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Abstract. The parametrization of (3, 3)-isogenies by Bruin, Flynn and
Testa requires over 37.500 multiplications if one wants to evaluate a sin-
gle isogeny in a point. We simplify their formulae and reduce the amount
of required multiplications by 94%. Further we deduce explicit formulae
for evaluating (3, 3)-splitting and gluing maps in the framework of the
parametrization by Bröker, Howe, Lauter and Stevenhagen. We provide
implementations to compute (3n, 3n)-isogenies between principally po-
larized abelian surfaces with a focus on cryptographic application. Our
implementation can retrieve Alice’s secret isogeny in 11 seconds for the
SIKEp751 parameters, which were aimed at NIST level 5 security.

1 Introduction

Elliptic curves have a rich history of being used for cryptographic purposes.
Their higher-dimensional variants have also been studied in the context of the
discrete logarithm problem, but were deemed not practical or safe enough to be
used (see for example [16,27]). With the advent of quantum computers in mind,
a lot of this research has shifted towards using isogenies between elliptic curves.

In 2009, Charles, Goren and Lauter (CGL) used isogenies between super-
singular elliptic curves over Fp2 to construct a hash function based on their
expander graph properties [10]. In 2018, Takashima generalized this construc-
tion to supersingular Jacobians of hyperelliptic curves of genus two [28], but this
hash function was quickly found to allow many collisions by Flynn and Ti [14].
These collisions were fixed by Castryck, Decru and Smith, and they also argued
for the correct generalization to superspecial abelian varieties [8].

In 2011, Jao and De Feo constructed a Diffie–Hellman style key exchange,
called Supersingular Isogeny Diffe–Hellman (SIDH), based on the isogeny graph
underlying the CGL hash function [17]. The protocol can also be generalized
to allow a key exchange when using abelian surfaces instead of elliptic curves,
as shown by Flynn and Ti [14]. This higher-dimensional variant was further
improved in a follow-up work by Kunzweiler, Ti and Weitkämper [20].

The SIDH protocol was used as the basis for the Supersingular Isogeny Key
Encapsulation (SIKE) which was submitted to NIST as a candidate for their
post-quantum standardization process. Early July 2022, NIST announced SIKE
to be one of only four candidates to advance to round 4 of the post-quantum
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standardization process for public key exchanges [23]. That same month how-
ever, Castryck and Decru published a devastating attack on SIKE, retrieving
Bob’s private key in minutes to hours depending on the security level [7]. Their
attack relied on embedding elliptic curves into abelian surfaces, and used Kani’s
reducibility criterion [18] as part of their decisional oracle. The attack got im-
proved by a quick series of follow-up works using a direct computational ap-
proach [22,24], and finally Robert managed to prove that even if the endo-
morphism ring of the starting curve in SIDH is unknown, there is always a
polynomial-time attack by using abelian eightfolds [25].

Despite these generalizations and the increasing interest in higher-dimensional
cryptographic applications, most of the aforementioned implementations restrict
themselves to isogenies of very low prime degree. The genus-2 version of the CGL
hash function in [8] used (2, 2)-isogenies only, since they are by far easiest to com-
pute. Kunzweiler improved further on these (2, 2)-isogeny formulae in [19], and
Castyck and Decru provided a (3, 3)-version based on their multiradical isogeny
setting [6]. The (now also broken) genus-2 variant of SIDH in [14] used (2, 2)-
and (3, 3)-isogenies to obtain a five-minute key exchange on the basic security
level. The implementation of the attacks on SIKE in [7] and [22] only target
Bob’s private key, since this requires only using (2, 2)-isogenies. In [26], Santos,
Costello and Frengley do manage to use up to (11, 11)-isogenies, but only as a
decisional tool to detect (N,N)-split Jacobians.

The reason for these restrictions is that computing isogenies between abelian
surfaces is typically a lot harder than isogenies between elliptic curves. The
general (ℓ, ℓ)-isogeny formulae by Cosset and Robert [12] have polynomial time
complexity O(ℓ2) or O(ℓ4), depending on ℓ mod 4, but arithmetic has to be
performed in the field extension where the theta coordinates are defined, which
can turn expensive quickly for cryptographic purposes. The only other known
general parametrization are the (3, 3)-isogeny formulae by Bruin, Flynn and
Testa (BFT) [4], which were used as a basis for both the multiradical (3, 3)-hash
function and the genus-2 variant of SIDH. The parametrization is complete, but
the formulae require over 37.500 multiplications if one wants to also evaluate
points and not just compute the codomain curve.

Our contribution. We optimize the BFT-formulae from [4] and reduce the
amount of required multiplications by 94%. We also develop concrete and effi-
cient gluing and splitting formulae for (3, 3)-isogenies, which allow us to evaluate
them on points. All of these operations are furthermore done over the ground
field. Our implementations and formulae are with cryptographic applications in
mind and may not work for some small field characteristics. Additionally, certain
exceptional cases occur with probability O(p−1) or less, in which case we do not
implement them in generic applications to reduce the overhead. Exceptions to
this which are useful for cryptographic purposes - such as the gluing and split-
ting - are of course exempt from this exclusion. We provide a (3, 3)-variant of
the CGL hash function similar to the one from [6], and implement an attack
targeting Alice’s secret isogeny in the SIKE protocol. The latter can be done in
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11 seconds for the SIKEp751 parameters, aimed at NIST level 5 security, down
from the 1 hour computation for Bob’s secret isogeny in [24].

Outline. We will provide necessary mathematical preliminaries in Section 2. In
Section 3, we will recap the BFT parametrization and discuss our improvements
to it. In Section 4 we will discuss isogenies between abelian surfaces of which
at least one of the domain or codomain is a product of elliptic curves, followed
by the necessary coordinate transformations between these parametrizations in
Section 5. Our version of the (3, 3)-hash function and attack on Alice’s private
key in the SIKE protocol will be discussed in Section 6, respectively 7. Finally,
we will provide an overview of the auxiliary Magma [2] and SageMath [30] code
in Section 8, which can be found at https://github.com/KULeuven-COSIC/3_
3_isogenies.

Acknowledgements. This work is a result of a workshop during Leuven Isogeny
Days 2022, supported by the European Research Council (ERC) under the Euro-
pean Union’s Horizon 2020 research and innovation programme (grant agreement
ISOCRYPT - No. 101020788). This work was supported in part by CyberSe-
curity Research Flanders with reference number VR20192203, the DFG under
Germany’s Excellence Strategy - EXC 2092 CASA - 390781972 and the Agence
Nationale de la Recherche under the grant ANR CIAO (ANR-19-CE48-0008).
We thank Anna Somoza and Eda Kırımlı for helpful discussions.

2 Preliminaries

Below are some notes on the definitions that we will need later. In general, we
assume to work over a field k with nonnegative characteristic p > 5, though
some of the results generalize beyond this restriction.

2.1 Genus-2 Curves and their Jacobians

Let C be an algebraic curve of genus 2. Any such curve is hyperelliptic and admits
an affine equation of the form C : y2 = f(x), where f ∈ k[x] is a square-free
polynomial of degree 5 or 6. If f is a degree-5 polynomial, then the corresponding
genus-2 curve has precisely one point at infinity which we denote by ∞. On the
other hand, if the degree of f is 6, then there are two points at infinity and
we denote them by ∞+ and ∞−. Note that ∞+ and ∞− get swapped by the
hyperelliptic involution τ : C → C, (x, y) 7→ (x,−y), whereas in the degree-5
case, ∞ is a fixed point. In general, points fixed by the involution are referred
to as the Weierstrass points of C.

While the points on a genus-2 curve do not form a group, we will work with
Jacobians of such curves. The Jacobian Jac(C) of a genus-2 curve C is an abelian
surface, i.e. an abelian variety of dimension 2. Moreover it comes equipped with a
principal polarization, i.e. an isomorphism to its dual and is therefore considered
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a principally polarized abelian surface (p.p.a.s.). In general, p.p.a.s. come in two
flavours. They are either irreducible and hence the Jacobian of a genus-2 curve,
or they are reducible in which case they are the product of two elliptic curves.

To work with elements of the Jacobian Jac(C), one usually exploits its link to
the Picard group of C. Recall that for any field extension k′/k, the group of k′-
rational points Jac(C)(k′) is isomorphic to the Picard group Pic0C(k

′). This allows
us to represent elements of Jac(C) as equivalence classes of degree-0 divisors on
C. Moreover, any element [D] ∈ Jac(C) has a unique representative of the form
[P1 + P2 −D∞], where

D∞ =

{
2 · ∞ if deg(f) = 5,

∞+ +∞− if deg(f) = 6,

and P1 + P2 is an effective divisor with affine part in general position, i.e. P1 ̸=
τ(P2), see [15, Proposition 1]. This facilitates a compact representation in terms
of Mumford coordinates. For simplicity, assume that P1 = (x1, y1) and P2 =
(x2, y2) are both affine, then the Mumford presentation of [D] is defined as the
pair of polynomials [a, b] ∈ k[x]2 with a = (x− x1)(x− x2) and y = b(x) is the
line connecting P1 and P2. For the general definition, we refer to [11].

2.2 Torsion Subgroups and Isogenies of p.p.a.s.

For an integer N ∈ N, the N -torsion subgroup of a p.p.a.s. is defined as A[N ] =
{P ∈ A | N · P = 0}. If N is not divisible by p, then this is a free Z/NZ-
module of rank 4. To describe subgroups defining isogenies between p.p.a.s., it is
necessary to take into account the Weil pairing which is an alternating, bilinear
pairing eN : A[N ]×A[N ] → µN , where µN denotes the group of N -th roots of
unity. A subgroup G ⊂ A[N ] is called maximal N -isotropic if the following two
properties are satisfied.

1. The Weil pairing restricts trivially onto G (isotropy).
2. There is no proper subgroup H ⊂ A[N ] properly containing G (maximality).

Let G ⊂ A[N ] be a maximal N -isotropic subgroup, then up to isomorphism
there exists a unique p.p.a.s. A′ together with an isogeny Φ : A → A′ with
kernel ker(Φ) = G. In our paper, we always consider kernel groups of rank 2, i.e.
G ∼= Z/NZ × Z/NZ. In this case, we simply refer to the kernel as an (N,N)-
subgroup and call the corresponding isogeny an (N,N)-isogeny. Indeed, we will
only be interested in the case where N = 3 or more generally N = 3n.

Since there are two types of p.p.a.s., Jacobians of genus-2 curves and products
of elliptic curves, there exist four different types of isogenies of p.p.a.s depending
on the nature of the domain and codomain. We distinguish the following cases.

– Generic case: Φ : Jac(C) → Jac(C′).
– Splitting case: Φ : Jac(C) → E′

1 × E′
2.

– Gluing case: Φ : E1 × E2 → Jac(C′).
– Product case: Φ : E1 × E2 → E′

1 × E′
2.
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In higher-dimensional isogeny-based cryptography, one almost always works with
superspecial abelian varieties, see for example [8]. Given that the superspecial
products of elliptic curves only constitute a proportion of O(p−1) of all super-
special p.p.a.s., the generic case occurs most often in cryptographic contexts.

2.3 The Quartic Model of the Kummer Surface

Instead of working with the Jacobian of a genus-2 curve, it is sometimes favourable
to work with the associated Kummer surface obtained by taking the quotient
by the action of [−1] on Jac(C). While this results in losing the full picture
of the group, it has the geometric advantage that the Kummer surface can be
compactly defined as a variety in P3. In general, the Kummer surface can be
seen as the natural analogue to x-only arithmetic often used in elliptic curve
cryptography. We now provide some more details on the definition.

Let C : y2 = F (x) with F =
∑6
i=0 fix

i be a curve of genus 2 and let Jac(C)
be its Jacobian. Consider the map ξ : Jac(C) → P3, generically defined as

[(x1, y1) + (x2, y2)−D∞] 7→ (ξ0 : ξ1 : ξ2 : ξ3),

where

ξ0 = 1, ξ1 = x1 + x2, ξ2 = x1x2, ξ3 =
φ(ξ0, ξ1, ξ2)− 2y1y2

ξ21 − 4ξ0ξ2

and

φ = 2f0ξ
3
0 + f1ξ

2
0ξ1 + 2f2ξ

2
0ξ2 + f3ξ0ξ1ξ2 + 2f4ξ0ξ

2
2 + f5ξ1ξ

2
2 + 2f6ξ

3
2 .

The image of the map ξ in P3 is a quartic surface defined by the equation

K(ξ0, ξ1, ξ2, ξ3) = (ξ21 − 4ξ0ξ2)ξ
2
3 + φ(ξ0, ξ1, ξ2)ξ3 + η(ξ0, ξ1, ξ2) = 0,

where η ∈ k[ξ0, ξ1, ξ2] is a homogeneous degree-4 polynomial. The image of ξ
is called the Kummer surface of C and we denote it as K(C). While we omit
the formulae for η here, we remark that its coefficients lie in Z[f0, . . . , f6]. For
an explicit description of η and more details on the definition of the Kummer
surface, we refer to [5, Chapter 3].

Remnants of the group structure Applying the map ξ : Jac(C) → K(C), the group
structure gets lost, in particular the Kummer surface is not an abelian variety.
For instance, consider two elements T, T ′ ∈ Jac(C). Given only ξ(T ) and ξ(T ′),
it is not possible to determine ξ(T + T ′). However, there are some remnants of
the group structure of the Jacobian. In particular, multiplication by an integer
n ∈ Z remains meaningful on the Kummer surface. That is, given ξ(T ) for some
element T ∈ Jac(C), one can compute n · ξ(T ) := ξ(nT ) (see [5, Chapter 3.6]).
Furthermore, one can use differential additions to compute images of points on
the Kummer surface that lift to a specific element of the Jacobian. Since our
applications do not require this, we shall not elaborate.
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Isogenies An isogeny Φ : Jac(C) → Jac(C′) descends to a rational map ΦK :
K(C) → K(C′) which makes the following square commute.

Jac(C) Jac(C′)

K(C) K(C′).

Φ

ξ ξ′

ΦK

Being a map of Kummer surfaces, ΦK is strictly speaking not an isogeny. How-
ever, we slightly abuse notation and refer to ΦK as the isogeny on the level of
Kummer surfaces.

3 (3, 3)-Isogenies between Jacobians

In the first part of this section, we summarize the parametrization of genus-2
curves whose Jacobians have a (3, 3)-torsion subgroup with rational generators,
as well as the corresponding isogeny formulae by Bruin, Flynn and Testa from [4].
In the second part, we explain optimizations for the evaluation of these formulae.

3.1 BFT Approach

Consider a genus-2 curve C and a maximal isotropic group G = ⟨T, T ′⟩ ⊂
Jac(C)[3](k). In [4], the authors show that if the data (C, G) is sufficiently general,
then there exist r, s, t ∈ k such that C is isomorphic to the curve

Cr,s,t : y2 = Gr,s,t(x)
2 + λHr,s,t(x)

3 = G′
r,s,t(x)

2 + λ′H ′
r,s,t(x)

3,

where

Hr,s,t(x) = x2 + rx+ t, λ = 4s,

Gr,s,t(x) = (s− st− 1)x3 + 3s(r − t)x2 + 3sr(r − t)x− st2 + sr3 + t,

H ′
r,s,t(x) = x2 + x+ r, λ′ = 4st,

G′
r,s,t(x) = (s− st+ 1)x3 + 3s(r − t)x2 + 3sr(r − t)x− st2 + sr3 − t.

The 3-torsion elements T and T ′ are given by [Hr,s,t(x), Gr,s,t(x)] respectively
[H ′

r,s,t(x), G
′
r,s,t(x)].

1 For an explicit description of the full torsion subgroup
⟨T, T ′⟩, see [4, Theorem 6].

Remark 1. The generality stems from the fact that both T and T ′ require non-
degenerate support. However, due to [4, Lemma 3], it is always possible to choose
two generators of ⟨T, T ′⟩ that satisfy this. The chance of two random generators
having degenerate support is O(p−1), so we will not elaborate on those cases.

1 Remark the slight abuse of notation: the polynomials Gr,s,t(x) and G′
r,s,t(x) are

cubic and hence this is not a Mumford representation. However, they reduce to the
correct linear expression modulo Hr,s,t(x), respectively H ′

r,s,t(x).
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Remark 2. When considering the isomorphism (x, y) 7→ (x, y + Gr,s,t(x)), the
parametrization gets a cleaner form which is similar to the well-known parametriza-
tion of X1(3) in the elliptic-curve case. Indeed, the curve is then given by

C : y2 +Gr,s,t(x)y = sHr,s,t(x)
3.

The (3, 3)-subgroup is then generated by [Hr,s,t(x), 0] and [H ′
r,s,t(x), x

3 − t].

We consider the (3, 3)-isogeny Φ : Jac(Cr,s,t) → Jac(Cr,s,t)/⟨T, T ′⟩, where we

assume Jac(Cr,s,t)/⟨T, T ′⟩ = Jac(C̃) is again the Jacobian of a genus-2 curve.
Along with the formulae for the codomain curve, the authors of [4] also provide

explicit formulae for the induced map ΦK : K(Cr,s,t) → K(C̃) on the correspond-
ing Kummer surface. 2 Naturally, the map on the Kummer surfaces is of degree
three. More precisely, it is of the form

ΦK : K(Cr,s,t) → K(C̃)

(ξ0 : ξ1 : ξ2 : ξ3) 7→ (ξ̃0 : ξ̃1 : ξ̃2 : ξ̃3),

with
ξ̃0 =

∑
0≤i≤j≤k≤3

ai,j,kξiξjξk, ξ̃1 =
∑

0≤i≤j≤k≤3

bi,j,kξiξjξk,

ξ̃2 =
∑

0≤i≤j≤k≤3

ci,j,kξiξjξk, ξ̃3 =
∑

0≤i≤j≤k≤3

di,j,kξiξjξk.
(1)

Note that there are exactly 20 monomials of degree 3 in four variables. There
exist expressions a0,0,0, . . . , d3,3,3 ∈ Z[r, s, t] for the 80 coefficients. Unfortunately,
these expressions are not very compact and their evaluation requires over 37.500
multiplications using a multivariate Horner scheme.

3.2 Improvements

To reduce the number of multiplications in the evaluation of the (3, 3)-isogeny,
we find more compact representations for the coefficients ai,j,k, bi,j,k, ci,j,k, di,j,k
introduced in Equation 1.

Relations among the coefficients As a first step, we observe that there
exist various relations among the ai,j,k, bi,j,k, ci,j,k, di,j,k from above and the

coefficients of the curve equations from Cr,s,t and C̃. To make this more explicit,

denote Cr,s,t : y2 =
∑
fix

i and C̃ : y2 =
∑
gix

i keeping in mind that we
know explicit descriptions of the coefficients from Section 3.1. The coefficients
of the Kummer surface equations Kr,s,t of K(Cr,s,t) can be expressed in terms of

f0, . . . , f6, and in the same way the coefficients of the equation K̃ of K(C̃) can
be expressed in terms of g0, . . . , g6. In the following, we interpret the polynomial
K̃ ∈ k[ξ̃0, ξ̃1, ξ̃2, ξ̃3] as a polynomial in k[ξ0, ξ1, ξ2, ξ3] via the identities for ξ̃i from

2 They can be found online at http://www.cecm.sfu.ca/~nbruin/c3xc3/

http://www.cecm.sfu.ca/~nbruin/c3xc3/
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Equation 1. In that setting, K̃ is a degree-12 polynomial. Further note that K̃
vanishes at all points (ξ0 : ξ1 : ξ2 : ξ3) of K(Cr,s,t), hence K̃ is divisible by Kr,s,t

and we can write

K̃ = Qaux ·Kr,s,t ∈ k[ξ0, ξ1, ξ2, ξ3] (2)

for a degree-8 polynomial Qaux in k[ξ0, ξ1, ξ2, ξ3].
While there exist known expressions for ai,j,k, bi,j,k, ci,j,k, di,j,k we treat them

as variables. The only exceptions are ai,3,3, bi,3,3, ci,3,3, di,3,3 with i ∈ {0, 1, 2, 3},
for which we insert the already known (and compact) expressions. In fact, these

are either 0 or ∆, where the latter is a factor of the discriminant of C̃. By
comparing coefficients of the identity in Equation 2, we obtain in total 447 rela-
tions among the ai,j,k, bi,j,k, ci,j,k, di,j,k and the fi, gi. Note that these relations
also include the 165 coefficients qi1,...,i8 of the degree-8 polynomial Qaux. How-
ever, it is easy to eliminate these unknowns from the system which reduces
the number of relations by 165 and leaves us with 282 relations purely between
ai,j,k, bi,j,k, ci,j,k, di,j,k and fi, gi. IfKr,s,t and K̃ were general degree-4 equations,
(almost) all the obtained relations would be quartic in ai,j,k, bi,j,k, ci,j,k, di,j,k.
However, given the special form of the Kummer surface equations, we obtain
several quadratic and even linear relations. For instance, one immediately ob-
tains

a2,2,3 = 4(f6∆− g6).

This requires a total of one full and one small-scalar multiplication, compared
to 96 multiplications to compute the same coefficient in the original formulae by
means of a Horner scheme.

Expressing all coefficients from these relations Despite the relations be-
tween the coefficients only being quartic, we still have a system of 282 equations
in 80 unknowns. A direct Gröbner basis computation is hence completely out of
reach. After clearing the easiest (linear) relations, it becomes evident that one can
not simply backsubstitute to obtain easy expressions for all ai,j,k, bi,j,k, ci,j,k, di,j,k,
since more of these always show up when trying to introduce new relations for
a partial Gröbner basis computation. Nonetheless, looking at the lowest degrees
in which the coefficients occur, we can distinguish four sets as follows:

S1 = {ai,3,3, bi,3,3, ci,3,3 | 0 ≤ i ≤ 3},
S2 = {ai,j,3, bi,j,3, ci,j,3, di,3,3 | 0 ≤ i, j ≤ 2},
S3 = {ai,j,k, bi,j,k, ci,j,k, di,j,3 | 0 ≤ i, j, k ≤ 2},
S4 = {di,j,k | 0 ≤ i, j, k ≤ 2}.

The coefficients in S1 are easiest to express since they are all either zero or (a
small power of) ∆. All coefficients in S2 satisfy at least one linear relation only
involving terms in S2 ∪G2, where G2 = {fi∆ | 0 ≤ i ≤ 6} ∪ {gi | 0 ≤ i ≤ 6}. As
evident by the example of a2,2,3 above, some of these can be expressed directly
in terms of G2. There are however fewer such linear relations than variables,
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hence we can not expect this to always be the case. Nonetheless, it seems like
G2 is a good candidate set to express the elements of S2 in the following sense.

Let S ′
2 ⊂ S2 be the subset of coefficients for which we have already found an

(easy) expression. Fix an (arbitrary) ordering for all monomials risjtk occurring
in S ′

2∪G2. Define the matrix A as the one where each row represents an element
from S ′

2 ∪G2, and where the column entries correspond to the coefficient at the
(fixed ordering) monomial risjtk (including a lot of zeros for missing terms).
Choose an element s ∈ S2 which is not in S ′

2, and express it as a column vector
s⃗ based on that same monomial ordering. Finding an expression for s in terms
of S ′

2 ∪G2 now boils down to finding a solution for the linear system

Ax⃗ = s⃗.

For all but three of the elements of S2, we could find such solutions x⃗.3 However,
we are not looking for just any solution x⃗, we are looking for one such that it
results in an easy to evaluate expression for the respective s. To find the actual
fastest evaluation of s, we would need to know the concrete performance of our
hard- and software related to finite field arithmetic. To avoid this being too
platform-dependent, we content ourselves by trying to find the x⃗ such that ||x⃗||0
is smallest; i.e. we are looking for the sparsest solution x⃗ out of all options.

If an extremely sparse solution exists (such as in the case of a2,3,3), an algebra
software package such as Magma may return it directly when asked to solve
the system Ax⃗ = s⃗. Unfortunately, this stops being the case rather quickly.
Denoting L as the lattice of the kernel of A, we can also compute the closest
vectors v⃗i to L for one already-found x⃗. The difference between x⃗ and these
close vectors yield solutions to the linear system of equations with minimized
L2-norm. Even though a minimal ||x⃗−v⃗i||2 will not result in a minimal ||x⃗−v⃗i||0,
generically we can still expect the latter to be small as well. Assuming we can
enumerate enough close vectors v⃗i, we can simply compute all ||x⃗ − v⃗i||0 and
choose the one which results in the sparsest solution. Even though this strategy
provided some solid results, it - again unfortunately - stops being convenient
rather quickly since the close vectors with regard to the L2-norm stopped yielding
sparse solutions. Furthermore, for S3 and S4 up ahead, this approach resulted
in too large dimensions for L so we had to resort to other methods.

We are trying to find solutions to Ax⃗ = s⃗ under the condition that ||x⃗||0 is
minimal. This setting can be translated to the following system of conditions:

Ax⃗ = s⃗, yi ∈ {0, 1},∑
i

yi ≤ m, |xi| ≤Myi,

where y⃗ is a vector of boolean predicates with coefficients yi, the integer m is
an upper bound for the amount of nonzero entries in x⃗, and M is an upper
bound for the coefficients in x⃗. This is a problem that can be solved using

3 These three missing expressions seem independent on the order in which we add
elements to S ′

2. They are still relatively compactly representable however.
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Mixed Integer Linear Programming and is used often in machine learning. This
problem is NP-hard, but for smallish m,M , and somewhat restricted dimensions
of A, this can be solved in reasonable time using Python’s built-in function
scipy.optimize.milp.

Using these methods, we managed to find sparse solutions x⃗ for all s ∈ S2.
For S3 we remark that they stem from quadratic and cubic equations which
always involve a factor ∆, hence we must consider ∆S3 = {∆s | s ∈ S3} instead.
The other terms in the obtained relations are in

G3 = S2
2 ∪ {fi∆s | 0 ≤ i ≤ 6, s ∈ S2} ∪ {gis | 0 ≤ i ≤ 6, s ∈ S2},

where S2
2 = {sisj |si, sj ∈ S2}. For S4 the trend continues in a similar fashion,

and the other terms in the relation come from

G4 = S3
2 ∪∆S3 ∪ {fi∆s | 0 ≤ i ≤ 6, s ∈ S2

2} ∪ {gis | 0 ≤ i ≤ 6, s ∈ S2
2},

where S3
2 = {sisjsk|si, sj , sk ∈ S2}.

Final results Using the methods outlined above, we managed to find expres-
sions for all ai,j,k, bi,j,k, ci,j,k, di,j,k. Replacing a squaring and cubing with one re-
spectively two multiplications, evaluating all of these coefficients now takes 2.234
multiplications, which is a 94% reduction compared to the formulae from [4].
These coefficients can be recycled for each point on the Kummer surface, such
that pushing multiple points through at once comes with little overhead com-
pared to pushing through just one point. We emphasize that the obtained ex-
pressions do not work for certain small field characteristics, but this imposes no
restrictions for cryptographic applications.

4 Non-generic (3, 3)-Isogeny Formulae

In this section we will describe formulae for (3, 3)-isogenies where the domain
or the codomain are products of elliptic curves. For the splitting and the gluing
case our formulae are based on the parametrization by Bröker, Howe, Lauter
and Stevenhagen [3].

4.1 (3, 3)-Isogenies between Elliptic Products

Let Φ : E1 × E2 → E′
1 × E′

2 be a (3, 3)-isogeny such that kerΦ is diagonal; i.e.
it is of the form⟨(P1,∞E2

), (∞E1
, P2)⟩. Then Φ decomposes as a direct product

ϕ1 × ϕ2, where ϕi : Ei → E′
i are 3-isogenies for i ∈ {1, 2}. Formulae for Φ can

hence be obtained from elliptic curves with rational 3-torsion.

Proposition 1 Let Φ be a (3, 3)-isogeny between products of elliptic curves, with
diagonal kernel which is generated by rational points. Then up to isomorphism,
this isogeny is given by

Φ : E1 × E2 → E′
1 × E′

2

(P1, P2) 7→ (ϕ1(P1), ϕ2(P2)),
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where for i ∈ {1, 2} we have

Ei : y
2 + aixy + biy = x3

E′
i : y

2 + aixy + biy = x3 − 5aibix− a3i bi − 7b2i

and

ϕi(x, y) =

(
x3 + aibix+ b2i

x2
,
x3y − a2i bix

2 − aibixy − 2aib
2
ix− 2b2i y − b3i

x3

)
.

Proof. The parametrization of 3-isogenies between elliptic curves is well-known,
see for example [9, Section 4]. The evaluation on points is a straightforward
computation by using (0, 0) as kernel generator in Vélu-style formulae. ⊓⊔

If the kernel of Φ is nondiagonal, then E1 and E2 are necessarily connected by
a 2-isogeny, which follows from Kani’s reducibility criterion [18]. Its parametriza-
tion is independent of the rationality of the 3-torsion.

Proposition 2 Let Φ be a (3, 3)-isogeny between products of elliptic curves, with
nondiagonal kernel. Then this isogeny is an endomorphism given by

Φ : E1 × E2 → E1 × E2

(P1, P2) 7→ (P1 + ϕ̂(P2), P2 − ϕ(P1)),

where ϕ : E1 → E2 is a 2-isogeny such that kerΦ = {(P, ϕ(P )) | P ∈ E1[3]}. Up
to isomorphism4, ϕ is given by

ϕ : E1 → E2

(x, y) 7→
(
x2 + b

x
, y · x

2 − b

x2

)
,

ϕ̂ : E2 → E1

(x, y) 7→
(
x2 − 4b

4(x+ a)
, y · x

2 + 2ax+ 4b

8(x+ a)2

)
,

where

E1 : y2 = x3 + ax2 + bx, E2 : y2 = x3 + ax2 − 4bx− 4ab.

Proof. Due to [18, Theorem 2.6], it must hold that E1 and E2 are connected
by means of a 2-isogeny. Consider the following commutative diagram as in [22,
Theorem 1], where ϕ and ϕ′ are 2-isogenies:

E1 E2

E′
1 E′

2

ϕ

γ γ′

ϕ′

4 If the relevant 2-torsion is not rational, this isomorphism may be defined over a
(small) field extension, regardless of the rationality of the 3-torsion.
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Then

Φ : E′
1 × E2 → E1 × E′

2

(P1, P2) 7→ (γ̂(P1) + ϕ̂(P2), γ
′(P2)− ϕ′(P1))

is a (deg γ+deg ϕ, deg γ+deg ϕ)-isogeny which preserves product polarizations.
The degree of γ and γ′ is then necessarily one if we want to construct a (3, 3)-
isogeny, such that up to isomorphism we can choose Ei = E′

i for i ∈ {1, 2}, as well
as ϕ = ϕ′. The isogeny Φ can then be evaluated as Φ(P1, P2) = (P1+ ϕ̂(P2), P2−
ϕ(P1)). The parametrization of the 2-isogeny ϕ is such that kerϕ = ⟨(0, 0)⟩. ⊓⊔

Remark 3. For a fixed Fp2 , there are O(p) supersingular elliptic curves and all
have exactly three outgoing 2-isogenies, yet there are O(p3) superspecial p.p.a.s.
The ratio of products of 2-isogenous supersingular elliptic curves to superspecial
p.p.a.s. is hence O(p−2). Therefore, it is to be expected that in cryptographic
applications, isogenies as in Proposition 2 will never be used, unless the protocol
is constructed in a particular way to encounter this type.

4.2 Splitting

Here, we consider (3, 3)-isogenies where the domain is the Jacobian of a genus-
2 curve and the codomain is a product of elliptic curves. Such an isogeny is
called a (3, 3)-splitting and it arises from degree-3 covers ψ1 : C → E1 and
ψ2 : C → E2. More precisely, it is the product of the push forwards of these
maps, i.e. Φ = ψ1,∗×ψ2,∗ To make these more explicit, assume that the maps ψ1

and ψ2 are compatible with the hyperelliptic involution ι : C → C, i.e. we have
ψi(ι(P )) = −ψi(P ) for all P ∈ C(K). In that case, the isogeny is given by

Φ : Jac(C) → E1 × E2

[P +Q−D∞] 7→ (ψ1(P ) + ψ1(Q), ψ2(P ) + ψ2(Q)) .
(3)

There exists a complete parametrization for this case and an explicit description
of the maps ψ1 and ψ2 by Bröker, Howe, Lauter and Stevenhagen [3].

Proposition 3 (Proposition A.2 in [3]) Let a, b, c, d, t ∈ k satisfy

12ac+ 16bd = 1, ∆1 = a3 + b2 ̸= 0, ∆2 = c3 + d2 ̸= 0, t ̸= 0.

Define polynomials Fa,b,c,d,t, f1, f2 by

Fa,b,c,d,t = (x3 + 3ax+ 2b)(2dx3 + 3cx2 + 1),

f1 = x3 + 12(2a2d− bc)x2 + 12(16ad2 + 3c2)∆1x+ 512∆2
1d

3,

f2 = x3 + 12(2bc2 − ad)x2 + 12(16b2c+ 3a2)∆2x+ 512∆2
2b

3,

and consider the curves Ca,b,c,d,t : ty
2 = f(x) and Ea,b,c,d,t,i : ty

2 = fi(x) for
i ∈ {1, 2}. Then there are degree-3 morphisms given by

ψa,b,c,d,t,i : Ca,b,c,d,t → Ea,b,c,d,t,i

(x, y) 7→ (ri(x), si(x) · y)
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with

r1(x) = 12∆1
−dx+ e

x3 + 3ax+ 2b
, s1 = ∆1

16dx3 − 12cx2 − 1

(x3 + 3ax+ 2b)2
,

r2(x) = 12∆2
x2(ax− 2b)

2dx3 + 3cx2 + 1
, s2 = ∆2

x3 + 12ax− 16b

(2dx3 + 3cx2 + 1)2
.

On the other hand, if C is a genus-2 curve whose Jacobian is (3, 3)-isogenous
to a product of elliptic curves E1 ×E2, then there exists a quintuple (a, b, c, d, t)
as above and isomorphisms C → Ca,b,c,d,t and Ei → Ea,b,c,d,t,i for i ∈ {1, 2}.

From now on, we assume that we are in the setting of the above proposi-
tion. The determination of the necessary coordinate transformation from C to
a curve Ca,b,c,d,t will be explained in Section 5.2. Using the explicit descrip-
tion of the maps ψa,b,c,d,t,1, ψa,b,c,d,t,2 one can derive a formula for the map
Φ : Jac(Ca,b,c,d,t) → Ea,b,c,d,t,1 × Ea,b,c,d,t,2 using the description in Equation 3.
That said, here we focus on the induced map on the level of Kummer varieties.

Proposition 4 Let Ca,b,c,d,t and Ea,b,c,d,t,i for i ∈ {1, 2} be as in Proposition 3.
Define

ΦK : K(Ca,b,c,d,t) → P1 × P1

as the induced (3, 3)-isogeny on the level of Kummer surfaces. Then the kernel
of ΦK is given by the subvariety of K(C) defined by{

0 = ξ20 + 4c(ξ21 − ξ0ξ2)− 8dξ1ξ2
0 = ξ22 + 4a(ξ21 − ξ0ξ2)− 8bξ0ξ1

}
Moreover, there exist polynomials gx,1, gz,1, gx,2, gz,2 ∈ Z[ξ0, ξ1, ξ2, ξ3] such that

ΦK : (ξ0 : ξ1 : ξ2 : ξ3) 7→ ((gx,1, gz,1), (gx,2, gz,2)) .

The explicit formulae for the map are provided in the auxiliary material, see
Section 8.

Proof. The derivation of the explicit formulae for ΦK can be done using a com-
puter algebra package. Here, we sketch the main steps.

Let ξ = (ξ0 : ξ1 : ξ2 : ξ3) ∈ K(C). We write [P + Q − D∞] ∈ Jac(C)
with P = (x1, y1) and Q = (x2, y2) for a point lying above ξ. To find explicit
formulae, we will be working in the ring Z[ξ0, ξ1, ξ2, ξ3, x1, y1, x2, y2], but at least
at the final step, the variables x1, y1, x2, y2 need to be eliminated. While we
cannot deduce the explicit coordinates of P and Q from ξ alone, we can use the
following identities for this elimination.

x1 + x2 = ξ1/ξ0,

x1x2 = ξ2/ξ0,

2y1y2 =
(
ϕ(ξ0, ξ1, ξ2)− ξ3(ξ

2
1 − 4ξ0ξ2)

)
/ξ30 .

(4)
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Denote ψi = ψa,b,c,d,t,i for i ∈ {1, 2}. The isogeny Φ is equal to the product
ψ1,∗ × ψ2,∗, cf. Equation 3. Using the explicit description of ψi : Ca,b,c,d,t →
Ea,b,c,d,t,i from Proposition 3, we symbolically compute Pi = ψi(P ) and Qi =
ψi(Q) on Ei for i ∈ {1, 2}. Applying the standard formulae for elliptic curve
addition, we then compute Ri = Pi + Qi for i ∈ {1, 2}. By construction, the
obtained expressions for the coordinates of Ri are invariant under swapping
P and Q, hence symmetric in x1, x2 and in y1, y2. Using the Kummer surface
coordinates from Equation 4, it is therefore possible to completely eliminate
x1 and x2 from the coordinates. The elimination of y1 and y2 is more subtle.
While we can express y1y2 in Kummer surface coordinates, this is not possible
for the symmetric expression y1 + y2. However, it is still possible to eliminate
the variables y1 and y2 from the formula for the x-coordinate of Ri, but this is
not the case for its y-coordinate.5

As a result, we obtain quartic polynomials gx,1, gz,1, gx,2, gz,2 ∈ Z[ξ0, ξ1, ξ2, ξ3]
defining the map ΦK → P1 × P1. The polynomials

gz,1 =
(
ξ20 + 4c(ξ21 − ξ0ξ2)− 8dξ1ξ2

)2
, gz,2 =

(
ξ22 + 4a(ξ21 − ξ0ξ2)− 8bξ0ξ1

)2
define the kernel of the isogeny. Explicit descriptions for gx,1, gx,2 and a formal
verification can be found in the auxiliary material, see Section 8. ⊓⊔

4.3 Gluing

Let us now consider the case where the domain of the (3, 3)-isogeny is a product
of elliptic curves and its codomain the Jacobian of a genus-2 curve. Such an
isogeny is called a (3, 3)-gluing, and it is the dual of the (3, 3)-split isogeny
described above. Similar as in that case, a (3, 3)-gluing Φ arises from degree-3
covers ψ1 : C → E1 and ψ2 : C → E2. And in this case it is the product of the
pull-backs, i.e. Φ = ψ∗

1 × ψ∗
2 : E1 ×E2 → Jac(C). To derive explicit formulae for

this isogeny, we again use the parametrization from [3], cf. Proposition 3.

Proposition 5 Let Ca,b,c,d,t and Ea,b,c,d,t,i for i ∈ {1, 2} be as in Proposition 3.
Denote

Φ : Ea,b,c,d,t,1 × Ea,b,c,d,t,2 → Jac(Ca,b,c,d,t)
the (3, 3)-isogeny induced by the maps ψa,b,c,d,t,1 and ψa,b,c,d,t,2. Writing

α1 = x1 + 8a2d− 6bc, β1 = ax1 + 8d∆1, γ1 = 48c∆1 − 8bx1,

α2 = x2 + 8bc2 − 6ad, β2 = cx2 + 8b∆2, γ2 = 48a∆2 − 8dx2,

we have

ψ∗
a,b,c,d,t,i : Ea,b,c,d,t,i → Jac(Ca,b,c,d,t)

(xi, yi) 7→ [x2 + λi,1x+ λi,0,−4yi(µi,1x+ µi,0)]

5 The element y1+y2 can of course be represented in terms of the Mumford coordinates
of [P +Q−D∞] allowing to deduce a formula for the y-coordinates in that setting
as well.
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with

λ1,1 =
−4β1

4α2
1 + a

, λ1,0 =
γ1

4α2
1 + a

, λ2,1 =
−4β2
γ2

, λ2,0 =
4α2

2 + c

γ2

and

µ1,1 =
4α3

1 + 3aα1 + b

(4α2
1 + a)2

, µ1,0 =
4β2

1 −∆1

a(4α2
1 + a)2

µ2,1 =
−4∆2

γ22
, µ2,0 =

16∆2(2bc+ 3a(x2 + α2))− 8dx22
γ22

.

Proof. Denote ψi = ψa,b,c,d,t,i : Ca,b,c,d,t → Ea,b,c,d,t,i. Counted with multiplici-
ties, each point Pi = (xi, yi) ∈ Ea,b,c,d,t,i has precisely 3 preimages in Ca,b,c,d,t.
From the explicit description of the maps ψi, one can directly read off the preim-
ages of the neutral element on the two elliptic curves. Naturally, these consist
of two disjoint sets of the Weierstrass point of the hyperelliptic curve. More
precisely,

ψ−1
i (∞) = {(α, 0) ∈ Ca,b,c,d,t(k̄) | Fi(α) = 0},

where F1 = x3 + 3ax + 2b and F2 = 2dx3 + 3cx2 + 1 are the two factors of
the defining polynomial of Ca,b,c,d,t. This means that under the pull-back ψ∗

i :
Ea,b,c,d,t,i → Jac(Ca,b,c,d,t), the element [Pi −∞] gets mapped to ∑

P ′∈ψ−1
i (Pi)

P ′ −
∑

Fi(α)=0

(α, 0)

 =

 ∑
P ′∈ψ−1

i (Pi)

P ′ +
∑

Fi(α)=0

(α, 0)− 3 ·D∞

 .
Our strategy to find explicit formulae of this map is very similar to that

in the proof of Proposition 4. That is, we first express the preimage of a gen-
eral point Pi = (xi, yi) ∈ Ei symbolically. This requires working in the ring
R = Q[xi, yi, u1, u2, u3, v1, v2, v3], where (uj , vj) represent the coordinates of the
points {P ′

j} in the preimage of Pi. In the final formula, the variables uj , vj need
to be eliminated. To this end, one uses the explicit description of the maps ψi
(Proposition 3), more precisely we use the identities

ri(uj) = xi and si(uj)vj = yi (5)

for all j ∈ {1, 2, 3}. In particular, u1, u2, u3 are the roots of a cubic polynomial
in Q[xi] ⊂ R, hence their elementary symmetric polynomials are in Q[xi]. The
next step is to find the unreduced Mumford coordinates of the divisor

DP =
∑

P ′∈ψ−1
i (P )

P ′ +
∑

Fi(α)=0

(α, 0)− 3 ·D∞.

These consist of a pair of polynomials [A,B], where A ∈ R[x] is a degree-6
polynomial with roots the x-coordinates of the affine points in the support of
DP and B ∈ R[x] interpolates the points in the support of DP . For A, one
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immediately finds an expression with coefficients in Q[xi] ⊂ R. It is the product
of F1 and the cubic polynomial with roots u1, u2, u3. The computation of B
requires more work. In our approach, we used the standard Newton interpolation
method to represent the polynomial in R[x], after which we used the above
relations obtained from Equation 5 to eliminate the variables uj , vj .

It remains to compute the reduced Mumford coordinates for [DP ]. This can
be done in two reduction steps following Cantor’s algorithm. The resulting Mum-
ford coordinates are [x2 + λi,1x+ λi,0,−4yi(µi,1x+ µi,0)] as in the statement of
the proposition. A formal verification of the correctness of the formulae is pro-
vided in the auxiliary material, see Section 8. ⊓⊔

5 Coordinate Transformations

In the two previous sections, we discussed explicit formulae for all 4 types of
(3, 3)-isogenies. In order to apply these formulae to compute a specific (3, 3)-
isogeny, it is necessary to compute a coordinate transformation to a given parametriza-
tion. Here, we first discuss coordinate transformations in general and provide
explicit formulae for the induced transformation on the Kummer surface. In the
second part, we explain the determination of a suitable transformation, given as
input a description of the (3, 3)-kernel.

5.1 Explicit Formulae for Transformations

To fix some notation, we first recall a standard result about the coordinate
transformations for hyperelliptic curves, see for example [21, Corollary 7.4.33].

Proposition 6 Let C : y2 = f(x), C′ : y′2 = g(x′) be two curves of genus 2

defined over k. Then C and C′ are k-isomorphic iff there exist

(
α β
γ δ

)
∈ GL2(k)

and ϵ ∈ k× such that

x′ =
αx+ β

γx+ δ
, y′ =

ϵy

(γx+ δ)3
.

The above proposition describes the effect of coordinate transformations on
the points of a hyperelliptic curve C. One can also consider the induced maps on
the Mumford coefficients of elements in the Jacobian Jac(C) or on the Kummer
surface K(C). In our application, the latter type of transformation will be impor-
tant. The derivation of the induced maps on the Kummer surface can be done
by simple algebra. Since we could not find any explicit formulae in the literature,
we provide the resulting formulae here.

Proposition 7 Let C : y2 = F (x), C′ : y′2 = G(x′) be two k-isomorphic genus-2
curves. Assume that the coordinate transformation between the curves is defined
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by

(
α β
γ δ

)
∈ GL2(k) and ϵ ∈ k× as described in Proposition 6 and set ϑ =

αδ + βγ, ϱ = αβγδ. Then

ξ′0 = δ2ξ0 + γδξ1 + γ2ξ2,

ξ′1 = 2βδξ0 + ϑξ1 + 2αγξ2,

ξ′2 = β2ξ0 + αβξ1 + α2ξ2,

ξ′3 =
(
λ0ξ0 + λ1ξ1 + λ2ξ2 + (αδ − βγ)4ξ3

)
/ϵ2,

with

λ0 =− 2α2γ2(3ϑ2 − 8ϱ)f0 + 2αγϑ(ϑ2 − 2ϱ)f1 − 4ϱ(ϑ2 − 2ϱ)f2

+ βδϑ3f3 − 2β2δ2ϑ2f4 + 4β3δ3ϑf5 − 8β4δ4f6,

λ1 =− 4α3γ3ϑf0 + α2γ2(ϑ2 + 4ϱ)f1 − 4αγϱϑf2 + ϱ(ϑ2 + 4ϱ)f3

− 4βδϱϑf4 + β2δ2(ϑ2 + 4ϱ)f5 − 4β3δ3ϑf6,

λ2 =− 8α4γ4f0 + 4α3γ3ϑf1 − 2α2γ2ϑ2f2 + αγϑ3f3 − 4ϱ(ϑ2 − 2ϱ)f4

+ 2βδϑ(ϑ2 − 2ϱ)f5 − 2β2δ2(3ϑ2 − 8ϱ)f6,

defines the corresponding coordinate transformations between the Kummer sur-
faces K(C) and K(C′).

Proof. This can be verified by a direct computation. ⊓⊔

5.2 Finding the Correct Transformation

Given two generators T1, T2 of a (3, 3)-subgroup of a p.p.a.s., we explain how
to compute the coordinate transformation that allows us to apply one of the
isogeny formulae from Section 3 and Subsection 4.2. While the exact procedure
depends on the type of (3, 3)-isogeny, we use a Gröbner basis approach as the
underlying method in all cases.

Generic case (Section 3) We first consider the generic case, that is we are given
two kernel generators T1, T2 ∈ Jac(C) which define a (3, 3)-isogeny to the Ja-
cobian of another genus-2 curve. The goal is to find parameters (α, β, γ, δ, ϵ)
defining a coordinate transformation as in Proposition 6 and parameters (r, s, t)
such that the image curve is in the form of Cr,s,t and the images of the kernel
generators are given by T and T ′ as described in Subsection 3.1. An efficient
method for this has already been developed in the context of a (3, 3)-based hash
function in [6]. We use their implementation for our algorithms as well.

Product case (Subsection 4.1) Transformations between products of elliptic curves
are products of isomorphisms between elliptic curves. These are well-known and
of the form (x, y) 7→ (u′2x+r′, u′3y+s′u′2x+ t′) for elliptic curves in Weierstraß
form, where u′ is necessarily a unit (see for example [11, Subsection 4.4.2]).
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Splitting case (Subsection 4.2) Now assume we are given two kernel generators
T1, T2 ∈ Jac(C) that define a (3, 3)-isogeny to a product of elliptic curves. In
this case, we need to find parameters (α, β, γ, δ, ϵ) defining the transformation
together with parameters (a, b, c, d, t) such that the image of the curve C : y2 =
f(x) under the transformation is equal to Ca,b,c,d,t : ty2 = Fa,b,c,d,t(x) as in
Proposition 3. Note that such a transformation only exists if Jac(C) is indeed
(3, 3)-isogenous to a product of elliptic curves. In this case the splitting is unique
with overwhelming probability. One method to (probabilistically) find the correct
parameters is to symbolically equate the coefficients of

ty2 = Fa,b,c,d,t(x) and y′
2
= f(x′)

with

x′ =
αx+ β

γx+ δ
, y′ =

ϵy

(γx+ δ)3
.

Together with the conditions on the parameters

12ac+ 16bd = 1, ∆1 = a3 + b2 ̸= 0, ∆2 = c3 + d2 ̸= 0, t ̸= 0,

this yields a system of equations in k[a, b, c, d, t, α, β, γ, δ, ϵ] which can be solved
by a Gröbner basis computation. As mentioned before, the defined splitting
is unique, however there will be in general multiple solutions to the system
stemming from an equivalence relation on the set of parameters {a, b, c, d, t}, as
well as on the parameters defining the transformation.

In practice, the Gröbner basis computation can be sped up by providing
additional information on the parameters. Here, such information is available
by means of the kernel generators T1, T2. While we are not aware of explicit
formulae for the kernel generators defining the (3, 3)-isogeny from Proposition 3,
we did derive relations for the Kummer coordinates of the kernel generators for
exactly the isogeny from Proposition 4. Hence, we add the conditions

0 =
(
ξ′20 + 4c(ξ′21 − ξ′0ξ

′
2)− 8dξ′1ξ

′
2

)2
,

0 =
(
ξ′22 + 4a(ξ′21 − ξ′0ξ

′
2)− 8bξ′0ξ

′
1

)2
with (ξ′0, ξ

′
1, ξ

′
2, ξ

′
3) the image of (ξ0, ξ1, ξ2, ξ3) ∈ {T1, T2} computed as in Propo-

sition 7. This not only speeds up the Gröbner basis computation to solve the
system by several orders of magnitude, but it also guarantees that we use the
correct kernel in the (unlikely) case that there exist two (3, 3)-splittings.

Gluing case (Subsection 4.3) Despite being the dual of the splitting case, finding
the coordinate transformation for the gluing is more intricate. Let E1 ×E2 be a
product of elliptic curves. Over the algebraic closure k̄, there exist 24 different
ways to glue elliptic curves along their 3-torsion.6 For instance, [3, Algorithm
5.4] explains how to compute all (3, 3)-isogenous Jacobians of genus-2 curves for

6 In light of Proposition 2, there may be slightly fewer if E1 and E2 are 2-isogenous.
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a given product of elliptic curves. Here, we are only interested in one specific
isogeny defined by a specific (3, 3)-subgroup ⟨T1, T2⟩ ⊂ E1 × E2.

If the elliptic curves are given in general Weierstrass form y2 + a1xy+ a3y =
x3 + a2x

2 + a4x + a6, then we first apply the transformation y′ = (y + a1x +

a3)/2 to obtain an equation of the form y′
2
= f(x). Now it suffices to consider

coordinate transformations of the form x = αx + β, y′ = ϵy preserving this
form. In that setting, our goal is to find a pair of transformations (αi, βi, ϵi)
for Ei with i ∈ {1, 2} and parameters (a, b, c, d, t) such that after applying the
transformations, the elliptic curves are as in Proposition 3. Moreover, we require
that (the transformations of) T1, T2 are in the kernel of the resulting (3, 3)-
isogeny.

The first conditions can be imposed by a standard coefficient comparison sim-
ilar to the splitting case. For the second condition, we use our explicit description
of the gluing map from Proposition 5 which yields four additional conditions per
kernel generator. More precisely, we require that

ψ∗
a,b,c,d,t,1(T

′
i ) = −ψ∗

a,b,c,d,t,2(T
′
i ) for i ∈ {1, 2}

which provides one condition per Mumford coordinate. The resulting system has
a unique solution up to the equivalence relations described in the previous part,
and it can be solved efficiently by a Gröbner basis computation.

6 A (3, 3)-Variant of the CGL Hash Function

In this section, we will discuss an implementation of a (3, 3)-variant of the CGL
hash function similar to the one from [6].

6.1 Starting p.p.a.s.

In the elliptic-curve case, knowledge of the starting curve’s endomorphism ring
reveals cycles in the isogeny graph, which can be used to create collisions in
the corresponding hash function (see for example [13]). Even though this has
not been written down explicitly yet, there is no reason to assume that the
same does not hold in higher dimensions. Ideally, our starting p.p.a.s. would
thus be sampled randomly from the set of superspecial p.p.a.s. such that its
endomorphism ring is unknown. Unfortunately, there is no known way to do
this without revealing an isogeny path to a superspecial p.p.a.s. of which the
endomorphism ring is known. This connecting isogeny can then be used to reveal
the endomorphism ring of the resulting superspecial p.p.a.s. as well. In fact,
hashing into the set of supersingular elliptic curves is still an open problem in
cryptography.7

In our setting, the field characteristic will always be of the form p = f ·3n−1
for some (necessarily even) cofactor f . This results in the Jacobians of the well-
known genus-2 curve C : y2 = x6−1 to be superspecial, and it is isomorphic to the

7 At least in a trustless set-up; for a trusted set-up variant, see [1].
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curve C′ : y2 = (x2−1)(x2−2x)(x−1/2) used in [8]. Since we can not randomly
sample a superspecial p.p.a.s., we may as well start from Jac(C). Unfortunately
this is a Jacobian which has degenerate 3-torsion elements in the sense of Re-
mark 1. Indeed, one can readily verify that the divisor D = (0,

√
−1)−∞ is an

element in Jac(C)[3]. Given how this would immediately put us in a setting where
we would have to deal with overhead occurring with probability O(p−1), we thus
choose a different starting p.p.a.s. by taking a random walk in the superspecial
(3, 3)-isogeny graph starting from Jac(C). The resulting superspecial p.p.a.s. are
hardcoded in the accompanying code, one for each level of security. The code
also provides a symplectic basis of Jac(C)[3n] for each security level such that
(3n, 3n)-groups can be sampled uniformly at random using the methods from
[20, Section 2.3].

6.2 Optimal Strategies for (3n, 3n)-Isogeny Computations

Given a maximal isotropic group ⟨T, T ′⟩ ⊂ Jac(C)[3n], the following are two
possible ways of computing the isogeny with kernel ⟨T, T ′⟩ as chain of n (3, 3)-
isogenies.

– One can compute (3n−1T, 3n−1T ′), quotient out the (3, 3)-subgroup gener-
ated by these two elements, and compute the images of T, T ′ under this
initial isogeny Φ1. In the next step, we can repeat this process, but then
with (3n−2Φ1(T ), 3

n−2Φ1(T
′)) and pushing through (Φ1(T ), Φ1(T

′)). Itera-
tively repeating this will compute the entire (3n, 3n)-isogeny.

– One can compute the set of pairs {(3iT, 3iT ′) : 0 ≤ i < n} inductively on
the starting Jacobian by iterated multiplication by 3. Starting from the pair
(3n−1T, 3n−1T ′) one can then quotient out the (3, 3)-subgroup generated by
this pair, and push all other pairs of divisors through this initial isogeny Φ1.
This results in immediate access to the pair (3n−2Φ1(T ), 3

n−2Φ1(T
′)) on the

codomain Jacobian and we can continue inductively.

The above methods are extreme in the sense that the former computes a maximal
amount of multiplications by 3, whereas the latter computes a maximal amount
of images under each isogeny. In [17, Section 4], they discuss this in-depth in
terms of optimal strategies, where trade-offs can be made to obtain a method
in-between the extreme versions described here. They describe optimal strategies
in terms of elemental Fp2-operations, which is possible since 2- and 3-isogenies
between elliptic curves require a limited amount of such operations and are hence
almost surely optimized already.

Unfortunately, this is not the case when working with elements of Jacobians.
A first subtlety is that Magma has optimized internal arithmetic for comput-
ing a scalar multiple kT for T ∈ Jac(C). This internal structure outperforms
reimplementing the arithmetic ourselves, which makes it impossible to express
things in elemental Fp2 -operations. Furthermore, the implemented scalar mul-
tiplication on Jacobians is noticeably faster if we compute the scalar k = 3n−i

first, compared to repeatedly multiplying T by 3.
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Another subtlety is that we push points through on the Kummer surface, and
not on the Jacobian. This means that after the first step we do not have access
to (Φ1(T ), Φ1(T

′)) but to their images on the associated Kummer surface. This
is not a problem since we are only interested in quotienting out the subgroup
generated by these elements, and one can perform scalar multiplications on the
Kummer surface as well. The scalar multiplication formulae on our model of the
Kummer surface are a lot more involved compared to their Jacobian counterparts
however. In practice, one notices that it is often more efficient to lift points on the
Kummer surface to an arbitrary preimage on the Jacobian, perform the scalar
multiplication there, and then project back to the Kummer surface.

Due to these limitations, it is impossible to reuse the mathematical opti-
mal strategies obtained in [17, Section 4]. Instead, we heuristically try out their
well-formed balanced strategies for various pairs of weights. In any case, this
leads to an approach that only requires O(n log n) computations compared to
the O(n2) computations in the extreme methods outlined at the start of this
subsection. In practice, putting the weights equal seemed to perform extremely
well for all fields of cryptographic characteristic. The equal-weight strategy
boils down to pushing (3⌊n/2⌋T, 3⌊n/2⌋T ′) through the initial isogeny Φ1, then
(3⌊3n/4⌋−1Φ1(T ), 3

⌊3n/4⌋−1Φ1(T
′)) through the second isogeny Φ2, and so on.

This resulted in a speed-up of a factor at least two compared to naively using
either of the extreme methods.

6.3 Implementation

We ran our (3, 3)-variant of the CGL hash function on an Intel Xeon Gold 6248R
CPU at 3.00GHz in Magma V2.27-7. For a fair comparison to the (3, 3)-variant
of [6], we reran their code using this same set-up. The results can be found below.

p ≈ 286 p ≈ 2128 p ≈ 2171 p ≈ 2256

bits of classical security 128 192 256 384
bits of quantum security 86 128 170 256

time per bit processed [6] (reran) 3.23ms 3.30ms 3.56ms 4.09ms
time per bit processed (this work) 6.81ms 7.47ms 7.53ms 7.96ms

Even though these results seem dissatisfying, they are not completely unex-
pected. The difference in approach is that the (3, 3)-variant of [6] does not re-
quire pushing points through the isogeny, nor does it require computing scalar
multiplications on the Jacobians (or lifts from the Kummer to the Jacobian).
Our version on the other hand has the benefit of not having to compute three
cubic roots at each step in the isogeny chain. Over a field Fp2 with p = f ·3n−1,
the computation of a cubic root requires O(n) multiplications. In contrast to
that, our algorithm requires O(log(n)) multiplications at each step. Note that
we cannot provide a precise count of operations due to the small Gröbner basis
computation involved at each step. This implies that our algorithm scales better
with increasing bitsize. From a certain point onwards, it should outperform the
one from [6], though only at very high security levels.
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We stress that our implementation does not lend itself to an actual practical
hash function. Recall that we work over a field with p = f · 3n − 1. With a
given symplectic 3n-torsion basis of the starting Jacobian, we can thus hash
⌊log2 33n⌋ bits before having “depleted” the available 3n-torsion. If we want to
hash inputs that are longer, we then have to resample a new symplectic basis,
which is a nontrivial operation compared to the hash function itself. The main
goal of this implementation is to show how fast we can manoeuvre in the (3, 3)-
isogeny graph with a given (3n, 3n)-subgroup, whilst also being able to push
points through the isogeny chain. Both of these requirements are needed in
certain other applications, such as attacking Alice’s private key in SIKE, which
is the topic of the next section.

7 Recovering Alice’s Private Key in SIKE

In essence, we follow the attack strategy described in [22]. The main difference
is that we target the recovery of Alice’s secret key. Let p = 2a3b − 1 be a SIKE
prime and define

E0/Fp2 : y2 = x3 + 6x2 + x

to be the starting curve, as is the case in all SIKE instantiations, including fixed
bases for its 2a- and 3b-torsion; i.e. E0[2

a] = ⟨PA, QA⟩ and E0[3
b] = ⟨PB , QB⟩.

Define the curve E′
0/Fp2 : y2 = x3 + x with its well-known endomorphism ι :

E′
0 → E′

0, (x, y) 7→ (−x, iy) and define ρ : E0 → E′
0 as the 2-isogeny connecting

these curves.
Let kA be the private key of Alice, which is used to construct the isogeny

ϕA : E0 → EA = E0/⟨PA + kAQA⟩. In the SIDH protocol, Alice then sends
the information (EA, ϕA(PB), ϕA(QB)) to Bob. To retrieve her private key, we
consider the following commutative diagram:

E0 EA

E0 X

ϕA

γ γ′

ϕ′
A

with the endomorphism

γ : E0 → E0

P 7→ [u]P + ρ̂ ◦ ρ ◦ [v]P

for certain integers u and v. It follows that the endomorphism γ is of degree
c = u2 + 4v2. By [22, Theorem 1], the isogeny

Φ : E0 × EA → E0 ×X

(P,Q) 7→ (γ̂(P ) + ϕ̂A(Q), γ′(Q)− ϕ′A(P ))

is a (2a+c, 2a+c)-isogeny preserving product polarizations. Furthermore, kerΦ =
{([2a]P,−ϕA ◦ γ̂(P ) | P ∈ E0[2

a + c]}. We can compute Alice’s private key kA
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from the kernel of ϕA, which in turn can be computed from ϕ̂a. This dual isogeny
can be retrieved, since

ϕ̂A = EA → E0 × EA
Φ−→ E0 ×X → E0,

where the first map is inclusion and the last map is projection. To efficiently
evaluate the (2a + c, 2a + c)-isogeny Φ using (3, 3)-isogeny formulae, ideally we
have that c = 3b − 2a. However, we run into two issues:

– the integer 3b − 2a may be negative;
– if 3b − 2a has a prime factor ℓ with odd multiplicity such that ℓ ≡ 3 mod 4

then there are no u, v to compute γ.

For all the SIKE parameters, at least one of these is true. To combat this, we
can instead look for integers c′ = 3b

′ − d′2a
′
, where

1. if b′ > b then we need to guess b′−b additional steps after the (3b, 3b)-isogeny;
2. if b′ < b then we we only need to compute a (3b−b

′
, 3b−b

′
)-isogeny;

3. if a′ > a then we need to extend Alice’s isogeny with a 2a
′−a-isogeny;8

4. if a′ < a then we need to guess the first 2a−a
′
-isogeny component of ϕA;

5. d′ gives us leeway to extend ϕA with an isogeny of degree d′.

Options 2, 3 and 5 seem most interesting because they involve no guessing, but
they all come with the side effect that c′ is less likely to be positive. Remark
that d′ needs to be coprime with 3. If we allow d′ to be even, then we can always
choose a′ ≤ a. Choosing d′ > 1 will likely result in computing an isogeny with
nonrational kernel generator, unless it factors as 2m2, in which case one can
compute a rational 2-isogeny followed by [m]. We suggest the following choices,
where we allow d′ to be even and thus always have a′ ≤ a.

b a b′ a′ d′

SIKEp434 137 216 138 215 1
SIKEp503 159 250 160 250 4
SIKEp610 192 305 192 301 1

194 303 1
SIKEp751 239 372 238 372 10

For SIKEp434 this means we need to guess the first step of Alice’s chain of 2-
isogenies, and then after computing a (3137, 3137)-isogeny determine the (almost
always unique) (3, 3)-splitting. For SIKEp503 we need to also guess the final
(3, 3)-splitting, but can just extend ϕA with [2] instead of having to guess. The
options for SIKEp610 are a trade-off: either guess the first 24-isogeny component
of ϕA, or only guess the 22-isogeny component but then also guess which (32, 32)-
isogeny splits after computing a (3192, 3192)-isogeny.

8 Remark that we may extend by a 2ε-isogeny which is a part of ϕ̂A for some ϵ ≤ a′−a.
We would then need to guess the final 2ε-isogeny of ϕA but this is easy for small ε.
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For the SIKEp751 parameters we can use an endomorphism of degree 3238−
10 · 2372, which was factored using the number sieve from [29]. This factorisa-
tion allows us to avoid any need for guessing, and only requires us to extend
Alice’s secret isogeny by an (arbitrary) isogeny of degree ten. The 2-torsion is
of course rational, and the twist contains rational 5-torsion, which allows for a
swift auxiliary 10-isogeny using x-only arithmetic over Fp2 . Using the techniques
discussed earlier, we manage to retrieve Alice’s secret isogeny ϕA in 11 seconds.
To the best of our knowledge, the fastest recovery of Bob’s secret isogeny is 1
hour for this security level [24]. Our computation consists of three nontrivial
parts and is pretty consistent with regard to timing: 0.5 seconds for the Gröbner
basis computation to glue the elliptic curves together, 10 seconds to compute
the (3236, 3236)-isogeny between Jacobians, and 0.5 second for the Gröbner basis
computation for the final (3, 3)-splitting. All timings are based on using an Intel
Xeon Gold 6248R CPU at 3.00GHz in Magma V2.27-7.

8 Auxiliary Code

The auxiliary material contains the following code and can be found online
at https://github.com/KULeuven-COSIC/3_3_isogenies

– 33_hash_BFT.m contains an implementation of the CGL hash function de-
scribed in Section 6.

– BFT_verification.m contains the symbolic formulae verification of the re-
sults from Subsection 3.2.

– symplectic_basis.m contains a generating function for symplectic bases,
which was used to hardcode the starting torsion of 33hashBFT.m.

– SIKEp751_attack.m includes the attack on Alice’s secret isogeny as de-
scribed in Section 7.

– uv_list.m contains factorizations relevant to the SIKE attack parameters
from Section 7.

– verification_split.sage contains a script to verify the splitting formulae
from Subsection 4.2.

– verification_glue.sage contains a script to verify the gluing formulae
from Subsection 4.3.
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3. Bröker, R., Howe, E.W., Lauter, K.E., Stevenhagen, P.: Genus-2 curves and Jaco-
bians with a given number of points. LMS Journal of Computation and Mathemat-
ics 18(1), 170–197 (2015). https://doi.org/doi:10.1112/S1461157014000461

4. Bruin, N., Flynn, E.V., Testa, D.: Descent via (3, 3)-isogeny on Jacobians of genus 2
curves. Acta Arithmetica 165(3), 201–223 (2014), http://eudml.org/doc/279018

5. Cassels, J.W.S., Flynn, E.V.: Prolegomena to a middlebrow arithmetic of curves of
genus 2, vol. 230. Cambridge University Press (1996). https://doi.org/10.1017/
CBO9780511526084

6. Castryck, W., Decru, T.: Multiradical isogenies. In: 18th International Confer-
ence Arithmetic, Geometry, Cryptography, and Coding Theory, Contemporary
mathematics, vol. 779, pp. 57–89. American Mathematical Society (2022). https:
//doi.org/10.1090/conm/779

7. Castryck, W., Decru, T.: An efficient key recovery attack on SIDH. In: Hazay, C.,
Stam, M. (eds.) Advances in Cryptology - EUROCRYPT 2023. Lecture Notes in
Computer Science, vol. 14008, pp. 423–447. Springer (2023). https://doi.org/
10.1007/978-3-031-30589-4_15

8. Castryck, W., Decru, T., Smith, B.: Hash functions from superspecial genus-2
curves using Richelot isogenies. Journal of Mathematical Cryptology 14(1), 268–
292 (2020). https://doi.org/doi:10.1515/jmc-2019-0021

9. Castryck, W., Decru, T., Vercauteren, F.: Radical isogenies. In: Advances in Cryp-
tology – ASIACRYPT 2020. vol. 2, pp. 493–519. Springer International Publishing
(2020). https://doi.org/10.1007/978-3-030-64834-3_17

10. Charles, D.X., Lauter, K.E., Goren, E.Z.: Cryptographic hash functions from
expander graphs. J. Cryptol. 22(1), 93–113 (2009). https://doi.org/10.1007/
s00145-007-9002-x

11. Cohen, H., Frey, G., Avanzi, R., Doche, C., Lange, T., Nguyen, K., Vercauteren,
F.: Handbook of elliptic and hyperelliptic curve cryptography. CRC press (2005).
https://doi.org/10.1201/9781420034981

12. Cosset, R., Robert, D.: Computing (ℓ, ℓ)–isogenies in polynomial time on Jacobians
of genus 2 curves. Mathematics of Computation 84(294), 1953–1975 (2015), http:
//www.jstor.org/stable/24489183
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