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MULTI-DOMAIN FEM-BEM COUPLING FOR ACOUSTIC SCATTERING

MARCELLA BONAZZOLI AND XAVIER CLAEYS

Abstract. We model time-harmonic acoustic scattering by an object composed of piece-wise
homogeneous parts and an arbitrarily heterogeneous part. We propose and analyze new for-
mulations that couple, adopting a Costabel-type approach, boundary integral equations for the
homogeneous subdomains with volume variational formulations for the heterogeneous subdo-
main. This is an extension of the Costabel FEM-BEM coupling to a multi-domain configura-
tion, with cross-points allowed, i.e. points where three or more subdomains are adjacent. While
generally just the exterior unbounded subdomain is treated with the BEM, here we wish to
exploit the advantages of BEM whenever it is applicable, that is, for all the homogeneous parts
of the scattering object. Our formulation is based on the multi-trace formalism, which initially
was introduced for acoustic scattering by piece-wise homogeneous objects. Instead, here we
allow the wavenumber to vary arbitrarily in a part of the domain. We prove that the bilinear
form associated with the proposed formulation satisfies a Gårding coercivity inequality, which
ensures stability of the variational problem if it is uniquely solvable. We identify conditions for
injectivity and construct modified versions immune to spurious resonances.

1. Introduction

The efficient simulation of wave propagation problems in time-harmonic regime remains a com-
putational challenge that is still the subject of intensive research effort. Propagation media
are generally heterogeneous, which is reflected by arbitrarily varying coefficients in the equa-
tions. Classical numerical methods to perform simulations in heterogeneous media usually rely
on volume-type discretization schemes such as finite elements. In many situations of practical
relevance, material coefficients are piece-wise constant in certain parts of the computational do-
main, and this feature can be exploited to reformulate the problem by means of boundary integral
operators as an equation defined only on the boundary, called Boundary Integral Equation (BIE).
Indeed, boundary element methods, which are discretization schemes for BIEs, yield a signifi-
cant reduction in the number of unknowns, higher accuracy at least away from the boundary,
and better robustness to high frequency compared with finite elements. In addition, boundary
integral operators can naturally deal with unbounded domains, provided that the boundary is
bounded.

This is the general idea of Finite Element Method - Boundary Element Method (FEM-BEM)
coupling, which aims at taking advantage of the versatility of the finite element method and the
computational efficiency of the boundary element method. There already exists a well established
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Figure 1. Example of geometric setting: composite medium, with ΩΣ arbitrarily
heterogeneous. Cross-points (red dots) are allowed.

literature on the numerical analysis of FEM-BEM coupling, in particular for time-harmonic acous-
tic problems, with several possible FEM-BEM strategies including the Johnson-Nédélec coupling
[15], the Bielak-McCamy coupling [3] or the symmetric Costabel coupling [12, 13] (see e.g. [1] for
an overview of the three approaches). Another possible strategy relies on substructuring domain
decomposition and FETI-BETI methods [16, 2, 21, 6]. In the present contribution, we wish to
focus on the Costabel coupling, which appears interesting from a numerical analysis perspective
because it naturally leads to Gårding coercivity estimates.

Except for those related to domain decomposition, many of the contributions dedicated to
FEM-BEM coupling consider a simple geometric configuration where the computational domain
is subdivided into two parts separated by a single interface: one interior heterogeneous part and
one exterior homogeneous part. Multi-domain configurations with more than two subdomains are
also of interest, and often involve the presence of cross-points, i.e. points where three subdomains
or more are adjacent (see for instance the red points in Figure 1). From a numerical standpoint, as
was clearly shown in [19, §4] by detailed numerical examples, a careless treatment of cross-points
may lead to a lack of consistency of standard linear solvers such as GMRes. At the continuous
level, the presence of cross-points is problematic because in that case the interface shared by one
subdomain with another can have a boundary (made of cross-points). So, the operators giving
the restriction to the interface (between Dirichlet or Neumann trace spaces on the subdomain
boundary) are not continuous, see e.g. [9, §6.2]. This prevents writing in a proper function space
framework the most natural multi-domain formulations that would use restriction operators. To
avoid these, in the present contribution, we design and analyze new multi-domain FEM-BEM
formulations by means of the Multi-Trace Formalism (MTF), which was introduced in [7, 9, 8]
for piece-wise constant coefficients. Indeed, MTF allows for a clean treatment of cross-points
from the perspective of function spaces, and proves here to be perfectly fitted to the Costabel
coupling. These new formulations satisfy Gårding inequalities, which, in case of injectivity, imply
stability and quasi-optimal convergence results of conforming discretization methods.

Unfortunately, like the classical Costabel coupling, also its multi-domain versions may be
affected by the spurious resonances phenomenon, that is, the associated operator may be not
injective, whereas the corresponding transmission problem is always well-posed. Therefore, we
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identify conditions for injectivity, and then we construct modified versions immune to spurious
resonances. This is a generalization to multi-domain configurations of the strategy studied in
[14] for the two-domain case.

This article is organized as follows. First, we present the acoustic scattering transmission
problem in Section 2, we recall the definitions of trace spaces and operators in Section 3, and
classical results of potential and boundary integral operator theory in Section 4. Then in Section 5
we introduce a functional setting suited for the multi-domain configuration. After revisiting the
classical Costabel coupling in Section 6 for two subdomains, in Section 7 we propose a first multi-
domain coupling formulation, called single-trace FEM-BEM formulation, followed by a combined
field version in Section 8 that is immune to spurious resonances. The single-trace FEM-BEM
formulation is preparatory to the more flexible multi-trace FEM-BEM formulation, which is
derived and analyzed in Section 9. Finally, a multi-trace combined field FEM-BEM formulation
is designed in Section 10.

Nomenclature

Geometric setting
Ωj Subdomains of Rd with homogeneous medium (with Ω0 unbounded)
n Number of bounded homogeneous subdomains
ΩΣ Subdomain of Rd with heterogeneous medium
Γj Homogeneous subdomain boundary ∂Ωj

Σ Heterogeneous subdomain boundary ∂ΩΣ

Γ The skeleton, that is the union of subdomain interfaces, see (2.3)
κj Wavenumber in Ωj (positive constant)
κΣ Wavenumber in ΩΣ (positive function)
Function spaces
H(∂Ω) Space of pairs of Dirichlet and Neumann traces on ∂Ω, see (3.2)
H(Γ) Multi-trace space: H(Γ) := H(Γ0)× · · · ×H(Γn), see (5.1)
X(Γ) Single-trace space (subspace of H(Γ)), see (5.4)
X̃(Γ) Single-trace space with additional components on Σ, see (5.9)
X(ΩΣ,Γ) Subspace of H1(ΩΣ)× X(Γ) with Dirichlet conditions on Σ, see (5.10)
XM(ΩΣ,Γ) Subspace of H1(ΩΣ)× X(Γ) with generalized Robin conditions on Σ, see (8.2)
Ĥ(Γ) Multi-trace space with Neumann traces on Σ and no components on Γ0, see (9.1)
qH(Γ) Multi-trace space with Dirichlet traces on Σ and no components on Γ0̂̂H(Γ) Multi-trace space with both Dirichlet and Neumann traces on Σ, and no components

on Γ0, see (9.3)
Duality pairings
⟨ · , · ⟩∂Ω Duality pairing between Dirichlet and Neumann traces on ∂Ω
[ · , · ]∂Ω Self-duality pairing on H(∂Ω), see (3.3)
[ · , · ]Γ Self-duality pairing on H(Γ), see (5.3)
J · , · K Duality pairing between Ĥ(Γ) and qH(Γ), see (9.2)
⦃ · , ·⦄ Self-duality pairing on ̂̂H(Γ), see (9.4)
Trace operators
γΩd , γ

Ω
n Interior Dirichlet and Neumann trace operators on ∂Ω, denoted γjd, γ

j
n for Ω ≡ Ωj

γΩd,c, γ
Ω
n,c Exterior Dirichlet and Neumann trace operators on ∂Ω, denoted γjd,c, γ

j
n,c for Ω ≡ Ωj
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γΩ, γΩc Interior and exterior pairs of Dirichlet and Neumann trace operators on ∂Ω, denoted
γj , γjc for Ω ≡ Ωj

[γΩ] Jump of the interior and exterior trace operators across ∂Ω, see (3.7)
{γΩ} Average of the interior and exterior trace operators across ∂Ω, see (3.7)
γ Global trace operator defined in (5.2)
T,Td,Tn Traces on Σ induced by a tuple in X(Γ), see Proposition 5.1
Other operators
SLΩκ Single layer potential on ∂Ω (κ constant wavenumber), see (4.1), denoted SLjκ for

Ω ≡ Ωj

DLΩκ Double layer potential on ∂Ω (κ constant wavenumber), see (4.2), denoted DLjκ for
Ω ≡ Ωj

GΩ
κ Total potential on ∂Ω (κ constant wavenumber), see (4.3), denoted Gj

κ for Ω ≡ Ωj

AΩ
κ 2×2 matrix of boundary integral operators (double layer, single layer, hypersingular

and adjoint double layer operators), see (4.9), denoted Aj
κ for Ω ≡ Ωj

A Block diagonal operator A := diag(A0
κ0
, . . . ,An

κn
)̂̂A Full block operator, see (9.9)

aΣ Helmholtz bilinear form on ΩΣ, see (6.3)
FΣ Linear form for the source term on ΩΣ, see (6.3)
θ Operator θ(v, q) := (−v, q), for (v, q) ∈ H(∂Ω)
Θ Operator Θ(v) := (θ(v0), . . . , θ(vn)), for v = (v0, . . . , vn) ∈ H(Γ)

2. The transmission problem

We start by presenting the problem under study. We consider a non-overlapping domain decom-
position

(2.1) Rd =

n⋃
j=0

Ωj ∪ ΩΣ,

where each subdomain will only be assumed Lipschitz regular [17, Def. 3.28] and connected, and
all subdomains except Ω0 are bounded. In addition, Rd \ΩΣ will also be assumed connected (so
that ΩΣ does not contain any hole). An example of such a configuration is given in Figure 1. We
emphasize that in such a geometrical setting the presence of cross-points (red points in Figure 1)
is allowed.

We consider a propagation medium whose effective wavenumber, described by a function
κ : Rd → R+, varies in accordance with the subdomain decomposition in (2.1): we assume that

κ(x) = κj ∀x ∈ Ωj , j = 0, . . . , n, with κj ∈ (0,+∞),

while in the subdomain ΩΣ the wavenumber is not assumed constant and may vary: κ(x) =
κΣ(x), with κΣ(x) > 0, ∀x ∈ ΩΣ.

Let the incident field Uinc ∈ H1
loc(Rd) satisfy ∆Uinc + κ20Uinc = 0 in Rd, where H1

loc(Rd) is
the set of functions whose restriction to any compact set ω ⊂ Rd belongs to H1(ω). Let the
source term f ∈ L2(Rd) be supported in ΩΣ. We are interested in solving the following problem



MULTI-DOMAIN FEM-BEM COUPLING FOR ACOUSTIC SCATTERING 5

modelling an acoustic wave propagating in a heterogeneous medium

(2.2)

Find U ∈ H1
loc(Rd) such that

∆U + κ(x)2U = −f in Rd

U − Uinc is κ0-outgoing radiating.

In this problem, the third condition is the classical Sommerfeld radiation condition, see e.g. [20,
§2.6.5]: any function V is said to be k-outgoing radiating if limρ→∞

∫
∂Bρ

|∂ρV − ıkV |2 dσρ = 0,
where ı =

√
−1, Bρ is the ball centered at the origin of radius ρ and ∂ρ denotes the radial

derivative. By standard results of scattering theory, Problem (2.2) admits a unique solution, see
e.g. [10, Theorem 8.7].

To solve such a problem, a standard numerical approach would rely on finite elements. The
computational efficiency could be improved by taking advantage of the piece-wise constant ma-
terial characteristics in the subdomains Ωj . In the present contribution, we wish to develop
a multi-domain FEM-BEM coupling strategy, where the wave equation is treated by means of
boundary integral operators in those parts of the computational domain where material char-
acteristics are constant. Compared to most of the existing literature on FEM-BEM coupling,
an important novelty in the present contribution lies in providing a rigorous analysis also in the
presence of cross-points.

Let us introduce notations for boundaries and interfaces:

(2.3) Γj := ∂Ωj , j = 0, . . . , n, Σ := ∂ΩΣ, Γ := ∪n
j=0Γj (the “skeleton”).

Note that Σ ⊂ Γ because each point of Σ belongs also to some Γj , j = 0, . . . , n. The first step
toward a multi-domain FEM-BEM formulation of problem (2.2) consists in decomposing the
wave equation according to (2.1), and imposing transmission conditions at interfaces:

(2.4)

∆U + κ2Σ(x)U = −f in ΩΣ

∆U + κ2jU = 0 in Ωj

U |Γj − U |Γk
= 0

∂njU |Γj + ∂nk
U |Γk

= 0

U |Γj − U |Σ = 0

∂njU |Γj + ∂nΣU |Σ = 0

U − Uinc is κ0-outgoing radiating.

Here, all traces are taken from the interior of subdomains, and nj , j = 0 . . . n (resp. nΣ) are the
unit normal vector fields on Γj directed toward the exterior of Ωj (resp. ΩΣ). Neumann traces
are defined by ∂njU |Γj

:= nj · ∇U |Γj (resp. ∂nΣU |Σ := nΣ · ∇U |Σ).

3. Trace spaces and operators

Discussing transmission conditions requires paying thorough attention to function spaces, trace
spaces and operators. In all this section, Ω refers to a generic Lipschitz domain that is either
bounded or such that Rd \ Ω is bounded, and nΩ is the unit normal vector field on ∂Ω system-
atically directed toward the exterior of Ω.
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First of all, we use classical notations for the following elementary function spaces of volume
functions:

(3.1)

H1(Ω) := {V ∈ L2(Ω) | ∇V ∈ L2(Ω) } ,
H(div,Ω) := {v ∈ L2(Ω)d | div(v) ∈ L2(Ω) } ,
H1(∆,Ω) := {V ∈ H1(Ω) | ∆V ∈ L2(Ω) } .

They are equipped with their canonical norms ∥V ∥2H1(Ω)
:= ∥V ∥2L2(Ω)+∥∇V ∥2L2(Ω), ∥v∥2H(div,Ω)

:=

∥v∥2L2(Ω)+∥div(v)∥2L2(Ω), and ∥V ∥2H1(∆,Ω)
:= ∥V ∥2H1(Ω)+∥∆V ∥2L2(Ω). With these norms, the spaces

(3.1) admit a Hilbert structure. If H(Ω) is any of the spaces above, we set Hloc(Ω) := {V | φV ∈
H(Ω) ∀φ ∈ C∞

c (Rd)}, where C∞
c (Rd) is the space of C∞ functions with compact support.

We introduce the interior Dirichlet trace operator γΩd and the interior Neumann trace operator
γΩn , defined for smooth functions φ ∈ C∞(Rd) by

γΩd (φ) := φ|∂Ω, γΩn (φ) := nΩ · ∇φ|∂Ω.
These definitions are extended by density and continuity to trace operators γΩd : H1

loc(Ω) →
H1/2(∂Ω), γΩn : H1

loc(∆,Ω) → H−1/2(∂Ω), where the Dirichlet trace space H1/2(∂Ω) is defined
as the completion of {φ|∂Ω, φ ∈ C∞(Rd)} with respect to the Slobodeckii norm (see e.g. [17,
Chap. 2])

∥φ∥2
H1/2(∂Ω)

:=

∫
∂Ω×∂Ω

|φ(x)− φ(y)|2
|x− y|d dσ(x,y),

and the Neumann trace space H−1/2(∂Ω) is the dual space of H1/2(∂Ω). The corresponding du-
ality pairing will be denoted by ⟨p, v⟩∂Ω ≡ ⟨v, p⟩∂Ω := p(v) for v ∈ H1/2(∂Ω) and p ∈ H−1/2(∂Ω),
and we shall take

∥p∥H−1/2(∂Ω) := sup
v∈H1/2(∂Ω)\{0}

|⟨p, v⟩∂Ω|
∥v∥H1/2(∂Ω)

as norm for the Neumann trace space. We also introduce operators and spaces for pairs of
Dirichlet and Neumann traces, defined by γΩ(V ) := (γΩd (V ), γΩn (V )) and

(3.2)
γΩ := (γΩd , γ

Ω
n ) : H

1(∆,Ω) → H(∂Ω) where

H(∂Ω) := H1/2(∂Ω)×H−1/2(∂Ω).

In contrast with Dirichlet and Neumann trace operators γΩd , γΩn , the trace operator γΩ is not
really standard, but we shall often use it for compact notation in our analysis. The space of
pairs of Dirichlet-Neumann traces H(∂Ω) will be equipped with the Cartesian product norm
∥(v, q)∥2H(∂Ω)

:= ∥v∥2
H1/2(∂Ω)

+ ∥q∥2
H−1/2(∂Ω)

. It is put in duality with itself through the following
skew-symmetric bilinear pairing

(3.3) [(u, p), (v, q)]∂Ω := ⟨u, q⟩∂Ω − ⟨p, v⟩∂Ω
for all (u, p), (v, q) ∈ H(∂Ω). We underline that no complex conjugation comes into play in this
definition. Note that throughout the paper Dirichlet traces are denoted by u, v, w and Neumann
traces by p, q, r, while capital letters like U, V are used to indicate scalar functions on volume
domains, and small bold letters like v,p, q are used for vector fields. In this section and the
following one, we use gothic symbols u, v,w to denote pairs of Dirichlet-Neumann traces, that is
elements of H(∂Ω). We have the inequality |[u, v]∂Ω| ≤ ∥u∥H(∂Ω)∥v∥H(∂Ω) for all u, v ∈ H(∂Ω).
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Setting θ(v, q) := (−v, q), we state simple identities that will be used several times in the
following: for all u = (u, p), v = (v, q) ∈ H(∂Ω)

[u, θ(v)]∂Ω = ⟨u, q⟩∂Ω + ⟨p, v⟩∂Ω,(3.4)
[u, θ(v)]∂Ω − [u, v]∂Ω = 2⟨p, v⟩∂Ω,(3.5)
[u, θ(v)]∂Ω + [u, v]∂Ω = 2⟨u, q⟩∂Ω.(3.6)

Together with the operators γΩd , γΩn , γΩ, for which traces are taken from the interior of the
domain Ω, similar operators can be defined for traces taken from the exterior of Ω, and will be
denoted by

γΩd,c : H
1
loc(Rd \ Ω) → H1/2(∂Ω),

γΩn,c : H
1
loc(∆,Rd \ Ω) → H−1/2(∂Ω),

γΩc := (γΩd,c, γ
Ω
n,c) : H

1
loc(∆,Rd \ Ω) → H(∂Ω).

When considering the trace operator γΩn,c, the normal vector is still directed toward the exterior
of Ω. Finally, we will also need jump and average traces:

(3.7) [γΩ] := γΩ − γΩc , {γΩ} := (γΩ + γΩc )/2.

In the context of the multi-domain configuration (2.3), for the sake of brevity, we shall write γjd
(resp. γjn, γj , γ

j
d,c, γ

j
n,c, γ

j
c ) instead of γΩj

d (resp. γΩj
n , γΩj , γ

Ωj
d,c, γ

Ωj
n,c, γ

Ωj
c ). We shall adopt a similar

convention for traces on Σ, writing γΣ∗ instead of γΩΣ
∗ with ∗ = d,n and so on.

4. Review of potential and boundary integral operators

In this section, we recall, using compact notation, classical results about boundary integral
formulations for the Helmholtz equation in Lipschitz domains. For more details and proofs see
for instance [22, Chap. 3]. As in the previous section, here Ω denotes a generic Lipschitz domain,
which is either bounded or the complement of a bounded domain.

Let the function Gκ : Rd \ {0} → C be the κ-outgoing radiating fundamental solution or Green
kernel for the Helmholtz operator −∆ − κ2, for a given constant wavenumber κ ∈ (0,+∞). In
particular for Rd = R3 we have Gκ(x) = exp(iκ|x|)/(4π|x|). For any x ∈ Rd \ ∂Ω, and any
v = (v, q) ∈ H(∂Ω), define potential operators1

SLΩκ (q)(x) :=

∫
∂Ω
q(y) Gκ(x− y) dσ(y),(4.1)

DLΩκ (v)(x) :=

∫
∂Ω
v(y) nΩ(y) · (∇Gκ)(x− y) dσ(y)(4.2)

= −
∫
∂Ω
v(y) nΩ(y) · ∇y(Gκ(x− y)) dσ(y),

GΩ
κ (v)(x) := DLΩκ (v)(x) + SLΩκ (q)(x),(4.3)

1Note that the choice of sign in the double layer potential differs from the one usually adopted in the literature,
in order to maintain symmetry in the definition of GΩ

κ (and consequently in the representation formula).
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where the first two operators are called single and double layer potentials. The total potential
GΩ
κ maps continuously H(∂Ω) into2 H1

loc(∆,Ω) × H1
loc(∆,Rd\Ω) (see [22, Thm. 3.1.16]), so that

the traces of GΩ
κ (v) are properly defined. This operator can be used to write a representation

formula for the solution to the homogeneous Helmholtz equation in terms of the Dirichlet and
Neumann traces of the solution (see [22, Thm. 3.1.6]):

Proposition 4.1 (Representation formulas). Let U ∈ H1
loc(Ω) satisfy −∆U−κ2U = 0 in Ω. If Ω

is unbounded, assume in addition that U is κ-outgoing radiating. Then we have the representation
formula

(4.4) GΩ
κ (γ

Ω(U))(x) = 1Ω(x)U(x).

Similarly, let V ∈ H1
loc(Rd\Ω) satisfy −∆V − κ2V = 0 in Rd\Ω, as well as the Sommerfeld

radiation condition if Ω is bounded. Then we have

(4.5) GΩ
κ (γ

Ω
c (V ))(x) = −1Rd\Ω(x)V (x).

Here, 1Ω (resp. 1Rd\Ω) is the characteristic function of Ω (resp. Rd \ Ω). In addition to the
representation formulas above, the potential operator GΩ

κ satisfies the so-called jump relations
[22, Thm. 3.3.1], which describe the relationship between interior and exterior traces of GΩ

κ . Here
we express these relations through the following synthetic identity

(4.6) [γΩ] ◦ GΩ
κ = Id,

where Id is the identity map on H(∂Ω) and the jump [ · ] is defined in (3.7).
Any U = GΩ

κ (u) for u ∈ H(∂Ω) is a κ-outgoing radiating solution to the homogeneous
Helmholtz equation in Ω with wavenumber κ, hence we can apply to it the representation for-
mula (4.4). Taking the interior traces of this formula leads to γΩ ◦GΩ

κ (γ
Ω ◦GΩ

κ (u)) = γΩ ◦GΩ
κ (u),

and since u was chosen arbitrarily in H(∂Ω), this finally rewrites

(4.7) (γΩ ◦ GΩ
κ )

2 = (γΩ ◦ GΩ
κ )

which is a synthetic form of the four classical interior Caldéron identities. The operator γΩ ◦GΩ
κ

is a continuous projector, called the interior Calderón projector of Ω. This actually provides a
characterization of traces of solutions to the homogeneous Helmholtz equation, which are called
Cauchy data (see [22, §3.6]):

Proposition 4.2 (Definition and characterization of Cauchy data). We define the space of
Cauchy data of Ω

(4.8)
Cκ(Ω) :={γΩ(U) ∈ H(∂Ω) | U ∈ H1

loc(Ω),−∆U − κ2U = 0 in Ω,

and U is κ-outgoing radiating if Ω is unbounded }.
The range of the interior Calderón projector γΩ ◦ GΩ

κ coincides with Cκ(Ω). More precisely, for
any u ∈ H(∂Ω) we have γΩ ◦ GΩ

κ (u) = u ⇐⇒ u ∈ Cκ(Ω).
Analogous results, obtained by taking exterior traces of the representation formula (4.5), hold
for exterior Cauchy data.

2Here we consider that V ∈ H1
loc(∆,Ω) × H1

loc(∆,Rd\Ω) if and only if V |Ω ∈ H1
loc(∆,Ω) and V |Rd\Ω ∈

H1
loc(∆,Rd\Ω).
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Applying traces to potential operators yields boundary integral operators: in our compact
notation we will use

(4.9) AΩ
κ := {γΩ} ◦ GΩ

κ ,

where the average {·} is defined in (3.7). The operator AΩ
κ continuously maps H(∂Ω) into

H(∂Ω). It consists in a 2 × 2 matrix of boundary integral operators (double layer, single layer,
hypersingular and adjoint double layer operators, see e.g. [22, §3.6]). In this article, we shall not
need to refer individually to any of its entries. Simple consequences of the jump relations (4.6)
are

γΩ ◦ GΩ
κ = AΩ

κ + Id/2,(4.10)

γΩc ◦ GΩ
κ = AΩ

κ − Id/2.(4.11)

So, identity (4.7) implies (AΩ
κ )

2 = Id/4. The operator AΩ
κ , for Ω = Ωj , j = 0, . . . , n, will play a

pivotal role in our analysis. We now recall a few properties of AΩ
κ , which are well established in

the literature. First, this operator satisfies a generalized Gårding inequality:

Proposition 4.3 (Generalized Gårding inequality). Recall the operator θ(v, q) := (−v, q). There
exist a compact operator K : H(∂Ω) → H(∂Ω) and a constant α > 0 such that for all u ∈ H(∂Ω)
we have

Re
{
[(AΩ

κ +K)u, θ(u)]∂Ω
}
≥ α∥u∥2H(∂Ω).

Although well known (see for example [23, Thm. 3.9]), the proof of this result is instructive, so
we include it in Proposition A.1 in the appendix. Next, remarkable symmetry properties were
proved in [8, Lemma 3.6–3.7]: for any u, v ∈ H(∂Ω) we have

[AΩ
κ (u), v]∂Ω = [AΩ

κ (v), u]∂Ω.

Finally, we recall a useful result about the sign of the imaginary part of the quadratic form
u 7→ [AΩ

κ (u), u]∂Ω:

Proposition 4.4. Assume that either Ω ⊂ Rd is bounded or Rd \ Ω is bounded. Then for all
u ∈ H(∂Ω), we have Im{[AΩ

κ (u), u]∂Ω} ≥ 0.

The proof of this result can be deduced for example from the positivity of the capacity operator
stated in [20, Thm. 5.3.5]. However, since we are not able to find a definitive proof in the current
literature, we provide it in Proposition A.2 in the appendix.

Once again, in the context of the multi-domain configuration (2.3), we shall write SLjκ, DL
j
κ,

Gj
κ, Aj

κ (resp. SLΣκ , DLΣκ , GΣ
κ , AΣ

κ ) instead of SLΩj
κ , DLΩj

κ , GΩj
κ , AΩj

κ (resp. SLΩΣ
κ , DLΩΣ

κ , GΩΣ
κ , AΩΣ

κ ).

5. Trace spaces for multi-domain scattering

Based on previous contributions about multi-trace formalism [7, 8], we introduce function spaces
specific to multi-domain configurations. A natural trace space on the skeleton Γ (2.3) is the
multi-trace space defined as the Cartesian product of local trace spaces on the homogeneous
subdomains boundary:

(5.1) H(Γ) := H(Γ0)× · · · ×H(Γn),
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recalling that in (3.2) we have set H(Γj) := H1/2(Γj)× H−1/2(Γj) (note that no components on
Σ are involved in H(Γ)). The multi-trace space above is equipped with the Cartesian product
norm defined by

∥v∥2H(Γ) :=

n∑
j=0

∥vj∥2H(Γj)
, for v = (v0, . . . , vn) ∈ H(Γ).

Throughout the paper we use gothic symbols u, v,w to denote tuples of Dirichlet-Neumann
traces, with a subscript indicating the pair of traces on a certain subdomain boundary. The
trace operators γj local to subdomains can be bundled to form a global trace operator on the
skeleton Γ

(5.2) γ(U) := (γ0(U), . . . , γn(U)),

which naturally maps continuously onto the multi-trace space γ : H1(∆,Ω0)×· · ·×H1(∆,Ωn) →
H(Γ). Moreover, the multi-trace space (5.1) is naturally equipped with the non-degenerate
bilinear pairing [· , ·]Γ : H(Γ)×H(Γ) → C defined by

(5.3) [u, v]Γ :=
n∑

j=0

[uj , vj ]Γj , for u = (u0, . . . , un), v = (v0, . . . , vn) ∈ H(Γ).

We also need to introduce a subspace of (5.1) consisting of tuples of traces that comply with
Dirichlet and Neumann transmission conditions through each interface Γj ∩ Γk: the so-called
single-trace space X(Γ) ⊂ H(Γ) is a closed subspace of H(Γ) defined as follows

(5.4)
X(Γ) := {(uj , pj)j=0,...,n ∈ H(Γ) | ∃V ∈ H1(Rd), q ∈ H(div,Rd)

such that uj = V |Γj and pj = nj · q|Γj ∀j = 0, . . . , n}.
In contrast to other articles about multi-trace formalism such as [9, 7], Definition (5.4) for X(Γ)
stems from the decomposition Rd \ ΩΣ = ∪n

j=0Ωj , which is not a partition of the full space Rd,
i.e. the subdomain ΩΣ is assumed non-empty here. Because of this, the single-trace space X(Γ)
obeys a modified polarity identity involving a residual term localized on Σ, the boundary of the
heterogeneous subdomain ΩΣ, see (2.3). This property, stated in the following proposition, will
play a crucial role in our analysis.

Proposition 5.1 (Modified polarity identity). For any u = (uj , pj)j=0,...,n ∈ X(Γ) stemming
from the traces uj = V |Γj and pj = nj · q|Γj of some V ∈ H1(Rd), q ∈ H(div,Rd), define

(5.5) T(u) := (V |Σ,nΣ · q|Σ).
Then T(u) does not depend on the particular liftings V, q, and the formula above defines a con-
tinuous and surjective operator T : X(Γ) → H(Σ) satisfying the modified polarity identity

(5.6) [u, v]Γ = −[T(u),T(v)]Σ ∀ u, v ∈ X(Γ).

This proposition was established in [8, Prop. 3.1 and Prop. 3.2], where ΩΣ represented an impene-
trable part of the propagation medium. The operator T should be understood as a trace operator
on Σ. Subsequently, we shall decompose the operator T into Dirichlet and Neumann components,
setting T(u) = (Td(u),Tn(u)), with Td : X(Γ) → H1/2(Σ) and Tn : X(Γ) → H−1/2(Σ) continuous.
The modified polarity identity leads to a variational characterization of X(Γ):
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Lemma 5.2 (Variational characterization of X(Γ)). For any u ∈ H(Γ), we have u ∈ X(Γ) if and
only if [u, v]Γ = 0 for all v ∈ X(Γ) satisfying T(v) = 0.

Proof. First, as a direct application of Proposition 5.1, for any u ∈ X(Γ) and any v ∈ X(Γ) with
T(v) = 0, we have [u, v]Γ = −[T(u), 0]Σ = 0.

Reciprocally, take an arbitrary u ∈ H(Γ), and assume that [u, v]Γ = 0 for all v ∈ X(Γ) satisfying
T(v) = 0. Consider Uj ∈ H1(Ωj), pj ∈ H(div,Ωj) such that u = (Uj |Γj ,nj · pj |Γj )j=0,...,n, and
define U ∈ L2(Rd \ ΩΣ) and p ∈ L2(Rd \ ΩΣ)

d by U |Ωj
:= Uj and p|Ωj

:= pj .
We need to prove that U ∈ H1(Rd \ ΩΣ) and p ∈ H(div,Rd \ ΩΣ) to conclude. We prove the

result only for U , since the proof proceeds in a completely analogous manner for p. It suffices to
show the existence of C > 0 such that∣∣∣∣∫

Rd\ΩΣ

U div(φ) dx

∣∣∣∣ ≤ C∥φ∥L2(Rd) ∀φ ∈ C∞
c (Rd \ ΩΣ)

d,

where C∞
c (Rd \ ΩΣ) := {V ∈ C∞(Rd) | supp(V ) bounded, V = 0 in ΩΣ}. Pick φ ∈ C∞

c (Rd \
ΩΣ)

d arbitrary and set v = (0,nj ·φ|Γj )j=0,...,n. By construction we have v ∈ X(Γ) and T(v) = 0,
since nΣ · φ|Σ = 0. Next, decomposing the integral according to Rd \ ΩΣ = Ω0 ∪ · · · ∪ Ωn,
and using the identity [u, v]Γ = 0, we have

∫
Rd\ΩΣ

U div(φ) dx =
∑n

j=0

∫
Ωj
Uj div(φ) dx =

−∑n
j=0

∫
Ωj

φ · ∇Uj dx, which leads to the conclusion. □

Let us point out that any tuple (uj , pj)j=0,...,n ∈ X(Γ) satisfies uj = uk and pj = −pk on Γj ∩Γk.
This observation and Lemma 5.2 lead to alternative ways of writing the transmission conditions:

Lemma 5.3 (Characterizations of transmission conditions). For any U ∈ L2
loc(Rd) such that

U |ΩΣ
∈ H1

loc(∆,ΩΣ) and U |Ωj ∈ H1
loc(∆,Ωj), j = 0 . . . , n, we have that U satisfies the transmis-

sion conditions of Problem (2.4), that is, U ∈ H1
loc(∆,Rd) if and only if

(5.7) γ(U) ∈ X(Γ) and T(γ(U)) = γΣ(U),

or equivalently

(5.8) [γ(U), v]Γ + [γΣ(U),T(v)]Σ = 0 for all v ∈ X(Γ).

Proof. For characterization (5.7), it is enough to combine the observation above with the defini-
tions of T in (5.5) and of the global trace operator (5.2).

Now, we prove that (5.8) is a variational reformulation of (5.7). A direct application of the
modified polarity identity (5.6) shows that (5.7) implies (5.8). Conversely, suppose that (5.8)
holds true. In particular, if we take v ∈ X(Γ) with T(v) = 0, then [γ(U), v]Γ = 0 for all v ∈ X(Γ)
with T(v) = 0. According to Lemma 5.2, this implies that γ(U) ∈ X(Γ). Moreover, considering
now a generic v ∈ X(Γ) and applying the polarity identity (5.6) to the first term of (5.8), we get

−[T(γ(U)),T(v)]Σ + [γΣ(U),T(v)]Σ = 0 for all v ∈ X(Γ),

that yields T(γ(U)) = γΣ(U) because T surjectively maps X(Γ) onto H(Σ). □

This characterization of transmission conditions motivates the introduction of a variant of the
single-trace space involving the additional subdomain boundary Σ:

(5.9) X̃(Γ) := { (u,T(u)) | u ∈ X(Γ) } ,
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ΩΣ Ω0

nΣ

n0

Figure 2. Geometric setting for the classical Costabel coupling.

which stems from the decomposition of the full space Rd = ∪n
j=0Ωj ∪ ΩΣ as in [7]. With this

space we can rephrase once more: U satisfies the transmission conditions of Problem (2.4) if and
only if (γ(U), γΣ(U)) ∈ X̃(Γ).

Remark 5.4. A crucial procedure to construct an element of X̃(Γ) is the following. Given j and a
function V ∈ H1

loc(∆,Rd\Ωj), we set vk = γk(V ) for k ̸= j, vj = γjc (V ) and vΣ = T(v) = γΣ(V ).
Then (v0, . . . , vn, vΣ) ∈ X̃(Γ).

We conclude this section by introducing a variational space adapted to the presence of hetero-
geneities in ΩΣ, namely

(5.10) X(ΩΣ,Γ) := { (U, u) ∈ H1(ΩΣ)× X(Γ) | γΣd (U) = Td(u) } ,
i.e. we impose that on Σ the Dirichlet trace of a “heterogeneous” component U defined in ΩΣ

matches the Dirichlet trace Td(u) of a single-trace tuple u defined on the skeleton Γ. This is
clearly a closed subspace of H1(ΩΣ) × X(Γ) for the inherited Cartesian product norm given by
(U, u) 7→ (∥U∥2H1(ΩΣ)

+ ∥u∥2H(Γ))
1/2.

6. Review of the classical Costabel coupling

We revisit the classical Costabel symmetric coupling [12, §7][13], writing the formulation in the
compact notation introduced in the previous sections. This will also allow the reader to get more
acquainted with our notation.

The classical Costabel coupling gives a symmetric variational formulation of the transmission
problem (2.4) in the case n = 0, i.e. Rd = Ω0 ∪ ΩΣ, Γ = Γ0 = Σ (see Figure 2), which
combines direct boundary integral equations3 for Ω0 with a volume variational formulation for
ΩΣ. Note that in our presentation, in contrast to what is usually done in the literature, for Ω0

we take its own outward-pointing normal vector n0. This choice is more suitable in view of the
extension to the multi-domain case. In the two-subdomain case of the present section we have
X(Γ) = H(Γ) = H(Γ0) = H(Σ) and

(6.1) X(ΩΣ,Γ) = {(V, (γΣd (V ), q)) | V ∈ H1(ΩΣ), q ∈ H−1/2(Σ)}
3A boundary integral equation is of direct type if its unknowns are Dirichlet/Neumann traces of the solution

to the related boundary value problem.
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so X(ΩΣ,Γ) is naturally isomorphic to H1(ΩΣ)×H−1/2(Σ), which is the space where the Costabel
coupling is usually posed.

Now consider U ∈ H1
loc(Rd) solution to the transmission problem (2.4). We are going to

reformulate this problem equivalently in terms of the pair

(6.2) (U |ΩΣ
, u) ∈ X(ΩΣ,Γ), where u = γ0(U).

Thus, the Dirichlet transmission condition γΣd (U) = γ0d(U) shall be enforced strongly through
the choice of X(ΩΣ,Γ) as variational space (recall its definition in (5.10)). To reformulate (2.4)
variationally, we first deal with the Helmholtz equation satisfied by U in ΩΣ. Pick an arbitrary
test pair (V, v) ∈ X(ΩΣ,Γ) and, after multiplying the equation by V , apply Green’s formula in
ΩΣ. This leads to a variational identity involving a boundary term:

(6.3)

aΣ(U, V )− ⟨γΣn (U), γΣd (V )⟩Σ = FΣ(V )

where aΣ(U, V ) :=
∫
ΩΣ

(∇U · ∇V − κ2Σ(x)UV ) dx

FΣ(V ) :=
∫
ΩΣ
fV dx.

Next, to rewrite the boundary term, we observe that γΣd (V ) = Td(v) because (V, v) ∈ X(ΩΣ,Γ),
and γΣn (U) = Tn(u) by the Neumann transmission condition and (6.2). Hence, recalling the
operator θ(v, q) := (−v, q), we apply identity (3.5), together with the polarity property (5.6)
using u, v ∈ X(Γ), so that we obtain

(6.4)
−⟨γΣn (U), γΣd (V )⟩Σ = −⟨Tn(u),Td(v)⟩Σ

= −[T(u), θ(T(v))]Σ/2 + [T(u),T(v)]Σ/2

= +[u, θ(v)]Γ/2 + [T(u),T(v)]Σ/2.

Therefore, Equation (6.3) becomes

(6.5) aΣ(U, V ) + [u, θ(v)]Γ/2 + [T(u),T(v)]Σ/2 = FΣ(V ).

Now, we wish to exploit boundary integral operators in Ω0. Since Uinc solves the homogeneous
Helmholtz equation with wavenumber κ0 in ΩΣ = Rd\Ω0 and γ0(Uinc) = γ0c (Uinc), the “ex-
terior” representation formula (4.5) is applicable to Uinc in Ω0 and yields γ0G0

κ0
(γ0(Uinc)) =

γ0G0
κ0
(γ0c (Uinc)) = 0. As U −Uinc solves the homogeneous Helmholtz equation in Ω0 and satisfies

the associated κ0-radiation condition, the representation formula (4.4) is applicable to U − Uinc
in Ω0 and yields γ0(U − Uinc) = γ0G0

κ0
(γ0(U − Uinc)) = γ0G0

κ0
(γ0(U)). Then, making use of

(4.10) and u = γ0(U), we get

(6.6) u/2 = A0
κ0
(u) + γ0(Uinc).

This is a reformulation of the Helmholtz equation satisfied by U in Ω0 based on both Dirichlet
and Neumann traces of the representation formula. Note that, in contrast to the present Costabel
coupling, the Johnson-Nédélec coupling would involve just the Dirichlet one. Plugging (6.6) into
(6.5), we finally obtain the variational formulation of the Costabel symmetric coupling posed in
X(ΩΣ,Γ):

(6.7)

find (U, u) ∈ X(ΩΣ,Γ) such that

aΣ(U, V ) + [A0
κ0
(u), θ(v)]Γ + [T(u),T(v)]Σ/2

= FΣ(V )− [γ0(Uinc), θ(v)]Γ ∀ (V, v) ∈ X(ΩΣ,Γ).
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Note that all the four classical boundary integral operators, which are the components of the
block operator A0

κ0
(see (4.9)), are involved in the Costabel coupling. In this two-subdomain

configuration, where Γ = Γ0 = Σ and n0 = −nΣ, we have T((u, p)) = (u,−p) (see definition (5.5)
of T), so that the term +[T(u),T(v)]Σ/2 can be simplified as −[u, v]Σ/2. Moreover, by the
observation in (6.1) and recalling the definition of θ, formulation (6.7) can be written more
explicitly as:

find U ∈ H1(ΩΣ), p ∈ H−1/2(Σ) such that∫
ΩΣ

(∇U · ∇V − κ2Σ(x)UV ) dx+ [A0
κ0
((γΣdU, p)), (−γΣd V, q)]Σ − [(γΣdU, p), (γ

Σ
d V, q)]Σ/2

=

∫
ΩΣ

fV dx − [γ0(Uinc), (−γΣd V, q)]Σ ∀V ∈ H1(ΩΣ), q ∈ H−1/2(Σ).

Now, let aC : X(ΩΣ,Γ) × X(ΩΣ,Γ) → C designate the bilinear form on the left-hand side
of (6.7). The bilinear form aΣ(·, ·) satisfies a Gårding inequality, as well as [A0

κ0
(·), θ(·)]Γ (see

Proposition 4.3). Hence, since Re{[T(v),T(v)]Σ} = 0, we conclude, as in [14], that aC(·, ·) satisfies
a Gårding inequality : there exist a compact bilinear form K : X(ΩΣ,Γ) × X(ΩΣ,Γ) → C and a
constant β > 0 such that

Re{ aC
(
(V, v), (V, v)

)
+K

(
(V, v), (V, v)

)
} ≥ β(∥V ∥2H1(ΩΣ)

+ ∥v∥2H(Γ))

for all (V, v) ∈ X(ΩΣ,Γ). As a consequence, the operator induced by aC is of Fredholm type with
index 0 (see [17, Theorem 2.33]), i.e. it is bijective if and only if it is injective.

The classical Costabel coupling may be affected by the spurious resonances phenomenon, that
is, the formulation fails to possess a unique solution for the wavenumbers κ0 whose square is an
interior Dirichlet eigenvalue of −∆ on ΩΣ, i.e. for κ0 belonging to

S(∆,ΩΣ) := {κ ∈ C | ∃W ∈ H1
0(ΩΣ)\{0} such that −∆W = κ2W in ΩΣ } .

Example 6.1 (Spurious resonances). Let κ0 ∈ S(∆,ΩΣ) and W ∈ H1(ΩΣ)\{0} such that
−∆W = κ20W in ΩΣ and W = 0 on Σ. In particular γΣd (W ) = γ0d,c(W ) = 0. Then, setting
U = 0 and u = γ0c (W ), we have (U, u) ∈ X(ΩΣ,Γ). Moreover, by the “exterior” representation
formula (4.5) we have G0

κ0
(γ0c (W )) = 0 in Ω0, and together with (4.10) we obtain A0

κ0
(γ0c (W )) =

0− γ0c (W )/2. Therefore, by the polarity property (5.6) and identity (3.6)

aΣ(U, V ) + [A0
κ0
(u), θ(v)]Γ + [T(u),T(v)]Σ/2

= 0 + [A0
κ0
(γ0c (W )), θ(v)]Γ − [γ0c (W ), v]Γ/2

= −[γ0c (W ), θ(v)]Γ/2− [γ0c (W ), v]Γ/2 = −⟨γ0d,c(W ), q⟩Γ = 0

for all (V, v) ∈ X(ΩΣ,Γ), with v = (v, q). This indicates that (U, u) is a non-trivial solution to
(6.7) with homogeneous right-hand side FΣ ≡ 0, Uinc = 0.

It turns out that κ0 ∈ S(∆,ΩΣ) is also a necessary condition for the presence of spurious
resonances. To prove this, we need the following equivalence result between the Costabel coupling
formulation (6.7) and the transmission problem (2.4) with n = 0.

Proposition 6.2 (Equivalence). If Ũ ∈ H1
loc(Rd) solves (2.4) with n = 0, then the pair (U, u) =

(Ũ |ΩΣ
, γ0(Ũ)) solves (6.7). Reciprocally, if (U, u) ∈ X(ΩΣ,Γ) solves (6.7), then the solution to
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(2.4) with n = 0 is given by

(6.8)
Ũ(x) := U(x) for x ∈ ΩΣ,

Ũ(x) := (G0
κ0
(u) + Uinc)(x) for x ∈ Ω0.

Proof. The first implication stems from the derivation of (6.7), so we only need to examine the
other implication. First of all, (Ũ −Uinc)|Ω0 = G0

κ0
(u) is κ0-outgoing radiating in Ω0, see e.g. [11,

Theorem 3.2]. Second, Ũ satisfies the Helmholtz equation in Ω0 since it is satisfied by Uinc by
definition and also by the potentials, see e.g. [11, §2.4]. If we take (V, 0) ∈ H1

0(ΩΣ) × {0} ⊂
X(ΩΣ,Γ) as test function in (6.7), we obtain aΣ(U, V ) = aΣ(Ũ , V ) = FΣ(V ), so Ũ satisfies
Helmholtz equation also in ΩΣ, and there only remains to prove that Ũ complies with the
transmission conditions of (2.4) through Γ ≡ Σ.

Now, considering a generic (V, v) ∈ X(ΩΣ,Γ) where V ∈ H1(ΩΣ) (not necessarily V ∈ H1
0(ΩΣ)),

and integrating by parts, we obtain

(6.9) aΣ(Ũ , V )− ⟨γΣn Ũ , γΣd V ⟩Γ = FΣ(V ) ∀V ∈ H1(ΩΣ).

By (6.8) and (4.10), we have

(6.10) γ0(Ũ) = A0
κ0
(u) + u/2 + γ0(Uinc).

Then, plugging (6.9) and (6.10) into (6.7) leads to

⟨γΣn Ũ , γΣd V ⟩Γ + [A0
κ0
(u), θ(v)]Γ + [T(u),T(v)]Σ/2 = −[γ0(Uinc), θ(v)]Γ

⟨γΣn Ũ , γΣd V ⟩Γ + [γ0(Ũ)− u/2, θ(v)]Γ + [T(u),T(v)]Σ/2 = 0

that is, by the polarity property (5.6) and identity (3.6) writing u = (u, p), v = (v, q),

⟨γΣn Ũ , γΣd V ⟩Γ + [γ0(Ũ), θ(v)]Γ = [u, θ(v)]Γ/2 + [u, v]Γ/2

⟨γΣn Ũ , γΣd V ⟩Γ − ⟨u, q⟩Γ − [θ ◦ γ0(Ũ), v]Γ = 0.

Since (U, u) ∈ X(ΩΣ,Γ) we have u = Td(u) = γΣd (U) = γΣd (Ũ). Similarly, for the test pair we
have (V, v) ∈ X(ΩΣ,Γ), hence γΣd (V ) = Td(v) = v. As a consequence, ⟨γΣn Ũ , γΣd V ⟩Γ − ⟨u, q⟩Γ =

−[γΣ(Ũ), v]Γ and, finally, we obtain [γΣ(Ũ) + θ ◦ γ0(Ũ), v]Γ = 0 for all v = (v, q) ∈ H1/2(Γ) ×
H−1/2(Γ). This implies that γΣ(Ũ) = −θ ◦ γ0(Ũ), which also rewrites γ0d(Ũ) = γΣd (Ũ) and
γ0n(Ũ) = −γΣn (Ũ). □

Corollary 6.3 (Injectivity condition). Let (U, u) ∈ X(ΩΣ,Γ), solve (6.7) with FΣ ≡ 0 and
Uinc = 0. Then U = 0. If κ0 /∈ S(∆,ΩΣ) we also have u = 0 necessarily.

Proof. By the equivalence Proposition 6.2, Ũ ∈ H1
loc(Rd) defined by (6.8) satisfies the transmis-

sion problem (2.4) with n = 0, which is well posed, so Ũ = 0. Since Ũ |ΩΣ
= U , we get U = 0.

Denoting u = (u, p), we then have u = Td(u) = γΣd (U) = 0 because (U, u) ∈ X(ΩΣ,Γ). Moreover,
since Ũ |Ω0 = G0

κ0
(u), we obtain G0

κ0
(u)(x) = 0, that is SL0κ0

(p)(x) = 0 for x ∈ Ω0. Therefore
γ0dSL

0
κ0
(p) = 0, which implies p = 0 given κ0 /∈ S(∆,ΩΣ) (see [22, Theorem 3.9.1]). □

We refer to [14] for a combined field integral equation FEM-BEM formulation immune to
spurious resonances.
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7. Single-trace FEM-BEM formulation

In this section we shall revisit the analysis presented in the previous section, this time con-
sidering multi-domain configurations (n ≥ 1, with potential cross-points) instead of a simple
two-domain setting. This will lead to a first coupling variational formulation for the transmis-
sion problem (2.4) in the targeted multi-domain configuration. We combine a volume variational
formulation in ΩΣ with the boundary integral formulation on Γ called Single-Trace Formulation
(STF), first analyzed in [23]. The Costabel coupling lends itself well to match the STF since it
is based on the full set of Calderón identities, from which the STF arises. In [8, §4] the STF was
revisited and adapted to the case with an impenetrable part represented by the subdomain ΩΣ.
The present analysis, where ΩΣ is a heterogeneous part, bears several similarities to the analysis
in [8].

As in the previous section, let us start with a function U that is a unique solution to the
transmission problem (2.4). We are going to reformulate this transmission problem in terms of
the pair

(7.1)
(U |ΩΣ

, u) ∈ X(ΩΣ,Γ)

where u = γ(U) = (γ0(U), . . . , γn(U)).

Here, except for the Neumann condition through Σ that writes γΣn (U) = Tn(u), the transmission
conditions shall be enforced strongly by the choice of X(ΩΣ,Γ) as variational space. As in
Section 6, pick an arbitrary test pair (V, v) ∈ X(ΩΣ,Γ), and apply Green’s formula in ΩΣ. Again,
we obtain the following classical variational identity:

(7.2)

aΣ(U, V )− ⟨γΣn (U), γΣd (V )⟩Σ = FΣ(V )

where aΣ(U, V ) :=
∫
ΩΣ

(∇U · ∇V − κ2Σ(x)UV ) dx

FΣ(V ) :=
∫
ΩΣ
fV dx.

Next, we rewrite the boundary term as in (6.4), except that, before applying the polarity prop-
erty (5.6) to the term −[T(u), θ(T(v))]Σ, we need to introduce a multi-domain analogue of the op-
erator θ: Θ(v) := (θ(v0), . . . , θ(vn)) for v = (v0, . . . , vn) ∈ H(Γ). Noting that θ(T(v)) = T(Θ(v)),
we can write:

(7.3)
−⟨γΣn (U), γΣd (V )⟩Σ = −⟨Tn(u),Td(v)⟩Σ

= −[T(u), θ(T(v))]Σ/2 + [T(u),T(v)]Σ/2

= +[u,Θ(v)]Γ/2 + [T(u),T(v)]Σ/2.

Plugging (7.3) into (7.2) we obtain

(7.4) aΣ(U, V ) + [u,Θ(v)]Γ/2 + [T(u),T(v)]Σ/2 = FΣ(V ).

Following for Ω0 the same argumentation as in Section 6, we have that γ0G0
κ0
(γ0(Uinc)) =

γ0G0
κ0
(γ0c (Uinc)) = 0, and γ0(U − Uinc) = γ0G0

κ0
(γ0(U − Uinc)) = γ0G0

κ0
γ0(U). Hence γ0(U) =

γ0G0
κ0
γ0(U)+ γ0(Uinc), which by (4.10) also rewrites γ0(U)/2 = A0

κ0
γ0(U)+ γ0(Uinc). Moreover,

since U verifies the Helmholtz equation with constant wavenumber κj in Ωj , j = 1, . . . , n, the rep-
resentation formula (4.4) yields γj(U) = γjGj

κj (γ
j(U)), that is, by (4.10), γj(U)/2 = Aj

κjγ
j(U).
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With the notation u = γ(U) = (γ0(U), . . . , γn(U)), we have obtained

(7.5)

u/2 = A(u) + uinc

where A := diag(A0
κ0
, . . . ,An

κn
)

where uinc := (γ0(Uinc), 0, . . . , 0).

We draw the attention of the reader to the strong analogy between (7.5) and (6.6), the essential
difference being that we are now dealing with multiple subdomains, i.e. Ω0, . . . ,Ωn instead of
only Ω0. Now, plugging (7.5) into the second term in the left-hand side of (7.4) leads to the
single-trace FEM-BEM formulation:

(7.6)

Find (U, u) ∈ X(ΩΣ,Γ) such that
aΣ(U, V ) + [A(u),Θ(v)]Γ + [T(u),T(v)]Σ/2

= FΣ(V )− [uinc,Θ(v)]Γ ∀(V, v) ∈ X(ΩΣ,Γ).

Noticing the strong the similarities between (7.6) and (6.7), we have just derived a generalization
of the Costabel coupling (6.7) to multi-domain settings. The expanded expression for (7.6) reads:

Find (U, u) ∈ X(ΩΣ,Γ) such that∫
ΩΣ

(∇U · ∇V − κ2Σ(x)UV ) dx+
n∑

j=0

[Aj
κj
(uj), θ(vj)]Γj + [T(u),T(v)]Σ/2

=

∫
ΩΣ

fV dx − [γ0(Uinc), θ(v0)]Γ0 ∀(V, v) ∈ X(ΩΣ,Γ).

Note that in this first multi-domain formulation the transmission conditions are imposed in strong
form inside the function space X(ΩΣ,Γ). Starting from (7.6), a more flexible formulation will be
designed in Section 9.

The link between the single-trace FEM-BEM formulation (7.6) and the transmission problem
(2.4) is examined in the following proposition.

Proposition 7.1 (Equivalence). If Ũ ∈ H1
loc(Rd) solves (2.4), then the pair (U, u) = (Ũ |ΩΣ

, γ(Ũ))
solves (7.6). If (U, u) ∈ X(ΩΣ,Γ) solves (7.6), then the solution to (2.4) is given by

Ũ(x) := U(x) for x ∈ ΩΣ,

Ũ(x) := Gj
κj
(uj)(x) + Uinc(x)1Ω0(x) for x ∈ Ωj , j = 0, . . . , n.

(7.7)

Proof. We will follow closely the proof of Proposition 6.2 established for the case n = 0, except
that we now have multiple subdomains Ωj . By similar arguments as in the beginning of that
proof, it remains only to show that Ũ given by (7.7) complies with the transmission conditions
of (2.4). For that we will use their characterization given by Lemma 5.3.

Considering an arbitrary test pair (V, v) ∈ X(ΩΣ,Γ), and applying Green’s formula in ΩΣ leads
to

(7.8) aΣ(U, V )− ⟨γΣn Ũ , γΣd V ⟩Σ = FΣ(V ) ∀V ∈ H1(ΩΣ).

On the other hand, by applying the trace operator γj on the second line of (7.7) and using (4.10),
we get γ0(Ũ) = A0

κ0
(u0) + u0/2 + γ0(Uinc) and γj(Ũ) = Aj

κj (uj) + uj/2 for j = 1 . . . n, that is, in
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compact notation, γ(Ũ) = A(u)+ u/2+ uinc. Now we plug this and (7.8) into (7.6), so we obtain

(7.9)
⟨γΣn Ũ , γΣd V ⟩Σ + [γ(Ũ),Θ(v)]Γ − [u,Θ(v)]Γ/2 + [T(u),T(v)]Σ/2 = 0

for all (V, v) ∈ X(ΩΣ,Γ).

By the polarity identity (5.6) and (3.6) we can write

−[u,Θ(v)]Γ/2 + [T(u),T(v)]Σ/2 = [T(u),T(Θ(v))]Σ/2 + [T(u),T(v)]Σ/2

= ⟨Td(u),Tn(v)⟩Σ ,
so (7.9) becomes

⟨γΣn Ũ , γΣd V ⟩Σ + ⟨Td(u),Tn(v)⟩Σ + [γ(Ũ),Θ(v)]Γ = 0 for all (V, v) ∈ X(ΩΣ,Γ).

Moreover, since (U, u) ∈ X(ΩΣ,Γ) and Ũ |ΩΣ
= U , we have Td(u) = γΣd (U) = γΣd (Ũ), and also

γΣd (V ) = Td(v) because (V, v) ∈ X(ΩΣ,Γ). Therefore, by (3.4) and θ ◦ T = T ◦ Θ, we conclude
that

[γΣ(Ũ),T(Θ(v))]Σ + [γ(Ũ),Θ(v)]Γ = 0 for all v ∈ X(Γ).
Thanks to the variational characterization (5.8), since Θ is an automorphism, we conclude that
Ũ satisfies the transmission conditions of Problem (2.4). □

The bilinear form aΣ(·, ·) satisfies a Gårding inequality, as well as [A(·),Θ(·)]Γ, see [23, §4.1]
and [8, Proposition 4.2]. In addition we have Re{[T(v),T(v)]Σ} = 0. From these remarks we
conclude that aSTF : X(ΩΣ,Γ)×X(ΩΣ,Γ) → C defined as the bilinear form on the left-hand side
of (7.6) satisfies a Gårding inequality.

Proposition 7.2 (Gårding inequality). There exist a compact bilinear form K : X(ΩΣ,Γ) ×
X(ΩΣ,Γ) → C and a constant β > 0 such that

Re
{
aSTF

(
(V, v), (V , v)

)
+K

(
(V, v), (V , v)

)}
≥ β (∥V ∥2H1(ΩΣ)

+ ∥v∥2H(Γ))

for all (V, v) ∈ X(ΩΣ,Γ).

As a consequence, the operator induced by aSTF is of Fredholm type with index 0 (see [17,
Theorem 2.33]), that is, formulation (7.6) has a unique solution for all f ∈ L2(ΩΣ), Uinc ∈
H1

loc(Rd) if and only if for FΣ ≡ 0, uinc = 0 it only has the trivial solution. Other important
consequences of the Gårding inequality are, again in the case of injectivity (see [22, Theorems
4.2.9, 4.2.8]): stability of the variational formulation (7.6) in the sense of an inf-sup condition;
and, for Galerkin equations discretizing (7.6), the validity of a discrete inf-sup condition, which
implies well-posedness for the Galerkin equations and a quasi-optimal convergence of the Galerkin
solutions to the exact solution.

7.1. Spurious resonances. Unfortunately, like the classical Costabel coupling, the single-trace
FEM-BEM formulation (7.6) may be affected by the spurious resonances phenomenon, that is,
the associated operator may be not injective, whereas the transmission problem (2.4) is always
well-posed. Here we examine in which situations the spurious resonances phenomenon occurs.
The following proposition identifies the injectivity condition, which depends on the wavenumbers
and on the geometric configuration. This condition turns out to be the same as in [8, Theorem
4.8], which dealt with a partially impenetrable composite medium.
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Proposition 7.3 (Injectivity condition). Let (U, u) ∈ X(ΩΣ,Γ) solve formulation (7.6) with
FΣ ≡ 0, uinc = 0. Then U = 0. We also have u = 0 if the following additional condition is
satisfied:

(7.10) Σ ̸⊂ Γj or κj /∈ S(∆,ΩΣ) for all j = 0, . . . , n.

In the case where Condition (7.10) does not hold, there exists u ∈ X(Γ) \ {0} such that (0, u) ∈
X(ΩΣ,Γ) solves (7.6) with FΣ ≡ 0, uinc = 0.

Proof. By the equivalence Proposition 7.1, the function Ũ defined in (7.7) solves the homogeneous
transmission problem (2.4), which is well-posed, so Ũ = 0. In particular, U = Ũ |ΩΣ

= 0, and
Td(u) = γΣdU = 0. Employing test functions (V, v) ∈ X(ΩΣ,Γ) with γΣd V = Td(v) = 0 in
formulation (7.6) with FΣ ≡ 0, uinc = 0, we obtain that u satisfies

[A(u),Θ(v)] = 0, ∀ v ∈ X(Γ) with Td(v) = 0,

i.e. u ∈ X(Γ) satisfies Td(u) = 0 and [A(u), v] = 0,∀ v ∈ X(Γ) with Td(v) = 0, which is exactly
the setting of [8, Lemma 4.5, Lemma 4.6]. As a consequence also [8, Corollary 4.7] holds true:
if Σ ̸⊂ Γj for all j = 0, . . . , n, then for any choice of κj > 0 we have u = 0. We also obtain that,
if Σ ⊂ Γj for a j ∈ {0, . . . , n}, then κj /∈ S(∆,ΩΣ) implies u = 0, thanks to the reasoning in the
third bullet in the proof of [8, Theorem 4.8], which relies on [8, Lemma 4.5, Lemma 4.6].

Next, assuming that Condition (7.10) does not hold i.e. Σ ⊂ Γi and κi ∈ S(∆,ΩΣ) for a
certain i ∈ {0, . . . , n}, we construct u ̸= 0 such that (0, u) solves (7.6) with FΣ ≡ 0, uinc = 0.
Since Σ ⊂ Γi, by the geometric considerations in the first bullet in the proof of [8, Theorem 4.8],
we get that ΩΣ is exactly one bounded connected component of Rd\Ωi, and in particular ΩΣ is
completely separated from the other subdomains Ωj , j ̸= i:

(7.11) ΩΣ ∩
n⋃

j=0,j ̸=i

Ωj = ∅.

Since κi ∈ S(∆,ΩΣ), there exists W ∈ H1(ΩΣ)\{0} such that −∆W − κ2iW = 0 in ΩΣ and
W = 0 on Σ. We consider U∗ = 0 ∈ H1(ΩΣ), ui = 0 ∈ H1/2(Γi), and pi ∈ H−1/2(Γi) with pi = 0
on Γi\Σ and pi = −γΣnW on Σ. We set u∗i = (ui, pi) and u∗j = (0, 0) for j ̸= i, j = 0, . . . , n,
thus by construction and (7.11), we have u∗ ∈ X(Γ) and Td(u

∗) = ui = 0 = γΣdU
∗, that is

(U∗, u∗) ∈ X(ΩΣ,Γ). If we evaluate the left-hand side of formulation (7.6) in (U∗, u∗) we get:
given any (V, v) ∈ X(ΩΣ,Γ)[

Ai
κi
(u∗i ), θ(vi)

]
Γi

− 1

2
⟨Tn(u

∗),Td(v)⟩Σ =[
γiGi

κi
(u∗i ), θ(vi)

]
Γi

− 1

2
[u∗i , θ(vi)]Γi

− 1

2
⟨Tn(u

∗),Td(v)⟩Σ =[
γiSLiκi

(pi), θ(vi)
]
Γi

− 1

2
⟨pi, vi⟩Γi

+
1

2
⟨pi, vi⟩Σ ,

where we have used (4.10), and (7.11) to write Td(v) = vi, Tn(u
∗) = −pi. Now, the last two

terms cancel each other out since by construction pi = 0 on Γi\Σ. For the same reason in the first
term SLiκi

(pi) = SLΣκi
(pi). Moreover, by the representation formula (4.4) on ΩΣ, for x ∈ Rd\ΩΣ

we have
0 = GΣ

κi
(γΣW )(x) = SLΣκi

(γΣnW )(x) = −SLΣκi
(pi)(x),

therefore γiSLiκi
(pi) = 0 and (U∗, u∗) is a non-trivial solution to formulation (7.6). □
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ΩΣ Ω1 Ω0

Figure 3. Situation without spurious resonances.

Note that Corollary 6.3 for the classical Costabel coupling is a particular case of the previous
proposition, where Σ ⊂ Γ0 (actually Σ = Γ0). In the multi-domain configuration, surprising
situations can arise, as shown in the next example.

Example 7.4. Consider the transmission problem (2.4) with n = 1, i.e. Rd = Ω0∪Ω1∪ΩΣ, but
suppose that κ0 = κ1 so that the interface Γ0∩Γ1 is “artificial”. In fact, the material configuration
is the same as in the classical Costabel coupling, which is affected by spurious resonances if
κ0 ∈ S(∆,ΩΣ). On the contrary, if we assume that the (d − 1)-dimensional Hausdorff measure
of Σ ∩ Γ0 and Σ ∩ Γ1 is strictly positive as in Figure 3, so that Σ ̸⊂ Γ1 and Σ ̸⊂ Γ0, then, no
matter which is the value of κ0, the corresponding single-trace FEM-BEM formulation (7.6) does
not have spurious resonances!

8. Single-trace combined field FEM-BEM formulation

We have shown that the single-trace FEM-BEM formulation (7.6) is affected by spurious reso-
nances when Σ ⊂ Γi and κi ∈ S(∆,ΩΣ) for a certain i ∈ {0, . . . , n}. As a remedy, we modify
the boundary integral formulation on Γ by adapting the approach of Combined Field Integral
Equations (CFIE), first introduced in [5] for direct integral equations. The basic idea behind the
CFIE approach is that Helmholtz boundary value problems with Robin (also called impedance)
boundary conditions are always uniquely solvable, in contrast to interior pure Dirichlet (or pure
Neumann) problems. The classical CFIEs thus rely on complex combinations of Dirichlet and
Neumann traces, but neglecting the fact that they belong to different function spaces. Here,
we adopt regularized CFIEs (see e.g. [4]), in which suitable compact operators map between
Dirichlet and Neumann traces.

For the transmission problem (2.4) with n = 0, a variational formulation based on regularized
CFIEs and the Costabel coupling was proposed in [14]. Here, to extend to the multi-domain case
this coupling formulation immune to spurious resonances, we adopt a procedure inspired by [8,
§5] (where ΩΣ represented an impenetrable part of the medium).

8.1. Regularizing operator and trace transformation operator. The main step to obtain
a combined field formulation that fixes (7.6) is to pick test functions satisfying generalized Robin
conditions on Σ. These conditions are based on a linear regularizing operator M : H−1/2(Σ) →
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H+1/2(Σ) that satisfies

M is compact,(8.1a)

Im{⟨Mφ,φ⟩Σ} > 0 ∀φ ∈ H−1/2(Σ)\{0}.(8.1b)

For instance, if M̃ is any second order strongly coercive real symmetric surface differential operator
on Σ, then M = ıM̃ matches the two conditions above.

Example 8.1. A concrete choice for such an operator was proposed in [4, §4]: M = ı(−∆Σ +
IdΣ)

−1 : H−1(Σ) → H1(Σ), where ∆Σ denotes the Laplace-Beltrami operator on Σ. In this case,
compactness of M : H−1/2(Σ) → H1/2(Σ) follows from the continuity of M : H−1(Σ) → H1(Σ)

and the compact embeddings H−1/2(Σ) ⊂ H−1(Σ) and H1(Σ) ⊂ H1/2(Σ). Note that to avoid
evaluations of M in the resulting combined field formulation (8.7), one can reformulate (8.7) as
a mixed variational formulation with auxiliary variables like in [8, §5.4].

Invoking the duality of the spaces H1/2(Σ) and H−1/2(Σ), we can also define the adjoint regular-
izing operator M∗ : H−1/2(Σ) → H+1/2(Σ) by

⟨M∗p, q⟩Σ := ⟨Mq, p⟩Σ for all p, q ∈ H−1/2(Σ).

Note that M∗ satisfies properties (8.1a)-(8.1b) if and only if M does. Now, given a regularizing
operator M, we define the subspace of H1(ΩΣ)×X(Γ) satisfying generalized Robin conditions on
Σ:

(8.2) XM(ΩΣ,Γ) := { (V, v) ∈ H1(ΩΣ)× X(Γ) | Td(v) = MTn(v) + γΣd (V ) } .
Please note the relationship between the space above and X(ΩΣ,Γ) defined in (5.10), whose
elements satisfy instead Dirichlet conditions on Σ. In fact, as shown in the lemma below, the space
XM(ΩΣ,Γ) can be obtained as the image of the space X(ΩΣ,Γ) through a trace transformation
operator. Its definition involves the regularizing operator M, and a bounded extension operator
EΣ : H1/2(Σ) → H1(Rd) that provides a right inverse of the trace operator γΣd (see e.g. [17, Lemma
3.36]). Then, we define the trace transformation operator

(8.3)

R : H1(ΩΣ)× X(Γ) → H1(ΩΣ)× X(Γ)
R(V, v) := (V, v+ C(v))

with C(v) := (γjd ◦ EΣ ◦M ◦ Tn(v), 0)
n
j=0,

where C : X(Γ) → X(Γ) inherits compactness from M. Since C2 = 0, we have R−1(V, v) =
(V, v−C(v)), and R is an isomorphism. We can prove the following lemma, which is a variant of
[8, Lemma 5.2].

Lemma 8.2 (Trace transformation). R(X(ΩΣ,Γ)) = XM(ΩΣ,Γ).

Proof. Recalling the definitions of T in (5.5), of γ in (5.2), and of EΣ above, we have that the
operator Td ◦ γ ◦ EΣ is the identity on H1/2(Σ), hence TdC = MTn. Note also that TnC = 0.
Therefore, if (V, v) ∈ X(ΩΣ,Γ) we have Td(v+C(v)) = γΣd (V )+MTn(v) = γΣd (V )+MTn(v+C(v)),
which shows that R(X(ΩΣ,Γ)) ⊂ XM(ΩΣ,Γ). Now let (V, v) ∈ XM(ΩΣ,Γ), then Td(v− C(v)) =
MTn(v) + γΣd (V )−MTn(v) = γΣd (V ). Hence R−1(XM(ΩΣ,Γ)) ⊂ X(ΩΣ,Γ). □
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8.2. The formulation. In order to obtain the new combined field formulation, we proceed in
a manner similar to Section 7, this time choosing test pairs (V ′, v′) in XM(ΩΣ,Γ) instead of
X(ΩΣ,Γ). Again the transmission problem (2.4) with solution U ∈ H1

loc(Rd) will be reformulated
as a coupled problem with solution

(8.4)
(U |ΩΣ

, u) ∈ X(ΩΣ,Γ)

where u = γ(U) = (γ0(U), . . . , γn(U)).

For (V ′, v′) ∈ XM(ΩΣ,Γ), applying Green’s formula in ΩΣ leads to aΣ(U, V ′)−⟨γΣn (U), γΣd (V
′)⟩Σ =

FΣ(V
′), as in Section 7. Next, we transform the boundary term following steps similar to (7.3),

but with an extra term since here γΣd (V ′) = Td(v
′)−MTn(v

′):

−⟨γΣn (U), γΣd (V
′)⟩Σ = −⟨Tn(u),Td(v

′)⟩Σ + ⟨Tn(u),MTn(v
′)⟩Σ

= [u,Θ(v′)]Γ/2 + [T(u),T(v′)]Σ/2 + ⟨Tn(u),MTn(v
′)⟩Σ,

that is, by the boundary integral representations in the subdomains Ω0, . . . ,Ωn summarized by
(7.5),

(8.5)
− ⟨γΣn (U), γΣd (V

′)⟩Σ
= [A(u),Θ(v′)]Γ + [uinc,Θ(v′)]Γ + [T(u),T(v′)]Σ/2 + ⟨Tn(u),MTn(v

′)⟩Σ.
Now, according to the parametrization of XM(ΩΣ,Γ) in Lemma 8.2, we have (V ′, v′) = R(V, v) =
(V, (Id+ C)v) for (V, v) ∈ X(ΩΣ,Γ), and this representation can be injected into (8.5):

−⟨γΣn (U), γΣd (V )⟩Σ = [A(u),Θ(v)]Γ + [A(u),ΘC(v)]Γ + [uinc,Θ(Id+ C)v)]Γ

+ [T(u),T(v)]Σ/2 + [T(u),TC(v)]Σ/2 + ⟨Tn(u),TdC(v)⟩Σ,
where for the last term we have used MTn = TdC and TnC = 0. Moreover, by (3.5) and (5.6) we
can rewrite the sum of the last two terms in the equation above as

[T(u),TC(v)]Σ/2 + ⟨Tn(u),TdC(v)⟩Σ = [T(u), θTC(v)]Σ/2 = −[u,ΘC(v)]Γ/2.

In conclusion, summing up and defining the source term ũinc ∈ H(Γ) and the bilinear form
c : X(Γ)× X(Γ) → C

(8.6)
[ũinc, v]Γ := [uinc,Θ(Id+ C)v]Γ,

c(w, v) := [(A− Id/2)w,ΘCv]Γ,

we obtain the formulation

(8.7)

Find (U, u) ∈ X(ΩΣ,Γ) such that
aΣ(U, V ) + [A(u),Θ(v)]Γ + c(u, v) + [T(u),T(v)]Σ /2

= FΣ(V )− [ũinc, v]Γ ∀ (V, v) ∈ X(ΩΣ,Γ),

which we dub single-trace combined field FEM-BEM formulation because the test pairs that we
have considered for its derivation comply with an impedance condition on Σ, see (8.2).

Formulation (8.7) differs from (7.6) by terms involving the operator C only, which is compact.
Hence, a Gårding inequality analogue to Proposition 7.2 also holds for (8.7). The additional
benefit of using (8.2) is to eliminate the spurious resonance phenomenon and to yield systematic
unique solvability. To prove this, we start by establishing an intermediate lemma.
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Lemma 8.3. Let (U, u) ∈ X(ΩΣ,Γ) solve formulation (8.7) with FΣ ≡ 0, ũinc = 0. Then we have

(8.8) ⟨γΣn (U)− Tn(u), γ
Σ
d (V )⟩Σ + [(A− Id/2)u,Θ(v)]Γ = 0 ∀ (V, v) ∈ XM(ΩΣ,Γ).

Proof. The proof essentially consists in rewinding the derivation of (8.7) in reverse order. First
of all, observe that for V ∈ H1

0(ΩΣ) we have (V, 0) ∈ X(ΩΣ,Γ). With this choice of test pairs
we obtain aΣ(U, V ) = 0 for all V ∈ H1

0(ΩΣ), which leads to ∆U + κ2ΣU = 0 in ΩΣ. As a
consequence we have aΣ(U, V ) = ⟨γΣn (U), γΣd (V )⟩Σ for any V ∈ H1(ΩΣ). Coming back to (8.7)
with homogeneous right-hand side, we obtain

0 = ⟨γΣn (U), γΣd (V )⟩Σ + [A(u),Θ(v)]Γ + c(u, v) + [T(u),T(v)]Σ /2 ∀ (V, v) ∈ X(ΩΣ,Γ).

Next plugging the definition of c provided by (8.6) into the expression above, for a given (V, v) ∈
X(ΩΣ,Γ) we obtain

(8.9) 0 = ⟨γΣn (U), γΣd (V )⟩Σ + [(A− Id/2)u,Θ(Id+ C)v]Γ + [u,Θ(v)]Γ /2 + [T(u),T(v)]Σ /2.

Next, since u, v ∈ X(Γ), we have [u,Θ(v)]Γ = − [T(u), θT(v)]Σ. By (3.5), we conclude that
[u,Θ(v)]Γ + [T(u),T(v)]Σ = −2⟨Tn(u),Td(v)⟩Σ. In addition, we have Td(v) = γΣd (V ) since
(V, v) ∈ X(ΩΣ,Γ). Plugging this into (8.9) leads to the identity

0 = ⟨γΣn (U)− Tn(u), γ
Σ
d (V )⟩Σ + [(A− Id/2)u,Θ(Id+ C)v]Γ ∀(V, v) ∈ X(ΩΣ,Γ).

To finish the proof there only remains to apply Lemma 8.2 □

Proposition 8.4 (Injectivity). Let (U, u) ∈ X(ΩΣ,Γ) solve formulation (8.7) with FΣ ≡ 0,
ũinc = 0. Then U = 0, u = 0.

Proof. Consider the space XM(Γ) := { v ∈ X(Γ) | Td(v) = MTn(v) } and observe that we have
(0, v) ∈ XM(ΩΣ,Γ) for any v ∈ XM(Γ). As a consequence we can apply Lemma 8.3 above choosing
(V, v) = (0, v) with v ∈ XM(Γ), so we obtain that

[(A− Id/2)u,Θ(v)]Γ = 0 ∀ v ∈ XM(Γ).

Let us denote w := (A − Id/2)u. Considering any v ∈ X(Γ) such that T(v) = 0, we have
Θ(v) ∈ X(Γ) with T(Θ(v)) = 0 so that Θ(v) ∈ XM(Γ) and [w, v]Γ = [(A− Id/2)u,Θ ◦Θ(v)]Γ = 0.
Applying Lemma 5.2, we conclude that w ∈ X(Γ). So, by (5.6), [T(w), θT(v)]Σ = 0 ∀v ∈ XM(Γ),
that is ⟨Td(w) +M∗Tn(w),Tn(v)⟩Σ = 0 ∀v ∈ XM(Γ), which implies Td(w) = −M∗Tn(w), as Tn
is surjective. From this and by (8.1b) we conclude that

0 ≤ 2 Im{⟨M∗Tn(w),Tn(w)⟩Σ}
= −2 Im{⟨Td(w),Tn(w)⟩Σ}
= − Im{[T(w),T(w)]Σ} = Im{[w,w]Γ}.

Moreover, by construction, since A2 = Id/4, we have (A+Id/2)w = (A+Id/2)(A−Id/2)u = 0, so we
can write [w,w]Γ/2 = −[A(w),w]Γ. Therefore, we deduce that 0 ≤ Im{⟨M∗Tn(w),Tn(w)⟩Σ} =
− Im[A(w),w]Γ ≤ 0 by applying Proposition 4.4 for the last inequality. Hence, we obtain
Im{⟨M∗Tn(w),Tn(w)⟩Σ} = 0. Next (8.1b) yields Tn(w) = 0 and, since Td(w) = −M∗Tn(w), we
finally obtain T(w) = 0. This implies that [w,Θ(v)]Γ = −[T(w), θT(v)]Σ = 0 ∀v ∈ X(Γ), which
rewrites

[(A− Id/2)u, v]Γ = 0 ∀ v ∈ X(Γ).
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Therefore, the second term in (8.8) vanishes for all (V, v) ∈ XM(ΩΣ,Γ), and by Lemma 8.3
we conclude that γΣn (U) = Tn(u), which implies γΣ(U) = T(u) since (U, u) ∈ X(ΩΣ,Γ) by
assumption. On the other hand we have

0 = [(A− Id/2)u, v]Γ = [(A+ Id/2)u, v]Γ − [u, v]Γ

= [(A+ Id/2)u, v]Γ + [T(u),T(v)]Σ = [(A+ Id/2)u, v]Γ

for all v ∈ X(Γ) such that T(v) = 0.

From this last equality, applying Lemma 5.2, we obtain that (A+ Id/2)u ∈ X(Γ). Moreover, since
we established that T(u) = γΣ(U) and T(w) = T((A− Id/2)u) = 0, we obtain

T((A+ Id/2)u) = T(w) + T(u) = γΣ(U).

Finally, let us define Ũ ∈ L2
loc(Rd) by Ũ(x) = U(x) for x ∈ ΩΣ, and Ũ(x) = Gj

κj (uj)(x) for
x ∈ Ωj , j = 0, . . . , n. By construction we have

∆Ũ + κ2ΣŨ = 0 in ΩΣ

∆Ũ + κ2j Ũ = 0 in Ωj ∀j = 0 . . . n

Ũ is κ0-outgoing radiating.

Let us prove that Ũ satisfies the Neumann and Dirichlet transmission conditions through the
skeleton of the subdomain partition. Using equation (4.10), we have established that γ(Ũ) =

(γjGj
κj (uj))j=0...n = (A+ Id/2)u ∈ X(Γ) on the one hand, and

T(γ(Ũ)) = T((A+ Id/2)u) = γΣ(U) = γΣ(Ũ).

Hence, by Lemma 5.3 we see that Ũ is solution to the transmission problem (2.4) with zero
right-hand side. Since this boundary value problem admits a unique solution Ũ ≡ 0, we get
U = 0, T(u) = γΣ(U) = 0 and (A+ Id/2)u = 0, which implies in particular

u ∈ X(Γ) with T(u) = 0

and [A(u), v]Γ = 0 ∀v ∈ X(Γ).

According to [23, Thm. 4.1] or [7, Prop. A.1], the homogeneous formulation above has a unique
solution, hence finally u = 0. □

9. Multi-trace FEM-BEM formulation

Single-trace formulations are not very flexible because the spaces X(ΩΣ,Γ) and X(Γ) contain the
transmission conditions in strong form, which constitutes an obstacle to operator preconditioning
[9]. Multi-trace formulations are designed to tackle this issue.

As in [7, §5] and [8, §6], the heuristic idea is to act as if the single-trace FEM-BEM formula-
tion (7.6) were applied to gap configurations with vanishing gap, see Figure 4: the subdomains
ΩΣ, Ωj , j = 1, . . . , n, are torn apart and an (infinitely) thin gap, filled with the same propaga-
tion medium as Ω0, is introduced, so that all bounded subdomains are isolated from each other.
Although the geometric limit process can not be rigorously described, the gap idea is useful to
get a first insight about the properties satisfied by the multi-trace formulation based on those of
the single-trace formulation (like Propositions 9.3 and 9.4).
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ΩΣ

Ω1 Ω2

Ω0

ΩΣ

Ω1 Ω2

Ω0

⇒

Figure 4. Illustration of the gap idea (the gap is highlighted in orange)
.

In the gap setting (Figure 4, right), the boundary of Ω0 can be partitioned as Γ0 = ∪n
j=1Γj ∪ Σ,

and the sigle-trace space X(ΩΣ,Γ) is isomorphic to the space H1(ΩΣ) × Ĥ(Γ), where the multi-
trace space Ĥ(Γ), introduced in [8, §6.1], is defined as

(9.1) Ĥ(Γ) := H(Γ1)× · · · ×H(Γn)×H−1/2(Σ).

The isomorphism is given by the map s : (U, u) 7→ (U, (u1, . . . , un,Tn(u))), whose inverse, in the
gap setting, is the map t : (U, (û1, . . . , ûn, pΣ)) 7→ (U, (ũ0, û1, . . . , ûn)), where

ũ0(x) :=

{
ϕ(ûj)(x), x ∈ Γj , j = 1, . . . , n,

ϕ(γΣdU, pΣ)(x), x ∈ Σ.
with ϕ(u, p) := (u,−p).

The multi-trace space Ĥ(Γ) differs from the multi-trace space H(Γ) defined in (5.1) since it does
not contain any contribution on Γ0. Instead, it includes Neumann traces on Σ. It will enter
the functional framework for the global multi-trace formulation, also for general geometrical
settings, such as in Figure 4, left. Note that the unknown traces are doubled on each interface
that separates two (bounded) subdomains, hence the attribute multi-trace. We equip the space
Ĥ(Γ) with the standard norm of the Cartesian product:

∥v̂∥2Ĥ(Γ)
:=

n∑
j=1

∥v̂j∥2H(Γj)
+ ∥qΣ∥2H−1/2(Σ)

, for v̂ = (v̂1, . . . , v̂n, qΣ) ∈ Ĥ(Γ).

The dual space of Ĥ(Γ) is the space qH(Γ) := H(Γ1)× · · · ×H(Γn)×H1/2(Σ), with respect to the
duality pairing

(9.2) Jǔ, v̂K :=
n∑

j=1

[ǔj , v̂j ]Γj + ⟨uΣ, qΣ⟩Σ ,

for ǔ = (ǔ1, . . . , ǔn, uΣ) ∈ qH(Γ), v̂ = (v̂1, . . . , v̂n, qΣ) ∈ Ĥ(Γ).
For notational convenience it is useful to introduce also a multi-trace space that includes both

Dirichlet and Neumann traces on Σ, but no components on Γ0:

(9.3) ̂̂H(Γ) := H(Γ1)× · · · ×H(Γn)×H(Σ),
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with the skew-symmetric duality pairing

(9.4) ⦃

ˆ̂u, ˆ̂v⦄ :=
n∑

j=1

[ˆ̂uj , ˆ̂vj ]Γj + [ˆ̂uΣ, ˆ̂vΣ]Σ,

for ˆ̂u = (ˆ̂u1, . . . , ˆ̂un, ˆ̂uΣ), ˆ̂v = (ˆ̂v1, . . . , ˆ̂vn, ˆ̂vΣ) ∈ ̂̂H(Γ).

9.1. Derivation of the formulation. The multi-trace FEM-BEM formulation can be seen as
the single-trace FEM-BEM formulation (7.6) applied to gap configurations with vanishing gap.
However, it is difficult to study the vanishing gap limit with a rigorous mathematical argument.
Following the idea in [7, §8], the multi-trace formulation is rather obtained by trying to eliminate
from the single-trace formulation (7.6) all the contributions on Γ0. Essentially this is achieved
by exploiting repeatedly the modified polarity identity (5.6) and the variational characterization
of transmission conditions (5.8).

We first reshape the right-hand side of formulation (7.6), more precisely the term −[uinc,Θ(v)]Γ,
where uinc = (γ0Uinc, 0, . . . , 0). Since Uinc ∈ Hloc(∆,Rd), we can apply (5.8) to write, for v ∈ X(Γ)
(from which Θ(v) ∈ X(Γ)),

−[uinc,Θ(v)]Γ = −[γ0Uinc, θ(v0)]Γ0 + [γ(Uinc),Θ(v)]Γ + [γΣUinc,T(Θ(v))]Σ

=

n∑
j=1

[γjUinc, θ(vj)]Γj +
[
γΣUinc, θT(v)

]
Σ
.

(9.5)

Next, we focus on the left-hand side of formulation (7.6). By (5.6) we write

[A(u),Θ(v)]Γ = [A(u),Θ(v)]Γ +
(
[u,Θ(v)]Γ + [T(u),T(Θ(v))]Σ

)
/2

=
n∑

j=0

[(Aj
κj

+ Id/2)uj , θ(vj)]Γj + [T(u),T(Θ(v))]Σ/2

= [γ0G0
κ0
(u0), θ(v0)]Γ0 +

n∑
j=1

[(Aj
κj

+ Id/2)uj , θ(vj)]Γj + [T(u),T(Θ(v))]Σ/2,

(9.6)

where we have brought out the term with contributions on Γ0 that needs to be rewritten, and
applied (4.10). Now, since (u,T(u)) ∈ X̃(Γ) (see definition (5.9)), [7, Lemma 8.1] yields

n∑
j=0

Gj
κ0
(uj)(x) + GΣ

κ0
(T(u))(x) = 0 for x ∈ Ω0,

thus, taking interior traces on Γ0 and testing against θ(v0), we get

(9.7) [γ0G0
κ0
(u0), θ(v0)]Γ0 = −

n∑
j=1

[γ0Gj
κ0
(uj), θ(v0)]Γ0 − [γ0GΣ

κ0
(T(u)), θ(v0)]Γ0 .

We wish to examine each term on the right-hand side of (9.7). To this purpose, take an arbitrary
j = 1, . . . , n and follow the procedure described in Remark 5.4 to construct the element w̃ =

(w,wΣ) = (w0, . . . ,wn,wΣ) ∈ X̃(Γ) defined as

wq := γqGj
κ0
(uj) if q ̸= j, wj := γjcG

j
κ0
(uj), wΣ := T(w) = γΣGj

κ0
(uj).
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So, by (5.6) we have, for v ∈ X(Γ), [w,Θ(v)]Γ + [wΣ,T(Θ(v))]Σ = 0, that is, after splitting,

[γ0Gj
κ0
(uj), θ(v0)]Γ0 =−

n∑
q=1,q ̸=j

[γqGj
κ0
(uj), θ(vq)]Γq

− [γjcG
j
κ0
(uj), θ(vj)]Γj − [γΣGj

κ0
(uj),T(Θ(v))]Σ,

and in a similar way, using again the construction in Remark 5.4, we obtain

[γ0GΣ
κ0
(T(u)), θ(v0)]Γ0 = −

n∑
q=1

[γqGΣ
κ0
(T(u)), θ(vq)]Γq − [γΣc G

Σ
κ0
(T(u)),T(Θ(v))]Σ.

Then, substituting the last two expressions in (9.7) we get

[γ0G0
κ0
(u0), θ(v0)]Γ0 =

n∑
j=1

( n∑
q=1,q ̸=j

[γqGj
κ0
(uj), θ(vq)]Γq + [γΣGj

κ0
(uj),T(Θ(v))]Σ

)

+
n∑

q=1

[γqGΣ
κ0
(T(u)), θ(vq)]Γq +

n∑
j=1

[γjcG
j
κ0
(uj), θ(vj)]Γj + [γΣc G

Σ
κ0
(T(u)),T(Θ(v))]Σ.

Finally, we plug the equation above into the initial rewriting (9.6) and, recalling that by (4.11)
γjcG

j
κ0 = Aj

κ0 − Id/2, we obtain

[A(u),Θ(v)]Γ =
n∑

j=1

[(Aj
κj

+ Id/2)uj , θ(vj)]Γj + [T(u),T(Θ(v))]Σ/2

+
n∑

j=1

[(Aj
κ0

− Id/2)uj , θ(vj)]Γj + [(AΣ
κ0

− Id/2)T(u),T(Θ(v))]Σ

+
n∑

j=1

( n∑
q=1,q ̸=j

[γqGj
κ0
(uj), θ(vq)]Γq + [γΣGj

κ0
(uj),T(Θ(v))]Σ

)

+

n∑
q=1

[γqGΣ
κ0
(T(u)), θ(vq)]Γq ,

that is, simplifying,

[A(u),Θ(v)]Γ =

n∑
j=1

[(Aj
κj

+ Aj
κ0
)uj , θ(vj)]Γj + [AΣ

κ0
T(u), θT(v)]Σ

+

n∑
j=1

( n∑
q=1,q ̸=j

[γqGj
κ0
(uj), θ(vq)]Γq + [γΣGj

κ0
(uj), θT(v)]Σ

)

+

n∑
q=1

[γqGΣ
κ0
(T(u)), θ(vq)]Γq .

(9.8)
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To sum up, if we define the continuous linear operator ̂̂A : ̂̂H(Γ) → ̂̂H(Γ) as

(9.9) ̂̂A :=


A1
κ1

+ A1
κ0

γ1G2
κ0

. . . γ1Gn
κ0

γ1GΣ
κ0

γ2G1
κ0

A2
κ2

+ A2
κ0

γ2Gn
κ0

γ2GΣ
κ0

...
. . .

...
γnG1

κ0
γnG2

κ0
An
κn

+ An
κ0

γnGΣ
κ0

γΣG1
κ0

γΣG2
κ0

. . . γΣGn
κ0

AΣ
κ0


and for compact notation we set

ˆ̂u := (u1, . . . , un, (γ
Σ
dU,Tn(u))), ˆ̂v := (v1, . . . , vn, (γ

Σ
d V,Tn(v))),

ˆ̂f := (γ1Uinc, . . . , γ
nUinc, γ

ΣUinc),

using the transformed expressions (9.8) and (9.5), where we additionally replace Td(u) = γΣdU ,
Td(v) = γΣd V , we have found that the single-trace FEM-BEM formulation (7.6) is equivalent to

find (U, u) ∈ X(ΩΣ,Γ) such that

aΣ(U, V ) + ⦃

̂̂A(ˆ̂u),Θ(ˆ̂v)⦄+
1

2

[(
γΣdU,Tn(u)

)
, (γΣd V,Tn(v))

]
Σ

= FΣ(V ) + ⦃

ˆ̂f,Θ(ˆ̂v)⦄ ∀ (V, v) ∈ X(ΩΣ,Γ).

This new expression does not have any contributions on Γ0, except for Tn(u), Tn(v) ∈ H−1/2(Σ)
that in particular depend on p0, q0. In the spirit of [7, §9] and the discussion at the beginning
of this section, we now replace the function space X(ΩΣ,Γ) by the space with decoupled traces
H1(ΩΣ)×Ĥ(Γ), which is a more flexible functional setting. In particular, we replace Tn(u),Tn(v)

by some pΣ, qΣ ∈ H−1/2(Σ). Then, we define the global multi-trace FEM-BEM formulation

(9.10)

find (U, û) ∈ H1(ΩΣ)× Ĥ(Γ), û = (û1, . . . , ûn, pΣ), such that

aΣ(U, V ) + ⦃

̂̂A(ˆ̂u),Θ(ˆ̂v)⦄+
1

2

[(
γΣdU, pΣ

)
,
(
γΣd V, qΣ

)]
Σ

= FΣ(V ) + ⦃

ˆ̂f,Θ(ˆ̂v)⦄ ∀ (V, v̂) ∈ H1(ΩΣ)× Ĥ(Γ), v̂ = (v̂1, . . . , v̂n, qΣ)

where ˆ̂u := (û1, . . . , ûn, (γ
Σ
dU, pΣ)),

ˆ̂v := (v̂1, . . . , v̂n, (γ
Σ
d V, qΣ)),

ˆ̂f := (γ1Uinc, . . . , γ
nUinc, γ

ΣUinc).

Note that ̂̂A, defined in (9.9), is a full-matrix operator with off-diagonal terms γqGj
κ0 , γΣG

j
κ0 ,

γqGΣ
κ0

that couple all subdomains with all other subdomains, hence the attribute global. The
attribute multi-trace comes from the fact that the unknown traces are doubled on each interface
that separates two (bounded) subdomains.
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The expanded expression for the multi-trace FEM-BEM formulation (9.10) reads: find (U, û) ∈
H1(ΩΣ)× Ĥ(Γ), û = (û1, . . . , ûn, pΣ), such that

aΣ(U, V ) +
n∑

j=1

[(Aj
κj

+ Aj
κ0
)ûj , θ(v̂j)]Γj +

[
AΣ
κ0

(
γΣdU, pΣ

)
, θ

(
γΣd V, qΣ

)]
Σ

+
n∑

j=1

( n∑
q=1,q ̸=j

[γqGj
κ0
(ûj), θ(v̂q)]Γq +

[
γΣGj

κ0
(ûj), θ

(
γΣd V, qΣ

)]
Σ

)

+

n∑
q=1

[
γqGΣ

κ0

(
γΣdU, pΣ

)
, θ(v̂q)

]
Γq

+
1

2

[(
γΣdU, pΣ

)
,
(
γΣd V, qΣ

)]
Σ

= FΣ(V ) +
n∑

j=1

[γjUinc, θ(v̂j)]Γj +
[
γΣUinc, θ

(
γΣd V, qΣ

)]
Σ

(9.11)

for all (V, v̂) ∈ H1(ΩΣ)× Ĥ(Γ), v̂ = (v̂1, . . . , v̂n, qΣ).

Remark 9.1. Note that in the case n = 0 of a single (heterogeneous) scatterer the multi-trace
formulation (9.10) reduces to the Costabel coupling (6.7), just as the single-trace formulation
(7.6). Indeed, in this case Rd = Ω0 ∪ ΩΣ and Ĥ(Γ) = H−1/2(Σ). Then the expanded expression
(9.11) simply becomes: find (U, pΣ) ∈ H1(ΩΣ)×H−1/2(Σ) such that

aΣ(U, V ) +
[
AΣ
κ0

(
γΣdU, pΣ

)
,
(
−γΣd V, qΣ

)]
Σ
+

1

2

[(
γΣdU, pΣ

)
,
(
γΣd V, qΣ

)]
Σ
=

FΣ(V ) +
[
γΣUinc,

(
−γΣd V, qΣ

)]
Σ

∀ (V, qΣ) ∈ H1(ΩΣ)×H−1/2(Σ).

Moreover, set u = (u0, p0) = (γΣdU,−pΣ) and v = (v0, q0) = (γΣd V,−qΣ), so that (U, u) ∈
X(ΩΣ,Γ) and (V, v) ∈ X(ΩΣ,Γ). Note that T(u) = (γΣdU, pΣ), T(v) = (γΣd V, qΣ), and γΣUinc =
(γ0dUinc,−γ0nUinc). We can also write

AΣ
κ0

(
γΣdU, pΣ

)
= AΣ

κ0
(u0,−p0) =

(
{γ0d},−{γ0n}

)
◦
(
−G0

κ0
(u0, p0)

)
=

(
−{γ0d}, {γ0n}

)
◦ G0

κ0
(u),

so we get: find (U, u) ∈ X(ΩΣ,Γ) such that

aΣ(U, V ) +
[(
−{γ0d}, {γ0n}

)
◦ G0

κ0
(u), (−v0,−q0)

]
Γ
+

1

2
[T(u),T(v)]Σ =

FΣ(V ) +
[(
γ0dUinc,−γ0nUinc

)
, (−v0,−q0)

]
Γ

∀ (V, v) ∈ X(ΩΣ,Γ),

and also the signs turn out to agree with those in formulation (6.7).

9.2. Properties of the multi-trace FEM-BEM formulation. The relationship between the
multi-trace FEM-BEM formulation (9.10) and the transmission problem (2.4) is examined in the
following proposition.
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Proposition 9.2 (Link with the transmission problem). If (U, û) ∈ H1(ΩΣ) × Ĥ(Γ), û =

(û1, . . . , ûn, pΣ) ∈ Ĥ(Γ), solve (9.10), then the solution to (2.4) is given by

Ũ(x) := U(x) for x ∈ ΩΣ,

Ũ(x) :=

(
Uinc − GΣ

κ0

(
γΣdU, pΣ

)
−

n∑
j=1

Gj
κ0
(ûj)

)
(x) for x ∈ Ω0,

Ũ(x) := Gj
κj
(ûj)(x) for x ∈ Ωj , j = 1, . . . , n.

(9.12)

Proof. First of all, (Ũ − Uinc)|Ω0 = −GΣ
κ0
(γΣdU, pΣ) −

∑n
j=1 G

j
κ0(ûj) is κ0-outgoing radiating

in Ω0, see e.g. [11, Theorem 3.2]. It is also clear that Ũ satisfies the Helmholtz equation in
Ωj , j = 1, . . . , n since it is satisfied by the potentials (see e.g. [11, §2.4]), and in Ω0 since it
is also satisfied by Uinc by definition. By testing (9.10) with V ∈ H1

0(ΩΣ), v̂ = 0, we get
aΣ(U, V ) = aΣ(Ũ , V ) = FΣ(V ), so Ũ satisfies the Helmholtz equation also in ΩΣ. The property
that remains to be verified is the transmission conditions: by characterization (5.8) it is sufficient
to show that for all v ∈ X(Γ) we have [γ(Ũ), v]Γ + [γΣ(Ũ),T(v)]Σ = 0, i.e., by definition of Ũ ,

(9.13)
[
γ0Uinc−γ0GΣ

κ0

(
γΣdU, pΣ

)
−

n∑
j=1

γ0Gj
κ0
(ûj), v0

]
Γ0

+

n∑
j=1

[γjGj
κj
(ûj), vj ]Γj+[γΣU,T(v)]Σ = 0.

We fix an arbitrary v ∈ X(Γ) and denote v∗ := (v1, . . . , vn,Tn(v)) ∈ Ĥ(Γ). Since Ũ |ΩΣ
= U

satisfies the Helmholtz equation in ΩΣ, integrating by parts we get

(9.14) aΣ(U, V )− FΣ(V ) = ⟨γΣn U, γΣd V ⟩Σ ∀V ∈ H1(ΩΣ).

Moreover, by (4.10)-(4.11), we have

(9.15) Aj
κj

+ Aj
κ0

= γjGj
κj

+ γjcG
j
κ0
, j = 1, . . . , n, AΣ

κ0
= γΣc G

Σ
κ0

+ Id/2.

Thus, if we test formulation (9.10) (or its expanded form (9.11)) with V satisfying γΣd V = Td(v)
and with v̂ = v∗, using (9.14)-(9.15), we obtain

0 = ⟨γΣn U,Td(v)⟩Σ +

n∑
j=1

(
[γjGj

κj
(ûj), θ(vj)]Γj + [γjcG

j
κ0
(ûj), θ(vj)]Γj

)
+

[
γΣc G

Σ
κ0

(
γΣdU, pΣ

)
,T(Θ(v))

]
Σ
+

1

2

[(
γΣdU, pΣ

)
,T(Θ(v))

]
Σ

+

n∑
j=1

( n∑
q=1,q ̸=j

[γqGj
κ0
(ûj), θ(vq)]Γq + [γΣGj

κ0
(ûj),T(Θ(v))]Σ

)

+

n∑
q=1

[
γqGΣ

κ0

(
γΣdU, pΣ

)
, θ(vq)

]
Γq

+
1

2

[(
γΣdU, pΣ

)
,T(v)

]
Σ

−
n∑

j=1

[γjUinc, θ(vj)]Γj −
[
γΣUinc,T(Θ(v))

]
Σ
,

(9.16)
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that is, gathering terms conveniently, 0 = t1 + t2 + t3 + t4 + t5, where

t1 =
n∑

j=1

[γjGj
κj
(ûj), θ(vj)]Γj

t2 = ⟨γΣn U,Td(v)⟩Σ +
1

2

[(
γΣdU, pΣ

)
,T(Θ(v))

]
Σ
+

1

2

[(
γΣdU, pΣ

)
,T(v)

]
Σ

t3 =

n∑
j=1

(
[γjcG

j
κ0
(ûj), θ(vj)]Γj +

n∑
q=1,q ̸=j

[γqGj
κ0
(ûj), θ(vq)]Γq + [γΣGj

κ0
(ûj),T(Θ(v))]Σ

)

t4 =
[
γΣc G

Σ
κ0

(
γΣdU, pΣ

)
,T(Θ(v))

]
Σ
+

n∑
q=1

[
γqGΣ

κ0

(
γΣdU, pΣ

)
, θ(vq)

]
Γq

t5 = −
n∑

j=1

[γjUinc, θ(vj)]Γj −
[
γΣUinc,T(Θ(v))

]
Σ
.

First of all, note that the term t2 simplifies into [γΣU,T(Θ(v))]Σ, which is exactly the last term of
the sought equation (9.13), but with v replaced by Θ(v). In order to treat the other terms we will
employ the polarity identity (5.6) and the procedure described in Remark 5.4 three times. First,
for a given j = 1, . . . , n, we have (γ0Gj

κ0(ûj), . . . , γ
j
cG

j
κ0(ûj), . . . , γ

nGj
κ0(ûj), γ

ΣGj
κ0(ûj)) ∈ X̃(Γ),

thus

[γjcG
j
κ0
(ûj), θ(vj)]Γj +

n∑
q=1,q ̸=j

[γqGj
κ0
(ûj), θ(vq)]Γq + [γΣGj

κ0
(ûj),T(Θ(v))]Σ

= −[γ0Gj
κ0
(ûj), θ(v0)]Γ0 .

(9.17)

Second, we have (γ0GΣ
κ0
(γΣdU, pΣ), . . . , γ

nGΣ
κ0
(γΣdU, pΣ), γ

Σ
c G

Σ
κ0
(γΣdU, pΣ)) ∈ X̃(Γ), thus

n∑
q=1

[
γqGΣ

κ0

(
γΣdU, pΣ

)
, θ(vq)

]
Γq

+
[
γΣc G

Σ
κ0

(
γΣdU, pΣ

)
,T(Θ(v))

]
Σ

= −
[
γ0GΣ

κ0

(
γΣdU, pΣ

)
, θ(v0)

]
Γ0
.

(9.18)

Third, we have (γ0Uinc, . . . , γ
nUinc, γ

ΣUinc) ∈ X̃(Γ), thus

(9.19)
n∑

j=1

[γjUinc, θ(vj)]Γj +
[
γΣUinc,T(Θ(v))

]
Σ
= −[γ0Uinc, θ(v0)]Γ0 .

Now, use (9.17) summed over j = 1, . . . , n, (9.18), (9.19) to replace respectively t3, t4, t5, therefore
(9.16) becomes

0 =

n∑
j=1

[γjGj
κj
(ûj), θ(vj)]Γj −

n∑
j=1

[γ0Gj
κ0
(ûj), θ(v0)]Γ0 −

[
γ0GΣ

κ0

(
γΣdU, pΣ

)
, θ(v0)

]
Γ0

+ [γ0Uinc, θ(v0)]Γ0 + [γΣU,T(Θ(v))]Σ,

that is exactly the sought equation (9.13), but with v replaced by Θ(v), which is not a problem
since Θ is an automorphism. □
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As suggested by the gap idea, also the multi-trace FEM-BEM formulation (9.10) satisfies a
Gårding inequality :

Proposition 9.3 (Gårding inequality). Let aMTF : (H1(ΩΣ) × Ĥ(Γ)) × (H1(ΩΣ) × Ĥ(Γ)) → C
designate the bilinear form on the left-hand side of (9.10). There exist a compact bilinear form
K : (H1(ΩΣ)× Ĥ(Γ))× (H1(ΩΣ)× Ĥ(Γ)) → C and a constant β > 0 such that

Re
{
aMTF

(
(V, v̂), (V , v̂)

)
+K

(
(V, v̂), (V , v̂)

)}
≥ β(∥V ∥2H1(ΩΣ)

+ ∥v̂∥2Ĥ(Γ)
)

for all (V, v̂) ∈ H1(ΩΣ)× Ĥ(Γ).

Proof. We need to examine

aMTF
(
(V, v̂), (V , v̂)

)
= aΣ(V, V ) + ⦃

̂̂A(ˆ̂v),Θ(ˆ̂v)⦄+
1

2

[(
γΣd V, qΣ

)
,
(
γΣd V , qΣ

)]
Σ
,

where ˆ̂v := (v̂1, . . . , v̂n, (γ
Σ
d V, qΣ)). As already mentioned, aΣ satisfies a Gårding inequality as in

[18, Lemma 3.2], and
Re

{[(
γΣd V, qΣ

)
,
(
γΣd V , qΣ

)]
Σ

}
= 0.

For the remaining term ⦃

̂̂A(ˆ̂v),Θ(ˆ̂v)⦄, we proceed exactly as in the proof of [8, Proposition 6.3],
except that v̂n+1 := (γΣd V , qΣ) in the present case. Indeed, note that the first concise equality
at the beginning of the proof of [8, Proposition 6.3] fits exactly the expression of ̂̂A. Thus, we
obtain that, for the case κ0 = · · · = κn = ı, there exists β̃ > 0 such that

Re⦃̂̂A(ˆ̂v),Θ(ˆ̂v)⦄ ≥ β̃

n+1∑
j=1

∥v̂j∥2H(Γj)
= β̃

(
∥v̂∥2Ĥ(Γ)

) + ∥γΣd V ∥2
H1/2(Σ)

)
,

which leads to the desired conclusion since a change of the wavenumbers κ0, . . . , κn only induces
a compact perturbation of the integral operators appearing in ̂̂A (see e.g. [22, Lemma 3.9.8]). □

Again, in the case of injectivity all the nice consequences recalled below Proposition 7.2 would
follow from the Gårding inequality. Hence, in the following proposition we examine the injectivity
condition for the multi-trace FEM-BEM formulation (9.10). Note that the gap configuration
falls exactly within the case Σ ⊂ Γ0, in which spurious resonances affect the single-trace FEM-
BEM formulation (7.6) if κ0 ∈ S(∆,ΩΣ) (recall Proposition 7.3), so the following result is not
surprising.

Proposition 9.4 (Injectivity condition). Let (U, û) ∈ H1(ΩΣ)× Ĥ(Γ) solves formulation (9.10)
with FΣ ≡ 0, ˆ̂f = 0. Then U = 0. We also have û = 0 if κ0 /∈ S(∆,ΩΣ). If κ0 ∈ S(∆,ΩΣ), there
exists û ∈ Ĥ(Γ) \ {0} such that (0, û) ∈ H1(ΩΣ)× Ĥ(Γ) solves (9.10) with FΣ ≡ 0, ˆ̂f = 0.

Proof. By Proposition 9.2, the function Ũ defined in (9.12) solves the homogeneous transmission
problem (2.4), which is well-posed, so Ũ = 0. In particular, U = Ũ |ΩΣ

= 0 and γΣdU = 0.
Therefore, if we test formulation (9.10) with FΣ ≡ 0, ˆ̂f = 0 using test functions V ∈ H1

0(ΩΣ) (and
v̂ = (v̂1, . . . , v̂n, qΣ) ∈ Ĥ(Γ)), we obtain

⦃

̂̂A(ˆ̂u),Θ(ˆ̂v)⦄ = 0, with ˆ̂u = (û1, . . . , ûn, (0, pΣ)), ˆ̂v = (v̂1, . . . , v̂n, (0, qΣ)),
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which reduces to JÂ(û),Θ(v̂)K = 0, where Â is the operator defined in [8, Equation (6.3)]. Then
û ∈ ker(Â) and, by [8, Proposition 6.4], if κ0 /∈ S(∆,ΩΣ) we get û = 0.

Now we show that κ0 /∈ S(∆,ΩΣ) is also a necessary condition. If κ0 ∈ S(∆,ΩΣ), by
[22, Theorem 3.9.1] we know that ker(γΣd SL

Σ
κ0
) ̸= {0}, and we consider p ∈ ker(γΣd SL

Σ
κ0
)\{0}. As

γΣd SL
Σ
κ0
(p) = 0, by jump relations (4.6) we have γΣd,cSL

Σ
κ0
(p) = 0, and, since the exterior Helmholtz

boundary value problem is well-posed, we get SLΣκ0
(p)(x) = 0 for x ∈ Rd\ΩΣ. Therefore,

γqSLΣκ0
(p) = 0 for all q = 1, . . . , n and γΣn,cSL

Σ
κ0
(p) = 0. In particular, using (4.11),

AΣ
κ0

(0, p) = γΣc SL
Σ
κ0
(p) + (0, p) /2 = (0, p/2) .

Then, if we evaluate the left-hand side of formulation (9.10) in U∗ = 0, û∗ = (0, . . . , 0, p) we have
n∑

q=1

[γqSLΣκ0
(p), θ(v̂q)]Γq +

[
(0, p/2) ,

(
−γΣd V, qΣ

)]
Σ
+

1

2

[
(0, p) ,

(
γΣd V, qΣ

)]
Σ
= 0,

for all (V, v̂) ∈ H1(ΩΣ)× Ĥ(Γ), and we have found a non-trivial solution. □

Comparing the injectivity conditions in Propositon 7.3 and Proposition 9.4, we see that in the
case Σ ⊂ Γ0, if the single-trace formulation (7.6) suffer from spurious resonances then so does the
multi-trace formulation (9.10). On the other hand, in the case Σ ̸⊂ Γ0, there are wavenumbers
κ0 for which the multi-trace formulation (9.10) breaks down, while the single-trace formulation
(7.6) remains injective. If the single-trace formulation (7.6) fails to be injective because Σ ⊂ Γ1

and κ1 ∈ S(∆,ΩΣ), but κ0 /∈ S(∆,ΩΣ), the multi-trace formulation (9.10) is instead well-posed.
Note that we could write a multi-trace formulation based on another subdomain than Ω0, say
Ωi, loosely speaking by filling the gap with the same medium as Ωi.

10. Multi-trace combined field FEM-BEM formulation

We have shown that the multi-trace FEM-BEM formulation (9.10) is affected by spurious res-
onances when κ0 ∈ S(∆,ΩΣ). Again, as a remedy, we adapt the approach of combined field
integral equations. More precisely, as the standard multi-trace FEM-BEM formulation (9.10)
was obtained by manipulating the standard single-trace FEM-BEM formulation (7.6), similarly
we will obtain a combined field multi-trace FEM-BEM formulation by manipulating the com-
bined field single-trace FEM-BEM formulation (8.7). Since the difference between (7.6) and (8.7)
lies only in the compact bilinear form c and in the right-hand side with ũinc defined in (8.6), we
just need to elaborate these terms.

As in [8, §6.4] we first derive the formulation in the gap setting, and we look for̂̂c : (H1(ΩΣ)× Ĥ(Γ))2 → C such that ̂̂c((U, û), (V, v̂)) = c(u, v)

where (U, û), (V, v̂) ∈ H1(ΩΣ)× Ĥ(Γ) correspond respectively to (U, u), (V, v) ∈ X(ΩΣ,Γ) under
the isomorphism defined at the beginning of §9. Observe that in the gap setting, where Σ ⊂ ∂Ω0,
the extension operator EΣ can be picked to map into functions whose support is inside Ω0 ∪ΩΣ,
so that γjd ◦ EΣ = 0 for j ̸= 0 and the operator C in (8.3), essentially, maps into H1/2(Σ). Then,
applying also (4.11),

c(u, v) =
n∑

j=0

[
γjcG

j
κj
(uj), θ(Cv)j

]
Γj

=
[
γ0cG

0
κ0
(u0), θ(Cv)0

]
Γ0

= −
〈
γΣn G

0
κ0
(u0),MTn(v)

〉
Σ
,
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where we have used the definition of C, γ0n,c = −γΣn , γ0d = γΣd , γΣd ◦ EΣ = Id. Moreover, since
(U, u) ∈ X(ΩΣ,Γ), in the gap setting u0 equals ϕ(uj) on each Γj , j = 1, . . . , n, and equals
ϕ(γΣdU,Tn(u)) on Σ, that reflects exactly the isomorphism defined at the beginning of §9. This
implies G0

κ0
(u0) = −GΣ

κ0
(γΣdU,Tn(u))−

∑n
j=1 G

j
κ0(uj). Therefore, for û = (û1, . . . , ûn, pΣ) ∈ Ĥ(Γ),

v̂ = (v̂1, . . . , v̂n, qΣ) ∈ Ĥ(Γ), we get

̂̂c((U, û), (V, v̂)) := 〈
M∗γΣn G

Σ
κ0

(
γΣdU, pΣ

)
, qΣ

〉
Σ
+

n∑
j=1

〈
M∗γΣn G

j
κ0
(ûj), qΣ

〉
Σ
.

Now, summing the term in (9.10) that derives from [A(u),Θ(v)]Γ we write

⦃

̂̂A(ˆ̂u),Θ(ˆ̂v)⦄+ ̂̂c((U, û), (V, v̂)) = ⦃

̂̂AM(ˆ̂u),Θ(ˆ̂v)⦄

where
ˆ̂u := (û1, . . . , ûn, (γ

Σ
dU, pΣ)),

ˆ̂v := (v̂1, . . . , v̂n, (γ
Σ
d V, qΣ)), and

̂̂AM :=


A1
κ1

+ A1
κ0

γ1G2
κ0

. . . γ1Gn
κ0

γ1GΣ
κ0

γ2G1
κ0

A2
κ2

+ A2
κ0

γ2Gn
κ0

γ2GΣ
κ0

...
. . .

...
γnG1

κ0
γnG2

κ0
An
κn

+ An
κ0

γnGΣ
κ0(γΣ

d +M∗γΣ
n

γΣ
n

)
G1
κ0

(γΣ
d +M∗γΣ

n
γΣ
n

)
G2
κ0

. . .
(γΣ

d +M∗γΣ
n

γΣ
n

)
Gn
κ0

AΣ
κ0

+
(M∗γΣ

n
0

)
GΣ
κ0

 .

Note that ̂̂AM differs from ̂̂A only in the Dirichlet traces on Σ in the last line.
In a similar way, for the right-hand side −[ũinc, v]Γ = −[uinc,Θ(Id+ C)(v)]Γ, we get

[uinc,ΘC(v)]Γ = [γ0Uinc, θ(Cv)0]Γ0 = −⟨γΣn Uinc,MTn(v)⟩Σ = −⟨M∗γΣn Uinc,Tn(v)⟩Σ
and combining with the term in (9.10) that derives from −[uinc,Θ(v)]Γ we write

ˆ̂fM :=
(
γ1Uinc, . . . , γ

nUinc,
(γΣ

d +M∗γΣ
n

γΣ
n

)
Uinc

)
.

In conclusion, we define the global multi-trace combined field FEM-BEM formulation

(10.1)

find (U, û) ∈ H1(ΩΣ)× Ĥ(Γ), û = (û1, . . . , ûn, pΣ), such that

aΣ(U, V ) + ⦃

̂̂AM(ˆ̂u),Θ(ˆ̂v)⦄+
1

2

[(
γΣdU, pΣ

)
,
(
γΣd V, qΣ

)]
Σ

= FΣ(V ) + ⦃

ˆ̂fM,Θ(ˆ̂v)⦄ ∀(V, v̂) ∈ H1(ΩΣ)× Ĥ(Γ), v̂ = (v̂1, . . . , v̂n, qΣ)

where ˆ̂u := (û1, . . . , ûn, (γ
Σ
dU, pΣ)),

ˆ̂v := (v̂1, . . . , v̂n, (γ
Σ
d V, qΣ)).

Even if we have derived this formulation in the gap setting, it is still valid in a general geometric
configuration such as Figure 4, left. This will be justified in what follows. We first show which
is the relationship of its solutions with the solutions to the standard multi-trace FEM-BEM
formulation (9.10).

Proposition 10.1. A solution to the combined field multi-trace FEM-BEM formulation (10.1)
is also a solution to the standard multi-trace FEM-BEM formulation (9.10).
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Proof. Let (U, û) be a solution to formulation (10.1). Then, if we take test functions V = 0,
v̂ = (0, . . . , 0, qΣ) with some qΣ ∈ H−1/2(Σ) (thus γΣd V = 0, ˆ̂v = (0, . . . , 0, (0, qΣ))), it yields〈

n∑
j=1

(γΣd +M∗γΣn )G
j
κ0
(ûj) + ({γΣd }+M∗γΣn )G

Σ
κ0

(
γΣdU, pΣ

)
, qΣ

〉
Σ

+
1

2

〈
γΣdU, qΣ

〉
Σ

=
〈
(γΣd +M∗γΣn )Uinc, qΣ

〉
Σ

∀ qΣ ∈ H−1/2(Σ),

and, since 〈
{γΣd }GΣ

κ0

(
γΣdU, pΣ

)
, qΣ

〉
Σ
=

〈
γΣdG

Σ
κ0

(
γΣdU, pΣ

)
, qΣ

〉
Σ
− 1

2

〈
γΣdU, qΣ

〉
Σ
,

we obtain〈
(γΣd +M∗γΣn )

(
Uinc −

n∑
j=1

Gj
κ0
(ûj)− GΣ

κ0

(
γΣdU, pΣ

))
, qΣ

〉
Σ

= 0 ∀ qΣ ∈ H−1/2(Σ).

Therefore, if we introduce

(10.2) W := Uinc −
n∑

j=1

Gj
κ0
(ûj)− GΣ

κ0

(
γΣdU, pΣ

)
,

this means γΣdW = −M∗γΣnW . Moreover, W solves −∆W − κ20W = 0 in ΩΣ, so by Green’s
formula ∫

ΩΣ

(|∇W |2 − κ20|W |2)dx = −
〈
γΣnW,M∗γΣnW

〉
Σ
,

and taking the imaginary part, since κ0 ∈ R, we obtain 0 = − Im{⟨MγΣnW,γΣnW ⟩Σ}, that implies
γΣnW = 0 by property (8.1b) of M. As a consequence γΣdW = −M∗γΣnW = 0. The conclusion
γΣdW = 0 finishes the proof because, looking at the definition of W , this corresponds exactly to
the equation in formulation (9.10) associated with the Dirichlet component of the last line of ̂̂A
and ˆ̂f, which represents the only difference between formulations (9.10) and (10.1). □

A corollary of this proposition is that if (U, û) satisfies formulation (10.1), then the unique
solution to the transmission problem (2.4) is given by Ũ in (9.12). This justifies considering
formulation (10.1) for general geometric settings.

Moreover, by the compactness of M, the block operator ̂̂AM is a compact perturbation of ̂̂A,
so a Gårding inequality analogue to Proposition 9.3 still holds, and the induced operator is of
Fredholm type with index 0. Therefore, in the case of injectivity, all the good properties recalled
below Proposition 7.2 follow. As desired, the combined field formulation (10.1) is immune to
spurious resonances for any choice of the positive wavenumbers κj :

Proposition 10.2 (Injectivity). Let (U, û) ∈ H1(ΩΣ)× Ĥ(Γ) solve formulation (10.1) with FΣ ≡
0, ˆ̂fM = 0. Then U = 0, û = 0.

Proof. Since ˆ̂fM = 0 we have Uinc = 0. As a consequence proceeding as in the beginning of
the proof of Proposition 10.1 leads to considering W := −∑n

j=1 G
j
κ0(ûj) − GΣ

κ0
(γΣdU, pΣ) and,
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following the same argumentation as above, this function satisfies γΣn (W ) = 0. According to the
definition of ̂̂AM, this implies ̂̂A+M(ˆ̂u) = ̂̂A(ˆ̂u) = ̂̂A−M(ˆ̂u)

since the terms involving M∗ in the last row of the definition of ̂̂AM vanish. Next, by Proposition
10.1, (U, û) solves also formulation (9.10), so by Proposition 9.4 we get U = 0 and γΣdU = 0.
Now, if we test formulation (10.1) (with FΣ ≡ 0, ˆ̂fM = 0) using test functions V ∈ H1

0(ΩΣ) (and
v̂ = (v̂1, . . . , v̂n, qΣ) ∈ Ĥ(Γ)), we obtain ⦃

̂̂AM(ˆ̂u),Θ(ˆ̂v)⦄ = 0 hence

⦃

̂̂A−M(ˆ̂u),Θ(ˆ̂v)⦄ = 0

with ˆ̂u = (û1, . . . , ûn, (0, pΣ)), ˆ̂v = (v̂1, . . . , v̂n, (0, qΣ)). Note that this reduces to JÂM(û),Θ(v̂)K =
0 for all v̂ ∈ Ĥ(Γ), where ÂM is defined in [8, Equation (6.21)] and is injective by [8, Proposition
6.7]. Then û = 0. □

Appendix A. Properties of the block boundary integral operator AΩ
κ

We prove here two useful properties of the boundary integral operator AΩ
κ in (4.9) since we could

not find detailed proofs in the literature.

Proposition A.1 (Generalized Gårding inequality). Set θ(v, q) := (−v, q). Let Ω be a generic
Lipschitz domain that is either bounded or such that Rd \ Ω is bounded. Then, there exist a
compact operator K : H(∂Ω) → H(∂Ω) and a constant α > 0 such that for all u ∈ H(∂Ω) we have

Re
{
[(AΩ

κ +K)u, θ(u)]∂Ω
}
≥ α∥u∥2H(∂Ω).

Proof. Since a change of the wavenumber κ only induces a compact perturbation of AΩ
κ [22,

Lemma 3.9.8], it suffices to prove the result for the case κ = ı, where ı =
√
−1. Set ψ := GΩ

κ (u),
then we write AΩ

κ (u) = {γΩ}ψ and by the jump relations (4.6) we have u = [γΩ]ψ. Therefore[
AΩ
κ (u), θ(u)

]
∂Ω

=
[
{γΩ}ψ, θ[γΩ]ψ

]
∂Ω

=
1

2

[
(γΩ + γΩc )ψ, θ(γ

Ω − γΩc )ψ
]
∂Ω

= m1 +m2

where

m1 =
1

2

[
γΩψ, θγΩψ

]
∂Ω

− 1

2

[
γΩc ψ, θγ

Ω
c ψ

]
∂Ω
,

m2 =
1

2

[
γΩc ψ, θγ

Ωψ
]
∂Ω

− 1

2

[
γΩψ, θγΩc ψ

]
∂Ω
.

We have Re(m2) = 0, indeed

Re
{
[γΩc ψ, θγ

Ωψ]∂Ω
}
= Re

{
[γΩc ψ, θγ

Ωψ]∂Ω

}
= Re

{
[γΩc ψ, θγ

Ωψ]∂Ω
}
= Re

{
[γΩψ, θγΩc ψ]∂Ω

}
,

where the last equality is an application of the property [u, θ(v)]∂Ω = [v, θ(u)]∂Ω for u, v ∈
H(∂Ω). To deal with Re(m1), observe that we have Re {[v, θ(v)]∂Ω} = Re{⟨v, q⟩∂Ω + ⟨v, q⟩∂Ω} =
2Re{⟨v, q⟩∂Ω} for v = (v, q) ∈ H(∂Ω). Thus

1

2
Re

{[
γΩψ, θγΩψ

]
∂Ω

}
= Re

{
⟨γΩd ψ, γΩn ψ⟩∂Ω

}
= Re

{∫
Ω
(|∇ψ|2 + ψ∆ψ)dx

}
= ∥ψ∥2H1(Ω),
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where we integrated by parts and lastly used the fact that ψ is a solution to the Helmholtz
equation with κ = ı, so that ∆ψ = ψ. Similarly, we get

−1

2
Re

{[
γΩc ψ, θγ

Ω
c ψ

]
∂Ω

}
= ∥ψ∥2H1(Rd\Ω),

therefore
Re

{[
AΩ
κ (u), θ(u)

]
∂Ω

}
= ∥ψ∥2H1(Ω) + ∥ψ∥2H1(Rd\Ω).

Now, note that

∥ψ∥2H1(∆,Ω) = ∥ψ∥2H1(Ω) + ∥∆ψ∥2L2(Ω) = ∥ψ∥2H1(Ω) + ∥ψ∥2L2(Ω) ≤ 2∥ψ∥2H1(Ω),

and by the continuity of the trace operators, there exists C > 0 such that

∥γΩd V ∥2
H1/2(∂Ω)

+ ∥γΩn V ∥2
H−1/2(∂Ω)

≤ C∥V ∥2H1(∆,Ω) ∀V ∈ H1(∆,Ω),

∥γΩd,cV ∥2
H1/2(∂Ω)

+ ∥γΩn,cV ∥2
H−1/2(∂Ω)

≤ C∥V ∥2H1(∆,Rd\Ω) ∀V ∈ H1(∆,Rd\Ω).

Therefore

Re
{[
AΩ
κ (u), θ(u)

]
∂Ω

}
= ∥ψ∥2H1(Ω) + ∥ψ∥2H1(Rd\Ω)

≥ 1

2C

(
∥γΩd ψ∥2H1/2(∂Ω)

+ ∥γΩd,cψ∥2H1/2(∂Ω)
+ ∥γΩn ψ∥2H−1/2(∂Ω)

+ ∥γΩn,cψ∥2H−1/2(∂Ω)

)
≥ 1

4C

(
∥(γΩd − γΩd,c)ψ∥2H1/2(∂Ω)

+ ∥(γΩn − γΩn,c)ψ∥2H−1/2(∂Ω)

)
=

1

4C
∥u∥2H(∂Ω),

where we used the triangular inequality and the jump relations (4.6). □

Proposition A.2. Assume that either Ω ⊂ Rd is bounded or Rd \ Ω is bounded. Then for all
u ∈ H(∂Ω), we have Im{[AΩ

κ (u), u]∂Ω} ≥ 0.

Proof. Assume first that Rd \ Ω is bounded, pick an arbitrary u ∈ H(∂Ω) and set ψ(x) :=
GΩ
κ (u)(x). We have [γΩ(ψ)] = u according to the jump formula (4.6) and, on the other hand,

{γΩ(ψ)} = AΩ
κ (u) according to definition (4.9). As a consequence, developing the expression

2[AΩ
κ (u), u]∂Ω = [γΩ(ψ) + γΩc (ψ), γ

Ω(ψ)− γΩc (ψ)]∂Ω, yields

(A.1)

2[AΩ
κ (u), u]∂Ω = [γΩ(ψ), γΩ(ψ)]∂Ω − [γΩc (ψ), γ

Ω
c (ψ)]∂Ω

+ [γΩc (ψ), γ
Ω(ψ)]∂Ω − [γΩ(ψ), γΩc (ψ)]∂Ω

= [γΩ(ψ), γΩ(ψ)]∂Ω − [γΩc (ψ), γ
Ω
c (ψ)]∂Ω

+ 2Re{[γΩc (ψ), γΩ(ψ)]∂Ω}.

Next observe that each of the first two terms in the right-hand side above takes the form [v, v]∂Ω
and satisfies [v, v]∂Ω = [v, v]∂Ω = −[v, v]∂Ω which means that they are pure imaginary numbers,
i.e. ı[v, v]∂Ω ∈ R. As a consequence

(A.2) 2ı Im{[AΩ
κ (u), u]∂Ω} = +[γΩ(ψ), γΩ(ψ)]∂Ω − [γΩc (ψ), γ

Ω
c (ψ)]∂Ω.

We examine each term in the right-hand side of this identity. Both ψ and ψ satisfy a homogeneous
Helmholtz equation in Rd \ Ω and, since it is a bounded domain, we can apply Green’s formula
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in Rd \ Ω. This implies that the second term in the right-hand side of (A.2) vanishes:

[γΩc (ψ), γ
Ω
c (ψ)]∂Ω =

∫
∂Ω
γΩd,c(ψ)γ

Ω
n,c(ψ)− γΩn,c(ψ)γ

Ω
d,c(ψ)dσ

=

∫
Rd\Ω

ψ(∆ψ + κ2ψ)− ψ(∆ψ + κ2ψ) dx = 0.

To study the first term in (A.2) choose ρ > 0 large enough to have Rd \Ω ⊂ Bρ, where Bρ is the
open ball of center 0 and radius ρ. Applying Green’s formula in Ω ∩ Bρ gives

[γΩ(ψ), γΩ(ψ)]∂Ω =

∫
∂Ω
γΩd (ψ)γ

Ω
n (ψ)− γΩn (ψ)γ

Ω
d (ψ) dσ

=

∫
Ω∩Bρ

ψ(∆ψ + κ2ψ)− ψ(∆ψ + κ2ψ) dx +

∫
∂Bρ

ψ∂ρψ − ψ∂ρψ dσρ

where ∂ρψ is the Neumann trace on ∂Bρ and dσρ is the surface measure on ∂Bρ. The volume
terms vanish because ∆ψ + κ2ψ = 0 in Ω. Multiplying this identity by −ıκ then leads to

−ıκ[γΩ(ψ), γΩ(ψ)]∂Ω =

∫
∂Bρ

ıκψ ∂ρψ + ıκψ ∂ρψ dσρ = 2Re{
∫
∂Bρ

ıκψ ∂ρψ dσ}

= −
∫
∂Bρ

|∂ρψ − iκψ|2dσ +

∫
∂Bρ

|∂ρψ|2 + κ2|ψ|2dσ

≥ −
∫
∂Bρ

|∂ρψ − iκψ|2dσ.

Since this inequality must hold for any ρ > 0 large enough, we can pass to the limit ρ → +∞
and, by the Sommerfeld radiation condition satisfied by ψ = GΩ

κ (u), we finally conclude that
Im{[AΩ

κ (u), u]∂Ω} = −ı[γΩ(ψ), γΩ(ψ)]∂Ω/2 ∈ [0,+∞).
To conclude the proof, let us consider the case where Ω is bounded, and denote Ωc := Rd \Ω.

Because nΩc = −nΩ, we conclude that γΩc
= −θ ◦ γΩc , γΩc

c = −θ ◦ γΩ, and GΩc

κ = GΩ
κ ◦ θ, and

hence AΩ
κ = −θ ◦ AΩc

κ ◦ θ. The domain Ωc is unbounded, so we can apply the first part of the
present proof, which finally yields

Im{[AΩ
κ (u), u]∂Ω} = − Im{[θ ◦ AΩc

κ ◦ θ(u), u]∂Ω} = +Im{[AΩc

κ ◦ θ(u), θ(u)]∂Ω} ≥ 0.

□
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