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Abstract: In 2013, the International Agency for Research on Cancer classified particulate matter (PM) as carcinogenic 

to humans. It is therefore essential to measure PM concentrations to minimize the exposure of individuals. Our objective was 

to investigate personal exposure to PM2.5 (PM with diameter ≤ 2.5 µm) in Grenoble (France) during commuting in different 

transportation modes: bike, walk, bus and tramway. PM2.5 measurements were found to be the highest for bikes, followed by 

walk, bus, and tramway. In this study, conducted in spring during low pollution levels of PM, exposure levels are greatly 

influenced by the time of day. Pedestrian and cyclists’ exposure generally stayed under background reference values. 

Exposure in public transportation was usually below reference values, but when background PM2.5 levels went lower 

(evening), levels registered in the tramway or bus reached those of the reference. Therefore, public transport users could be 

less exposed than active commuters, except when ambient pollutant levels are low. Environmental parameters like wind might 

be important in Grenoble, and it would be worthwhile to reproduce this study at a time when wind speed is lower.    

1 INTRODUCTION 

 

Every year, it is estimated that outdoor air pollution 

causes 7 million deaths around the world (Fuller et 

al., 2022). Particulate matter (PM) is made of solid 

compounds suspended in the air that are small enough 

to be inhaled. Considered as the most dangerous form 

of air pollution, PM can enter blood circulation, and 

accumulate in numerous organs (Pryor, Cowley, & 

Simonds, 2022). Therefore, it is important to assess 

populations’ exposure to PM, which is generally done 

by official reference monitoring stations. However, 

more and more scientists state that stationary 

monitoring stations are not always representative of 

people’s exposure (Van den Bossche et al., 2015; F. 

Yang et al., 2019). This might be related to the time 

that people spend indoor and outdoor, in places where 

the pollutant levels do not always equal to reference 

values. Time spent in transportation could represent 

up to 30% of the inhaled dose (Dons, Int Panis, Van 

Poppel, Theunis, & Wets, 2012). According to Han et 

al. (2021), personal exposure to PM2.5 (PM with 

diameter ≤ 2.5 µm) measured by portable sensors, is 

significantly associated with an increase in 
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respiratory and systemic inflammatory biomarkers. 

However, the associations are weaker when ambient 

PM2.5 concentrations, measured by fixed reference 

stations, are used as an exposure proxy. Low-cost 

sensors demonstrate good accuracy to measure 

individual exposure to PM (Motlagh et al., 2021) and 

can therefore be used for exposure studies, especially 

during commuting. Few mobility studies involving 

low-cost sensors have been performed, especially in 

low-concentration situations. Many surveys take 

place in Asia where pollution levels are usually 

higher than in Europe. During 10 working days, we 

conducted a field experiment to collect PM 

measurements using four transportation modes 

around Grenoble (France): bike, walk, bus, and 

tramway. Our objective was to estimate personal 

exposures to PM2.5 with a low-cost sensor during 

commuting in different modes. Another purpose was 

to compare the so measured concentrations with 

reference values. We wanted to know whether the 

low-cost sensors could be used to assess differences 

between transport modes and the time of day. In 

doing this, we hope to contribute to the exposure 

literature using low-cost sensors. 
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2 MATERIALS AND METHODS 

2.1 Particulate matter sensor 

2.1.1 Monitoring devices 

PM concentrations were measured using two 

AirBeam2 (HabitatMap), which entail an optical 

sensor (Plantower PMS7003). AirBeam2 are 

inexpensive ($249) and measure concentrations of 

PM1, PM2.5, PM10, temperature and relative humidity 

(RH). They are connected to a smartphone via 

Bluetooth and provide real time values to users. With 

the growth of the Internet of Things (IoT) sector (Das, 

Ghosh, Chatterjee, & De, 2022; Y. Yang et al., 2022), 

cheaper PM sensors are currently available on the 

market. However, they often have to be assembled 

with other components like microcontrollers or GPS 

modules, and an IoT platform has to be set-up for data 

visualisation. Designing a monitoring station, 

assembling components and developing a data 

visualisation tool are different steps which can be 

time-consuming. HabitatMap already provides an 

online platform (http://aircasting.org) for viewing and 

downloading AirBeam2 data. Furthermore, 

AirBeam2 are ready-to-use devices. South Coast Air 

Quality Management District (2018) compared the 

AirBeam2 PM2.5 measurements to values given by 

three Federal Equivalent Method instruments. They 

observed very strong correlations in the laboratory 

studies (R2 > 0.99) and moderate to strong 

correlations with different reference instruments from 

the field (0.68 < R2 < 0.79). More recently, Tong, Shi, 

Shi, and Zhang (2022) found that Airbeam2 

measurements correlated well with roadside official 

monitoring stations. They also reported a good 

agreement (R2 = 0.67–0.89) between Airbeam2 local 

measurements and the predictions from a model 

involving satellite observations. AirBeam2 is already 

calibrated by the manufacturer, but the calibration 

equations do not account for RH (HabitatMap, 2022). 

Huang et al. (2022) found that the accuracy and bias 

of the PM data reported by AirBeam2 sensors were 

affected by rainy weather and high humidity 

environments. Moreover, Zou, Clark, and May 

(2021) suggested that there was a significant linear 

relationship between RH and the relative response of 

the low-cost PM sensors to the research-grade 

instruments. Therefore, we calibrated the devices by 

accounting for RH. 

2.1.2 Calibration 

The calibration process involved two steps (Figure 1).  

 

 

Figure 1. Two steps calibration process. 

• Step 1: calibration of a fixed low-cost sensor 
(“gold pod”) with a reference device 

 

Before this study, we had already calibrated a low-

cost fixed station by collocating it with a Palas GmbH 

200 (Reference) from Atmo Auvergne-Rhône-Alpes 

(Atmo AuRA) in Grenoble “Les Frênes” (Refer 

Figure 4).  This calibration was performed using a 

random forest regression technique developed by 

Schmitz et al. (2021) comparing this individual fixed 

sensor with the reference station. This low-cost fixed 

station, called “gold pod” used the same optical 

sensor (PMS7003) than the mobile devices.  

• Step 2: AirBeam2 sensors calibration with a 
fixed low-cost sensor (“gold pod”) 

 

Next, 44 days of calibration were performed from 

September 20, 2022 to November 3, 2022 where the 

two AirBeam2 were collocated close to the “gold 

pod”. The two mobile devices were calibrated 

independently: first, the AirBeam2 used by 

experimenter 1 (“mob1”) and then the device used by 

experimenter 2 (“mob2”). This was motivated by the 

observation that mob2 was delivering concentrations 

a bit higher than mob1. By using the nls() function 

from RStudio 2022.07.1 (R Core Team, 2022) on 

75% of the dataset, we applied the mechanistic 

equation (Equation 1) involving relative humidity and 

temperature for calibration:  

 

PM2.5 gp = a + b 
PM2.5 mob

(1+d
RHmob

100−RHmob
)

1
3

+ c Tmob   (1) 

 

where PM2.5 gp = PM2.5 concentrations in µg/m3 given 

by the “gold pod”, PM2.5 mob = PM2.5 concentrations 

(µg/m3) measured with the AirBeam2, RHmob = 

relative humidity in % determined by the AirBeam2, 



Tmob = temperature in °C given by the AirBeam2. For 

mob1, we found a = 0.49, b = 0.91, c = 0.07 and d = 

0.43. For mob2, we had a = -0.1, b = 0.86, c = 0.08 

and d = 0.31. We then tested these two calibration 

formulas on the remaining 25% dataset, and we found 

the following performance indicators. For mob1, we 

had RMSE = 0.62 µg/m3 and R2 = 0.96 and for mob2, 

we found RMSE = 0.58 µg/m3 and R2 = 0.97. RMSE 

(root mean square error) reflects the accuracy of the 

model to predict actual PM2.5 values, and R2 

(coefficient of determination) refers to the correlation 

between the AirBeam2 values and the reference 

concentrations. Based on this, we decided to continue 

with these models as the indicators were good 

compared to what is found in the literature (Blanco et 

al., 2022; Haghbayan & Tashayo, 2021).  

2.2 Sampling design 

2.2.1 Monitoring routes 

The study took place in Grenoble, the largest city in 

the Alps, hosting around 450,000 inhabitants. Five 

different monitoring sites were selected (Figure 2): 

two wide streets (“Jaurès” and “Pain”) and two 

narrow (also called “canyon”) streets surrounded by 

higher buildings (“Grégoire” and “Blanchard”).  We 

also monitored PM when we commuted between 

Blanchard and Grégoire (“Cross” route). 

  

 

Figure 2. Monitoring routes used in the 

experiment. Credits:  © OpenStreetMap contributors 

2.2.2 Experimental timings 

Ground measurements were conducted from April 25, 

2022 to May 12, 2022 during 10 working days 

(Figure 3). Three different measurement sessions 

were performed daily: a first session (S1, morning) 

between 8:00 and 9:00, a second session (S2, 

noontime) between 12:00 and 13:00 and a third 

session (S3, afternoon) between 16:00 and 17:00. 

Sometimes, for reasons related to the public transport 

timetables, the sessions went slightly beyond the time 

slots. Nine sessions were postponed because of rainy 

conditions. 

Two experimenters were involved in the study. 

For each session, they had to travel the same routes in 

parallel using different modes of transport: bike, 

walk, bus or tramway (Appendix). Each site was 

sampled for at least three days (Figure 3). On the days 

when we studied Blanchard and Grégoire, we also 

monitored PM while travelling in between the two 

sites (“Cross” route). Jaurès was sampled four times 

because this street, longer than the others, had many 

potential biases (intersections, stores, idling cars) and 

we thought it might be interesting to replicate the 

measurements further.  

 

 

Figure 3. Measurement campaign schedule. 

 
Next, we analysed carefully the public 

transportation schedules. A session example is 

reported in the Appendix. The same document was 

used as a roadmap by the experimenters for each 

session. Reproducing measurements on the same 

street is important to be representative (Van den 

Bossche et al., 2015). Every day, each experimenter 

performed at least 12 repetitions of the route.  



2.3 Data cleaning 

In this paper, we decided to focus only on PM2.5 

analysis and on commuting times. We left PM10, PM1, 

and results related to waiting times for further work. 

Data were extracted via AirCasting application and 

analysed with RStudio. We retrieved 214 comparison 

trips where the two experimenters were travelling 

along the same routes (428 trips in total, considering 

both experimenters). PM sensors can be vulnerable to 

inaccuracies resulting from drift, temperature, 

humidity and other factors (Motlagh et al., 2021). As 

both AirBeam2 were quite new, drift was not an issue, 

but we blew compressed air through the intake of the 

gold pod used for calibration as recommended by 

Bathory, Dobo, Garami, Palotas, and Toth (2021). As 

explained above, both AirBeam2 devices were 

calibrated using formulas accounting for RH and 

temperature. We also checked the presence of dust 

with CAMS (Copernicus Atmosphere Monitoring 

Service) satellite data (retrieved 0.1° x 0.1° resolution 

dust values from ENSEMBLE dataset (METEO 

FRANCE, 2020) (‘analysis’ type)). Fortunately, no 

dust event happened during the experiment period. 

We removed outliers in the dataset because we had 

peak events on trips, even inside public transports, 

mainly because of smokers or idling cars. In public 

transports, those peaks were often caused by door 

openings. All outliers with more than 1.5 times the 

interquartile range above the third quartile (Q3) or 

less than 1.5 times the interquartile range below the 

first quartile (Q1) were removed. Hourly background 

reference PM2.5 concentrations from Atmo AuRA 

were collected through their Application 

Programming Interface (https://api.atmo-aura.fr/). 

For this study, we used the average from two 

background reference stations (Les Frênes and Saint-

Martin d’Hères). Both references, placed at 

approximately 3 km from the experimental sites, were 

located in relatively open areas (Figure 4). For each 

measurement made every second with our mobile 

devices, we affected the corresponding hourly value 

given by the reference stations. We also used 

meteorological data from the Réseau d’Observation 

Météo du Massif Alpin (ROMMA, 2022). Their 

nearest weather station (GPS coordinates: latitude = 

45.169°, longitude = 5.768°) was located around 3 km 

from the collocation site (Figure 4). A Davis Vantage 

Pro2 instrument registered all weather parameters. 

Wind speed (km/h) corresponded to a 10-mn average, 

with a measurement frequency of 2.5-3 s. We 

checked that all data sources used the same time zone 

(Europe/Paris). 

 

 

Figure 4. Location of the Atmo AuRA reference 

stations (in red) and ROMMA meteorological station 

(in blue). Credits:  © OpenStreetMap contributors 

3 RESULTS 

3.1 Descriptive statistics 

Collected PM2.5 data are summarized in Table 1. 

More measurements were performed on walking 

mode because, in order to replicate the experiment 

and use public transportation again, we had to walk 

back to the starting point. This was especially true on 

routes where public transport was only running in one 

direction. The number of measurements made on foot 

were also higher because walking the road segment 

took longer than cycling, taking the bus or tramway.  

Table 1. Descriptive statistics on PM2.5 

concentrations and number of measurements (count) 

performed in different commuting modes. 

 



More outliers were identified for walking (5.3%) 

than for cycling (4.6%), tramway (4.1%) or bus 

(3.1%). Walkers are generally more exposed to PM 

coming from smokers, restaurants or bakeries. In 

addition, they are close to idling cars. When leaving 

outliers in the dataset, cyclists were more exposed 

(median: 8.2 µg/m3) than walkers (median: 8 µg/m3), 

followed by buses (median: 7.4 µg/m3) and tramway 

(median: 7.2 µg/m3). Compared with cyclists, 

pedestrians were 2.2% less exposed, bus users 9.4% 

less and tramway commuters 12.8% less. When 

removing outliers, the exposure ranking proved to be 

the same. Cyclists were more exposed (median value 

of 8.1 µg/m3) than walkers (median: 7.9 µg/m3), 

followed by bus users (median: 7.4 µg/m3) and 

tramway (median: 7.1 µg/m3).  Compared to cyclists, 

walkers were 2.4% less exposed, bus commuters 

8.6% less and tramway users 12.2% less. Qiu and Cao 

(2020) also found that walkers were more exposed 

than bus commuters. Peng et al. (2021) and Wang et 

al. (2021) found the same exposure ranking 

(bike>walk>bus). They used a PMS3003 device, 

similar to PMS7003. According to Shen and Gao 

(2019), cyclists and pedestrians can be directly 

exposed to other local particle emissions along the 

road, which probably results in elevated PM 

concentrations in specific areas and times. In a study 

taking place in Nantes (France), Muresan and 

François (2018) stated that public transport users 

would accumulate 4–11 times less PM in their lungs 

than nearby pedestrians walking the same route. We 

decided to pursue all further analyses after having 

removed outliers in our dataset. 

3.2 Comparison between travel modes 

Exposure levels are greatly influenced by the time of 

day (Figure 5). The morning session (S1) showed 

higher PM2.5 concentrations, followed by the 

noontime (S2) and the afternoon session (S3). 

 Of all transport modes combined, S1 PM2.5 

median was 12.9% higher than S2, while S2 median 

was 15.3% higher than S3. In the tramway, diurnal 

variations seem to be reduced compared to other 

modes. deSouza, Lu, Kinney, and Zheng (2021) also 

found that time of day (evening/morning) had an 

influence. In their ANOVA analysis, travel mode 

explained 9% of the variability in PM2.5 

concentrations whereas time of day explained 8% 

variability.  

All sessions considered, cyclists are the most 

exposed commuters. Abbass, Kumar, and El-Gendy 

(2021) studied morning and evening PM2.5 peaks. In 

their work, daily exposure patterns when walking or 

cycling looked similar, whereas microbus 

concentrations behaved differently, and cycling 

resulted in exposure to the highest average PM2.5 

concentrations. 

 

 

Figure 5. Boxplots of PM2.5 concentrations by 

transport mode. Upper and lower whiskers show the 

ranges of 5% to 95%, the central dark lines indicate 

the median. The bars outside the box represent 1.5 

times the interquartile range, and circles are outliers. 

Per session, we observe the same PM2.5 exposure 

ranking (bike > walk > bus > tramway) but, during 

S3, the levels measured in the bus get close to those 

measured in the tramway. When PM2.5 levels are high 

(S1), the differences between the transport modes are 

important, but when the levels are low, during the 

afternoon (S3), the differences become less 

pronounced. This suggests that when PM levels are 

low, public transports no longer play a “protective” 

role against PM2.5. In addition, relative differences 

between sessions are lower in the tramway than in the 

other transportation modes. This could mean that 

levels in the tramway are less influenced by 

background concentrations, which are higher in the 

morning.  

3.3 Comparison with reference value 

One of the objectives of this study was to compare the 

PM2.5 values measured by the mobile sensors with 

those returned by the reference stations. The graph 

below (Figure 6) shows PM2.5 levels measured by the 

mobile devices and the corresponding background 

reference levels. The hours marked in bold are the 

times when we carried out the most PM2.5 

measurements. As an example, the 10 am 

measurements were those that we were unable to 

perform as planned between 8 and 9 am. As this rarely 



happened, we got fewer observations for those extra 

hours.  

In general, PM2.5 levels given by the mobile 

sensors were lower than values given by background 

stations, especially when considering hours when the 

counts were the highest (9, 13, and 17). This could 

come from microscale PM2.5 variations, as PM2.5 at 

the local scale could be affected by different factors. 

This was surprising that measured PM2.5 values were 

lower than reference values, because we were in a 

traffic situation and the reference stations are located 

in a background environment. Both reference 

stations, situated in opened areas, could be exposed to 

more PM2.5 which would be covered by the dense and 

high buildings of the city centre where experiments 

took place. The AirBeam2 calibration could also be 

an explanation. The ideal way to perform a calibration 

would have been to collocate our mobile devices 

directly with the reference station, without using a 

gold pod as an intermediary. It is also important to 

note that the calibration with the reference was 

performed at an hourly scale, and we had to apply it 

to values given at a fine scale (seconds). Knowing the 

RMSE related to step 1 calibration (Refer Figure 1), 

we could expect a maximal error of 0.7 µg/m3. The 

average difference between reference and mobile 

values during S1 and S2 (considering 9, 13 and 17 

o’clock timings) was about 1.1 µg/m3. Therefore, the 

calibration error alone could most probably not 

explain the observed difference. Motlagh et al. (2021) 

used low-cost sensors to measure PM2.5 in Helsinki 

and saw that roadside measurements were higher than 

reference values. But during spring or summer, the 

pollution levels in the train, bus or tramway were well 

below the ambient reference pollution levels. They 

attributed this to the fact that the transport fleet in 

Helsinki was quite modern and the indoor air heavily 

filtered. This should be the case for tramways in 

Grenoble. However, older buses might remain in 

operation, and the practice of using conditioned air 

depends on the weather and the driver. It would have 

been interesting to know if the air was filtered in the 

different buses and trams we used. Han et al (2021) 

also used low-cost sensors and observed that personal 

Figure 6. Comparison between values measured by mobile devices and reference values. The 9 o'clock boxplot 

corresponds to the values measured by mobile sensors between 8 and 9 am.  The hours in bold are the ones where 

we had the more measurements taken by mobile devices.  

 



PM2.5 levels were consistently lower than ambient 

concentrations.  The Center for Advancing Research 

in Transportation Emissions, Energy, and Health 

(2019) measured exposure of urban cyclists in Atlanta 

(United States) with a PMS5003. They concluded that 

few segments recorded air quality worse than the 

background concentration. During most of the routes, 

riders experienced a better air quality than the one 

registered at the monitoring location. 

In our study, wind could be an important factor 

determining PM2.5 levels. We observed that wind 

speed values were increasing starting from 10 am 

(Figures 7 and 8). The relief around Grenoble could 

contribute to this phenomenon. 

 

 

Figure 7. Wind speed values during the experiment. 

 

 

Figure 8. Average wind speed values between April 

25, 2022 and May 12, 2022. 

Interestingly, we observed that bus and tramway 

had levels close to the reference during S3 (Refer 

Figure 6). When PM levels in Grenoble were high, 

public transports provided an important advantage, 

but when PM levels were lower, close to their 

minimum, public transportation systems did not seem 

to offer this benefit any longer. Wang et al. (2021) 

also performed three daily measurement sessions 

(morning/noon/afternoon). Their GRIMM instrument 

showed that at lower pollutant levels, the 

concentrations registered in the bus were higher than 

the background levels. When pollutants levels were 

higher (noontime), the difference between inside and 

outside got larger, as in our study. They also observed 

lower levels of PM2.5 compared to the reference when 

the pollutant levels were higher. Furthermore, by 

using a similar low-cost sensor (PMS3003), they 

found as well that when PM2.5 levels were lower, the 

difference between reference levels and bus carriage 

levels was lower.  

4 CONCLUSIONS 

During this spring experiment, performed in 2022 at 

low pollutant levels, cyclists were more exposed than 

pedestrians, bus users and tramway commuters. This 

ranking was the same whether we removed outliers or 

not. We counted more outliers for walking than for 

cycling, tramway or bus.  

When comparing exposure values to reference 

stations measurements: (1) pedestrian and cyclists’ 

exposure generally stayed under background values, 

(2) public transportation systems were under 

reference values at 9 or 13 o’clock but when PM 

levels went lower, levels reached those of the 

reference value. Public transport users could be less 

exposed than commuters using active modes, except 

when ambient PM levels are low.  

The time of day seems to influence exposure more 

than mode of transport, with a gradual concentration 

decrease throughout the day. Environmental 

parameters like wind might play a role in Grenoble. It 

would be interesting to reproduce this work during 

another season when wind speed is lower.  

In the future, we will perform an inhalation dose 

calculation on the same dataset in order to consider 

breathing rate differences among commuting modes. 

In Grenoble, about 15% of the working population 

cycles to work (Agence de la Transition Écologique, 

2015), which makes the problem of PM exposure 

more acute. However, we must emphasize that 

cycling helps prevent many chronic diseases and 

brings environmental benefits.   
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ABBREVIATIONS 

Acronym Definition 

ANOVA Analysis of variance 
Atmo AuRA Atmo Auvergne-Rhône-Alpes 
CAMS Copernicus Atmosphere Monitoring Service 
IoT Internet of Things 
mob1 AirBeam2 used by experimenter 1 
mob2 AirBeam2 used by experimenter 2 
PM Particulate matter 
PM1 Particulate matter with aerodynamic diameter ≤ 1 µm 
PM2.5 Particulate matter with aerodynamic diameter ≤ 2.5 µm 
PM10 Particulate matter with aerodynamic diameter ≤ 10 µm 
R2 Coefficient of determination 
RH Relative humidity 
RMSE Root mean square error 
ROMMA Réseau d’Observation Météo du Massif Alpin 
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