𝑏𝜌∕𝑎 + 𝜖)𝑒

𝑏𝑡 − 𝑒𝑏𝑇

𝑏
.

Taking the limit 𝑡 → ∞ we obtain lim𝑡→∞𝑀1(𝑡) ≥ 𝜌 + 𝑎𝜖∕𝑏, which is a contradiction. We
can prove in a similar way that lim sup𝑡→∞ 𝑢𝑀𝛼 < 𝑏𝜌∕𝑎 leads to a a contradiction. Thus our
statement follows.

5.2 Numerical experiments and discussions

To approach numerically the Lifshitz-Slyozov equation we use a standard finite volume
scheme with an upwind approximation of the fluxes. The behaviour of the solutions is
depicted in Figures 1 to 3.

Figure 1 shows time evolution of the distribution for two distinct initial conditions with
rates given by 𝛼 = 1∕3 and 𝛽 = 2∕3, see details in the figure’s legend. Note that we have no
explicit solution at hand and the rate of convergence is unknown in this case. It seems that,
roughly speaking, the particular details of the initial condition are lost as time advances and
the concentration behaviour that ensues seems to follow a universal profile. Figure 2 shows
the rates of convergence of 𝑢, and divergence of𝑀0, to be polynomial. We compare with
the conjecture (15) and the results agree. In fact, this is robust according to various set of
coefficients (results not shown). To further capture the limiting profile, we plot in Figure 3
the tail distribution 𝐹(𝑡, 𝑥) = ∫ ∞

𝑥 𝑓(𝑡, 𝑥)𝑑𝑥, while normalising the mass and the front speed.
Specifically, choosing 𝑥 ↦→ 1∕(1 +𝑀0(𝑡))𝐹(𝑡, 𝑥∕(1 +𝑀0(𝑡)), we observe that several initial
conditions lead to a similar asymptotic profile. However, we emphasize that our numerical
scheme is not specifically designed to robustly capture a potential asymptotic profile, as it
has been shown in [5] in the outgoing case. Using a sufficiently refined mesh, we hope that
at least we capture correctly the rates of convergence.
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6 Long-time behavior for proportional attachment and
detachment rates

In this section we discuss the special case of 𝑏(𝑥) = Φ0𝑎(𝑥) for some givenΦ0 > 0. Particular
instances of this situation for power-law rates (with outflow behavior or zero boundary
conditions) have been studied in [6,7]. Here we investigate the case of nucleation boundary
conditions (3). For this section we still assume hypotheses (H0), (H2) and (H3). Note that
hypothesis (H1) is replaced by Φ being constant. Here hypothesis (H4) is not required and
hypothesis (H5) is replaced by

𝔫 is Lipschitz continuous on [Φ0, 𝜌] and 𝔫(𝑧) ≥ 𝔫(Φ0) = 0 , for all 𝑧 ∈ [0, 𝜌] , (H5’)

that is, nucleation cannot fuel anymore at the critical value. Finally, (H6) reduces to just

𝑓in ∈ 𝐿1(ℝ+, (1 + 𝑥)𝑑𝑥) . (H6’)

We shall assume morevover that 𝑎 ∈ 𝒞1(0,∞), which entails that the characteristic curves
are well-defined. Therefore, in this case of constant Φ, existence and uniqueness of global
solutions is ensured, see [4].

Further, we let

𝐴(𝑥) = ∫
𝑥

0

1
𝑎(𝑦)

𝑑𝑦 ,

for all 𝑥 ≥ 0, which is an increasing 𝒞1-diffeomorphism fromℝ+ intoℝ+ with 𝐴(0) = 0. We
denote

𝑀𝑎(𝑡) = ∫
∞

0
𝑎(𝑥)𝑓(𝑡, 𝑥)𝑑𝑥 ,

which is finite for all 𝑡 ≥ 0 by (7).

The main result of this section rules out concentration phenomena for the density and
provides an explicit rate of convergence for 𝑢:

Theorem 6.1. Assume 𝑎 ∈ 𝒞1(0,∞) and 𝑏(𝑥) = Φ0𝑎(𝑥). Under hypotheses (H0), (H2), (H3),
(H5’), (H6’), any global solution in the sense of Definition 2.1 satisfies:

• lim𝑡→∞ 𝑢(𝑡) = Φ0,

• There exists 𝑓 ∈ 𝐿1(ℝ+, (1 + 𝑥)𝑑𝑥) such that

lim
𝑡→+∞

𝑓(𝑡, ⋅) = 𝑓 , 𝑤 − 𝐿1(ℝ+) .

Indeed, the limit 𝑓 has a representation formula, given at end of the proof of Theorem
6.1, see (22). This representation depends noticeably on the chosen initial condition. Fur-
thermore, if 𝑎 is non-decreasing in 𝑥 then𝑀𝑎 is increasing in 𝑡 and our proof shows that the
trend to equilibrium is exponential:

0 < 𝑢(𝑡) − Φ0 ≤ (𝑢(0) − Φ0)𝑒−𝑀𝑎(0)𝑡 .
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Proof. We proceed in a number of separate steps. During the proof we assume 𝑓in ≠ 0. There
is no loss of generality in so doing, as the given boundary conditions ensure that starting
with 𝑓in = 0 produces some nonvanising 𝑓(𝑡0) for some 𝑡0 > 0 small, which we may take as
a new initial condition.

Step 1: Mild formulation. We will represent the solution in terms of characteristics. For
that aim we will use several results from [4]. The equation determining the characteristics
reads

𝑑
𝑑𝑠
𝑋(𝑠; 𝑡, 𝑥) = (𝑢(𝑠) − Φ0)𝑎(𝑋(𝑠; 𝑡, 𝑥)) ; 𝑋(𝑡; 𝑡, 𝑥) = 𝑥 . (16)

For any given 𝑥 > 0 we can ensure existence and uniqueness of a maximal solution
𝑋(⋅; 𝑡, 𝑥) on (𝜎𝑡(𝑥),∞). Note the following: either 𝜎𝑡(𝑥) = 0 and lim𝑠→0𝑋(𝑠, 𝑡, 𝑥) > 0, or
𝜎𝑡(𝑥) > 0 and lim𝑠→𝜎𝑡(𝑥)𝑋(𝑠, 𝑡, 𝑥) = 0.

Therefore, for any 𝑠 ∈ (𝜎𝑡(𝑥), +∞) we can integrate (16) as follows:

𝑋(𝑠; 𝑡, 𝑥) = 𝐴−1 (𝐴(𝑥) + ∫
𝑠

𝑡
(𝑢(𝜏) − Φ0)𝑑𝜏) .

We define 𝛾(𝑡) for all 𝑡 ≥ 0 through

𝛾(𝑡) ∶= ∫
𝑡

0
(𝑢(𝜏) − Φ0)𝑑𝜏 , and 𝑥𝑐(𝑡) = 𝐴−1(𝛾(𝑡)) . (17)

The curve 𝑥𝑐(𝑡) corresponds to 𝑋(𝑡; 0, 0). In [4], it is proved for all 𝑡 > 0, 𝜎𝑡 is a 𝒞1-
diffeomorphism form (0, 𝑥𝑐(𝑡)) into (0, 𝑡) and𝑋(0; 𝑡, ⋅) is also a diffeomorphism from (𝑥𝑐(𝑡),∞)
into (0,∞). These facts provide the following mild formulation, for any bounded 𝜑 ∈
𝒞0([0,∞))

∫
∞

0
𝑓(𝑡, 𝑥)𝜑(𝑥)𝑑𝑥 = ∫

𝑡

0
𝔫(𝑢(𝑠))𝜑(𝜎−1𝑡 (𝑠))𝑑𝑠 + ∫

∞

0
𝑓𝑖𝑛(𝑥)𝜑(𝑋(𝑡; 0, 𝑥))𝑑𝑥 . (18)

Step 2: 𝛾(𝑡) is bounded. Note that

𝑋(𝑡; 0, 𝑥) = 𝐴−1 (𝐴(𝑥) + 𝛾(𝑡)) ≥ 𝐴−1(𝛾(𝑡)).

Hence, by equation (18) with 𝜑(𝑥) = 𝑥,

𝜌 ≥ ∫
∞

0
𝑥𝑓(𝑡, 𝑥)𝑑𝑥 ≥ ∫

∞

0
𝑓𝑖𝑛(𝑥)𝑋(𝑡; 0, 𝑥)𝑑𝑥 ≥ 𝐴−1(𝛾(𝑡)) ∫

∞

0
𝑓in(𝑥)𝑑𝑥 ,

which proves our claim.

Step 3: 𝑢(𝑡) → Φ0 as 𝑡 → ∞. Note that 𝛾′(𝑡) = 𝑢(𝑡) − Φ0 and

𝑢′(𝑡) = −(𝑢(𝑡) − Φ0)𝑀𝑎(𝑡) .

It follows that Φ0 is a steady state for 𝑢(𝑡). Since 𝑢(0) > Φ0 and𝑀𝑎(𝑡) is continuous and
non-negative (with 𝑀𝑎(𝑡) = 0 if and only if 𝑓(𝑡) = 0, that is, if and only if 𝑢(𝑡) = 𝜌), we
obtain that 𝑢(𝑡) decreases and 𝑢(𝑡) > Φ0 for all 𝑡 ≥ 0. Thus 𝑢 has a limit, which is Φ0.
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Step 4: 𝛾(𝑡) is strictly increasing and has a limit as 𝑡 → ∞. The previous steps ensure that
𝛾 is (strictly) increasing, because 𝛾′(𝑡) = 𝑢(𝑡) − Φ0 > 0, and 𝛾 is bounded, so 𝛾 has a limit

𝛾 = lim
𝑡→∞

𝛾(𝑡) . (19)

Step 5: 𝑥𝑐(𝑡) has a limit as 𝑡 → ∞. Combining the definition of 𝑥𝑐(𝑡) = 𝐴−1(𝛾(𝑡)), the
continuity of 𝐴−1 and the limit of 𝛾, we obtain that 𝑥𝑐(𝑡) has a limit,

𝑥𝑐 = lim
𝑡→∞

𝑥𝑐(𝑡) = 𝐴−1(𝛾) . (20)

Step 6: 𝑋(𝑡; 0, ⋅) has a limit as 𝑡 → ∞. We remark that 𝑋(𝑡; 0, 𝑥) = 𝐴−1(𝐴(𝑥) + 𝛾(𝑡)) for
𝑥 > 0 which entails that 𝑋(𝑡; 0, 𝑥) has a limit too, since 𝐴 is 𝒞1-diffeomorphism, and

𝑋(𝑥) = lim
𝑡→∞

𝑋(𝑡; 0, 𝑥) = 𝐴−1(𝐴(𝑥) + 𝛾) . (21)

This makes clear that 𝑋 is a 𝒞1-diffeomorphism from (0,∞) into (𝑥𝑐,∞).

Step 7: 𝜎−1𝑡 has a limit as 𝑡 → ∞. Recall from Step 1 that lim𝑠→𝜎𝑡(𝑥)𝑋(𝑠, 𝑡, 𝑥) = 0. Using
the fact that lim𝑥→𝜎−1𝑡 (𝑠)𝑋(𝑠; 𝑡, 𝑥) = 0 -see [4]- we deduce that

𝜎−1𝑡 (𝑠) = 𝐴−1 (∫
𝑡

𝑠
(𝑢(𝜏) − Φ0)𝑑𝜏) = 𝐴−1(𝛾(𝑡) − 𝛾(𝑠)) .

and thus we have the limit

𝜎
−1
(𝑠) = lim

𝑡→∞
𝜎−1𝑡 (𝑠) = 𝐴−1(𝛾 − 𝛾(𝑠)) .

We conclude that 𝜎(𝑥) = 𝛾−1(𝛾 − 𝐴(𝑥)) is a 𝒞1-diffeomorphism from (0, 𝑥𝑐) into (0, 𝑡), with
reciprocal 𝜎−1.

Step 8: The limit density. Let 𝜑 ∈ 𝒞0([0,∞)) be bounded; we insert it in equation (18).
By the limit in Step 7 and the dominated convergence theorem, we conclude that

lim
𝑡→∞

∫
∞

0
𝑓(𝑡, 𝑥)𝜑(𝑥)𝑑𝑥 = ∫

∞

0
𝔫(𝑢(𝑠))𝜑(𝜎

−1
(𝑠))𝑑𝑠 + ∫

∞

0
𝑓𝑖𝑛(𝑥)𝜑(𝑋(𝑥))𝑑𝑥

= ∫
𝑥𝑐

0
𝔫(𝑢(𝜎(𝑥)))|𝜎

′
(𝑥)|𝜑(𝑥)𝑑𝑥 + ∫

∞

𝑥𝑐

𝑓𝑖𝑛(𝑋
−1
(𝑥))|𝑋

−1
′|𝜑(𝑥)𝑑𝑥 (22)

which proves the desired result.

The result of Theorem 6.1, and in particular formula (22), is in line with [6] in the case
𝔫 = 0 and 𝑎 and 𝑏 power-law functions, where semi-explicit expressions are available for
𝑥𝑐, 𝛾 and 𝑋.
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Figure 1. Distribution 𝑓(𝑡, 𝑥) with respect to 𝑥 at different times 𝑡. The rates are given by
𝑎(𝑥) = 𝑥1∕3, 𝑏(𝑥) = 𝑥2∕3 and 𝔫(𝑧) = 𝑧2. The total mass is 𝜌 = 1. Simulations were performed with a
finite volume scheme (upwind), with ∆𝑡 = 5 ⋅ 10−5 and ∆𝑥 = 10−4. Left column: initial condition is
𝑓in = 0; Right column: 𝑓in(𝑥) = (−2000(𝑥 − 0.2)(𝑥 − 0.3))+.
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Figure 2. Up: 𝑢(𝑡) versus time 𝑡 in abscissa (straight line) and 𝑡−1∕5 (dashed line). Down: 𝑀0(𝑡)
versus time 𝑡 in abscissa (straight line) and 𝑡3∕5 (dashed line). Graphics are shown in log-log scale.
Parameters are the same as Fig. 1 with 𝑓in = 0.
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Figure 3. Normalised distribution 𝑥 ↦→ 1∕(1 +𝑀0(𝑡))𝐹(𝑡, 𝑥∕(1 +𝑀0(𝑡)) with
𝐹(𝑡, 𝑥) = ∫ ∞𝑥 𝑓(𝑡, 𝑥)𝑑𝑥, with respect to 𝑥 at different times 𝑡. Parameters and simulations are
performed as Fig. 1. Left column: initial condition is 𝑓in = 0; Right column:
𝑓in(𝑥) = (−2000(𝑥 − 0.2)(𝑥 − 0.3))+.
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