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REGULARITY OF MATRIX COEFFICIENTS OF A COMPACT
SYMMETRIC PAIR OF LIE GROUPS

GUILLAUME DUMAS

ABSTRACT. We consider symmetric Gelfand pairs (G, K) where G is a compact
Lie group and K a subgroup of fixed point of an involutive automorphism. We
study the regularity of K-bi-invariant matrix coefficients of G. The results rely
on the analysis of the spherical functions of the Gelfand pair (G, K). When
the symmetric space G/K is of rank 1 or isomorphic to a Lie group, we find the
optimal regularity of K-bi-invariant matrix coefficients. Furthermore, in rank
1 we also find the optimal regularity of K-bi-invariant Herz-Schur multipliers
of Sp(L2(G)). We also give a lower bound for the optimal regularity in some
families of higher rank symmetric spaces. From these results, we make a
conjecture in the general case involving the root system of the symmetric
space. Finally, we prove that if all K-bi-invariant matrix coefficients of G have
the same regularity, then so do all K-finite matrix coefficients.

1. INTRODUCTION

In this article, we investigate the regularity and local behaviour of K-bi-invariant
and K-finite matrix coefficients of some Lie groups G with K compact subgroup.
Since continuous group morphisms of Lie groups are smooth, if 7 is a finite dimen-
sional unitary representation of G, then its coefficients are smooth. In particular,
by the Peter-Weyl theorem, every matrix coefficient of an irreducible representa-
tion of a compact Lie group G is smooth. In the non-compact setting, if G is
semisimple and K is a maximal compact subgroup of G, it is known by the work
of Harish-Chandra ([HC53]) that matrix coefficients associated to K-finite vectors
of irreducible unitary representations of G (and more generally admissible repre-
sentations) are C'*°. Unitary representations of G decompose as direct integrals of
irreducible representations, but since estimates depend on the representations, it
does not provide any estimates for arbitrary representations.

If the subgroup K is such that (G, K) is a Gelfand pair, there is a 1-1 corre-
spondence between positive-definite spherical functions of (G, K), which arise as
characters of the (abelian) convolution algebra of K-bi-invariant functions and ir-
reducible representations with non-zero K-invariant vectors. In this setting, any
K-bi-invariant matrix coefficient of G will decompose as a direct integral of positive-
definite spherical functions. Then, proving estimates of positive-definite spherical
functions that are uniform in the spectral parameter will produce estimates on any
K-bi-invariant matrix coefficient of G.

This idea was used by Lafforgue to show that SO(2)-bi-invariant coefficients
of SO(3) are %—Hé’)lder outside of singular points, which was a key ingredient in
the proof of his strengthening of property (T) for SL(3,R) ([Laf08]). With this
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result, he showed asymptotic estimates of coefficients of representations on Banach
spaces, far more general than unitary representations on Hilbert spaces. Various
problems in operator algebra were solved using this idea, applied to different pairs
([LdIS11),[HdTL13]).

In this article, we want to study more systematically this local regularity for
symmetric Gelfand pairs, that is when G/K is a symmetric space. In this frame-
work, a lot is known on the spherical functions of the pair ([Hel79],[Hel00]). The
asymptotics of spherical functions in the group variable has been studied a lot, in
particular in the work of Harish-Chandra, but much less is known for local be-
haviour. To get information on local behaviour, the main tool is to study the
asymptotic behaviour in the spectral parameter, while the group variable remains
in a compact subset. An important remark is that the estimates we want to show
fail at e, and in fact at all other singular points. Thus, we will only obtain regularity
of matrix coefficient on the dense open subset of regular points.

In [Cle88], Clerc showed estimates on spherical functions of compact pairs, but
that are uniform only in a cone with compact basis in the Weyl chamber, and do
not apply to the differentials of the spherical functions. Cowling and Nevo showed
precise estimates, uniform in the spectral parameter for the directional derivatives
of the spherical function of any (G, K') where G is a complex semisimple Lie group
and K a maximal compact subgroup (JCNOI]).

Main results.

Definition 1.1. Let (X, d) be a metric space and U open subset of X, (E,|.||) a
normed vector space, « €]0,1]. A function f : U — F is a-Holder if for any compact
subset K of U, there is Cx > 0 such that Vz,y € K, || f(z) — f(y)|| < Crd(x,y)*.
If (X,d) is a furthermore a Riemannian manifold, and r € N we say that f €
Cr)(U,E) if f € C"(U, E) and the r-th differential D" f is a-Holder. We extend
to a =0 by C"O(U,E) = C"(U, E).
For K a compact subset of U and f € C(™®)(U), define

fllote () = max { max sup||D* f(x)||, sup .
|| ||C (K) K<r ve || ( )H ey K oty l(l’,y)a

The family of semi-norms ||.{| ¢ () for K a compact subset of U makes Cr)(U, E)
into a Fréchet space.

Let G be a Lie group and K a compact subgroup, we want to find (r, &) such that
for any K-finite unitary matrix coefficient o of G, ¢ € C("*)(G), where G, will be
the dense open subset of regular point. If we assume that (G, K) is a Gelfand pair,
the main tool for this will be to study the boundedness of the family of spherical
functions in Holder spaces. If furthermore (G, K) is a symmetric pair, then G/K
is a symmetric space and we have results on the spherical functions.

Our first results involve symmetric pairs of rank 1.

Theorem A. Let (G, K) be a compact symmetric pair of rank 1 and Gy the dense
open subset of regular points. Let
dimG/K -1
a=—7—.
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Then any K -finite matriz coefficients ¢ of G is in CLel-a=leD)(Gy). Furthermore,
this reqularity is optimal in the sense that for any (r,6) > (|a], a—|a]), there exists
a K -finite (and even K-bi-invariant) matriz coefficient of G not in C")(G1).

We also show in Corollary [3.13] the optimal regularity of Herz-Schur multipliers
of S,(L*(@)) for any p.

When considering higher rank symmetric pair, a simple class is given by the
pairs (G x G, G), for which the symmetric space is isomorphic to the Lie group G.
Given ® a root system for G, ®* a choice of positive roots and A = {ay,--- ,ap}
a basis, we can write o = Zle n;(a)a; for a € ®*. Then our second result gives
the regularity for these pairs.

Theorem B. Let v = 112112@|{04 € ®t|n;(a) > 1} and Gy the subset of regular

points of G x G. Then any G-finite matriz coefficients ¢ of G x G is in C0(G)
and this reqularity is optimal.

Given these two results as well as lower bounds on the optimal for some families
of higher rank pairs, we make a conjecture on the optimal regularity in the general
case. Given (G, K) a compact symmetric pair, there is a decomposition g =€t dm
of the Lie algebra. Let a be a maximal abelian subspace of m and ¥ the root system
pair. Let A = {u € ia*|Va € BT, % € N}. For a € X, let m,, be the multiplicity
of the root.

Conjecture 1.2. Let G be the subset of regular points of G. Let

m
a= inf Z —.
HEAO} ot e s 0 2
Then any K-finite matrix coefficients ¢ of G is in C(le-e=1le])(G) and this regu-
larity is optimal.

Organisation of the paper. In the first section, we recall some results that will be
used throughout the paper. Until Section [p] we restrict ourselves to K-bi-invariant
matrix coefficients.

In Section [3] we give a complete answer in the case of a symmetric pair of rank 1.
There are well-known descriptions of the spherical functions in this case involving
Jacobi polynomials (Section . The main result is Theorem (3.5 where we use
analysis of these polynomials to show that the spherical functions are bounded in
some Holder space. From this, we deduce Theorem [A]in the case of K-bi-invariant
matrix coefficients. This generalizes results in [Laf08] and [HdL13| for some specific
pairs. In Section [3.3] using the aforementioned results, we prove in Corollary
regularity results for any K-bi-invariant Herz-Schur multipliers of S,(L*(G)). We
then show in Section that our results are optimal (Theorem [3.14)).

In Section 4 we try to extend the results to higher rank. For the case (G x G, G),
we can give the optimal regularity (Theorems and Theorem , which proves
Theorem [B] for K-bi-invariant coefficients. For this, we rely on the description of
spherical functions of these pairs with characters of G and use the Weyl character
formula. The techniques involved in the optimality are very similar to the rank
1 case, but require the study of the root system associated to G. We then show,
for some of the remaining pairs, results of regularity (that may not be optimal)
in Section We study these specific pairs because once again their spherical
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functions can be described with Jacobi polynomials. These different cases allow us
to formulate the above conjecture.

Finally, in Section |5} we show that knowing the regularity of any K -bi-invariant
matrix coefficient is sufficient to get a regularity result on any K-finite matrix
coefficient. The crucial result is Lemmal[5.10} which was already used in [dL.MdIS16]
but only to get Holder continuity result. Given the previous results, it completes
the proof of Theorem [A] and [B] for K-finite matrix coefficients.

Acknowledgement. I would like to thank my Ph.D supervisor Mikael de la Salle
for his involvement and support.

2. PRELIMINARIES

2.1. Holder spaces. We recall here standard results on Hélder spaces. The fol-
lowing lemma can be found in [PRdIS22 Proposition 4.1].

Lemma 2.1. Let o > 0 and X,Y be two Riemannian manifolds. Let p: X =Y a
function of class C”. Then f — f o maps C"(Y) to C™)(X). Furthermore,
if (fn) is bounded in C™)(Y), then (f, o p) is bounded in C"*)(X).

Using Leibniz rule, we can prove the following lemma.

Lemma 2.2. [f g is a smooth function, and if (f;)icr is bounded in C(r,a)(Q), then
(gf;) is bounded in C)(Q).

Given a family of functions which are eigenvalues of a map T into B(H), the
regularity of T' can be linked to the boundedness of the eigenvalues in Holder spaces.

Lemma 2.3. Let U be an open subset of R and H an Hilbert space. Consider a
map T : U — B(H) such that there is an orthonormal basis () of H and a family
of maps frn : U — R, such that for any X € U, T(X) is diagonal in the basis (en)
with eigenvalues (f,(X)). If (fn) is bounded in C*)(U) for some o > 0, then T
is Co)(U).

Proof. If T is C*, then for any X € U, Hy,--- , H;, € R?, we must have f, € C*
for any n € N and
D*T(X)(Hy,- -+ Hy)en = DX f,(X)(Hy, -+, Hy.)en.

We prove the result by induction on r. If r = 0, we have for X,Y € L compact
subset of U,

IT(X) = T(V) oo = sup | fn(X) = fu(Y)] < ColIX = Y]*

so T' is a-Holder.
Assume the result is true for » — 1. Since O (U) ¢ C"=11(U), by induction
we have T € C"~1(U). Let A be the r-linear map such that

A(Hh T 7H'r)en = DTfn(X)(Hh ce aHr)en-
Note that since (D" f,,) is bounded in n on compacts, A(Hy,--- , H,) € B(H).
We must show that
lim HDT_IT(X + Hy)(Hy, - Hyy) — DT_lT(X)(Hh oy Her) —A(Hy - Hy) oo

=0
H,.—0 ”H?“Hl
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uniformly for Hy,--- , H._; in bounded sets. We have

||DT_1T(X+HT)(H1"" 7H’r‘—1) - Dr_lT(X)(H]J”' aH’r‘—l) - A(Hla 7HT)||OO =

sup| D" £ (X + H,)(Hy, -+ Hooy) = D™ o (X)(Hy, -+ Hooy) = D7 fo(X)(Ha, -

Assume that H,. is small enough, so that B(X, |H||s) C U. Let

[0,1] — R
Int 4 s DULf(X 4+ tH)(Hy, e Hely)

then
gn(1) = gn(0) = g:z(t) =D"fo(X +tH,)(Hy, -, Hy)
for some ¢ €]0, 1].

Then

|DT_1fn(X+H'r)(H17' o 7Hr71) _DT_lfn(X)(Hla"' 7Hr71) _Drfn(X)(Hh

D" fr(X +tH,)(Hy, -+ Hy) = D" fo(X)(Hy, -+, Hy)
|D" fu(X + tH,) = D" f(X)|| TT;=y 1 H:ll
1X +tH, — X||* TIi_, | Hil]
| Ty 13|
so since o > 0, we get what we want.
So we have that D"T(X) exists for any X € U, and thus for X, Y € L compact
subset of U,

ID"T(X) = DT(Y)| = sup|[ D" f(X) = D"F(Y)]| < Cof| X - Y[

INIAINA I

because D" f,, are uniformly a-Hoélder on L. ([l
2.2. Gelfand pairs.

Definition 2.4. Let G be a locally compact topological group with a left Haar
measure dg and K a compact subgroup with normalized Haar measure dk. The
pair (G, K) is a Gelfand pair if the algebra of continuous K-bi-invariant functions
on G with compact support is commutative for the convolution.

A spherical function of (G, K) is a continuous K-bi-invariant non zero function
on G such that for all z,y € G,

/ p(zky) dk = p(z)p(y).
K

A standard result (see [vD09, Coro. 6.3.3]) gives a link between spherical func-
tions of (G, K) and unitary representations of G.

Proposition 2.5. If (G, K) is a Gelfand pair, then for any w irreducible unitary
representation of G on an Hilbert space H, the subspace of K -invariant vectors H*
is of dimension at most 1.

The positive-definite spherical functions of G are exactly the function g — (m(g)v,v)
with ™ an irreducible unitary representation and v a K-invariant unit vector.

If G is compact, any spherical function is positive definite.

Remark 2.6. If we assume that G, K are Lie groups, positive definite spherical
functions have a geometric interpretation. Let D(G/K) be the algebra of differential
operators on G/K invariant by the action of G by translation on G/K. Then
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¢ : G/K — C is a positive definite spherical function if and only if p(K) =1, ¢ is
invariant by the action of K and ¢ is an eigenvalue of all operators of D(G/K).

When G/K is a compact symmetric space of rank 1 (a sphere or a projective
space, see Section , then D(G/K) is generated by the Laplacian. Hence in that
case, positive definite spherical functions are normalized K-invariant eigenvalues of
the Laplacian.

More details on Gelfand pairs can be found in [vD09, Ch. 5,6,7].

Given a Gelfand pair (G, K), it is natural to study spherical functions in order
to get results on K-bi-invariant matrix coefficients. Indeed, any matrix coefficient
of a unitary representation decomposes into an integral of spherical functions - an
infinite sum if G is compact.

Lemma 2.7. Let (G, K) be a Gelfand pair with G second countable. Let ¢ be a
K -bi-invariant matriz coefficient of a unitary representation w on an Hilbert space
H. Then, there exists a standard Borel space X and a o-finite measure p on X
such that

(P:/ Cw‘pxd/f"(x)
X

where @, is a positive definite spherical function of (G,K) for any x € X and
e € LY (X, p).

Proof. If v(g) = (7(g)u,v), we can replace H by span(n(G)u, 7(G)v) which is a
G-invariant separable subspace, since G is second-countable hence separable. Thus,
we can assume that H is separable.

Then, by [Kir76, Section 8.4], there exists (X, u) and an isometry U : Hx — H
where Hx is the direct integral of the collection of Hilbert spaces (Hg)zcx, such
that Vg € G, (g) = U o 7(g) o U™, where (7(9)€)s = m2(9)& and (7, H,) is an
irreducible unitary representation of G.

Let P denote the projection on the space of K-invariant vectors in H. Since ¢
is K-bi-invariant, we have

so(g)=/K/Ks0(kgk’)dkdk’=<W(9)Pu7Pv>~

Thus, we can assume that u,v are K-invariant, so & = U~ t'u,n = U~ v are K-
invariant.

So for p almost every z, &.,n, are K-invariant. Now, if 7, is such that 0
is the only K-invariant vector, (m.(g)&s,nz)1, = 0 for every ¢ € G. On the
other hand, assume m, has non-zero K-invariant vectors. Then we know that the
space of K-invariant vector is one-dimensional and that there is ¢, € C such that
(72(9)&x, Nz )1, = C2xpz, Where @, is the spherical function associated to m, (and
S0 is positive definite).

Setting ¢, = 0 if m, has no non-zero K-invariant vectors and ¢, the constant
spherical function, we have

o(g) = (T(9)E Mux = /

X

(7a(9)Ew e, dple) = /X e (g) du(z).

Since |cz| < 1€z 3¢, 17232, , the function = — ¢, is in LY(X, p).
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Lemma 2.8. Let (G, K) be a Gelfand pair with G a Lie group endowed with a
Riemannian metric d and U any open subset of G. Then the family of positive
definite spherical functions (pg)zex is bounded in C"9)(U) if and only if any K -
bi-invariant matriz coefficient of a unitary representation of G is in C"9(U).

Proof. Assume that (), is bounded in C"%)(U). Let ¢ be a K-bi-invariant
matrix coefficient of G. Since G is a Lie group, G is second countable, thus by the
above lemma, there exists a o-finite measure p such that

<p(g) :/XCIQOLECZU($)

with ¢, € L'(X, ).

Let go € U, L be a compact neighborhood of gg, then there exists Cp > 0 such
that || D*¢.(g)|| < Cp for any x € X,g € L,k < r. Thus, (z,g) = D*(cap.)(g) is
bounded by x — C ¢, integrable, hence ¢ is r times differentiable in a neighborhood
of gy, and

k _ c k T
D"p(g) —/X + D" (g)dp(z)

for any k < r. Since this hold for any go € U, ¢ € C"(U). Finally, let L be any
compact subset of U, there exists Dy > 0 such that for any g,h € L and = € X,

1D (g) — D" (h)|| < Drd(g, h)°.
Thus,

1D"¢(g) = D"p(h)] < / a1 D" 0 (9) — D"pu(h) | dpu(z) < Di|lelrd(g, h)°.

Hence, we showed that ¢ € C"9)(U).

For the other direction, assume that any K-bi-invariant matrix coefficient of G
is in C(™9)(U). Let E be the space of K-bi-invariant matrix coefficient, endowed
with the norm

llell = mf {{[¢][[[n]l | 3w such that Vg € G, ¢(g) = (w(g)&m}

Then E is a Banach space, and ||¢|| > ||¢[lec. Consider f : E +— C9)(U) the
linear map sending ¢ to its restriction to U. By the assumption on regularity,
f is well-defined. Let G; be the graph of f in E x C™9(U). We claim that it is
closed. Indeed, if (p,, vn) — (¢, %), then in particular, ¢,, converges to ¢ uniformly
on compact subsets of G, since ||pn — ¢lleo < |lon — ¢|l. On the other hand, by
definition of the seminorms on C'"%) (U), ¢,, converges uniformly on compact subset
of U to 1. Thus 1 = ¢|yy. Now, since E is a Banach space and C"9) (U) a Fréchet
space, by the closed graph theorem, f is continuous. Finally, since the family of
positive definite spherical functions is in the unit ball of FE, its image in C’(“‘s)(U )
is bounded. O

This result shows that studying boundedness of (positive definite) spherical func-
tions is enough to obtain regularity for all K-bi-invariant matrix coefficients, and
even that the optimal regularity of such coefficients is exactly the optimal uniform
regularity of spherical functions.
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2.3. Symmetric spaces. Let G be a connected Lie group G and ¢ an involutive
automorphism of G. Let G denote the subgroup of fixed point of o and (G7)o
its identity component. For a subgroup K of G such that (G%)y C K C G7, the
quotient space X = G/K can be given a structure of symmetric space. Using a
characterization of Gelfand pairs ([vD09, Prop. 6.1.3]), we see that (G, K) is a
Gelfand pair if and only if K is compact. We call such pairs symmetric Gelfand
pairs.

It turns out that all symmetric spaces arises in this way (see [Loo69al, Ch. II
Thm. 3.1]). Given M a connected symmetric space and o € M, there is a canonical
connected Lie group G(M) called the group of displacement, which is a subgroup of
Aut(M) the group of automorphisms of symmetric space of M, such that if K (M)
is the isotropy subgroup of o, we have M ~ G(M)/K(M). Furthermore, K (M) is
compact if and only if the symmetric space is Riemannian ([Loo69al Ch. IV, Prop.
1.7)).

Since there is a classification of Riemannian symmetric spaces ([LooG9bl Ch.
VII)), it seems natural to study symmetric spaces. We say that a Riemannian
symmetric space M is

e cuclidean if its sectional curvature is identically zero
e of compact type if its sectional curvature is non-positive and not identically
Zero
e of non-compact type if its sectional curvature is non-negative and not iden-
tically zero
If M is a simply connected symmetric space, then there are My euclidean, M,
of non-compact type and M_ of compact type such that M = My x M, x M_
([Loo69al Ch. TV, Coro. 1]). In this paper, we will study symmetric Gelfand pairs,
and more precisely those where M is of compact type. However, a question arises:
if two pairs represent the same symmetric space, are their spherical functions the
same 7

We say that a symmetric space M is semisimple if G(M) is a semisimple Lie

group.

Lemma 2.9. Let (G, K) be a symmetric pair and M = G/K the associated sym-
metric space. If M is semisimple, then there is a bijection between spherical func-
tions of (G, K) and spherical functions of (G(M), K(M)), such that the image of
@ induces the same function as ¢ on M.

Proof. Let 7 : G — Aut(M) the morphism defined by 7(g) : K — gzK. Then
ker7 = (\,cq gKg™!. Let G, = {zo~!(z)|z € G}, then by [Loo69a, Ch. II, Thm.
1.3], G(M) = (7(Gy)) is a subgroup of 7(G) ~ G/ ker .

By [Loo69al Ch. IV, Prop. 1.4], since M is semisimple, we have G(M) =
(Aut(M))o. So we have G(M) = (Aut(M))o < 7(G) < Aut(M) and 7(G) is
connected because G is, so G(M) ~ G/kerr, and K (M) ~ K/ker.

Let 7 be an irreducible unitary representation of G(M) with a K (M)-invariant
vector &, then by composition with the isomorphism and projection, it induces an
irreducible representation of GG, with £ which is a K-invariant vector.

Conversely, let m be an irreducible unitary representation of G on V with a K-
invariant vector £. By irreducibility, span(n(G)§) = V. Let © € kerr. If g € G,
there is k € K such that z = gkg~'. Hence,

m(z)7(9)§ = m(g)m(k)§ = m(g)€.
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So for any g € G, 7(g)¢€ is 7(x)-invariant. By density of the vector space generated
by these vectors, w(x) = Idy. So kerT C kermw, thus m induces an irreducible
representation of the quotient G(M), with a K (M )-invariant vector &. O

This results says that in the case of a semisimple space, the spherical functions
depend essentially only on the symmetric space. But the assumption that M is
semisimple is crucial, as the following example illustrates. Let M be the euclidean
space R™, then the canonical pair associated is (R™,{0}). But R™ # (Aut(M))o.
For example, (R™ x SO(n),SO(n)) is a symmetric Gelfand pair and R"™ is the
associated symmetric space. In that case, spherical functions of the two pairs are
not related.

If M is of compact type or non-compact type, then M is semisimple. In fact
([Loo69al, Ch. IV, Thm. 3.5]), M is of compact type if and only if M is compact
and semisimple, if and only if its universal cover is compact.

Thus, as we restrict ourselves to symmetric pairs associated to symmetric spaces
of compact type, by the previous discussion, we can study only one pair for each
symmetric space (for example, the canonical pair).

2.4. Spherical functions of compact symmetric pairs. In this section, let M
be a compact connected simply connected symmetric space and (G, K) the associ-
ated canonical compact symmetric Gelfand pair. Since G is compact, any spherical
functions is positive definite and thus corresponds to an irreducible representation
of G with a nonzero K-invariant vector.

We know that the finite dimensional irreducible representations of G are classified
by the highest weights p. Let g be the Lie algebra of G and ¢ the Lie algebra of K.
Then we have g = £ @ m where ¢ (resp. m) is the eigenspace of +1 (resp. —1) of
o. The space m is also the Lie triple system of M (see [Loo69a)], Ch. II, Prop 2.3).
Let a be a maximal abelian subspace of m, and X7 a choice of positive root system
of ac in gc. Let £* = {x € ¥[z,a] = 0} and t a Cartan subalgebra of ¢*. Then
h = t+a is a Cartan subalgebra of g. Consider ¥ a choice of positive root system
of hc, such that X = {¢[q|¢ € 1, ¢|a # 0}. Also, recall that dim b = rank G and
dim a = rank M.

Let p be a dominant integral element in b and (7,,V),) a representative of the
associated class of finite dimensional irreducible representation of G. Let

p=5 3 a

aext

We know by the Weyl formula ([Hal03, Thm. 10.18]) that

Haez+ <O‘v ©+ p>
[loesn+ (@ p)

The first question we want to ask is, given p a dominant integral element, what
are the conditions for 7, to have a non-zero K-invariant vector. In this context, the
answer is given by the Cartan-Helgason theorem ([Hel00, Ch. V, Thm. 4.1]). Let
Gk denote the set of classes of irreducible finite dimensional representation with a
non-zero K-invariant vector.

Theorem 2.10 (Cartan-Helgason). Let A = {u € ia*|Va € £F, 2L € N}. Then

a’ (a,a)
the map which sends a representation to its highest weight is a bijection from Gk

to A.

d, = dimV, =
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Remark 2.11. In [Hel00], the result is stated for G simply connected. However, let G
be the universal cover of G and p : G — G the covering map. Then ker(p) C Z(@).
Let K = p~'(K), we have that G/K ~ M. Since G is connected and M is simply
connected, K is connected by the long exact sequence of homotopy groups. K
contains G which is connected (by [Bor98, Ch.V, Thm 3.3]) and has the same Lie
algebra, thus K =G".

This means that (G, K) is another symmetric pair for the symmetric space G/ K,

so by Lemma there is a bijection between G x and G - Finally, A depends only
on the Lie algebra, and so by the theorem and the previous bijection, G x — Ais
a bijection too.

Also, note that ker p C G since its elements act trivially on M. Hence,

kerp C Z(G) = {g € Z(Q)|o(g) = g} = K N Z(G).

For example, if rank M = rank G, a = h so A is twice the set of dominant
integral elements. In general, let ¢ be the rank of M. Then the choice of X7 gives a
choice of a basis of the root system {aq,---,ar}. By [Vre76, Thm. 2.1], there are
fundamental weights p;,1 <4 < £ such that A = {>" m;u;, m; € N} ~ N°. These
fundamental weights verify (u;, ;) = 0if ¢ # j.

Let a, = {H € a|VA € ¥4, A\(H) ¢ inZ} and @ the connected component of a,
contained in the positive Weyl chamber C = {H € a|VA € 31, —iA(H) > 0} and
such that 0 € Q. Then in [Cle88, Prop. 3.2], we have the following result:

Proposition 2.12. For any g € G, there exists k1,ky € K and a unique H € Q
such that g = ky exp(H)ky !

Remark 2.13. Again, this result is given for G simply connected. If G is not simply
connected, note first that () depends only on the Lie algebra. With the notation
of Remark [2 for g € G, there is § € G such that g = p(g). The decomposition
gives k1, ke € K and H € @ such that

G = kiexps(H)ky ",
S0
9= p(k1)p(expg(H))p(k2) ™" = p(ks) expg (H)p(ks) ™!
gives the decomposition for G. Furthermore, if there are H, H’ such that exp(H) =

expg(H'), then exps(H) = expa(H' )k, k € kerp C K. By uniqueness for simply
connected groups, H = H'.

Now, let (¢,.)uea be the family of spherical functions of (G,K). Let p : G —
K\G/K. The functions ¢, are K-bi-invariant, thus the value of ¢,(g) depends
only on p(g). Let ¢, = ¢, 0exp|qg. The family (¢,,) is a family of functions defined
on a open subset of R*. We are interested in the regularity of these functions.
Let 7opt(M) = sup { (r, @)|(¢,) bounded in C"*)(Q)}. By Lemma this is also
the supremum of (r, ) such that all K-bi-invariant matrix coefficients of G are in

Cra)(Q).

Remark 2.14. Since the spherical functions can be defined on K\G/K, we can see
them as functions on @Q by the previous proposition without losing information
on the function. However, we restrict to () because on the singular points, the
behaviour cannot be controlled. Furthermore, Proposition will be refined in
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Proposition [5.8] which will allow to recover the regularity obtained on the Lie
algebra at the level of the group itself.

Let My, Ms be two simply connected symmetric spaces of compact type and
(G1, K1), (G, K3) the associated canonical Gelfand pair. Then M = M; x My
is a simply connected symmetric space of compact type, whose canonical Gelfand
pair is (G, K) with G = G; x G and K = K; x Ky. Let 7 be an irreducible
representation of G. The irreducible representations of G are m = m; ® w5 where
m; is an irreducible representation of GG;, and 7 has a non-zero K-invariant vector
if and only if 7; has a non-zero K;-invariant vector, i = 1,2. In that case, we know
that the space of K;-invariant vectors is one-dimensional and let ek, be a unitary
generator. Then, ex = eg, ® ek, is non-zero, unitary, K-invariant and generates
the one-dimensional space of K-invariant vectors of 7. Thus, if (; is the spherical
function associated to m;, and ¢ associated to w, we get

©(91,92) = p1(91)p2(g2).
Similarly, at the level of the Lie algebra, we have Q = Q1 X @2 so

Y(Hy, Ha) = 91 (H1)pa(Hz).

Denote E; vector space such that @; C FE;, and on E; X E5, we consider the
norm ||(z,y)| = max(||z|,]ly]]). We write A, A1, Ay the set of highest weights of
representations with invariant vectors for M, My, M. Since the constant function
1 is a spherical function of any pair, we can take 1) = 1 and we get that for any
p € Ay, the function (g1, 92) — ¥, (g1) is a spherical function of (G, K).

Let (r,@) < ropt(M), then (¥,)en, C (¥u)uea is bounded in C)(Qy), thus
we get Topt (M1) > 1opt(M). Symmetrically, rope(Ma) > 7op(M).

Conversely, let (r,a) < min(rop(Mi), 7opt(M2)). Let L be a compact subset of
Q, there are L, Ly compact subsets of ()1, Q2 such that L C Ly X Ly. For k < r,
let

Cr, = sup sup | DM45, ()]
pneEN;xz€L;
and let . .
€ — sup sup 1271 @) = D)

neEN;x€L; ||I - y”a

These are finite numbers because by assumptions, (1,,),ea, is bounded in C (o) (Qy),
i =1,2. We have A ~ A; x Ay. Consider (u1,u2) € A, and

w(m,uz) D (x1,22) 7/’#1(931)1/}/@ (72).
Then clearly, 1, ,.,) is r times differentiable and we have
Drw(uhuz)(‘rl?m?)((Hl’ K1)7 T (HT7 KT)) =

Z Dkiwﬂl (xl)(Hjl(i)’ e ’iji(i))DT_kile«z (‘/'U2)(Kjk7;+l(i)’ T 7Kjr(i)>
icl
where k; < r for each 7 € I and I finite.
Thus, for all (x1,z2), (y1,y2) € L, we have

||Drw(#1,#2)(m17 x2) - DT¢(#1,#2)(y17 yQ)H S
D DM, (w1) DTy, (w2) — DMy, (y1) DT 4y, () .

el
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So we have

HDkw/h (ml)Dr_kdjuz (.%'2) - Dkiﬁm (yl)DT_kw,U«z (yQ)H
< ”Dkwlh (xl)DT_k’@[]ltz (xQ) - Dk?/’m (yl)DT_kql),UQ (‘T2)

+Dk1/fu1 (yl)DTikwllz (‘xQ) - Dkdj#l (yl)Driqu/}AQ (yQ)H
< DMy (1) — D4y (y1) 1 D7 * 4y, (2) |

Dy, () 1 D" * by, (22) — D™ Fapyy, () |

If k # 0,7, this gives
D"y, (1) D" * 4y, (2) — D*4Pyu, (1) D™ 4y (y2) | < Cry k41 CLy vkl — w1
+ CLy kCLyr—kt1ll2 — 92|,
if k=0,
||Dk¢m (xl)Dr_kwuz (.232) - Dkwm (yl)DT_kwﬁw (yQ)H < CLlJCLz,THxl - yl”
+ CL,,0CL, [|72 — 92[|*
and if k =r,
D%y, (21) D" *py, (w2) — D*4yu, (1) D™ by, (y2) || < Cr, Cry oz — 31 )1
+Cr, v Cry1llw2 — y2]|.
But since « € [0, 1], there is C; > 0 such that for all z,y € L;,
|z —yll < Cil|lz -yl

and so there is a constant C, > 0 which does not depend on (u1, p2) € A, such
that

D" %y o) (1, 02) = D"y o) (W1, 92) || < O max(||lzy — ya |, [lz2 — yal|*)
= Crll(w1,72) — (y1,92) [

And thus, we showed that (¢,,),ea is bounded in C(9) | 50 that
Topt (M) = min(rope(My), 7opt (Ma)).
By induction, we get the following :

Proposition 2.15. Let M;, 1 < i < n be a simply connected symmetric space of
compact type, and M = T["_, M;. Then

Topt (M) = min(rop (M;)).

This result tells us that we can study only the irreducible simply connected
symmetric spaces of compact type. By the classification in [Loo69bl, Ch. VII], such
a space M is either

(1) ome of the spaces in [Loo69b, Ch. VII, Table 4 and Table §],
(2) (G x G)/A(G), where G is a simply connected simple compact Lie group
and A(G) the diagonal subgroup of G x G.

The first case contains the symmetric spaces of rank 1 for which we will solve
the question in Section [3| In Section we will study (G x G)/A(G) (even for
reducible and not simply connected). Finally, we give some partial results for some
other higher rank symmetric spaces in Section 4.2
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3. SYMMETRIC SPACES OF RANK 1

3.1. Spherical functions of symmetric spaces of rank 1. A classification of
symmetric spaces of compact type can be found in [Loo69bl Ch. VII] and from this
classification, we extract the canonical compact Gelfand pairs associated to compact
symmetric spaces of rank 1. Table [1] lists these symmetric spaces with (G, K) the
canonical pair associated to M, the dimension of M and two real parameters «, 3
used later.

M G K dim M « B8
SE=L 1 SO(k) SO(k —1) k—1 | B3 | k3
RPF1 | SO(k) | S(O(1) x O(k—1)) | k-1 kes -1
CPF1 | SUKk) | SUQ) xU(k—1)) | 2(k—=1)| k=2 | 0
HP*1 | Sp(k) | Sp(1) x Sp(k—1) |4(k—1) |2k—-3| 1
Gkt F, Spin(9) 16 7 3

TABLE 1. Compact symmetric pairs of rank 1

Remark 3.1. We can see that o = W —1.

The spherical functions of these pairs are well-known and can be found in [Hel00,
Ch. V, Theorem 4.5], while the dimension of the associated representation are found
in [CWT5] Theorem 2.4, 3.2, 4.2, 5.2 and 6.2]. They can be expressed in terms of
Jacobi polynomials.

Definition 3.2 (Jacobi polynomials). Let a > —1,8 > —1, set PP the polyno-
mial of degree n such that for all m # n,

1
/ PR () PP (2) (1 — 2)*(1 + 2)P dz = 0
-1

Pl (1) = (n + a).

n

and

Since G/K is of rank 1, we have either 7 = {a} or ¥F = {«a,2a}. In both
cases, a ~ R by H — —i«a(H). By this identification, we have Q ~]0,7[. If ¢ is a
spherical function of (G, K), denote 1) = ¢ o exp |§.

Theorem 3.3. If (G, K) is a compact symmetric pair of rank 1, then its spherical
functions are the functions @, defined at the level of the Lie algebra by

P 0).
Ttat1) Ln (ost)
Furthermore, the dimension m,, of the representation associated to @, is a poly-
nomial in n of degree (dimG/K) — 1.

1/1n:9€@+—>r

Remark 3.4. To get the function ¢, itself, we need to understand the projection
H: G~ Q since ¢, =1, o H by K-bi-invariance.

For (SO(n),SO(n — 1)), we have H(g) = arccos(g1,1). For the other non-
exceptional rank 1 pairs, we have H(g) = arccos(2|gy 1]? — 1).



14 GUILLAUME DUMAS

We delay this study at the level of the group until Section [} By convention,
”the family of spherical functions” will refer to the functions (¥, )nen-

3.2. Regularity of matrix coefficients.

Theorem 3.5. Let (G, K) be one of the symmetric pairs of rank 1. Let
dimG/K —1
Oop = ———————.
2
Then the family of spherical functions of the Gelfand pair (G, K) is bounded in
C(Lavaam_LamJ)(Q),

Given that the spherical functions of the Gelfand pairs we are interested in are
all Jacobi polynomials, of parameters (o, ) fixed by the pair, we can derive the
theorem from the following result:

Theorem 3.6. Let o > 0,3 > —1 be two reals. Then the family (%Pﬁa’m> .
ne

is bounded in C(LO‘+%J’Q+%_LQ+%J)(] - 1,1)).
Proof of Theorem[3.5 using Theorem[3.6. According to Section and up to a

reparametrization by Lemma the spherical functions of (G, K) are normalized
Jacobi polynomials of parameters («, §) with

o dimG/K L
2
Since
1 dimG/K —1
ats=——7—"— =0,
2 2
we get the result by Theorem [3.6] O

The proof of Theorem relies on two ingredients that can be found in [Sze39,
(4.21.7) and (8.21.10)].

Proposition 3.7. For all a, 8 > 0, and for all n > k, we have
4 pad gy = et B 1HE) pathsn
dzk™ " 2D (a+B+n+1) "k

Proposition 3.8 (Darboux’s formula). We have

PP (cos ) = n_%k‘(e) cos(NO +v) + O(n‘g)

().

where . ) .
k(0)=n"2s8in %" 2 %cosfﬁ*f

N=n+1i(a+B+1),
v=-5 e+,

and O(n™%) is uniform for 0 in the compact [e,7 — €], for any & > 0.

IRS

)

Proof of Theorem[3.6. Let pn(x) = %P}f"m (x). Set L a compact subset

of | = 1, 1[, up to replacing L by its convex hull we can assume that L is an interval.
There exists € > 0 such that if cos@ € L with 6 € [0, x], then 6 € [¢, 7 —¢]. Thus by
Proposition because the function 8 — k() of Darboux’s formula is bounded
on compacts in )0, 7[, there exists Cf, g such that for all z € L and n € N*,

(3.1) |P{O) (1) < Cpapn™ 2.
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Thus, by Proposition [3.7, we have for all 2 € L and n > k,

iP(a’B)(.T) SF(a+B+n+1—|—k)
dxk™ " 2PT(a+B+n+1)
For any £k € N, and n > k, Wehaven—k>k+
x > 0, we get that

(3.2) C’L7a+k7ﬁ+k(n — k‘)_%

7. Using that I'(z + 1) = 2I'(z) for

d . VEFI[T (a4 B+n+j) ;
(3.3) %P( ﬁ)( )‘ < J 12k CL,a+k,p+kN" 2,
SO
(k) _ T(a+DI(n+1) | 4 ozﬁ)
- @) = e | g P (@)
’ < Cratrk, ﬁ+k:\/k?+ T(a+1) T(n+1) [T5_, (a4B+n+7) -1
— I'(n+a+1) n .
Now, there is C1, Cy such that if f(z) = V2ma®t2e, then for z > 0,
Cif(z) <T(z+1) < Cof (2).
Thus for all n > 0,
n-i-l —n « fe
(35) Lt G i < & oy < B e
Tn+ta+1) = C, (n + a)rtotze—(nta) Cq Cy

since @ > 0. Furthermore, for each j € [1,%] and n > 0, we have

(a+8+n+j)<(a+B+k+n) <(a+B8+k+1)n

thus
k

(3.6) Ha+ﬁ+n+y) (a+B+Ek+1)n
Setting

~ CrL.a VEk+1T(a+ 1) Cre”

Crapgk = Loth.bik 2k (a+1) ée (a+B+Ek+1)F

1

and inserting (3.5 and ( into , we finally get that for all n > k and z € L,
(3.7) \w(k)( )\ < Clappnt o7,

From this inequality, we see that the derivatives of the family of spherical func-
tions are bounded in n up to order |+ 1. If a + 3 € Z, this shows that (¢,,)
is bounded in C@+2:0) If o + % & 7., we must now verify the Holder part.

There are now two cases to consider.

Case 1: assume that o — [a] < 1, which is equivalent to [+ 3| = [a]. Set

neN

1 1 1
)\*Q*LQJ+§*Q+§*LOK+§L
we have \ € [%, 1[. Then by (3.7) applied to k = [a], we get for € L that
i (@) < Myn™?,
so that for z,y € L,
(3.8) ol ( ) — oD @) < il D (@)] + |plleD ()] < 2Min >
Applying (3.7) to k = |a] + 1, we get for z € L that
|l ()] < Man' 2,
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so that for z,y € L,
(3.9) oD (@) — LD ()] < sup|ll T (#)[|a — y| < Mon' |z — y].
teK

n

Finally combining (3.8]) and (3.9)) we have
oD (z) = DY)l < (2Min ™) A (Men' o —y))* = Ma —y],
which is the result we wanted.
Case 2: assume that o — [«] > I, which is equivalent to [a+ 3] = [a] +1. Set
1 1 1
/\—Oé—LaJ—§—a+§—La+§J,

we have A € [0, 1]. Similarly to the first case, we apply (3.7) to k = [a] + 1 and
k= |a] + 2 to get that for all z,y € L,

(3.10) |l H ) (2) — oL (y)] < Min~
and
(3.11) ottt (@) — LT ()| < Min' o — y),

which combines as in the first case, giving
et D (@) = D ()] < (Min™) A (Mgn' e = y)* < Mz — y ],

which is the result we wanted.
O

Corollary 3.9. Let (G, K) be a compact symmetric Gelfand pair of rank one. Let
@ be a K-bi-invariant matriz coefficient of a unitary representation of G, then
poexp € C(LO‘OCLO‘OC*LOCOCD(Q)'

Proof. Tt follows directly from Lemma 2.8 O

3.3. Schatten norm. Given H a Hilbert space, 1 < p < 400 and T an operator
on H, the Schatten p-norm of T is

IT]s, = Te(IT|P)/”

defined by functional calculus. If p = +o0, this is the operator norm. Then S,(H)
is the space of operators T such that ||T'||s, < 4-oc.

Let (G, K) be a pair as in Section Define T, = Jrcw e MEgk') dk dk" where
dk is the normalized Haar measure on K and A the regular representation of G on
L?(G). Since the map T is K-bi-invariant, the function T = Toexp : @ — B(L*(G))
determines 7. We want to investigate the regularity of T as map into S,(L?(G)).
Letp>2+W and set

dimG/K  dimG/K -1 dimG/K

oy — (X
P p 2 p

(so ap > 0).
Proposition 3.10. The map & — Ts belongs to CI@e]1=Taec=lax]+1) (Q, S (L*(G))).

Proof. There is an orthonormal basis of L?(G) such that for any § € Q, Ty is diag-
onal with eigenvalues 1,,(0) of multiplicity m,, the dimension of the representation
associated to v,,.

By Theorem [3.5, we know that ¢,, is bounded in C(l¥~).@~—la<])(Q), thus by
Lemma [2.3] we get the result. O
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Remark 3.11. If a = 0 in Lemma[2.3] we cannot show that T"is C". The derivative
will exist in a weak sense, but we cannot show convergence in norm.

In particular, if ay € Z, we do not get that 0%=T exists. In fact, we will see in
the next subsection that the result in Proposition |3.10]is optimal.

The following theorem is a generalisation of a result from [PRAIS22] on the group

SO(n).
Theorem 3.12. Let 2 + W/K—l < p < 4oo. The map § — Ts belongs to
Cllala=lel)(Q, S, (L%(@))) where
{ op if o €7
o =
@

p—cifap, €L

with € > 0 arbitrarily small.

Proof. Let
I(u+1)(n+1)
3.12 () = pluv)
(312) oula) = L P o),
be the spherical functions of (G, K) seen on cos(Q) =] — 1, 1] with u = M -1

By Lemma we can assume that T is defined on | — 1, 1] and is such that there is
an orthogonal basis such that Ty is diagonal with eigenvalues ¢, (6) of multiplicity
my, the dimension of the associated representation (see Section . Notice that
there is a constant C' which depends only on G such that for all n € N,

(3.13) My < C(n 4 1)dmG/K=1,
Let r < aoo and § €] — 1,1[. By Lemma [2.3] we have that 9"T exists and

1/p

10" Ts )15, = | D malel (8)7

n>0

Thus, using the inequality (3.7)) from the proof of Theorem we have that there
is a constant C(G,r, ) such that

dim G/K—1
=)

M|l (2)[P < C(G, 7, 8)(n + 1)dim G/ K=14p(r=
= C(G, 7, 8)(n + 1) (

dim GQ/K—I _ dim;;/K ))71

Thus the sum converges as soon as r < 92 GQ/KA - dlmpG/K = ap, and so 0"Ts €

S,(L?(G))) for these r. This happens when r = |a].
In that case, for §,46" in some compact I of | — 1,1, which we can assume to be
an interval up to taking its convex hull, we have

||8L“JT5 . aLaJT&”zép _ ZmnwgaJ)(J) _ @%LQJ)(5/)|Z)~
n=0

We bound again m,, by C(n + 1)3m /K1 For the term |p{l*)(5) — il (5],
we have two different bounds. By the expression of ¢, in (3.12)) and using (3.7,
on the one hand, we have

[Pt D (@)=l D (@] < LD @)+l D (8] < Cr(nt1)1) 772 < Oy (n1) 1)~

n n

dim G/K—1
2
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which we use as soon a n|d — ¢’| > 1 and on the other hand,

[o40(8) = oD ()] < supll{® D (1) 68| < Cofn 1)1 1~

dim G/K—1
2

|5_6l|v

which we use a soon as n|d — ¢'| < 1. So we have, since

. dimG/K -1
aimG/K ~ 1+ p(la) — PR ey —ay) 1,
that
||6WJT5—6L“JT5/||§IJ < CCr Z (n4-1)Plel=en) =1 ocP Z (n4-1)P(led+1-an)=115_5/|p
n>\5—16’\ ”<\5 57

There are now two cases to consider.
Case 1: if a,, ¢ Z, we have a = a,. Let ng = Lﬁj + 1, we get
+oo 1 no—1 1

||ataJT5—al“JT5,||gp ey Z +OC3|0—-0"" Z (n + 1)1+e(o—la]=1)
n=ngo n=0

(n+ 1)1+p(a7LaJ)

There are again two subcases to consider. First, assume that 1+p(a—|a]—1) > 0,
then

+o0 77,071
1 1
o [e1 V4 P P /
[01Ts — O\ITy |G, < CCF Y sy T OO0 =017 Y e
iz (1) = (n+1)
> 1 o 1
P P|ISs _ S|P
s o4 /n Tra—Tan @+ CC:10 -] /O TTFra—Ta]—D) @
ccr CCs[6-8'1”_ p(la)+l-a)
< p(a—LaJ)nP(a =D+ Shasal=D "0
ccpls=s'|P (14)5-s]\PllelH1=a)
< (a LaJ j18 — aprlemled + <LaJ+H¥>L( =71 )
005(1+7r>P< altize (a—la])
- p(ali ! |/(|5 6/L|pJ>a LaJ salrizay— (16—
< Pl — §'|pleLe
Thus, we finally have
9175 — 91 Ty 5, < CJ5 — f-1.
In the other subcase, we have 1 + p(a — [a] — 1) < 0, then
+o00 1 no—1
[oLedTs — Lol Ty g < CCijOHﬂyﬂmﬂMy+agw—yw}:m+¢rHﬂM+P®
n=ng n=0
%] no+1
P 1 pis_se [ polte(lal+i-a)
< 00y pr(aiLaDdx—l—CCﬂd o x dx
no 1
ccr CCs|5-8'|P al+l—a
S e e =D T iy (o + 1plets1=e) — 1)
P|s__S/|P Y p(lal+1-a)
z p(a— aJ jIo — dptemte + SEHEEG (M)
a-la)) 4 CCR(42mPalaize) (a—lal)
. (al_m I/(|S 5/L|pJ) R T e al (LA
< Pl — §'|plele

Again, we finally get
[l Ty — 9l Ty |5, < €6 — &' Lo,
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Case 2: if ap € Z, let 0 < ¢ < 1, we have |a] = |ap —¢] = o, — 1. Let
ng = Lﬁj + 1, we get

too no—1
1 1
Lo — olaly, |2 < p - P|Is _ S|P 4L
ot Ty — ol | < CC%Z;xn+1yﬂf+CCﬂ5 5|n:0”+1
b 1 no—1 1
p p / P /
< CC{AO1¢mdx+CCﬂ5—5W+C@H5—5wﬁj ~do
< ig**xgw—yw+cw®6—&wmmo_n
cc?
< 7%W—5V+4XEM—WP+Cm@5—ywm(ﬁgﬂ)
< CPl§—§P|m|s—d||.

But 2¢|Inz|!/? —, 0 so there is C; such that [In|6 — &'||"/P < C.|§ — &'|~¢ and
r—r
thus,
[0t Ts — 9l Ty |5, < COL|6 — &'|'¢ = CC.|6 — &'|*~ o).
(]

For 2 + W < p < +o00, we now denote (r,,d,) the regularity of § — Tj
as a map with values in S,(L?*(G)) obtained in Corollary and Theorem
We can use these two results to study the regularity of S,-multipliers and give a
generalisation of [PRAIS22] Prop. 4.2]. Given a bounded measurable map ¢ : G —
C, we can consider the map
S2(LAHG))  —  So(L*(G))

(agn)gnec + (plgh™"))gnec
If S, : Sp(L%(G)) N S2(L*(Q)) = Sp(L*(G)) is bounded, by density we can extend
it to S,(L?(G@)) and if it remains bounded, we say that ¢ is an S,-multiplier.

Sy

Corollary 3.13. Let 1 < p < +oo. Let ¢ be a K-bi-invariant S,-multiplier of G
and ¢ = g oexp. Then i) € C(Tpﬁp)(Q)‘

Proof. If § € Q, we have S,(Ts) = ¢(6)T5 by [PRAIS22, Remark 4.5]. Thus, if 1
denote the constant function, which belongs to L?(G), we have

$(0) = (9(T5)1,1).
So ¥ is at least as regular as T is. |
3.4. Optimality of the results. In this section, we will show that the results

obtained before are optimal. We keep the notations of Theorem [3.12 where we see
the functions on ] — 1,1[ instead of @ (using Lemma [2.1)).

Theorem 3.14. Let 1 < p < +oo. For § €] — 1,1|, the operator 8"Ts does not
belong to S,(L*(G)) as soon as r > «,. Furthermore, if

_ L] if ap & Z
"= lap] =1 ifa, €Z

then for each I compact intervall of | — 1,1], there exists a constant Cp, such that
forallxz,y €1,
|0"T, — 0" T,||s, > Crplr —y|**™".

To I compact of | — 1, 1[ we associate J = arccos(I) compact of |0, 7].
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Lemma 3.15. Let o, 8 > 0 two fized reals. For any 0 €)0, [, there exists C > 0
and an integer Ny such that for N > Ny, we have

IN 1/2
( > n|P,§aﬁ>(cos9)|2> > CVN.

n=N-+1
Proof. Denote

oN 1/2
S = ( Z n|P,(L°"ﬁ)(cose)|2> .

n=N+1
By Darboux’s formula (Proposition |3.8)), there is a constant M; such that for all
0 € J and n € N*,

|PP) (cos0) — n~ 2 k() cos(NO + )| < Myn~2.

N

By triangular inequality, we thus have
|k(0) cos(NO + )| < v/n|P{P) (cos0)| + Myn~!

$0
1
§|k‘( )cos(NO + )% < n|P{) (cos)|? + M32n~2,

Thus, we get

SN i1 S1K(8) cos(NO + )2 S2+ M3 L
SQ+M22n N4+1 ™ -2

S2+M2N 1

ININIA

Taking square root, since v/a + b < v/a + v/b, we get

o 1/2
S > ( Z 2|k(0)cos(N9+7)2> — M;N—/2,

n=N+1

Denote u = (N + 1+ £(a+ 8+ 1)) + . Then

2N N1 N-1
1 )? k(9)2 k(0)2
Z §|k( ) cos(NO+7)|? Z | cos(u+nd)|? 5 Z cos(2u+2nb).
n=N+1 n=0
But we have that |Zg;01 cos(x +ny)| = |Re Y. ef@+m)| < m7 thus
2N
1 NE)?  k(0)?
Z|k(0) cos(NO 2> - >C'N
> k(@) cos(NO+9)* 2 — 3rsing] = C
n=N+1
for some C’ > 0 and N large enough.
Finally, S > /C'N — M;N~/2 > Cv/N for N large enough. O

Lemma 3.16. Let o, > 0 two fized reals. There exists a real C > 0 and an
integer mg > 1 such that for all 0,6 € J, m > mg and N > |9 ¢| we have

m+N 1/2
( Z n| PP (cos 0) — P, (cos ¢)] ) > CV/N.

n=m-+1
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Proof. Denote

S

m+N 1/2
( Z n|P{") (cos ) — (cos¢)|> .

n=m-+1

By Darboux’s formula (Proposition , there is a constant M ; such that for all
0 € J and n € N*,

|P{A) (cos ) — n_%k(ﬁ) cos(NO+~)| < Myn~z.

ol

By triangular inequality, we thus have
k(0) cos(NO+~) — k(o) cos(Nop+7)| < v/n|P{? (cos §) — PP (cos ¢)|+2Myn~!
S0

%|k(9) cos(NO+7)—k(¢) cos(Nop+7)|? < n| PP (cos 0)— P (cos ¢)|>+4M 22,

Thus, we get
S L|k(0) cos(NO +7) — k(¢) cos(Np +7)[2 < S% + 4M? zftfjﬂ n=2
S S2+4M2Zn m+1n -2
< S?4+4M3iIm

Taking square root, since va + b < /a + Vb, we get

m+N 1 1/2
5=z ( Z §|k(‘9)COS(N9+7)—k(¢) cos(N¢+»y)|2> — oM, ;m V2,
n=m-+1

Denote a = X2 b= X0 o = (m + L(a+ B+1)+ 1)+ v and v = (m + 3 (a +
B+1) +1)¢+7 Then

m+N 1 N—-1

Z §|k(9) cos(NO+~y) —k(¢) cos(No+v)|? Z la cos(u-+nb) —bcos(v+neg)|?.
n=m-+1 n=0

Making use of the formula 2 cos(x) cos(y) = cos(z + y) + cos(x — y), we have
|acos(u +nb) —beos(v +ng)|? = a?cos?(u+ nh) + b2 cos?(v + ng) — 2ab cos(u + nh) cos(v + ne)
= 2a®+b? —2abcos(u — v+ n(0 — ¢)) + a® cos(2u + 2nb)
+b2 cos(2v + 2n¢) — 2abcos(u + v + n(0 + ¢))].

Again using | YNV cos(z + ny)| = [Re X e/ tm)| < m7 we get
N—1
2 2ab a® b2 2ab
— a cos(u+n@)—bcos(v+nod)|? > a?+b>— - — -
an_%| ( ) ( ol |Sln—| N|Sln9| N|sin ¢| N|Sm9+¢|
Now if N > ‘9 ¢| for some mg depending on J, we get that
N—
2 5 a? + b ,
N E_ acos(u +nf) — beos(v + ng)|* > 5 >C

where C’ is a constant depending on «, 3, J
Finally, S > C/TN — 2M;m~1/2 > C\/N for m large enough. O
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Proof of Theorem[3.1]} Let (¢y)nen be the family of spherical functions of the pair
(G, K) and m,, the dimension of the associated representation of G. Then for r € N,
x €] — 1,1[, we have

10" TG, = Y mnlel ().

n>0
As in (3.13), there is C > 0 depending only on the pair (G, K) such that

my > CondimG/K_l
for all n € N. Furthermore, recall that there is 6 €]0, 7] such that

|(7-)(m)|_F(a+1) L(n+1) Dla++B8+n+147) airpin
Pn 2 T'(n+a+1l) TDa+B+n+1) ner

(cos )]

But
Fla++B8+n+1+r)
M'a+B+n+1)

=[[a+B+n+j)=n

j=1

and as in (3.5), if we define f(z) = V272"t 2e~2, then for z > 0,
Cif(z) <T(z+1) < Cof(x).

Thus for all n € N,

I'(n+1) > C ntd e "
F(n+a+l) — Co (n+a)n+a+% e~ n-o
n+aoa
Cie®, —a n _ _«
Z Co n n+ta (1 n+a)
> Csn~

where C3 > 0 is a constant depending only on « thus on the pair (G, K).

Combining these estimates, reindexing the sum and using n — k > Cyn for some
Cy and for all n > k, we get that there is a constant C' > 0 which depends only on
(G, K) such that

(3.14) 07T, |, > €Y nprmetdim GHE= platnfin) (cos )P,
n>1
Recall (Section that o = (G, K) = W — 1 so that
dmG/K -1 dimG/K 1 1
- )1 = plr—ay+=)—1.
5 ’ ) + 2) p(r ap+2)

To simplify notations, denote k = p(r — a,, + %) — 1. Note that for now, we did not
make assumptions on r so we do not know if the right-hand side converges.
For any N € N, we have by Holder’s inequality that

pr—a)+dim G/K—1=p (r _ (

p/2
2N (ZZZN n|P7(La+T’B+T)(COS 9)\2)
(3.15) > [Pt (cos )P > —— 7
n=N+1 (ZiZN+1 nppj)

By Lemma [3.15 for N large enough, the numerator is greater than C?N?/2. For
the denominator, we have

2N p/2-1 p—2
p—2k P=2r\ "2 / —k—1
( n'is ) < (N(2N) = ) < O'N?
n=N+1
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thus
2N )
> nFPEATE) (cos )P > CNFHITE,
n=N+1
Then if r > a;, we get kK +1— 5§ >0, thus by (3.15),
2N
Z n®| P (cos B) P A 0
n=N+1 N— o0

so by (3.14), the p-norm of "7, is not finite so 9"T, & S,(L?*(Q)).
Now set r < aj, as in Theorem [3.12] Using what is above, for z,y € I, we have

07T, — Ty s, = > male (@) — o1 ()P
n>0

so using the same inequalities on m,, and @,,, we get that there is a constant C' > 0
which depends only on (G, K) such that

(3.16)  [0"T, —O'T,|[5 > C > n®[P*TP4) (cos ) — PLFm7) (cos )P

n>1
Set mg as in Lemma and my = mo + kN. Then we get
(3.17)
Mp41

07T, =Tyl >CY > [Pt (cosB) — P04 (cos )P

k>0 n=mp+1
By Holder’s inequality, we have that

MEk+1
(3.18) Y nfIPTTIT) (cosB) — P (cos )P >

n=mg+1

~ g /2
(ka“ n|PT(la+7,,6+r) (COS 9) _ PT(La-&-v,ﬁ-i-r) (COS ¢)|2)1’

n=my+1

_ 2—1
ka-H npp_2; p/
n=mg+1

By Lemma 3.16} for N' > 7%, the numerator is greater than C'"NP/2. For the

denominator, first notice that

mk+1:m0+(l€+1)N:N(%+k+l> <(r+k+1)N

so that
2\ P/2—1 p-2s\ T2
(Srmtitan® )™ < (Wmif)
p—2
S ((7T+/€+1)%Nppiz2n+l) 2
< (m+k+1)=EENPRL

Using theses two inequalities in (3.18)) and then in (3.17)) we finally get

(3.19) 07Tz = 0" Ty 1§, > COPN™178 3 (17 + )%,
k>0
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Notice that this sum converges because k — £ < —1. We get

(1+m)its

o0
Srmab iz [Carmrario
0

k>0 7kl
Now since we want N > Ie"j—od)l, we can chose N so that
mo mo + T
N < +1< .
10 — ¢ 10 — ¢l
Thus taking the p-th root in (3.19) and using that “TH — 3 =1 — ap, we have
Atl_ 1 ltm 1
s is mo+m P 2 (14m) P 2
|07, = 0T lls, = CVrCr () 722_;_1)1@
(3.20) . 2
> e ((mo;ﬂ)(l-ﬁf)) » 0 — |

(27N71)1/p
and finally, we conclude using that |6 — ¢| > C|cos @ — cos ¢| for some C' > 0. [

Corollary 3.17. We have the following results:

(1) Ifp <2+ gmarm=y and 6 € Q, Ts & S,(L*G).

(2) If 2+ W/K_l < p < +o0, the reqularity obtained in Theorem 18
optimal.

(3) If p= +o0, the regularity obtained in Proposition s optimal.

(4) Theorem is optimal: for any (r,a) > (|Qoo]s oo — |@o]) in lexico-
graphic order, the family of spherical functions is not bounded in C"*)(Q).

(5) Corollary[3.9 is optimal: with the same notations as above, there are K -bi-
invariant matriz coefficients that are not in C™)(Q).

Proof. For 1., in that case oy, < 0 so this is the first part of Theorem

For 2., there are two cases to consider.

In the first case, if a, € Z, we know that T € C(@r=11=)(] — 1,1[, S, (L*(G)))
for any ¢ €]0,1[. By the first part of Theorem[3.14] T ¢ C(*»0 (] —1,1], 5,(L*(G)))
(because 0**T5 & S,). Then, assume 9 ~'T is Lipschitz on a compact interval J
of ] = 1,1[. Since 1 < p < +o0, S,(L*(G)) is reflexive, thus by [BLIS8, Corollary
5.12], 0% ~1T : Int(J) — S,(L*(G)) is differentiable almost everywhere (for the
Lebesgue measure on .J) which contradicts the fact that 9%*T5 € S,(L*(G)) for
any 0 €] —1,1[. Thus, T ¢ C@»=1D(] — 1,1, S,(L*(G))).

In the second case, we consider o, & Z. Let r = |a,]. Then we know that
T € Cer=)(] — 1,1, Sp(L*(@))). Let 1 — (ap —7) > & > 0, and I compact
interval of | — 1,1[. Assume that there is C; > 0 such that for all z,y € I,

07T, — 7| < Ol — g+,
Then for z # y € I, by the second part of Theorem we get
C[’p < C]|.’L' — y|€,
which is impossible when x — y.
Thus, for any ¢ > 0, T ¢ C™2»=7+)(] — 1,1[, S, (L*(G))).
For 3., once again we distinguish two cases. First, if ay, € Z, let 1 < p < 400

be large enough so that 7 = |a,] = |@e]. Then, by the second part of Theorem
3.14] we get for x,y € I compact subset of | — 1, 1] that

107T = 0"Ty|ls, < Crple —y[*"
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From the expression of C7 ,, we see that lir}rn Cr,p = Cr exists and is finite. Then
pP—+00

we get with p — +o00 that
10" — 0Ty ||s.. < Crlz—yl*>="".

Thus, by the same arguments as above, T' & C("%~~7+2)(] — 1,1], S (L?(G))) for
any € > 0.

Next, if a € Z, we have T € C@==11(] — 1,1], S0 (L?*(G))). Let x = cosb,
y=cosd, 0,¢ € [e,m —¢]. We have

87T, — 8°=T,[|ls.. = sup|pi™=’(cost) — o= (cos ¢)|
m (oS Qoo 1/2
> (% T ek (cos ) — o= (cos 9) )
> C(G,Ke)

by Lemma [3.16] Thus, we get that 9*<T is not continuous, so we showed that
T & =0 (] = 1,1[, S (L*(@)))-

Statement 4. follows from 3. and Lemma [2.3] and Statement 5. is a consequence
of 4. and Lemma 2.8 O

4. HIGHER RANK SYMMETRIC SPACES

4.1. The case of a Lie group seen as a symmetric space. We consider G
a compact semisimple Lie group and A(G) the diagonal subgroup of G x G. We
study the symmetric Gelfand pair (G x G, A(G)). Note that unlike what we did in
Section [2| we do not need to assume that the symmetric space is simply connected
and we do not even need it to be irreducible (which means G does not need to be
simply connected nor simple).

In this case, spherical functions can be described in a more efficient way than
what the Cartan-Helgason theorem (Theorem tells us. An irreducible repre-
sentation of G X G is (71 ® 0,V @ W) where 7,0 are irreducible representations of
G. We have that V @ W ~ Hom(V*, W), and the representation is given by

(r®0)(9,9))) (v) =0(g") (f(m(g)v)).

Assume that there is a A(G)-invariant vector £ € Hom(V*, W). Then for all g € G,
we have

a(9)(§(m(g)™v)) = £(v)
so £ is G-equivariant from V* — W, so by Schur’s lemma, V* ~ W. Thus, the
classes of irreducible representations of G x G with a A(G)-invariant vector are in
bijection with the classes of irreducible representations of G. On Hom(V, V), the
scalar product is (f, g) = Tr(fg*). For (m,V) a (unitary) irreducible representation
of G, the associated spherical function of (G x G, A(G)) is
on (g ) > ((r@m*)(9,9)(1d),1d) _ (w(9),7(9") _ xxl99'"")
T (Id, Id) dimV/ dimV/

So the spherical functions of the pair (G x G, A(G)) are just the normalized char-
acters of G.

Let g be the Lie algebra of G. The Lie algebra of G x G is g ® g, and the Lie
algebra of A(G) is the subspace

t={(H, H)|H € g}.
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Then, we have g ® g = £ & m where
m = {(H,-H)|H € g}.

Let b be a maximal abelian subalgebra of g, ® the root system associated to
(gc, be), @1 a choice of positive roots and A = {ay, - ,a} be the associated
basis, where ¢ = rank G. We have

gc = be & P 0o
acd
with go = {X € gc|VH € be,[H, X] = a(H)X} and dim g, =1 for all o € ®.

Let Ag be the set of dominant analytically integral element, we know that there
is a bijection between Ag and the set of equivalence classes of finite dimensional
irreducible representations of G ([Kna02, Thm. 5.110]). For A € Ag, denote )
be an associated representation, y its character and d, its dimension. Then, the
previous result amount to the following :

Proposition 4.1. For \ € Ag, define vy : (9,9") — %{71). Then X\ +— @y is a
bijection from Ag to the set of spherical functions of (G x G), A(G)).

Now consider a = {(H,—H)|H € b}. We have that a is a maximal abelian
subspace of m. Thus, we can consider 3, root system of ac in (g X g)c, whose
roots are & : (H,—H) — «a(H) for « € ®. We choose as a positive root system
Y ={ala € ®T}. Let g, = {X € (g X 9)c|VH € ac,[H, X] = a(H)X}, then we
have

(gxgc=ac® () ®Pia
acd
and we see that ¢ = {(H,H)|H € b} and for all @ € &, dimg, = 2 - in fact,
Jo = (ga X O) ® (0 X g—a)'

Now, recall that we defined @ as the connected component of {H € a|Va €
Yo, a(H)| € inZ} contained in the Weyl chamber associated to X7 and containing
0 in its closure. We want to study the regularity of the functions ¥\ = ¢ oexplq.

By definition, any positive root o € ®7 is a linear combination of the roots in
A, with coefficients in N. We write o = Zle ni(a)a;. We define

= mi lng(a) >
y gilgel{aefb Ini(a) > 1}].

Remark 4.2. The number v was used by Cowling and Nevo in [CNOT] in estimates
of spherical functions of the non-compact dual of (G x G)/A(G), namely G¢/G. A
table of the values of v can be found in [CM89, Appendix].

Theorem 4.3. The family (1x)xeas is bounded in C0(Q).
Proof. Let H= (H,—H) € Q, H € b. Then

A1) = p(exp(), exp(— 1) = XD,
Let g be the Weyl denominator, defined on b by q(H) = [, cg+ (e*H)/2—e=a(H)/2),
Note that the roots « are in ib*, so a(H) € iR. Thus, if a(H)/2 & inZ, we get that
e)/2 _ o=a(H)/2 — 9ginh(a(H)/2) is non-zero. So for any H = (H,—H) € Q,
by definition of @, 2H is such that ¢(2H) # 0.
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Now, by the Weyl character formula ([Hal03, Thm. 10.14]), if ¢(2H) # 0, we
have
> wew det(w)e(w(’\+”))(2H)

q(2H)

where W denote the Weyl group and p = 1 Y oacdt

Since the map (H, —H) — ¢(2H) is smooth and non-zero on @, by Lemma
we can study the functions ¢y : (H,—H) — q(2H)yy(H, —H), that will have the
same regularity.

Let k € N, ()Zl,n- , Xj) € a¥, then

62H)

Xa(

k
DFy\(H)( Xy, -+, Xp) = Z d%(;”) H(w(/\+p))(2Xj) e(w(A+p)(2H)
weWw j=1

Note that ||w(A + p)|| = [|A + p|| for all w € W. Furthermore, (w(X + p))(2H) is
pure imaginary, so that |e(*A+P)2H)| =1, So we have
25 WA + pl*

d ’

So now, we have to study dx. By the Weyl dimension formula ([Hal03, Thm.
10.18]), we have

(4.1) ID*a(H)|| <

iy — H (a,)\—f-p).

weps (@)
Given that A is a basis of the finite-dimensional vector space ag, there exists C' > 0

such that for any A\ € af, we have C||A| < 1r£1a§e\<aj, A)|. For A € Ag fixed, there
<j<

exists j(A) such that (a;n), A+ p) = lrgai{tz(aj,)\ + p). Note that since A + p is
<j<

a dominant integral element, all these scalar products are non-negative integers.
Now, for any o € &+, we have

¢
(a0, A+ p) = an(a)@fj, At p) = nion(@){ajiny, A+ p) = CnjoyllA +pll-
j=1

By definition of v, there are at least « positive roots a such that n;)(a) > 1.
Choose exactly v out of them. Let D = min{«, p) > 0. For the |®T| — v remaining
«

roots, we have

(a, A +p) = (a,p) = D.
Thus, we get that
CTYDI®T =X + ||

(42 L | R

Let
O — 25 W [Taep (@ p)
kT T oapletiey

we have combining (4.1) and (4.2)) that for any A € Ag, HeQ,
| DEYACH)|| < CrlX+ p]F77.

Therefore, as soon as k < «, the family of differentials of order k are bounded in
A O
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Corollary 4.4. Any A(G)-bi-invariant matriz coefficient ¢ of a unitary represen-
tation of G x G is such that ¢ o exp € C0)(Q).

Proof. 1t follows from Lemma [2.§ O

Theorem 4.5. For any 0 < § < 1, the family (Ya)acae 18 not bounded in
C9(Q). Hence, there exists a K -bi-invariant matriz coefficient of G that is not
in CO9(Q).

Proof. As before, we will prove this for the family (z/?) AeAg- Assume that there is
0 > 0 such that for any compact L C @, there is C, > 0 such that for all H, H' € L,
A E /\G7

(4.3) ID79A(H) — DA (H")| < Col|H — H'||°.

To produce a contradiction, we want to restrict to a subfamily of A such that the
previous estimates were sharp. To give a bound on dy, we used that there were at
least v roots non-orthogonal to A, but in general there might be more. So we will
take A such that there are exactly v such roots.

Let Ay, -+, A¢ be the fundamental weights defined by

2<>\1, Oéj>

(aj,aj)

— Y5

Let 79 be such that v = [{a € ®*|n;,(a) > 1}|. Up to relabeling, we assume that
ip = 1. Denote also 1, - , B, the roots v such that nq(a) > 1, BT = {4, , 8}
and B = BT U (—B™"). Then (\1,a) # 0 if and only if « € B. We will study the
subfamily of functions associated to {nA; },eny C Ag. For any Xq,-- va € a unit
vectors, we have

1D P, (H) = DY, ()]

Y

S ) (T wimn + p)ex;)

wew dnxy =1
[e<w(m1+p>><2H> _ e(w(mwm)(w’)} ‘ .

A root « is an element of ib*. There is Y, € ib such that for any A € ib*,
(a,A) = A(Ya). Choose X; = iYj,, up to a normalisation constant. Thus,

1DV, (H) = DY, ()| >

Y
ol det(w) [J(wm + ). 85) | [ewrranem _ umasonem)
wew dnx; j=1

for some constant C' > 0 depending only on the root system.

Let W = {w € W|w(B") C B}. Then W' is a subgroup of W, and for w € W',
w(Bi) = ei(w)Biw), with i — i(w) bijection of {1,---,~v} and e;(w) € {£1}.
Denote also e(w) =[], i(w).

‘D’M;n>q (]:I)<X1a e ’X'Y) - D’YQ;’G)q (ﬁ/)(Xla to
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For w € W, we have

;:1<w(”)\1 + ), B;) [Tocar (P )

= H ’I?;Al +pv (6]))

dn)\l Hae@+ <TL)\1 + P, O[>
_ ﬁ (0. 5) ﬁ (nA1+ p,w ™ (87))
j=1 Y j=1 n)\l + P ﬁj> .
Now, if w € W', w™! preserves B* up to signs, so we have
¥ Y
: = e(w) [[(p, 85)-
dn)\l j:1

Otherwise, if w € W \ W', there is j such that w™(3;) ¢ B and so
(nA1+ p,w™(B;)) = (p,w™1(B;)) is independent of n, and so

il +0). ) (1) |

dn)\l n

We also have w(n; + p))(2H') € iR so |e@ (M) H) _ p(wndit+p)(2H) | < 9,
Thus, setting C’ = C’H;:1<p, B;), there is M > 0 such that we have for all n € N*,
H, H €Q,

|y det(w [ (w(nAi+p))(2H) _ e(w(nmp))(m’)}
weWw’
< C|paw A ( T_fw(nds + p), By)) et — (ot @)
= ) Y 9
+C| S ewyw S (T, (wnds +p), By) ) [eorrmEIn — it
w dnx; ’

< IDur, (H) = DV, (H')|| + 5

We can further simplify the expression. Indeed, if j # 1, w € W', we have
w1 (a;) ¢ B since w(B) = B. Thus,

(W), a;) = A, wHay)) =0,
w(A) € {ag, - ,a,}t = R\;. Furthermore, w is unitary, so w(\;) = s(w)A1,
s(w) = £1. Now denote

= Z det(w)e(w)e?® )

and

H)=i Z det(w)e(w)s(w)e?®CH),

Let iz = A\ (2H) and iy = A (2H'), we have

3 det(w)e(w) [e<w<m1+p)><2H> _ e(w(nmp))(w')}

— O'{7(H) cos(na) + g() sin(nr) — F(H") cos(ny) — g(H') sin(ny)|

Thus, we get that

(4.4) C'|f(H)cos(nz)+ g(H)sin(nx) — f(H') cos(ny) — g(H') sin(ny)|

M
< 1D, (H) — Dwnxl(H’)HJr*
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o
0/2
(4.5)  =-|f(H)cos(nx) + g(H) sin(nz) — f(H') cos(ny) — g(H') sin(ny)|?
- - - 2 M?
< D, (H) = DMpx, (HOII” + —
Let mg, N that will be chosen later. For any m > my, set
m+N ~ ~ B ~
S = S(mvaHle) = Z HD%(/JTLM(H) - D'ywn/h(Hl)”Z'
n=m-+1
Since ZL:“];[H 4 < :iomH L =L from (4L5) we get
(4.6)
C? m+N M2
O3 1) costna) +g () sin(n) — F(H) cos(ny)—g (') sinfny)* < S+ 2
n=m-+1
Since |22 > (Re(z))?, if we denote a; = %Re(f(H)), as = %Re(g(H)), by =
%Re(f(H’)) and by = %%Re(g(H’))7 as well as u = (m + 1)z and v = (m + 1)y,
we have
(4.7)
N-1 2

Z |ay cos(nz+u)+asg cos(nx+u+g)—b1 cos(ny—+v)—bs cos(ny+v+g)|2 < S+%
n=0

Since p is strictly dominant, its images under the Weyl group are disjoint. Thus,
the functions H s e“(P)(H) are linearly independent in C(b), so f, g are non-zero.
Furthermore, their extensions to bc are holomorphic, so the zeros are isolated.
Thus, we can find a compact ball L in Q such that af + a3 + b3 +b3 > D > 0 for
any H.H' € L, and ay,as, b1, by bounded by D’. We can find a smaller ball L’ in
L such that z,y,x — y,x + y are all in the same compact J of 0, x|, up to kx for
any H# H' € L.

In that case, the same computations as in Lemma [3.16] but with more terms give

that for NV > ﬁ, where mq depends on J, L, we have

(4.8)
i v ™
— Z lay cos(nx +u) + ag cos(nx +u+ =) — by cos(ny +v) — by cos(ny +v + =) |?
N & 2 2

Saitai+bi+ D

- 4 4
Thus, combining (4.7) and (4.8), we have S > % — MWZ, so for m large enough,
we have that for any H # H' € L',

m+N ~ ~ ~ B DN
(4.9) S= 3 11D, (H) = DV, ()| = T~
n=m-+1
But by our first assumption in (4.3)), we have
m+N
(4.10) S= Y D, (H) = DV, (H')||* < NCE | H — H'||*.

n=m-+1
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Thus, we get for any H # H' € L',

D -
< <CHIE - 1|

which gives a contradiction when H — H'.
For the matrix coefficient, it then follows directly from Lemma (|

Let A be the regular representation on L?(G x G). We define a function on Q by
Ty = // Mkexp(H)K') dk dk' € B(L*(G x G)).
A(G)XA(G

We want to study the regularity of 7' as a map from Q to S,(L*(G x G)).
Proposition 4.6. The map T belongs to CO~1D(Q, Soo (L*(G x G))).

Proof. There is an orthonormal basis of L?(G x G) such that for any H € Q, Txy
is diagonal and its eigenvalues are ¥y (H) for A € Ag. Then, by Theorem and
Lemma [2.3] we get the result. O

Proposition 4.7. Let p > 2+ %’ Yp = — “‘%and

{ ’Ypif’ngz
d= )
Yp—€ifyp €L

with € > 0 arbitrarily small. Then the map T belongs to C™9(Q, S,(L*(G x G)))
where r = |d| and 6 =d —r.

Proof. There is an orthonormal basis such that for any H € @, Ty is diagonal, with
eigenvalues 1 (H) of multiplicity the dimension of the representation associated to
X € A of G x G. Since this representation is V ® V* where V is the representation
of G associated to A € Ag, this multiplicity is d3. Thus, we have

1w, = D dX[oA(H)I” € [0, +oc].
AEA

Let k < ~, then by Theorem and Lemma DFT exists and is the map from
Q such that for any H € Q, X1,---,Xg € a, D*T(H)(X1, -+, Xx) € B(L?(G x
G)) is diagonal in the previous basis with eigenvalues D¥vy(H)(X1,--- , X}) and
multiplicities d3. Thus, we have

ID*T(H)I qeon s,y < D d3ID A (H)|IP € [0, +o00]-
AEAG

Let L be a compact subset of Q). Up to replacing L by its convex hull, which is
still compact by Carathéodory’s theorem and a subset of @), since @ itself is convex,
we can assume that L is convex. Let H € L. By (4.1)), we have

BID*A(H)|[? < CrlA+ p|[PFd3 7.
Since by assumption, 2 —p < 0, by (4.2)), we get
dX [ DFA(H)|P < CLIIA+ p|PFHEP7.
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Given Aj,---,A¢ the fundamental weights, A = Y>'_, n;(\)A; with n;(\) € N
and p = Zle Ai- Then, by equivalence of norms, there are ¢, C' > 0 such that

L

L
Do)+ D2 <A+ pl < Cy[ D (V) +1)?
=1

i=1

Thus, there is M, such that

1
IDFT(H)|P < My )

(p—2)v—pk *
nyone>1 (3onE)
We know that the sum on the right converges whenever
(p—2)y —pk > ¢,
which is equivalent to

{42y -k

Tp =7 —
In particular, this is the case for k = r = |d], and we get that | D"T(H)|| is bounded
by My, on L.
Now consider H, H' € L, doing the same thing we get
ID"T(H) = D"T(H')|[P < Y d3|ID"ya(H) — D oA (H")|)?
AeAg
We use two different bounds. For the first one, by triangular inequality, we have

D" A(H) = D" (H')|| < [ID"px(H)|| + [ D"ya (H)]|
so by and again,

C
d3||D"x(H) — D™r(H')|[? < CHIA + p|7r =727 < 3

(p—2)y—pr *

(> n?)

We use this bound when (3 nf)l/Q > ﬁ

For the second one, since L is convex, we get by the mean value theorem,
D763 (H) — D (H) | < sp D+ ) — ]

so
d3| D" (H) = D™ps(H')|[P < C3||A+ pl[PU+D=C=27| | — 1P
Cs
= (p—2)y—p(r+1) ”H - H’HP.
> n? :
. 1/2
We use this bound when (Y- n?) "~ < HH—liH/H

Assume here that H, H' are close enough, so that HHfilH’H > V.
Let k= (p—2)y—pr >{. Let n= (ny,--- ,ny) € N°, n # 0. Then for any z in
the cube C(n) = Hle[ni, ni+1], we have
1 1 1
< <
lm+ [ = [[zf|< = [n~

SO

1 1 1
(4.11) — < / —dy < .
o+ 1]] c llzll [n
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C(n) C R\ B(O, gy — Vi) =R\ B, we get that

Since U a)> 2
) 1
O L
Inll> gy o
oo rz_l
< Dl/ dr
,rK/
ﬁ_ﬂ {—K
1
< Dy (W_\/Z)
< Ds||H - H'|".

Now since kK — ¢ = p(yp, — 1), we get that in the first case,

(4.12) Yo IIDTA(H) = D oN(H')|]P < Col|H — H'|[POr=)

An>—1
=TI H—H ||

Now we turn to the second case. Let k = (p—2)y —p(r+1) = p(y, —7) —p+L.
By the choice of r, we have xk < /£.

We divide again into three subcases.

First, if 0 < k < ¢, then we can use again . This time

at 0. We have that UHn+1H<

, W is integrable

C(n) C B(0, ﬁ), so we get that

[[ H— H'H
1
2 T S N H“
ni>Llnl <ty B(O, i gy)
e
< M1/ ' _dr
0 rr
1 {—kK
< M (7|\H7H'n)
< MQHH—H/H[)(’YP_T)_I).

If k <0, we do the same thing but the inequalities in (4.11]) are reversed, so we
must integrate on B(0, ﬁ + \/Z) We still end up with

Z ” ”K < Ms|H — H/Hp(vp—r) P

n;>1,||n|| <HH e -
In these two subcases, corresponding to v, & Z, we get

(4.13) Z ID"pA(H) = D" pa(H')|[? < Col|[H = H'|PO» =777 || H — H'||?

A

) So combining (4.12)) and (4.13)), we have for H, H' € L such that |H — H'|| < %
that

ID"T(H) = D"T(H")|| < DL||H — H'|"*~".
Taking D), = max(Dy,,2Mj (v/€)"»~"), we have for any H, H' € L,
|ID"T(H) - D"T(H")|| < DL[|H — H'|"™"".

which completes the proof in the case 7, € Z.
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Finally, the last of the three subcases is k = ¢, which is equivalent to v, € Z.
Here, we use again (4.11]), but we cannot integrate in 0. So we have

Z 1 < 1 n / 1 d
— < — ——dx
¢ VI Jeo,—2 nson Izl

1
ni>1,|n)|< gt =)

TH—H"] .
1 T rtl
—+E d
GitE o
2 T Bl H - H|.

IN

IN

Thus we have
(4.14)
> D s(H) = D YA(H')||P < Cs|H — H'|[P+ Cyl | H — H'|P| In || H — H'|

An< —21
==l H-H|

So combining (4.12)) (with the exponent which reduces to p) and (4.14)), we have
for H,H' € L such that |H — H'|| < ﬁ that

ID"T(H) = D"T(H')|| < D||H — H'|||1n || H — H'|[| < Dy |H — H'|'~

for any 1 > & > 0. Again, we get the result for any H, H' € L up to changing the
constant Dy, ., and the proof is complete in the case v, € Z. [

Remark 4.8. In Theorem we used a specific subfamily to prove optimality.
Here, we consider a sum and not a supremum, so we cannot restrict to such a
subfamily. The bound we use di\d)ﬂp is only tight for A = nA;, where A\ is as in
the proof of Theorem In general, we can find a better bound for d3|¢,|? if we
know the number of roots orthogonal to A. Thus, getting an optimal result would
require a deeper study of the root system.

4.2. Results for some higher rank symmetric spaces.

4.2.1. Complex Grassmannians. Let ¢ > p > 2, G = SU(p + ¢) and a subgroup
K = S(U(p) x U(q)) - the case p = 1 was treated in the previous sections. Let
M = G/K, then M is isomorphic to the Grassmann manifold of p-dimensional
subspaces of CPT4. We have dim M = 2pq and rank M = p. Let k = ¢ — p.

As before, let P,(La’ﬁ) denote the Jacobi polynomials and let P,Sa’ﬁ ) — %Pyﬁ )
the Jacobi polynomials normalised at 1.

The spherical functions of (G, K) can be found in [Cam06, Section 3]. For a
suitable choice of basis and of positive roots, the Weyl chamber is

C={(z1, - ,zp)x1 > -z > 0}
Consider ) C C' as before, open in RP. Define

w(X) = H (cos(x;) — cos(z;)),

i<j

p—1
¢ = 9pr(P—1)/2 H GG+ k)P
j=1

= (e BEY - (522"

and
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Then if = > rip; € A, let m; =r; +--- +1p, so that my > mg > --- > m,, and
ng=m; +p—1,50 n; >--->ny, For X € Q, we have

det (P}L’f’o) (cos(xj))>
ou(exp(iX)) =c .
! w(X) [T c(ni) — e(ny)
Since w(X) # 0 for all x € Q, both £ and % are smooth functions, thus the
optimal regularity of the family (¢, ) is the same as the optimal regularity of the

family (2¢,). Using Lemma and since ¢(n;) —c(n;) = (n; +nj+k+1)(n; —n;),
we want to study the optimal regularity of the functions

Q — C
det(Bm0(¢;))
ILi<;(nitn;+k+1)(ni—n;)

Eaeep (o) ITi=y PT(LIZ’O)(ta(i))
H¢<j(m'+nj+k+1)(n,-—nj)

L (k0
Y e, £(0) Ty 800 P (1)
[Tic;(ni +nj +k+1)(n; — ny)

w#:

(tlv"' ’tp) —

We have ¢,(t) =

CLet D(Iy, - 1) f = ~2="“L then

D(Zla T 7lp)¢u(t) =

Theorem 4.9. Let M = SU(p +q)/S(U(p) x U(q)), with ¢ > p > 2. Set

2ifp=q=2
Qoo = 3
q—l—p—E else

Then we have

Topt(M) > (I_O%OJvaoo - I_O‘OOJ)'

Proof. Set L a compact of Q7 which we again assume to be convex, then each t; is
in a compact L’ of | — 1,1[. From the inequality in Section we know that
there is a constant C' = C(L', k,l) > 0 such that Vn € N,Vt € L', we have

10 PO (1) < CnlF 3,

Thus there is some constant C' = C(L, k,l1,---,1,) such that for all 4 € A and
telL

p lewy—k—3
Zaeep [z n

Hi<j(m +n;+k+1)(n; —nj)

(415)  |D(L. o (0] < C

Let I = {ilnj41 < %} and J = [1,p — 1]\I. Let ig = minI. For j > ig > i, we
have

’I’LiD < &

2 7 2
so (n; +n; + k+ 1)(n; —nj) > " On the other hand, for ¢ < i, we have
ng, < Cgni for any a. Thus, if [} +--- +1, = s,

ny < Nigy1 <

s Yiciy (k=3 —(p—i)—(p—io) k=Ll (p_i
D@, )] < CFee, nin SO(_ - O)Hmoni L—(p—i)
~ s—(1 — 342
< GyynlolerPImE),
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Let £ = min i(p+q) — 2i* and ¢’ = max C;, then Yy € A and Vt € L, we have
i€[1,p] i€[1,p]

(D@ ) (B)] < Oy
3.2

Thus, we only need to compute k. Let f:x — (p+q)z — 52°. If ¢ > 2p, fis
increasing on [1,p] so its minimum is f(1) and K = f(1) =q+p— 3. If ¢ < 2p, f

is increasing on [1, 2£%] and decreasing on [252, p]. Thus, & is either f(1) or f(p).

But
fo) < f(1)
= pi—f%5 < ptqg—3
—= (-1 < -5
— ¢ < BB

But we also have ¢ > p, thus this last inequality implie L‘g?’ > p so p =2 and then
q=2. Thus, if p=g¢ =2, k = f(p) = 2. Otherwise, k = f(1) =q+p— 3.

Now, if we take ||.||; on RP, this tells us that

I1D*¢u(t)]| < Coni™"

so that if s <k, D*y, is bounded on L independently of 11 € A.

If p=g =2, k=2 is an integer so the proof is complete.

Else, mzr—k%, r=q+p—2. If x,y € L, on the one hand,

1Dy (2) = D u(y) < 2C,n~ 12,

On the other hand, we get

1D"0(@) = D (@) < Cran 2l — g
thus,
- 1/2 , . 1/2 ~ -~
10" 6u(@) =D W)l < (26m72) 7 (Craan 2z —yll) < /26, Crlla—y]

so that D"y, is %-Hélder on L with a constant independent on u € A, so we get
the result. O

Remark 4.10. If in the definition of ¢, we replace (k,0) with (o, ) € (R4)?, we
get the same result with

1
2a+21fp:2,a<§
3
a—|—2p—§else

4.2.2. Some related spaces. Consider Z' with lexicographic order. A polynomial P
in £ variables has degree n if P =" _ cna™, ¢p # 0. If P is symmetric of degree
n, then ny > ng > ---ny. Let Q@ = [~1,1]}, o, 3 > —1 and vy > —1/2. Define on Q
the function

¢

Wapy (@) = [T = 2)* (14 20)” [ [ (s —ay)*7 ",

i=1 i<j
If £ =1, this is the Jacobi weight of parameter (a, 3).

Definition 4.11. The polynomials P{**")

° Pé(%ﬂy’)’) =1

in ¢ variables are defined by



REGULARITY OF MATRIX COEFFICIENTS

° P(@wﬁ v) -

. fg (aﬁw

is symmetric of degree n and dominant coefficient 1
2)Q(z)w(x) dx = 0 for all Q symmetric of degree ¢ < n
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These polynomlals are studied in [Vre84]. For certain values, these polynomials
can be related to Jacobi polynomials ([Vre84, Thm. 4.5 and 4.6]).

Proposition 4.12. For v =

p(aﬁv

Zp( ,5 (x (1)

leAIST]

Pr(Llaﬁ) (xa(é))'

Proposition 4.13. Let A28 (m) = det (PT(,?’B)(:&J)) Then

P ) =

AL (g 40— 1,y +0-2

: 7n£)

Thus, we can see that, once normalised by 1 at 1, the family of

AL (0~

1,0-2, -

70)

pk0.1/2)

are

the spherical functions of (SU(k + 21), S(U(k +1) x U(l))). It turns out that more
families of spherical functions appears as polynomials of this kind ([Vre84, Thm.

4.9)).

Theorem 4.14. Let ™%

pleBy)
BRSO

spherical functions of (G, K) for the following values of o, 8,7:

Then the functions 1/),({)"’6’7) are the

(G, K) Y « B ~

(SO(p +q), S(O(p) x O(q))) pllg—p-—1/2]-1/2] 0
(SU(p+4q),S(U(p) x U(g))) p q—p 0 [1/2
(Sp(p + q), Sp(p) x Sp(q)) pl20¢-p+1 | 1 |3/2

(Sp(k), U(K)) k 0 0 0

(SO(4k),U (Qk)) k 0 0 3/2

(SO(4k +2),U(2k + 1) k 2 0 3/2

(Sp(k) x Sp(k), A(Sp(k))) k 1/2 /2 11/2
(SO(2k 4+ 1) x SO(2k +1),A(SO(2k+1))) | k 1/2 —-1/211/2

Remark 4.15. Adapting the previous work for general values of « > 0,8 > —1, we
know that the optimal regularity of the family (’(/J( B, 1/2)) is at least oo + % +2(¢—

1).

From the previous table, this recovers the regularity found in Section for

(Sp(k) x Sp(k), A(Sp(k))) and (SO(2k + 1) x SO(2k + 1), A(SO(2k + 1)).

In [Vre84] Thm. 5.1], Vretare shows differents formulas expressing

linear combination of different 1/J7(La ')

'Q/J'Szalﬂﬁ)

as a

. If we were able to control the coefficient,

we could investigate more families. It turns out that this is the case in 2 variables.
Set ¢ = 2, Vretare showed the following ([Vre84, Thm. 6.2]):

Theorem 4.16. Let o, > —1 and v > —1/2. Let n > m. Then

(=) ? 7T = bygt)

and there is a constant C = C(a, B,7) > 0 such that b;; < Cn~

ij.

(a,8,7)
n+2,m

+blo1/’

(@,8,7)
n+1lm

oo {5 +b11

(a,8,7)
n+1l,m-+

Hn—

1 b1 d’fﬁf% 1
m)~L for any

Remark 4.17. From this, in the case { = 2, we can recover the regularity obtained
in Theorem {4.9| from the regularity at least o + 5 L for the family (dj( B, 1/2)) that

is easy to Compute
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n>m

With Lemma the regularity of the family ( &a”? 3/ 2)) is the same as

the regularity of the family ((x —y)? 7(1?;,?’3/2)) L= ( 5?,,’3))

Set L a compact subset of | — 1,1[% Let l1,lo € N, s = I; + l5. Assume first that
m < %. As in Theorem [4.9

ID(ly, L)l (z)] < Cn*m2 2

/n/i

o

thus
I) o 5 9
| (ll, liz)(bgb)’;n)‘ < C/ns a—3 .

On the contrary, assume that n > m > 7, then,

|D(ll, ZQ)w(a,B,1/2(x)| < CTL572Q72

n,m
thus

ID(11,12)¢5£’,‘;5)| < O'pfTEes,
Now depending on (n,m), we have two possible upper bounds. We want to know
which one is the worst, and thus works independently of (n,m). We have 2o+ 3 >
a+ % if and only if a > % Now, adapting again the argument from the proof of

Theorem we get that the regularity of the family ( %ayf 3/ 2)) is at least
n>m

20+ 3ifa< g
o+ g ifae > g
From Theorem this gives lower bound for new pairs.
Theorem 4.18. Let M = SO(8)/U(4), rank M = 2 and dim M = 12. We have
Topt (M) > (3,0).

Let M = SO(10)/U(5), rank M = 2 and dim M = 20. We have

1
o (M) > (6, 5).
Let n > 4, M = Sp(n)/(Sp(2) x Sp(n — 2)), rank M = 2 and dim M = 8(n — 2).
We have )
(2n—3,§) ifn>4

(5,0) ifn=4

Topt (M) >

4.3. A conjecture on the optimal regularity. In this section, we will see on
an example that there is a difference in the estimates when p is close to the walls
of the Weyl chamber and away from the walls. We will use this to give a conjecture
on the optimal regularity in the general case.

Let G = SU(¢+2) and K = S(U(2) x U(q)). Let M = G/K of rank 2 and
dimension 4q. In Theorem we showed that 7o, (M) > (g, 1) if ¢ > 2, and (2,0)
otherwise.

Let uo = p1 + po. Then, for n € N, nug is in a cone with compact base in the
Weyl chamber, so away from the walls. Then,

~(q—2,0 ~(q—2,0 ~(q—2,0 ~(q—2,0
B0 (@) B2 (y) — BETV ()P0 ()
Bn+q)(n+1)

Yo (T,Y) =



REGULARITY OF MATRIX COEFFICIENTS 39

The family (¢, ),y is @ subfamily of the family of all spherical functions, and we
can show with the same estimates as in Theorem that this family is bounded
in the Holder space of regularity 2¢g — 1.

So, for this subfamily corresponding to highest weight away from the walls, the
regularity is strictly better than the regularity of the whole family.

In fact, for any of the pairs we considered above, with g = 22:1 14, the sub-
family corresponding to {nuo} is of regularity at least M

This shows that it should be highest weights close to the walls that gives a bad
regularity. For this, set either r; =0 or o = 0.

If ry =0, ro = n, then

Un(z,y) = P20 () P20 () — PLZ29 () P72 ()
o (2n+q)

and the uniform regularity of this subfamily is at least 2q — 2.
péqu,o)

Ifri=n—1,r0 =0, since = 1, the expression is easier. We have

P () - P (y)

1/1n(17,y) - <n+q+ 1)7’L

Here, we get uniform regularity at least g + %, so this is where the worst happens
(except for ¢ = 2). We won’t check that this is optimal, but we will check that
(g+ 1)-th differential is unbounded in n - so the uniform regularity is at most ¢+ 1.
Let 2 = cos 6, from Lemma[3.7] and Lemma[3.8] we have

d

@pflq—z,m(y) = n"9H3/24(9) cos(nb + ) + O(n"~I+1/2)

where u is a smooth function of | — 1,1[, v depends on ¢,,6 but not on n. Also,
]57(1q72’0)(y) = O(1). Now let r = ¢+ 1 and consider the partial derivative

D(q+ 1,0t (2, ) = n'/u(9) cos(nf + ) + O(n~"/2)

which is unbounded in n.
We now try to give an interpretation of this. For a root a € X, let m(a) be its
multiplicity. For pu € A, define

S, = > m().

aexT, <o,u>#0

Our conjecture is that if we set

" 2u€ll\n\f{0}sw
then rop (M) = (|, ],r— [r]).

More generally, the optimal uniform regularity of a subfamily of spherical func-
tions indexed by A’ C A should be be given by a similar formula involving only
wiehgts of A’. However, removing a finite number of elements of A’ will not change
the regularity of the family. Furthermore, we can notice with the example above
that the behaviour of the family {(0,n)}, will be the same as the behaviour of
{(k,n)}n for k fixed, so what is important is not the orthogonality of the family
with roots, but the boundedness of the scalar products, thus making the formula
more complicated.
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By [Vre76], there is a basis {aq, - ,ap} associated to the positive root system
YT such that the fundamental weights p; verify
0ifi#j

{par0g) _ lifi=j,2a; ¢ oF
(o), aj) o i 490, € St
ifi=j,205 € X}

Then we have r = 1r£1ligez<a7ui>¢0 @ In Table 2| and |3, we compute the
values of 7 for all simply connected irreducible symmetric spaces of compact type,
using the classification and multiplicities given in [Loo69b, Ch. VII]. We can verify
theses values agree with the result found for rank 1 (Theorem and with the
lower bound found for some higher rank spaces in Theorem and Theorem

TABLE 2. Values of r for the irreducible symmetric spaces of the
form G x G/A(G) ~ G.

M dim M | rank M r
SU(n),n > 2 n?—1 n—1 n—1
SO(2n+1),n>1|n2n+1) n 2n —1
Sp(n),n >1 n(2n +1) n 2n —1
lifn=2
SO(2n),n>2 | n(2n—1) n 3ifn=3
2n — 2 else
G 14 2 5
Fy 52 4 15
Es 78 6 16
E; 133 7 27
Eg 248 8 57

Furthermore, if M = M; x M>, the root system of M is the direct sum of the
root systems of M;, and so r(M) = min(r(M;),r(Ms)). Thus, Table [2] and [3] is
sufficient to compute the value of r for any symmetric space of compact type. Also,
this show that the conjecture agrees with the fact that rop (M) = min(rqp(M;)).

Finally, assume that M = (G x G)/A(G). We saw in Subsection that if *
is a choice of positive roots with basis aq,- - -, ay, we have

=~ = mi ln, >
ropt (M) =7 = min [{o € &7 |ni(a) = 1}].
We also saw that a choice of positive roots for M was given by & : (H,—H) — «a(H)
with a € @7, and that m(&) = 2 for any a € ®T. The bijection « — & extends

to a map b§ — ag, which sends Ag to A and such that (5\, @y = (A, u). Thus, from
this we get that for any A € Ag,

1
555 = o€ ®¥](a,3) # 0}
Let m;,1 < ¢ < £ be the fundamental weights of the root system of G, defined by
2<7Ti, Oéj)

(aj, ;)

== 5i,j7
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M dim M rank M r
Al SU(n)/SO(n),n > 2 n1)nt2) n—1 =
AIT SU(2n)/Sp(n),n > 2 (n=1)2n+1)| n-1 2(n—1)
AL | SUG+ /W) x Ul p+a>3| 200 |mingg) | ~ P =9=7
p+q— 3 else
% ifp=q=2
BDI | SO(p+q)/SO(p) x SO(q),p+q >3 Pq min(p,q) | 3ifp=qg=3
p—;q — 1 else
CI Sp(n)/U(n),n >1 n(n+1) n n—1
CII | Sp(p+q)/Sp(p) x Sp(a),p+q =2 4pq min(p, q) oitp= q: ’
2(p+q) — 3 else
i O(4n)/U(2n),n > 1 2n(2n — 1) n ”4(:__ 2)1;;”:33
SOMAn+2)/U(2n+1),n > 1 2n(2n + 1) n dn—3
EI 42 6 8
EII 40 4 2
EIIT 32 2 a4
EIV 26 2 8
EV 70 7 a
EVI 64 4 33
EVII 54 3 a
EVIII 128 8 &
EIX 112 4 o
FI 28 4 2
FII 16 1 2
G 8 2 5

we have that A € Ag if and only if A = Zle m;(A)m;, with m;(A) € N. Then, for

any A € Ag,a € dF,

4 4
A O{ ZZ nz 7T7,7aj - Zml

If X # 0, there is ¢ such that m;(A) # 0. Then for any « such that n;(a) # 0, we

get (A, a) >0, so

1
355 = Ha € ®Fini(a) > 1} > .

Vo, a;).
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But on the other hand, %Snmo =« for all n € N* where i¢ is such that v = |{a €
Ot |n;, () > 1}|. Thus, we get

so the regularity found in this case fits again the conjecture.

5. REGULARITY OF K-FINITE MATRIX COEFFICIENTS

In this section, we keep the notations introduced in the previous section. Thus
(G, K) is a symmetric compact Gelfand pair with G connected such that G/K is
simily connected. Recall that ) is an open subset of a such that, by Proposition

G =Kexp(Q)K. Set G; = Kexp(Q)K, G is a dense open subset of G.

Definition 5.1. Let 7 be a unitary representation of G on H and (p,V) a repre-
sentation of K. We say that £ € H is

e K-finite if span(m(K)E) is finite dimensional.

e of K-type V if span(m(K)§) ~ V as a representation of K.

Note that this definition of K-type V is not standard.
The goal of this section is to prove the following result.

Theorem 5.2. Assume that for any K-bi-invariant matriz coefficient ¢ of a uni-
tary representation of G, the function 1 = ¢ oexp is of class C"%) on Q. Let
be a unitary representation of G on H, £,n € H K-finite. Consider the associated
matriz coefficient o : g — (m(g)€,n). Then ¢ is of class C™%) on G1.

Remark 5.3. This shows that 7,,:(M), which is the optimal uniform regularity
of spherical functions, and also (by Lemma the optimal regularity of K-bi-
invariant matrix coefficients of GG, is even the optimal regularity of K-finite matrix
coefficients.

Since K-invariant vectors are K-finite, the first step is to extend the regularity
of ¥ on @ to a regularity of ¢ on GG;. For this, we need to study properties of the
decomposition of Proposition 2.12]

Lemma 5.4. The map

CKxKxQ — G,
Pk, ke, H) s Kyexp(H)k; !

is a submersion.

Proof. If g € G, denote L, and R, the translations by g on the left and right
respectively. Let m : G X G — G be the multiplication map, its tangent map at
(a,b) is
T.G xT,G — TG

(Xm Xb) — TaRb(Xa) + TbLa(Xb) ’
We can identify T,G with g by the isomorphism 7. L,. Under this identification,
we have Vg,h € G, T, L, = 1d and T, R, = Ad(g~!), so that the tangent map of
the multiplication becomes T{q pym(Xa, Xp) = Ad(b~')(X,) + X;. Furthermore, if
k € K, since Ly(K) = K, T, K C TG is identified with ¢ C g. Thus by the chain
rule we have

T(ayb)m :

T . txExa — g
(kb NP (X0 X0 V) — Ad(kyexp(—H))(X1) + Ad(k) (T exp(Y)) — X3
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We know that Ad(k) is an isomorphism of g and an isomorphism of € in restriction.
Furthermore, Ty exp : a — a is also an isomorphism. Thus, the map Ty, k, m)¢
is surjective if and only if u = Ad(k; ') o Ty ko, 1y © (Id, Ad(k2), (T exp) ™) is
surjective. We have

U(Xl,XQ, Y) = Ad(exp(—H))(Xl) - X2 + Y.

Consider the decomposition g = €@ p in eigenspaces of 0. In this decomposition,
a is a maximal abelian subspace of p. Let m = ¢, ¥, the root system of (gc, ac).
For A\ € ¥4, let gy = {X € gc|VH € ac, [H, X] = M(H)X}. We have

gc =acdmc D @ gx-
A€o,

Let also £y = €N (gy P g_»n) and py = pN(gr D g—_»). From [Loo69bl Ch. VI, Prop.
1.4], we get
t=mao P n=mal
xesd

p=a® @ p=aab.
xexd

We also get that for A € X, there is Zy 1, -+, Zx, a C-basis of gy, such that
setting Z;:i = Zxi+0(Zx;) and Zy ; = i(Zx; — 0(Zx4)), {Z;\rl} gives an R-basis
of &\ and {Z} ;} gives an R-basis of p.

Let also Hy,--- , Hy be a basis of a and Y7, --- ,Y, a basis of m. Then for H € a,
we have [H,Y;] = 0, [H, Z},] = —i\(H)Zy , and [H, Z ;| = i\(H)Zy,. Thus, we
see that 7 7 7 7

i U(O, 07H1) = H;
e u(Y;,0,0) = e H) (V) = Y;
e 4(0,Y;,0) = -Y;
o u(Z;,0,0) = e 2 (ZF ) = sin(iX(H))Z;,; + cos(iA(H)) Zy,
e (0, ZL,O) = —Z;Ci
Since H € Q, A(H) € inZ so sin(iA(H)) # 0 and u is indeed surjective. O

The following proposition is found in [Bor98, Ch.V, Thm 3.3].

Proposition 5.5. Let G be a compact, connected, simply connected Lie group and
f an automorphism of G. Then the set of fized point of f is connected.

Remark 5.6. This result implies that the subgroup K is automatically connected
if G is simply connected.

Lemma 5.7. Let M = Zg(expQ) = {k € K|Va € expQ, ka = ak}. Consider the
action of K x K on G by (ki1,k2).g = kigky*. Then for any H € Q, we have

Stab(exp H) = {(k,k)|k € M} = A(M).
Proof. First, we assume that G is simply connected. Let H € 2Q), we have that
Zg(exp H) = {g € Glgexp(H) = exp(H)g} = {g € Gleexp(-m)(9) = g}

is the set of fixed point of cexp(—fr), hence is connected by Proposition
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Furthermore,

Lie(Zg(expH)) = {X eg|Vt e R,exp(tX) € Zg(exp H)}
= {X € g|Vt € R? Cexp(—H) (exp(tX)) = exp(tX)}
= {X € g[Ad(exp(—H))(X) = X}
= ker(fn)

where fy(X) = Ad(exp(—H))(X) — X.
Consider the basis {Y;} U{H;} U {ZL} U{Z, ,} of g introduced in Lemma
Then, we have
e fu(Y:)=0
o fu(H;)=0
o fu(Zy;) = sin(iX(H))Z5 ; + (cos(iM(H)) — 1) Z,
o fu(Zy;) = —sin(iA(H))Z},; + (cos(iA(H)) — 1) 25,
Since H € 2Q, for any root A\, \(H) ¢ 2inZ, and so ker(fy) =m @ a.

Thus, Lie(Zg(exp H)) does not depend on H € 2@Q), and since Zg(exp H) is
connected, Zg(exp H) and Zk (exp H) = Zg(exp H)NK do not depend on H € 2Q),
and so Zx(expH) = M.

Now take a = exp(H) € @, and (k, k') € Stab(a), then ka = ak’. The automor-
phism o of G is such that K = G?, and o(a) = a™!, so we get ka™! = a~ 'K/,
thus ka? = ak’a = a?k. So k € Zx(a®), but a® = exp(2H), 2H € 2Q so
Zk(a?) = Zk(a) = M. Thus ka = ak = ak’, so k = k" and (k, k") € A(M).

The other inclusion is clear, thus Stab(a) = A(M).

For the general case, since G/K is assumed to be simply connected, by the
Remark we have p : G — G the universal cover such that kerp C Z (é)"
and K = G°. Then the previous case gives that Stabg, z(exps(H)) = A(M)
for any H € Q. Clearly, if (ki,k2) € Stabgz, z(exps(H)), then the projection
(p(k1), p(k2)) € Stabk x k (expg (H)).

Conversely, let (k1,k2) C Stabgxi(exps(H)), there exists k; € K such that
p(ki) = ki Then k; expg(H)k; ' = expg(H) implies that there exists z € kerp
such that

k1 expe(H)ky 'o = expg (H).

Thus, (kg, 2~ 'ky) € A(M) so ky =~ Vky, thus ky = ky € Zg (expg(H)).

So this tells us that Stabgyx(expg(H)) = p(Staby, z(exps(H))) does not
depend on H € @ and is equal to A(Zk(expa(H))) so Zx(expa(H)) = M and
Stabg x k (expa(H)) = A(M). O

The following proposition is a refinement of Proposition [2.12

Proposition 5.8. For any g € G, there is a decomposition g = ki(g) exp(H(g))k2(g) L.
The map g — H(g) is smooth on Gy. Furthermore, for each g € Gy, there exists

a neighborhood U, of g in G1 and a choice of g — k;(g) such that k; is smooth on
Uy i=1,2.

Proof. By Lemma [5.7] the map

. KxE)JAM)xQ > G
" ((ky,k2)modM,H) +—— kleXp(H)k;z_l

is a well-defined smooth bijection between manifolds of the same dimension.
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Let p: Kx K — (K x K)/A(M) be the projection. It is a surjective submersion.
Let ¢ be the submersion defined in Lemma we have ¢ = @ o (p,Id). Thus, for
any (z,H) € (K x K)/A(M) x Q, we have T, r$ surjective. But it is a linear
map between vector spaces of the same dimension, so it is invertible. Thus, by the
local inversion theorem and since ¢ is bijective, ¢ is a smooth diffeomorphism.

Let (z,H) : Gy — (K x K)/A(M) x @ be a smooth inverse. We get that H
is a smooth map. From [Lee03, Proposition 4.26], since p is a submersion, any
(k1,k2) € K x K is in the image of a smooth local section of p. Let g € Gy, since p
is surjective, x(g) = p(k1, k2). There exists a neighborhood V' of z(g) and a smooth
section s = (s1,52) : V = K x K such that s(x(g)) = (k1, k2).

Let U = 2~ !(V) neighborhood of g, then k; = s; o x is smooth on U and
g = ki(g) exp(H(g))ka2(9) " O

Corollary 5.9. Let ¢ be a K-bi-invariant function on G. Then ¢ € C(™0)(Gy) if
and only if p o exp € CO(Q).

Proof. Since exp is smooth, the first implication is clear. For the converse, assume
Y = poexplg € C"9(Q). By the previous proposition, the map H is smooth on
G1 and ¢ = 9 o H by K-bi-invariance, thus ¢ € C"9(Gy) by Lemma O

Let m be a unitary representation of G on H and £,n € H of K-type VW
respectively, for V, W irreducible representations of K. Denote V¢ = span(m(K)E).
Then there is an isomorphism i¢ : V' — V¢ C H, denote & = igl(é). Similarly,
define V;, and i,. Then the map

BH) — LV,W)~V*@W*
UL S ir Ai
n4itE
is K x K equivariant.

For the associated matrix coefficient, we have ¢(g) = (7(9)¢,n) = (f(7(9))&0,M0)-

Now denote U = K x K, (p,V,) the irreducible representation of U on V* @ W*
and A the regular representation of G on L*(G).

If g € G, let also U, be the stabiliser of g for the left-right action of U, V, C V,
the space of p(Uy)-invariant vectors and P, the orthogonal projection on V.

The U-equivariance of f means that for any (k, k") € U and A € B(H), we have

Flr(k)Am(K) ™) = p(k, K)(£(A)).

Furthermore, there are vy,--- ,v, € V, and &1, -+ ,&n, M1, -+ ,Mn € H such that

FIA) = (A&, mi)vs.

Then in this setting, we can apply [dLMdIS16, Lemma 2.2] to get the following
result.

Lemma 5.10. For any go € G, there exists a smooth map v : G — B(V),) such
that:

(1) Vu e U,g € G, P(u.g) = d(g) o p(u™),

(2) Yv1,v9 €V, g (¥(g)v1,v2) is a coefficient of A,

(3) ¥(go) = Py,
Remark 5.11. The lemma only states that v is Lipschitz but the proof shows it is
smooth.
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Proposition 5.12. If for any K-bi-invariant matriz coefficient ¢ of a unitary
representation of G, the function poexp is of class C™%) on Q, then the map forw

is in C(™9)(G).

Proof. Let gy € Gy and consider 1 given by Lemmal5.10, Let f : g — ¢(g)(f(7(g))).
By the equivariance of f and 1. of Lemma [5.10} we have

flu.g) = d(u.g)(f(r(ug))) = ¥(9)p(w) " p(u)(f(r(9)) = f(9)

SO f is a K-bi-invariant map.
Let (e1,--- ,eq) be an orthonormal basis of V,, by 2. of Lemma there are
aij,bij € L*(G) such that

((g)vi, e5) = (A(g)aij, bij)
50 ¥(g)v = 35—, (M(g)aij, bij)e; and finally
~ n d
flo=>]

=17

(A@m)(9)(ai; @ &), bij ®&)e;.

Hence, f is a sum of K-bi-invariant matrix coefficients of G, so by the hypothesis
and Corollary fectaa).

By Lemma ifa € exp @, we have U, = A(M). Thus, V, =V} is independent
of a € expQ. If g = (ki,ko).a = kjaky ', we have (k, k) € U, if an only if
(k7 'kky, k3 'k'ke) € A(M) and so V, = p(ky, ko) Vp.

Let gog = koaoszl and Vi = V. Since ¥(go) = P,,, there is an orthonormal
basis adapted to V; such that

Id 0
¢(90) - (O 0) .

Furthermore, since 1 is smooth, there is A4, neighborhood of gy such that

¥(g) = (A(g) *>

* *

with g — A(g) smooth, A(g) invertible for any g € A,,. Up to restricting A,

by Proposition [5.8] we have g = k1 (g) exp(H(g))k2(g) "' = k1(g)a(g)k2(g) ™" with
k1, k2 smooth on Ay, .

By the K-bi-invariance of f, for any g € Ag,, we have

F(9) = flalg)) = f(koa(g)ky ).

But then f(m(koa(g)k, ') € Vipa(oy— = Pko,kg)Vo = V1. Set

®(g) = plk1(g)kg " ka(g)ky ) (A(k‘oa(g())kol)‘1 8) ’

it is a smooth map on A, because A is smooth invertible, k1, k2 are smooth and p is
a finite dimensional representation of U hence smooth. Because f (w(koa(g)k‘é_l)) €
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V1, we have

D(9)(f(9))

4

(9)(f(x(koa(g)ky "))
(9)(9)(f(m(koa(g)ky ")) ,
p(k1(9)k ' Ka(9)ko ) (f (m(Koa(g)ky 1))
= f(r(k1(g)alg)ka2(9)™"))

= [f(r(9))

Now let B : B(V)xV — V be the bilinear map sending (f,v) to f(v). We showed
that on Ay, for=DBo (<I>,f). Since ® is smooth on Ag4, and fe Cc9(Gy), we
get by Leibniz formula that fog € C(T"S)(Ago).

So for any gy € G, there exists a neighborhood A, such that for € C(9)(A4,,).
Thus, for € CTO(Gy).

|
KA

O

Proof of Theorem[5.4 If &, n are of K-type V, W respectively, with V, W irreducible
representations of K, we showed that ¢(g) = (7(9)§,n) = (f(7(g9))&0,10) and in
Propositionthat fome CI(Gy), thus ¢ € CO(Gy).

For the general case, if £,7 are K-finite, Vg,V are finite dimensional repre-
sentations of K, so they decompose into a finite number of irreducible repre-
sentations. Thus, ¢ is a finite sum of matrix coefficient of the previous case, so

€ C(@y). O
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