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Some Bourgain-Brézis type solutions via
complex interpolation

Eduard Curcă *

May 30, 2023

Abstract

In 2002 Bourgain and Brézis proved that given a vector field v ∈ S ′(Rd) ∩ Ẇ 1,d(Rd)
there exists a vector field u ∈ L∞(Rd) ∩ Ẇ 1,d(Rd) such that div u = div v. We prove several
results of a similar nature in which we take into consideration the Fourier support of the
solutions. For instance, in the case d ≥ 3 we prove the following: for any vector field

v ∈ S ′(Rd)∩ Ḃd/p,p
q (Rd) (where p ∈ [2,∞) and q ∈ (1, 2)), with supp v̂ ⊆ Rd\(−∞, 0)d, there

exists a vector field u ∈ L∞(Rd) ∩ Ḃd/p,p
2 (Rd), with supp v̂ ⊆ Rd\(−∞, 0)d, such that

div u = div v,

and
‖u‖

L∞∩Ḃd/p,p2

. ‖v‖
Ḃ
d/p,p
q

.

Our arguments rely on a version of the complex interpolation method combined
with some ideas of Bourgain and Brézis.
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1 Introduction

1.1 Overview

Suppose d ≥ 2 is an integer and consider some compactly supported function f ∈ Ld
(
Rd
)
.

Standard Calderón-Zygmund theory shows that there exists a vector field u ∈ S ′(Rd)∩ Ẇ 1,d
(
Rd
)

such that
div u = f, (1)

in the distributions sense on Rd. Indeed, it sufices to set

u := ∇|∇|−2f, (2)

and to use the fact that the components of ∇u are of the form RiRju where R1, ..., Rd are the

Riesz transforms on Rd (R̂jϕ(ξ) = (ξj/ |ξ|)ϕ̂(ξ), for any Schwartz ϕ). Since each Rj is a Calderón-
Zygmund operator, we easily get that each component of ∇u belongs to Ld(Rd).

Note that the space Ẇ 1,d does not embed in L∞ and hence, the solution in Ẇ 1,d provided by
the expression (2) may fall outside L∞ (see for instance the example given by L. Nirenberg in
[5, Remark 7, p. 400]). However, as it was shown1 by Bourgain and Brézis (2002), the fact that
(1) admits a (possibly another) solution u ∈ L∞(Rd) is a direct consequence of the Gagliardo
embedding (W 1,1(Rd) ↪→ Ld

′
(Rd), where d′ := d/(d− 1)) (see [5, Proposition 1]).

Even more, Bourgain and Brézis have proved in [5, Theorem 1] the following striking fact:
there exists a solution u to (1) that is simultaneously bounded and in the “right” Sobolev space
Ẇ 1,d(Rd). In other words, there exists a vector field u ∈ L∞(Rd)∩Ẇ 1,d(Rd) which is a solution to
(1). In the general case where d ≥ 2, this result was proved by an involved approximation argu-
ment using the Littlewood-Paley square function. We mention that the complicated construction
used in [5] can also be used in more general situations. By similar constructive methods, Bour-
gain and Brézis proved an analogue existence result for more general underdeterminated Hodge

Keywords: Bourgain-Brézis solutions, Fourier multipliers, Divergence equation.
MSC 2020 classification: 42B15, 42B35, 46B70

1The results of Bourgain and Brézis were stated in the case of the torus Td, however, it is easy to transfer these
results on Rd.
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systems. Following the ideas in [5] and [6], Bousquet, Mironescu and Russ ([7], 2014) and later
Bousquet, Russ, Wang and Yung ([8], 2017) provided generalizations of the Bourgain-Brézis re-
sults in the scale of Triebel-Lizorkin spaces. For instance, adapted to the case of the divergence
equation, Theorem 2 in [8] gives us:

Theorem 1. Suppose that 1 < p, q <∞ and consider some vector field v ∈ S ′(Rd) ∩ Ḟ d/p,p
q (Rd).

Then, there exists a vector field u ∈ L∞(Rd) ∩ Ḟ d/p,p
q (Rd) such that

div u = div v,

and
‖u‖

L∞∩Ḟ d/p,pq
. ‖v‖

Ḟ
d/p,p
q

.

Remark 2. Note that by Calderón-Zygmund theory any (compactly supported) f ∈ Ḟ d/p−1,p
q (Rd)

can be written as the divergence of the vector field v = ∇ |∇|−2 f ∈ Ḟ
d/p,p
q (Rd). Hence, since

Ḟ 1,d
2 = Ẇ 1,d, when p = d and q = 2, from Theorem 1 above we recover the result of Bourgain and

Brézis.

A similar existence result holds for the scale of Besov spaces, the proof being technically the
same as for Theorem 1. Since in this paper we are concerned more with the Besov version, we
explicitely state it below:

Theorem 3. Suppose that 1 < p, q <∞ and consider some vector field v ∈ S ′(Rd) ∩ Ḃd/p,p
q (Rd).

Then, there exists a vector field u ∈ L∞(Rd) ∩ Ḃd/p,p
q (Rd) that satisfies

div u = div v,

and such that
‖u‖

L∞∩Ḃd/p,pq
. ‖v‖

Ḃ
d/p,p
q

.

Remark 4. Throughout the paper we will call the given vector v the source and u will be called
solution. A similar convention will also be applied to more general equations.

It is worth noticing that in the special case where d = 2 (and hence, p = 2) Bourgain and
Brézis have found a much simpler proof of their existence result (see [5, Section 4, p. 403]). In
this case the proof is by duality and it is nonconstructive. Also, by similar methods, a proof
was found by Mazya (2007) for the case p = q = 2 of Theorem 1 (or equivalently of Theorem 3)
(see [16]). Again, the proof is by duality and strikingly simple. (See also [17] for some related
discussions.) However, both approaches, namely that of Bourgain and Brézis in the case d = 2
and that of Mazya are based on L2-Fourier analysis arguments that are unlikely to be extended
to the case where p 6= 2.

There is yet another situation of a different nature:

Proposition 5. Let d ≥ 2 be an integer and consider some r ∈ (1,∞). Then, for any vector

field v ∈ Ḃd/r,r
1 (Rd) there exists a vector field u ∈ L∞(Rd) ∩ Ḃd/r,r

1 (Rd) such that

div u = div v,

and
‖u‖

L∞∩Ḃd/r,r1
. ‖v‖

Ḃ
d/r,r
1

.

Indeed, since Ḃ
d/r,r
1 (Rd) ↪→ L∞(Rd) ∩ Ḃd/r,r

1 (Rd), it suffices to set u := v (see subsection 2.1

for the definition of Ḃ
d/r,r
1 (Rd) we use in this paper). Since Proposition 5 and Theorem 3 have

much easier proofs than the constructive proof used in [5] and in [7], it would be interesting to
find a way to “interpolate” between Proposition 5 and Theorem 3.
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1.2 A naive interpolation strategy

One may try to interpolate in the following way. By the closed range theorem and the lifting
property of the Besov spaces we can reformulate Proposition 5 and Theorem 3

‖g‖
Ḃ
−d/r+1,r′
∞

∼ ‖∇g‖
Ḃ
−d/r,r′
∞

. ‖∇g‖
L1+Ḃ

−d/r,r′
∞

, (3)

and respectively,
‖g‖Ẇ−d/2,2 ∼ ‖∇g‖Ẇ−d/2,2 . ‖∇g‖L1+Ẇ−d/2,2 , (4)

for any Schwartz function g with ĝ vanishing in a neighborhood of 0.

For each Banach function space Y on Rd denote by G(Y ) the space of all vector fields in Y
that are gradients, i.e.,

G(Y ) := {g ∈ Y | curl g = 0} .

With this notation one can view (3) and (4) as the embeddings

G(L1 + Ḃ−d/r,r
′

∞ ) ↪→ Ḃ−d/r+1,r′

∞ ,

and respectively,
G(L1 + Ẇ−d/2,2) ↪→ Ẇ−d/2+1,2.

By complex interpolation (we may consider the real interpolation as well), we conclude that,
for any θ ∈ (0, 1),

(G(L1 + Ḃ−d/r,r
′

∞ ),G(L1 + Ẇ−d/2,2))θ ↪→ (Ḃ−d/r+1,r′

∞ , Ẇ−d/2+1,2)θ. (5)

The right hand side of (5) can be easily computed explicitly (see for instance [2, Chapter 6]):

(Ḃ−d/r+1,r′

∞ , Ẇ−d/2+1,2)θ = Ḃ
−d/p+1,p′

q′ ,

where 1/p = (1− θ)/r + θ/2 and 1/q = (1− θ)/1 + θ/2. Now we would like to have

G(L1 + Ḃ
−d/p,p′
q′ ) ↪→ (G(L1 + Ḃ−d/r,r

′

∞ ),G(L1 + Ẇ−d/2,2))θ, (6)

and combining this with (5), we would get via the closed range theorem the fact that for any

vector field v ∈ Ḃd/p,p
q (Rd) there exists another vector field u ∈ L∞(Rd) ∩ Ḃd/p,p

q (Rd) of the same
divergence as v. However, computing explicitly the left hand side of (5) or proving (6) only by
interpolation theory is a quite difficult task. Naively we may have the following strategy for

proving (6). We can observe that, since we have the embeddings L1, Ḃ
−d/r,r′
∞ ↪→ L1 + Ḃ

−d/r,r′
∞ and

L1, Ẇ−d/2,2 ↪→ L1 + Ẇ−d/2,2, we can conclude by interpolation that

L1, Ḃ
−d/p,p′
q′ ↪→ (L1 + Ḃ−d/r,r

′

∞ , L1 + Ẇ−d/2,2)θ

or equivalently

L1 + Ḃ
−d/p,p′
q′ ↪→ (L1 + Ḃ−d/r,r

′

∞ , L1 + Ẇ−d/2,2)θ.

Consequently,

G(L1 + Ḃ
−d/p,p′
q′ ) ↪→ G(L1 + Ḃ−d/r,r

′

∞ , L1 + Ẇ
−d/2,2
θ ).

Hence, in order to obtain (6) it would be sufficient to have

G((L1 + Ḃ−d/r,r
′

∞ , L1 + Ẇ−d/2,2)θ) ↪→ (G(L1 + Ḃ−d/r,r
′

∞ ),G(L1 + Ẇ−d/2,2))θ,
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or, equivalently, since the other embedding is trivial,

G((L1 + Ḃ−d/r,r
′

∞ , L1 + Ẇ−d/2,2)θ) = (G(L1 + Ḃ−d/r,r
′

∞ ),G(L1 + Ẇ−d/2,2))θ. (7)

We can further reformulate this fact as

N ∩ (Y0, Y1)θ = (N ∩ Y0,N ∩ Y1)θ , (8)

where Y0 = L1 + Ḃ
−d/r,r′
∞ , Y1 = L1 + Ẇ−d/2,2 and N is the spaces of the fields in Y0 + Y1 that

are gradients, i.e, N := G(Y0 + Y1). The difficulty of proving (7) consists in the fact that, for the
general situation when Y0, Y1, N are Banach spaces the question whether or not (8) holds does
not have yet a satisfactory answer. If we replace the complex interpolation method in (8) with
the real K-method of interpolation, then, (8) may be false for some particular choice of the spaces
Y0, Y1, N (see for instance [15]). In the case of the complex interpolation method it seems that
even less is known when (8) is valid.

This naive interpolation strategy seems inappropriate to prove (6) or even a weaker statement
like

G(L1 + Ḃ
−d/p,p′
1 ) ↪→ (G(L1 + Ḃ−d/r,r

′

∞ ),G(L1 + Ẇ−d/2,2))θ,

which corresponds to the following existence result:

Proposition 6. Let d ≥ 2 be an integer and consider some parameters p ∈ (2,∞) and q ∈ (1, 2).

Then, for any vector field v ∈ S ′(Rd)∩Ḃd/p,p
q (Rd) there exists a vector field u ∈ L∞(Rd)∩Ḃd/p,p

∞ (Rd)
such that

div u = div v,

and
‖u‖

L∞∩Ḃd/p,p∞
. ‖v‖

Ḃ
d/p,p
q

.

1.3 The main results

In this paper we take into consideration the spectrum of solutions. In what follows, the spectrum
of a tempered distribution v is its Fourier support, i.e., spec(v) := supp 4̂v (see Remark 14 for a
more general definition). Adapted to the case of the divergence equation, our main result reads:

Theorem 7. Let d ≥ 3 be an integer and consider the set ∆ := Rd\(−∞, 0)d. Consider some

parameters p ∈ [2,∞) and q ∈ (1, 2). Then, for any vector field v ∈ S ′(Rd) ∩ Ḃd/p,p
q (Rd), with

spec(v) ⊆ ∆ there exists a vector field u ∈ L∞(Rd) ∩ Ḃd/p,p
2 (Rd), with spec(u) ⊆ ∆ such that

div u = div v, (9)

and
‖u‖

L∞∩Ḃd/p,p2
. ‖v‖

Ḃ
d/p,p
q

.

In the case where d = 2 our method does not provide solutions with the spectrum in ∆.
Nevertheless, one can obtain solutions with the spectrum in a different type of sets. For each
δ ∈ (0, π/4) let Cδ be the symmetric cone

Cδ := {(ξ1, ξ2) ∈ R2 | |ξ1| ≤ (tan δ) |ξ2|}.

With this notation we have:
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Theorem 8. Consider the numbers δ ∈ (0, π/8), ε ∈ (0, 1] and some parameters p ∈ [2,∞) and

q ∈ (1, 2). Then, for any vector field v ∈ S ′(R2) ∩ Ḃ2/p,p
q (R2), with spec(v) ⊆ Cδ, there exists a

vector field u ∈ L∞(R2) ∩ Ḃ2/p,p
2 (R2), with spec(u) ⊆ C(1+ε)δ, such that

div u = div v,

and
‖u‖

L∞∩Ḃ2/p,p
2
. ‖v‖

Ḃ
2/p,p
q

.

When compared with Theorem 3 one can observe that Theorem 7 (or Theorem 8) has two
major drawbacks. First, we are not alowed to take p < 2 or q ≥ 2 as parameters for the space
Ḃ
d/p,p
q on the source side. Secondly, for the space in which we obtain the solution we lose some

control of the “third parameter”. In other words, we would prefer to obtain L∞ ∩ Ḃd/p,p
q for the

solution space instead of L∞ ∩ Ḃd/p,p
2 which is a slighlty larger space. (See however, Lemma 35

for a “perfect” version of our results in the case p = q = 2.) On the other hand it is unlikely that

one can deduce Theorem 7 directly from Theorem 3. Indeed, given a vector field v ∈ Ḃd/p,p
q , with

spec(v) ⊆ ∆, by Theorem 3 one can find some vector field u ∈ L∞∩Ḃd/p,p
q such that div u = div v,

however, not necessarly with spec(u) ⊆ ∆. It is not obvious that one can obtain a solution u with
spec(u) ⊆ ∆ by direct methods: suppose P∆ is the Fourier projection on ∆, i.e., P∆ = I − P+,
where P+ is the Riesz projection and I is the identity operator. We have P∆v = v and we can
write

divP∆u = div v.

However, since PD is not bounded on L∞, we may not have P∆u ∈ L∞, i.e., P∆u is not
in general a candidate for a solution. The same observation applies to or Theorem 8. To our
knowledge, except for the method we give in this paper, there is no other method in the literature
able to prove results like Theorem 7 or Theorem 8.

In fact, when d ≥ 3, we will prove a more general result than Theorem 7. Our methods alow
us to work with more general Fourier multipliers than the usual derivatives. In order to formulate
our result we first need some preparations.

Let σ ∈ C2(Rd,R) be a function. We consider the following properties (that may or not be
satisfied by σ):

(P1) The function σ satisfies the estimate

|∇ασ(ξ)| . |ξ|1−|α| ,

on Rd, for any multiindex α ∈ Nd with |α| ≤ 2;

(P2) The function σ is odd in the variable ξ1 and even in any other variable, i.e.,

σ(ε1ξ1, ε2ξ2, ..., εdξd) = ε1σ(ξ1, ξ2, ..., ξd),

on Rd, for any signs ε1, ..., εd ∈ {−1, 1}.

Introduce the new functions σ1, ..., σd defined by

σj(ξ1, ξ2, ..., ξd) := σ(ξj, ξ2, ...ξj−1, ξ1, ξj+1..., ξd),
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on Rd, for any index j ∈ {1, 2, ..., d}.

Consider some half-spaces D1, ..., Dd ⊂ Rd and a family of functions G1, ..., Gd : Rd → Rd−1.
We say that the function Gj is adapted to the half-space Dj if there exists a rotation R on Rd

(depending on j) and a function σ : Rd → R (depending on j) satisfying (P1), (P2) such that
Dj = R(U), where U := Rd−1 × (0,∞), and

Gj = (σ1 ◦R, ..., σd−1 ◦R).

We say that the family of functions G1, ..., Gd : Rd → Rd−1 is adapted to the family of half-
spaces D1, ..., Dd ⊂ Rd, if for each j ∈ {1, ..., d} the function Gj is adapted to Dj and

d∑
j=1

|Gj(ξ)|1Dj(ξ) ∼ |ξ|1D(ξ), (10)

on Rd, where D := ∪dj=1Dj.

Let us recall now some standard notation concerning the Fourier multipliers. To a scalar
valued function m ∈ L1

loc(Rd\{0},R) we associate the Fourier multiplier m(∇) defined by the
relation

m̂(∇)f(ξ) := m(ξ)f̂(ξ),

on Rd, for any Schwartz function f whose Fourier transform f̂ is compactly supported and vanish-
ing in a neighborhood of 0. In most of the cases one can extend the meaning of m(∇) as follows.

Let us denote by Sc,] the space of all Schwartz function f whose Fourier transform f̂ is compactly
supported and vanishing in a neighborhood of 0. Suppose E and F are some Banach function
spaces on Rd such that Sc,] is dense in E and

‖m(∇)f‖F . ‖f‖E,

for any f ∈ Sc,]. Then, by linearity and density m(∇) can be uniquely extended to a bounded
operator m(∇) : E → F (see also Remark 13). We will often say that m is the symbol of the
Fourier multiplier m(∇).

To a vector valued function G : Rd → Rd−1, with G = (G1, ..., Gd−1), where G1, ..., Gd−1 : Rd →
R are scalar functions of polynomial growth, we associate the vector-valued Fourier multiplier

G(∇) := (G1(∇), ..., Gd−1(∇)).

In other words, if f ∈ Sc,], by G(∇)f we mean

G(∇)f := (G1(∇)f, ..., Gd−1(∇)f).

Suppose u1, ..., ud−1 ∈ Sc,] and let u be the (d−1)-vector field2 u := (u1, ..., ud−1). By G(∇) ·u
we mean

G(∇) · u := G1(∇)u1 + ...+Gd−1(∇)ud−1.

Now we can formulate our generalisation of Theorem 7.

2In this paper the distributions with d− 1 components will be called (d− 1)-vector fields.
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Theorem 9. Let d ≥ 3 be an integer and consider some parameters p ∈ [2,∞) and q ∈ (1, 2).
Suppose that the family of functions G1, ..., Gd : Rd → Rd−1 is adapted to the family of half-spaces
D1, ..., Dd ⊂ Rd.

Then, for any system of (d − 1)-vector fields (vj)j=1,..,d with vj ∈ S ′(Rd) ∩ Ḃd/p,p
q (Rd) and

spec(vj) ⊆ Dj, there exists a system of (d − 1)-vector fields (uj)j=1,..,d, with uj ∈ L∞(Rd) ∩
Ḃ
d/p,p
2 (Rd) and spec(uj) ⊆ Dj, such that

d∑
j=1

Gj (∇) · uj =
d∑
j=1

Gj (∇) · vj, (11)

and
d∑
j=1

‖uj‖L∞∩Ḃd/p,p2
.

d∑
j=1

‖vj‖Ḃd/p,pq
.

In this paper equations such as (9) or (11) will be called divergence-like equations.

In subsection 5.1 we will see that Theorem 9 easily implies Theorem 7.

1.4 About the proofs

Our proofs of Theorem 9, Theorem 7 and Theorem 8 are based on two ingredients:

1. The W-method of interpolation. This is the key method that we are using throughout
the paper. Let (A0, A1) and (B0, B1) be Banach couples and T : A0 + A1 → B0 + B1 be a linear
operator such that T (Bj) ↪→ T (Aj), for any j = 0, 1. Suppose we want to see under which
conditions on the spaces involved and the operator T we have

T
(
F 1
θ (B0, B1)

)
↪→ T

(
F 2
θ (A0, A1)

)
, (12)

for some θ-interpolation functors F 1
θ , F 2

θ . One can say that, in some sense, we “interpolate”
linear equations or that we preserve some form of surjectivity of the operator T . In order to
give reasonable sufficient conditions for (12) to hold for some convenient interpolation functors
we introduce a variant of the complex interpolation method which will be called the W-method3.
In our case F 1

θ will be given by the usual complex method of interpolation and F 2
θ will be given

by our W-method. Roughly speaking this method consists in the following. Suppose (A0, A1) is
a compatible couple of Banach spaces. In order to define the interpolation space of the couple
(A0, A1) via the W-method we use the three lines lemma on the strip as in the standard complex
method of interpolation. However, instead of quantifying the endpoint regularity of the analytic
functions involved via the norms L∞(R, Aj) (j = 0, 1) we use slightly more complicated quantities
that depend on some prescribed pair of Banach spaces (X0, X1). In this way, for each θ ∈ (0, 1),
we obtain an interpolation space that will be denoted by (A0, X0 | A1, X1)θ. The efficiency of the
W-method relies (between other facts) on properly choosing the spaces X0, X1.

When the spaces Xj have the UMD property, under some additional embedding assumptions
concerning the Banach spaces involved, theW-method of interpolation preserves the “surjectivity”
of operators (i.e., (12) holds). The main requirements for applying the W-method are twofold:

(i) On one hand one needs to verify some embedding conditions for the domains and the
co-domains of the operator. We give some simple necessary conditions that are easy to
formulate, however not sharp. We also mention that, in the absence of any such conditions,
it is not possible to preserve surjectivity (see the examples in the second part of subsection
3.3).

3Here, “W” stands for “weak”.
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(ii) On the other hand explicitly computing the space (A0, X0 | A1, X1)θ seems to be difficult in
practice. However, there are particular situations in which we can embed (A0, X0 | A1, X1)θ
in some convenient space. More precisely, when Aj are of the form Aj = A ∩Xj, for some
Banach space A, we have

(A0, X0 | A1, X1)θ = (A ∩X0, X0 | A ∩X1, X1)θ ↪→ A ∩ (X0, X1)θ .

For instance, when we have X0 = Ḃ
d/r,r
2 , X1 = Ḃ

d/2,2
2 and A = L∞, the above embedding

becomes

(L∞ ∩ Ḃd/r,r
2 , Ḃ

d/p,p
2 | L∞ ∩ Ḃd/2,2

2 , Ḃ
d/2,2
2 )θ ↪→ L∞ ∩ (Ḃ

d/r,r
2 , Ḃ

d/2,2
2 )θ.

By using only the result of Mazya (Theorem 3 in the case p = q = 2) and the W-method

together with the embedding Ḃ
d/p,p
1 (Rd) ↪→ L∞(Rd) we easily obtain the following:

Theorem 10. Let d ≥ 2 be an integer and consider some parameters p ∈ [2,∞) and q ∈ (1, 2).

Then, for any vector field v ∈ S ′(Rd)∩Ḃd/p,p
q (Rd) there exists a vector field u ∈ L∞(Rd)∩Ḃd/p,p

2 (Rd)
such that

div u = div v,

and
‖u‖

L∞∩Ḃd/p,p2
. ‖v‖

Ḃ
d/p,p
q

.

One can even obtain an analogue of Theorem 10 for a class of Lorentz-Sobolev spaces (for
definitions see subsection 2.2). Namely, by using only the result of Mazya and the W-method,
together with some standard facts in the theory of Lorentz spaces, we easily obtain the following:

Theorem 11. Let d ≥ 2 be an integer and consider some parameters p ∈ [2,∞) and q ∈ (1, 2).
Then, for any vector field v ∈ S ′(Rd) ∩ Ẇ d/pLp,3/2(Rd) there exists a vector field u ∈ L∞(Rd) ∩
Ẇ d/pLp,2(Rd) such that

div u = div v,

and
‖u‖L∞∩Ẇ d/pLp,2 . ‖v‖Ẇ d/pLp,q .

The conditions p ≥ 2 and q < 2 in Theorem 10, Theorem 11, as well as in Theorem 7 and
Theorem 9, are induced by some technical limitations of the W-method (see subsection 5.2).

2. The Bourgain-Brézis technique. In [5, Section 4, p. 403] Bourgain and Brézis proved
the torus analogue of Theorem 3 in the case where p = q = d = 2. They conluded the existence
of solutions for the divergence equation by duality. Namely, they proved that (see [5, Lemma 2,
p. 403])

‖u‖L2(T2) . ‖∇u‖L1(T2)+W−1,2(T2) , (13)

for any u ∈ L1(T2), with û(0) = 0. In order to obtain this, they used the following key estimate
(see [5, (4.20), p. 405]): ∣∣∣∣∣∣

∑
n∈Z2\{0}

n1n2

|n|4
sinn1θ1 sinn2θ2

∣∣∣∣∣∣ ≤ C,

uniformly in θ1, θ2 ∈ T, for some numerical constant C > 0. By convexity this allows us to write∣∣∣∣∣∣
∑

n∈Z2\{0}

n1n2

|n|4
F̂1(n)F̂2(n)

∣∣∣∣∣∣ ≤ C ‖F1‖L1(T2) ‖F2‖L1(T2) ,
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for any F1, F2 ∈ L1(T2). Thanks to this bilinear estimate, after decomposing ∇u in the space
L1(T2) +W−1,2(T2), we can deal with the space L1(T2) in (13).

We use the technique introduced by Bourgain and Brézis in [5, Section 4, p. 403] and we prove
a version of Theorem 9 (and Theorem 8) in the case where the source space is Ẇ d/2,2. As we
will see, thanks to this technique we are able to work with more general Fourier multipliers than
derivatives. Also, it is this technique that allows us to gain some control on the Fourier spectrum
of solutions. The results obtained by this method are “perfect” in the sense that that the source
space is Ẇ d/2,2 and the solution space is L∞ ∩ Ẇ d/2,2; there is no loss of regularity in the third
parameter. The drawback of this technique is the fact that it does not apply to the case where
p 6= 2.

As in the case of Theorem 10, we can easily obtain Theorem 9 using theW-method. This time
however, insted of using Mazya’s result we use the more general results that we obtain via the
Bourgain-Brézis technique. Using the properties of Lorentz spaces we can give a Lorentz-Sobolev
version of Theorem 9. In fact, our methods will provide more general results. On one hand the
function spaces we work with can be more general than those in the statements of our final results
(see for instance Theorem 37). One the other hand, the conditions imposed on Fourier multipliers
and the Fourier spectrum of the solutions can be more general. Also, by using the technique
of Mazya, one can easily obtain a version of Theorem 3 in the case p = q = 2 that concerns
general Hodge systems. Combining this result with the W-method one can obtain an analogue
of Theorem 10 for Hodge systems. We will not consider however, such issues here. In this paper,
we limit ourselves to some model situations that are easier to describe.

Notation. Throughout the paper we use mainly standard notation. For instance, we often
use the symbols . and ∼. For two nonnegative variable quantities a and b we write a . b if
there exists a constant C > 0 such that a ≤ Cb. If a . b and b . a, then we write a ∼ b. For
simplicity we denote by spec(f) the Fourier spectrum of a tempered distribution f ; in other words,

spec(f) = supp f̂ . Everywhere in this paper S ′(Rd) is the space of tempered distributions. When
X is a function space on Rd and u = (u1, ..., ud) is a vector filed on Rd where each uj belongs to
X, we write u ∈ X instead of u ∈ Xd. A similar convention will be made for the (d − 1)-vector
fields. Other notation will be introduced when needed.

2 Function spaces

In this section we quickly recall the definition and some properties of some standard function
spaces.

2.1 Sobolev and Besov spaces

Let S] be the space of all Schwartz functions f on Rd such that f̂ vanishes in a neighborhood of
0. When 1 < p < ∞ and α ∈ R the homogeneous space Ẇα,p(Rd) is obtained by completion of
S] under the norm

‖f‖Ẇα,p := ‖|∇|α f‖Lp .

We can see that we can also define the above homogeneous spaces Ẇα,p by completion of the
the normed function spaces Ẇα,p

c (Rd). Here, Ẇα,p
c (Rd) is the space of all the compactly supported

functions whose Ẇα,p-norm is finite. The spaces Ẇα,p as defined here are complete.

We continue by briefly recalling the definition of the Besov spaces (we do not define here the
Triebel-Lizorkin spaces; see [24] for details). Consider a radial function Φ ∈ C∞c (Rd) such that
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supp Φ ⊂ B(0, 2) and Φ ≡ 1 on B(0, 1). For k ∈ Z we define the operators Pk, acting on the
space of tempered distributions on Rd, by the relation

P̂kf (ξ) :=

(
Φ

(
ξ

2k

)
− Φ

(
ξ

2k−1

))
f̂ (ξ) , (14)

for any Schwartz function f on Rd. The operators Pk will be called Littlewood-Paley “projections”
adapted to Rd. For any Schwartz function f we have that

f =
∑
k∈Z

Pkf ,

in the sense of tempered distributions. The homogeneous Besov space Ḃα,p
q (Rd) (with 1 ≤ p, q ≤ ∞

and α a real number) is obtained by completion of S] under the norm

‖f‖Ḃα,pq
:=

(∑
j∈Z

2αkq ‖Pkf‖qLp

)1/q

.

We have Ḃα,2
2 (Rd) = Ẇα,2(Rd) with equivalent norms.

The main advantage of our definition of the homogeneous Besov spaces is the fact that, when-
ever α0 − d/p0 = α1 − d/p1 and α1 > α0 we have the embedding

Ḃα1,p1
q1

(Rd) ↪→ Ḃα0,p0
q0

(Rd), (15)

for any q0, q1 ∈ [1,∞) with q0 ≤ q1.

Note that we have the following dilation properties:

‖f(λ·)‖Ḃα,pq
∼ λα−d/p ‖f‖Ḃα,pq

, (16)

for any f ∈ Ḃα,p
q (Rd) respectively and any λ > 0. In particular, when α = d/p the spaces Ḃα,p

q

have the same scaling property as L∞. In what follows the spaces of the form Ḃ
d/p,p
q will be called

critical. It is worth recalling here, that, by a direct application of the Bernstein inequalities we
get the embedding Ḃ

d/p,p
1 (Rd) ↪→ L∞(Rd). When q > 1 the critical spaces Ḃ

d/p,p
q do not embed in

L∞.

Remark 12. Note that the spaces Ḃ
d/p,p
q (with q > 1) as defined here contain elements that are

not tempered distributions. However, when α < d/p the elements of the space Ḃα,p
q are all tempered

distributions (see for instance [1, Remark 2.26, p. 68] or [3]).

Remark 13. Since the operator div : S]∩Ḃd/p,p
q → Ḃ

d/p−1,p
q is linear and bounded (here, S]∩Ḃd/p,p

q

is endowed with the norm induced by Ḃ
d/p,p
q ), by density of S]∩ Ḃd/p,p

q in Ḃ
d/p,p
q it extends uniquely

to an operator div : Ḃ
d/p,p
q → Ḃ

d/p−1,p
q . Similar facts hold for other spaces and other operators.

In this way we can remove from the hypotheses of Theorem 7, Theorem 8 and Theorem 9 the fact
that the source v belongs to S ′. For instance (9) will be understood as an equality of two elements

in Ḃ
d/p−1,p
2 . This formulation is the one that we prefer throughout the paper.

Remark 14. One can define the spectrum of an element v ∈ Ḃd/p,p
q in the following way. Note

that the operator 4 : S]∩ Ḃd/p,p
q → Ḃ

d/p−2,p
q is linear and bounded. Hence, by density of S]∩ Ḃd/p,p

q

in Ḃ
d/p,p
q it extends uniquely to an operator 4 : Ḃ

d/p,p
q → Ḃ

d/p−2,p
q . According to Remark 12

all the elements of Ḃ
d/p−2,p
q are tempered distributions. Now, if v ∈ Ḃd/p,p

q , then 4v ∈ Ḃd/p−2,p
q

is a tempered distribution and we can define the spectrum of v as spec(v) := supp 4̂v. This
observation will be applied for other function spaces as well.

It is easy to see that any space of the form Ḃα,p
q with p, q ∈ (1,∞) is embedded in lαq (Lp) and

hence it has the UMD property (see for instance [20]).
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2.2 Lorentz-Sobolev spaces

Consider4 some parameters p ∈ (1,∞), q ∈ [1,∞] and α ≥ 0. The homogeneous Lorentz-Sobolev
spaces ẆαLp,q(Rd) is the completion of the normed space of Schwartz functions f on Rd under
the norm

‖f‖ẆαLp,q := ‖|∇|αf‖Lp,q ,
where Lp,q is the usual Lorentz space of parameters p and q.

Remark 15. One can easily adapt the Remarks 12, 13 and 14 to the case of the Lorentz-Sobolev
spaces.

Many of the embedding properties of the Besov and Triebel-Lizorkin spaces hold for the Lorentz-
Sobolev spaces (see for instance [23] for detailes). We mention below some properties of Lorentz-
Sobolev spaces that will be needed in the proof of Theorem 11. All of them are direct consequences
of well-known facts from the theory of Lorentz spaces.

Lemma 16. For any r ∈ [2,∞), we have that

Ẇ d/2,2(Rd) ↪→ Ẇ d/rLr,2(Rd).

Proof. It is a consequence of the improved Sobolev embedding (see for instance [26, Theorem
2.10.2, p. 98]) that

‖f‖Lr,2 .
∥∥∥|∇|d(1/2−1/r) f

∥∥∥
L2
,

for any Schwartz function f on Rd. This can be rewritten as

‖f‖Ẇ d/rLr,2 =
∥∥∥|∇|d/r f∥∥∥

Lr,2
.
∥∥∥|∇|d/2 f∥∥∥

L2
= ‖f‖Ẇ d/2,2 ,

obtaining that Ẇ d/2,2 ↪→ Ẇ d/rLr,2. �

Lemma 17. For any r ∈ (1,∞), we have that

Ẇ d/rLr,1(Rd) ↪→ L∞(Rd).

Proof. For any Schwartz function f on Rd we have that∥∥Id/r ∗ f∥∥L∞ . ‖f‖Lr,1 , (17)

where Id/r(x) = |x|d/p−d = |x|−d/p
′
, for any x ∈ Rd. Indeed, using [13, Theorem 1.4.17 (v), p. 52],

we have ∫
Rd

f(y)

|x− y|d/r′
dy ≤

∥∥Id/r∥∥(Lr,1)∗
‖f‖Lr,1 =

∥∥Id/r∥∥Lr′,∞ ‖f‖Lr,1 ,
and we can easily see that∥∥Id/r∥∥Lr′,∞ = sup

λ>0
λ
∣∣∣{x ∈ Rd | |x| < (1/λ)r

′/d
}∣∣∣1/r′ ∼ 1.

Hence, (17) holds. We can reformulate (17) as

‖f‖L∞ .
∥∥∥|∇|d/r f∥∥∥

Lr,1
= ‖f‖Ẇ d/rLr,1 ,

This shows that Ẇ d/rLr,1 ↪→ L∞. �

4The results of this subsection will be used only in the proof of Theorem 11.
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Lemma 18. Suppose p0, p1, q0, q1 ∈ [1,∞) and α0, α1 ≥ 0. Then, for any θ ∈ (0, 1) we have

(Ẇα0Lp0,q0(Rd), Ẇα1Lp1,q1(Rd))θ = ẆαLp,q(Rd), (18)

where α = (1− θ)α0 + θα1, 1/p = (1− θ)/p0 + θ/p1 and 1/q = (1− θ)/q0 + θ/q1.

Proof. This can be proved by Stein’s method of interpolation (see for instance [13, Theorem
1.3.7, p. 37]) as follows. Note that the function ξ → |ξ|it defined on Rd\ {0} satisfies∣∣∣∇k |ξ|it

∣∣∣ ≤ C(1 + |t|)d+2 |ξ|−k ,

a.e. in ξ ∈ Rd\ {0}, for any t ∈ R and any nonnegative integer k ≤ d + 2, where C is a positive
constant depending only on d. It follows that (see [18, Theorem 8.2 , p. 197]) for any a ∈ (1,∞),
the norm of the operator |∇|it : La → La satisfies∥∥∥|∇|it∥∥∥

La→La
.a C(1 + |t|)d+2.

This implies, via the real method of interpolation (see for instance [2, Theorem 5.2.1 (2), p.
109 ]), that for any a ∈ (1,∞) and any b ∈ [1,∞], we have∥∥∥|∇|it∥∥∥

La,b→La,b
.a,b C(1 + |t|)d+2. (19)

Let us consider the analytic family of operators (Tz)z∈S with

Tz := |∇|(1−z)α0+zα1 ,

for all z ∈ S. Thanks to (19), the analytic family (Tz)z∈S satisfies the hypothesis of [13, Theorem
1.3.7, p. 37]. Hence, we get

Tθ(Ẇ
α0Lp0,q0 , Ẇα1Lp1,q1)θ ↪→ (Lp0,q0 , Lp1,q1)θ = Lp,q,

and, in a similar way (applying Stein’s method for the family (T−z)z∈S ),

T−θ(L
p,q) = T−θ(L

p0,q0 , Lp1,q1)θ ↪→ (Ẇα0Lp0,q0 , Ẇα1Lp1,q1)θ.

Hence,
Tθ(Ẇ

α0Lp0,q0 , Ẇα1Lp1,q1)θ = Lp,q,

and (18) is proven. �

The spaces ẆαLp,q have scaling properties that are similar to those of the Besov spaces (see
(16)). In particular, the spaces Ẇ d/pLp,q have the same scaling as L∞. As we have seen in Lemma
17 we have Ẇ d/pLp,1 ↪→ L∞. However, when q > 1 the critical spaces Ẇ d/pLp,q do not embed in
L∞.

Let us see that the spaces ẆαLp,q have the UMD property when p, q ∈ (1,∞). For this
is sufficient to see that Lp,q has the UMD property. Consider some p0, p1 ∈ (1,∞) such that
p0 < p < p1. Since, Lp0 and Lp1 are UMD spaces, by Burkholder’s theorem (see [9]) the Hilbert
transform is bounded on L2 (T,Lp0) and L2 (T,Lp1) respectively. Hence, the Hilbert transform is
bounded on the space

(L2(T,Lp0), L2(T,Lp1))η,q = L2(T, (Lp0 , Lp1)η,q)
= L2(T,Lp,q),

where η ∈ (0, 1) is such that 1/p = (1− η) /p0 +η/p1 (see for instance [2, Theorem 5.6.2, p. 123]).
By Bourgain’s theorem ([4]), we get that Lp,q has the UMD property.
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2.3 Some quotient spaces

Let Y be a Banach function space on Rd and let D ⊆ Rd be a measurable set. Relative to the set
D we define the closed subspace YD of Y by

YD := {f ∈ Y | spec(f) ⊆ D} ,

the norm being the one induced by Y . For simplicity we will denote the quotient space Y/YDc by
Y/D. In the case where f ∈ Y is a Schwartz function, we define its Y/D-seminorm by

‖f‖Y/D := inf
f−∈YDc

∥∥f + f−
∥∥
Y

.

In this paper we will work with quotient spaces of the form Ẇα,2/D and (L1 + Ẇα,2)/D. One
can easily see that for Y = Ẇα,2 or Y = L1 + Ẇα,2 we have the following norming property

sup
‖f‖Y/D≤1

〈f, g〉 = ‖g‖Y ∗ ,

for any g ∈ Y ∗D, where the supremum is taken over all Schwartz functions f with ‖f‖Y/D ≤ 1.

In the case where Y is the Sobolev space Ẇα,2 it is easy to compute the seminorm induced by
Y/D. Namely, let us see that for any u ∈ S] and any measurable set D ⊆ Rd we have

‖u‖Ẇα,2/D =

(∫
Rd
|ξ|2α 1D (ξ) |û(ξ)|2 dξ

)1/2

. (20)

Indeed, we have

‖u‖2
Ẇα,2/D = inf

v∈Ẇα,2
Dc

∫
Rd
|ξ|2α |û(ξ) + v̂(ξ)|2 dξ

=

∫
D

|ξ|2α |û(ξ)|2 dξ + inf
v∈Ẇα,2

Dc

∫
Dc
|ξ|2α |û(ξ) + v̂(ξ)|2 dξ

=

∫
D

|ξ|2α |û(ξ)|2 dξ.

We recall that, by PD we denote the Fourier projection on the set D, i.e., we have

P̂Df(ξ) = 1D(ξ)f̂(ξ),

for any ξ ∈ Rd and any Schwartz function f . Note that, in the case where D = (0,∞)d the
operator P(0,∞)d is the Riesz projection. In this case we will write P+ in the place of P(0,∞)d .

3 The W-method of complex interpolation

In this section we introduce a variant of the complex interpolation and we prove several of its
properties. We call this new method of interpolation the W-method and, as stated in the intro-
duction (see subsection 1.4), this will be used in the proof of Theorem 9, Theorem 7, Theorem
8, Theorem 11. We mainly study here only the properties of the W-method that are used in the
proof of our main results. In subsection 3.1 we show that theW-method is indeed an interpolation
method. However, we ignore some issues specific to the interpolation methods in general such as
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computing dual interpolation spaces or reiteration theorems. These problems do not concern us
here.

An important aspect is the relation of the W-method with the classical complex method. We
do not know in general how to compute efficiently the interpolation spaces obtained via the W-
method. However, as we will see in subsection 3.2 the space obtained via the W-method is, in
many “convenient” cases, the same as the space obtained via the classical complex method.

The main feature of the W-method is that one can use it to “interpolate” linear equations. It
is one of the main ingredients that enter in the proof of our main results and it is the final goal
of this section.

3.1 Construction of the interpolation space

We describe here theW-method and prove some basic properties. The proofs we give are straight-
forward adaptations of those that correspond to the classical complex interpolation as found in
[2, Chapter 4]. Following the general presentation in [2, Chapter 4] let us introduce now the
W-method.

For the beginning, fix two Banach spaces X0 and X1 and suppose (A0, A1) is a Banach couple.
Let F2 = F2 (A0, X0 | A1, X1) be the linear space of all bounded continuous functions f with
values in A0 + A1, defined on the strip

S := {z ∈ C | 0 ≤ <z ≤ 1} ,

that are analytic in the open strip

S0 := {z ∈ C | 0 < <z < 1} ,

and moreover, such that f(j + it) ∈ Aj for any j = 0, 1 and any t ∈ R, and

‖f‖F2 := max
j=0,1

sup
‖Λj‖≤1

(∫
R
‖Λjf(j + it)‖2

Xj
dt

)1/2

<∞, (21)

where, for each j = 0, 1, Λj : Aj → Xj are linear bounded operators. One can easily verify that
‖·‖F2 defines a norm on F2.

Fix 0 < θ < 1. Consider the linear space Cθ (A0, X0 | A1, X1) defined by

Cθ (A0, X0 | A1, X1) :=
{
a ∈ A0 + A1 | a = f(θ), for some f ∈ F2 (A0, X0 | A1, X1)

}
.

and define, for each a ∈ Cθ (A0, X0 | A1, X1), the quantity

‖a‖θ := inf
{
‖f‖F2 | a = f(θ), f ∈ F2 (A0, X0 | A1, X1)

}
.

Lemma 19. The mapping a→ ‖a‖θ is a norm on Cθ(A0, X0 | A1, X1).

In order to prove Lemma 19 we rely on the following basic fact (and at least implicitely
well-known):

Lemma 20. Fix some 1 ≤ p <∞ and let Z be a Banach space. Suppose F : S → Z is a bounded
continuous function which is analytic in S0 such that the functions t → F (j + it) belong to the
space Lp (R,Z).
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Then, for any z ∈ S0, we have

F (z) = − 1

2πi

∫
R

F (it)

it− z
dt+

1

2πi

∫
R

F (1 + it)

1 + it− z
dt. (22)

In particular, for any θ ∈ (0, 1),

‖F (θ)‖Z .θ,p max
j=0,1

(∫
R
‖F (j + it)‖pZ dt

)1/p

. (23)

Proof of Lemma 20. Fix some z ∈ S0. Consider some arbitrary R > 0 and the curve γR given
by the boundary of the rectangle [0, 1]× [−R,R], oriented anti-clockwise. For R sufficeintly large
we have z ∈ [0, 1]× [−R,R]. By Cauchy’s formula we get

F (z) =
1

2πi

∫
γR

F (ζ)

ζ − z
dζ,

and we can rewrite this as

F (z) = − 1

2πi

∫ R

−R

F (it)

it− z
dt+

1

2πi

∫ R

−R

F (1 + it)

1 + it− z
dt

+
1

2πi

∫ 1

0

F (x+ iR)

x+ iR− z
dx− 1

2πi

∫ 1

0

F (x− iR)

x− iR− z
dx. (24)

Note that, the functions t→ F (j + it)/ (j + it− θ) belong to the space L1 (R, Z). Indeed, by
Hölder’s inequality (since we always have p′ > 1) we can write

∫
R

∥∥∥∥F (j + it)

j + it− z

∥∥∥∥
Z

dt ≤

(∫
R

1

|j + it− z|p′
dt

)1/p′ (∫
R
‖F (j + it)‖pZ dt

)1/p

. θ,z

(∫
R
‖F (j + it)‖pZ dt

)1/p

<∞, (25)

with the natural modification in the case where p′ =∞.

Also, ∥∥∥∥ 1

2πi

∫ 1

0

F (x± iR)

x± iR− z
dx

∥∥∥∥
Z

≤ 1

|x± iR− z|
‖F‖L∞(S,Z) → 0, (26)

when R→∞.

Using (24), (26), letting R → ∞ and using the dominated convergence theorem, we get the
representation formula (22). Using (22) and (25), for z = θ, we obtain (23). �

Proof of Lemma 19. Clearly, ‖·‖θ is a seminorm on Cθ (A0, X0 | A1, X1). It remains to see that,
if ‖a‖θ = 0, for some a ∈ Cθ (A0, X0 | A1, X1), then a = 0. We prove this by showing that

‖a‖A0+A1
.θ ‖a‖θ , (27)

for all a ∈ Cθ (A0, X0 | A1, X1). For this purpose fix a ∈ Cθ (A0, X0 | A1, X1) and consider a
functional λ ∈ (A0 + A1)∗, with ‖λ‖ = 1, such that ‖a‖A0+A1

≤ 2λ (a). Consider also a function
f ∈ F2 (A0, X0 | A1, X1), such that f (θ) = a and ‖f‖F2 ≤ 2 ‖a‖θ.

Let us define, for each j = 0, 1, the linear operators Λj : Aj → Xj by

Λj(aj) = λ(aj)ej, for any aj ∈ Aj,

16



where ej ∈ Xj are some fixed vectors with ‖ej‖Xj = 1. Clearly, for any j = 0, 1,

‖Λj(aj)‖Xj = |λ(aj)| ≤ ‖aj‖A0+A1
≤ ‖aj‖Aj ,

for any aj ∈ Aj, and we get
‖Λj‖ ≤ 1.

Using this observation and introducing the function F : S → C defined by F (z) := λ (f (z)),
one can write,

max
j=0,1

(∫
R
|F (j + it)|2 dt

)1/2

= max
j=0,1

(∫
R
|λ (f(j + it))|2 dt

)1/2

= max
j=0,1

(∫
R
‖Λj (f(j + it))‖2

Xj
dt

)1/2

≤ ‖f‖F2 ≤ 2 ‖a‖θ <∞. (28)

This shows, in particular, that the functions t→ F (j + it) belong to the space L2 (R,C). We
also see immediately that F is bounded, continuous on S and analytic in S0. Hence, by applying
Lemma 20 for Z = C and p = 2 (more precisely (23)), using (28), we get

‖a‖A0+A1
≤ 2λ (a) = 2F (θ) . max

j=0,1

(∫
R
|F (j + it)|2 dt

)1/2

. ‖a‖θ ,

which proves (27). �

Now, thanks to Lemma 19, we can define the interpolation space (A0, X0 | A1, X1)θ as being
the completion of the normed space (Cθ (A0, X0 | A1, X1) , ‖·‖θ).

One can easily see that (A0, X0 | A1, X1)θ is an intermediate space:

A0 ∩ A1 ↪→ (A0, X0 | A1, X1)θ ↪→ A0 + A1. (29)

The second embedding in (29), follows directly from the inequality (27). In order to see the
first embedding, pick a ∈ A0 ∩ A1 and consider the function f(z) := exp (z2 − θ2) a. One can
easily check that f(θ) = a, f ∈ F2 and

‖a‖θ ≤ max
j=0,1

sup
‖Λj‖≤1

(∫
R
‖Λjf(j + it)‖2

Xj
dt

)1/2

≤ max
j=0,1

(∫
R
‖f(j + it)‖2

Aj
dt

)1/2

∼θ ‖a‖A0∩A1
.

This gives us that

A0 ∩ A1 ↪→ Cθ (A0, X0 | A1, X1) ↪→ (A0, X0 | A1, X1)θ .

Let us see now that the W-method provides an exact interpolation functor:

Proposition 21. Consider some Banach spaces X0, X1. Let (A0, A1) , (B0, B1) be two Banach
couples and T : A0 + A1 → B0 + B1 be a linear operator such that T : Aj → Bj is bounded for
any j = 0, 1, of norm ‖T‖j→j.

Then, the operator

T : (A0, X0 | A1, X1)θ → (B0, X0 | B1, X1)θ,

is bounded and of norm ‖T‖θ→θ satisfying

‖T‖θ→θ ≤ ‖T‖
1−θ
0→0 ‖T‖

θ
1→1 .
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Proof. Without loss of generality we suppose that ‖T‖j→j > 0, for any j = 0, 1. For the brevity

of notation we denote by ‖·‖θ, ‖·‖F2 , ‖·‖′θ and ‖·‖′F2 the norms on the spaces (A0, X0 | A1, X1)θ,
F2 (A0, X0 | A1, X1), (B0, X0 | B1, X1)θ and F2 (B0, X0 | B1, X1) respectively. Pick some a ∈
Cθ (A0, X0 | A1, X1) and fix some ε > 0. Consider a function f ∈ F2 (A0, X0 | A1, X1) such that
f(θ) = a and ‖f‖F2 ≤ (1 + ε) ‖a‖θ. The function

F (z) := ‖T‖z−1
0→0 ‖T‖

−z
1→1 Tf(z)

belongs to F2 (B0, X0 | B1, X1). Indeed, F is bounded and continuous on S with values in B0+B1,
analytic in S0 and, for any linear operators Λ′j : Bj → Xj of norm at most 1, we have(∫

R

∥∥Λ′jF (j + it)
∥∥2

Xj
dt

)1/2

≤
(∫

R

∥∥∥(‖T‖−1
j→j Λ′j ◦ T

)
f(j + it)

∥∥∥2

Xj
dt

)1/2

≤ sup
‖Λj‖≤1

(∫
R
‖Λjf(j + it)‖2

Xj
dt

)1/2

, (30)

for any j = 0, 1, where the supremum is taken over all linear bounded operators Λj : Aj → Xj

with ‖Λj‖ ≤ 1. Here, we have used the fact that ‖T‖−1
j→j Λ′j ◦ T : Aj → Xj is a linear operator of

norm at most 1, for any j = 0, 1.

Now, by (30), we get

‖T‖θ−1
0→0 ‖T‖

−θ
1→1 ‖Tf(a)‖′θ = ‖F (θ)‖′θ ≤ ‖F‖

′
F2 ≤ ‖f‖F2 ≤ (1 + ε) ‖a‖θ ,

and letting ε→ 0 one obtains,

‖Ta‖′θ ≤ ‖T‖
1−θ
0→0 ‖T‖

θ
1→1 ‖a‖θ ,

for any a ∈ Cθ (A0, X0 | A1, X1). Since, by definition, Cθ (A0, X0 | A1, X1) is dense in (A0, X0 | A1, X1)θ,
we get the conclusion. �

3.2 A particular case

In general, computing the interpolation space (A0, X0 | A1, X1)θ seems to be a nontrivial task.
However, there are some particular cases where an explicit computation is easy.

Let us restrict to the case, where A0 = X0 and A1 = X1 and let us denote, for simplicity, the
space (X0, X0 | X1, X1)θ by (X0|X1)θ. Also, instead of F2 (X0, X0 | X1, X1) we write F2 (X0|X1)
and instead of Cθ (X0, X0 | X1, X1) we write Cθ (X0|X1). In this case, formula (21) becomes

‖f‖F2 = max
j=0,1

(∫
R
‖f(j + it)‖2

Xj
dt

)1/2

. (31)

Indeed, for any j = 0, 1, we have

sup
‖Λj‖≤1

(∫
R
‖Λjf(j + it)‖2

Xj
dt

)1/2

≤
(∫

R
‖f(j + it)‖2

Xj
dt

)1/2

,

and

sup
‖Λj‖≤1

(∫
R
‖Λjf(j + it)‖2

Xj
dt

)1/2

≥
(∫

R

∥∥idXjf(j + it)
∥∥2

Xj
dt

)1/2

=

(∫
R
‖f(j + it)‖2

Xj
dt

)1/2

,
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where idXj : Xj → Xj is the identity mapping on Xj.

It turns out that, the space (X0|X1)θ coincides with the space (X0, X1)θ obtained via the
classical complex interpolation method. The proof of this fact is easy, however we give it below
for the sake of completeness.

Proposition 22. Suppose (X0, X1) is a compatible couple of Banach spaces. Then, for any θ ∈
(0, 1),

(X0|X1)θ = (X0, X1)θ,

with equivalence of norms.

Remark 23. Implicitly, the embedding (X0|X1)θ ↪→ (X0, X1)θ was already proved and used by
Peetre in a different context (see [22, Lemme 1.1]). Both proofs, the one that we give below and
Peetre’s, are easy consequences of the ideas of Calderón from [10, Section 9.4].

Proof. Consider some a ∈ (X0, X1)θ ∩ Cθ (X0|X1) and let some f ∈ F2 (X0|X1) be such that
f (θ) = a and

‖f‖F2 ≤ 2 ‖a‖(X0|X1)θ
.

By [2, Lemma 4.3.2 (ii), p. 93] (or [10, Section 9.4, (ii)]) we have

‖a‖(X0,X1)θ
≤
(

1

1− θ

∫
R
‖f(iτ)‖X0

P0(θ, τ)dτ

)1−θ (
1

θ

∫
R
‖f(1 + iτ)‖X1

P1(θ, τ)dτ

)θ
, (32)

where Pj (j = 0, 1) are the real Poisson kernels defined by

Pj(s+ it, τ) :=
e−π(τ−t) sin πs

sin2 πs+ (cos πs− eijπ−π(τ−t))
2 ,

for s ∈ (0, 1), t, τ ∈ R. Note that Pj(θ, ·) ∈ L2 (R,R) and by the Cauchy-Schwarz inequality,

∫
R
‖f(iτ)‖X0

P0(θ, τ)dτ ≤
(∫

R
‖f(iτ)‖2

X0
dτ

)1/2(∫
R
P 2

0 (θ, τ)dτ

)1/2

. ‖f‖F2 . ‖a‖(X0|X1)θ
.

In a similar way we get ∫
R
‖f(iτ)‖X0

P0(θ, τ)dτ . ‖a‖(X0|X1)θ
,

and combining with (32) one obtains

‖a‖(X0,X1)θ
. ‖a‖(X0|X1)θ

. (33)

By taking the closure we get (X0|X1)θ ↪→ (X0, X1)θ.

Converselly, if a ∈ (X0, X1)θ, then there exists g ∈ F (X0, X1) (see [2, Chapter 4] for the
standard notation F (X0, X1)) such that g (θ) = a and

max
j=0,1

sup
t∈R
‖g(j + it)‖Xj ≤ 2 ‖a‖(X0,X1)θ

. (34)

19



Introduce the function g̃ : S → X0 + X1 defined by g̃(z) := exp(z2 − θ2)g(z), for z ∈ S. We
observe that, for any j = 0, 1,(∫

R
‖g̃(j + it)‖2

Xj
dt

)1/2

.

(∫
R
e−2t2 ‖g(j + it)‖2

Xj
dt

)1/2

≤
(∫

R
e−2t2dt

)1/2

sup
t∈R
‖g(j + it)‖Xj

∼ sup
t∈R
‖g(j + it)‖Xj . (35)

Hence, g̃ ∈ F2 (X0|X1), a = g̃(θ) ∈ Cθ (X0|X1) and by (34), (35),

‖a‖(X0|X1)θ
. ‖a‖(X0,X1)θ

, (36)

We have now (X0, X1)θ ↪→ (X0|X1)θ and Proposition 22 is proven. �

An immediate consequence of Proposition 22 is the following useful embedding result:

Corollary 24. Suppose (X0, X1) is a compatible couple of Banach spaces. Then, for any Banach
space A, we have the embedding

(A ∩X0, X0 | A ∩X1, X1)θ ↪→ A ∩ (X0, X1)θ .

Proof. Consider the canonical inclusion ι : A ∩ X0 + A ∩ X1 → X0 + X1 as a linear bounded
operator ι : A ∩Xj → Xj and apply Proposition 21. We get

(A ∩X0, X0 | A ∩X1, X1)θ ↪→ (X0, X0 | X1, X1)θ = (X0|X1)θ .

Since by Proposition 22 we have (X0|X1)θ = (X0, X1)θ, we now obtain the embedding

(A ∩X0, X0 | A ∩X1, X1)θ ↪→ (X0, X1)θ . (37)

Also, using the fact that (A ∩X0, X0 | A ∩X1, X1)θ is an intermediate space (see (29)), we
have

(A ∩X0, X0 | A ∩X1, X1)θ ↪→ A ∩X0 + A ∩X1 ↪→ A,

which together with (37) proves Corollary 24. �

3.3 Solutions of linear equations

In this subsection we highlight the main strength of the W-method. Namely, we show here how
the W-method can be used in order to “interpolate ” underdetermined equations. Here we make
an essential use of the fact that the Hilbert transform is bounded on spaces of the form L2 (R, Z),
where Z is an UMD space. The UMD property plays here a key role.

Before stating the results in this subsection let us make some (common) notational conventions.
The space C l

b (R, Z), where l ∈ N, is the space of all the functions f : R→Z for which the k-th
derivative f (k) is a continuous and bounded Z-valued function on R for all k ∈ N with k ≤ l. We
endow C l

b (R, Z) with the norm

‖f‖Clb(R,Z) :=
l∑

k=0

∥∥f (k)
∥∥
L∞(R,Z)

.
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Given a measurable function ω : R→(0,∞) we denote by L2 (ω, Z) the space of the strongly
(Bochner-Lebesgue) measurable functions f : R→Z for which the norm

‖f‖L2(ω,Z) :=

(∫
R
‖f(t)‖2

Z ω(t)dt

)1/2

,

is finite. When ω(t) = exp (t2) or ω(t) = exp (−t2) the space L2 (ω, Z) is denoted by L2 (exp (t2) , Z)
or by L2 (exp (−t2) , Z) respectively. However, when ω ≡ 1 we prefer to write L2 (R, Z) instead of
L2 (1, Z).

3.3.1 Boundary values of functions on the strip

Let us recall now some (at least implicitely) well-known facts related to the Hilbert transforms
of vector-valued functions. Let Z be a Banach space and consider a function f ∈ C4

b (R, Z) ∩
L2 (exp (t2) , Z). The Hilbert transform of f is defined by

Hf(t) :=
1

π
lim
ε→0

∫
ε<|t−s|<1/ε

f(s)

t− s
ds =

1

π
lim
ε→0

∫
ε<|s|<1/ε

f(t− s)
s

dy,

for t ∈ R. As one can immediately check, for such f the above limit exists, for every x ∈ R (the
convergence being in the norm of Z). Also, we get that

Hf ∈ Cb(R, Z). (38)

Indeed, for every t ∈ R,

‖Hf(t)‖Z ≤ 1

π

∥∥∥∥lim
ε→0

∫
ε<|t−s|<1

f(s)

t− s
ds

∥∥∥∥
Z

+
1

π

∥∥∥∥lim
ε→0

∫
1<|t−s|<1/ε

f(s)

t− s
ds

∥∥∥∥
Z

=
1

π

∥∥∥∥lim
ε→0

∫
ε<|t−s|<1

f(s)− f(t)

t− s
ds

∥∥∥∥
Z

+
1

π

∥∥∥∥lim
ε→0

∫
1<|t−s|<1/ε

f(s)

t− s
ds

∥∥∥∥
Z

≤ 2

π
‖f‖Lip(R,Z) +

1

π
‖f‖L2(exp(t2),Z)

. ‖f‖C3
b (R,Z) + ‖f‖L2(exp(t2),Z)

and hence, Hf(t) is uniformly bounded in Z. The continuity of Hf can be proved in a similar
way, by estimating the expression Hf(t1)−Hf(t2), when t1, t2 ∈ R are close to each other.

In what follows we need a vector-valued version of the Plemelj formula. The proof we give is
completely similar to the one in the scalar valued case, however, we include it here for completeness
(see for instance [19]).

Lemma 25. Suppose Z is a Banach space and consider a function f ∈ C3
b (R, Z)∩L2 (exp (t2) , Z).

Then, when ε↘ 0 we have

1

2πi

∫
R

f(s)

s− (t± iε)
ds→ ±f(t) + iHf(t)

2
,

in the norm of Z, uniformly in t ∈ R.

Proof. We only consider the case of the sign ”+”, the other one being similar. We first show
that ∥∥∥∥ 1

2πi

∫
R

f(s)

s− iε
dy − f(0)

2
− i

2π

∫
|s|>ε

f(s)

−s
ds

∥∥∥∥
Z

. ‖f‖C1
b (R,Z) ε

1/2, (39)
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for any ε ∈ (0, 1), where the implicit constant does not depend on f or ε. Changing the variables
(s = ετ), this is equivalent to∥∥∥∥∫

R
f(ετ)

(
1

τ − i
− 1|τ |>1 (τ)

1

τ

)
dτ − πif(0)

∥∥∥∥
Z

. ‖f‖C1
b (R,Z) ε

1/2. (40)

Notice that∫
R

∣∣∣∣ 1

τ − i
− 1|τ |>1 (τ)

1

τ

∣∣∣∣ dτ <∞ and

∫
R

(
1

τ − i
− 1|τ |>1 (τ)

1

τ

)
dτ = πi,

and hence, it remains to show that∥∥∥∥∫
R

(f(ετ)− f(0))

(
1

τ − i
− 1|τ |>1 (τ)

1

τ

)
dτ

∥∥∥∥
Z

. ‖f‖C1
b (R,Z) ε

1/2.

One can see this by a direct computation. Indeed, the quantity∥∥∥∥∫
R

(f(ετ)− f(0))

(
1

τ − i
− 1|τ |>1 (τ)

1

τ

)
dτ

∥∥∥∥
Z

is bounded by∫
R
‖f(ετ)− f(0)‖Z

∣∣∣∣ 1

τ − i
− 1|τ |>1 (τ)

1

τ

∣∣∣∣ dτ . ∫
[−R,R]

‖f(ετ)− f(0)‖Z
1

1 + |τ |
dτ

+

∫
[−R,R]c

‖f(ετ)− f(0)‖Z
1

τ 2
dτ , (41)

for any R > 1. Since,
‖f(ετ)− f(0)‖Z ≤ ε ‖f‖C1

b (R,Z) |τ |,
we get ∫

[−R,R]

‖f(ετ)− f(0)‖Z
1

1 + |τ |
dτ . ‖f‖C1

b (R,Z) εR.

Also, since
‖f(ετ)− f(0)‖Z ≤ 2 ‖f‖C1

b (R,Z) ,

we have ∫
[−R,R]c

‖f(ετ)− f(0)‖Z
1

τ 2
dτ . ‖f‖C1

b (R,Z) /R.

From (41) we get now,∫
R
‖f(ετ)− f(0)‖Z

∣∣∣∣ 1

τ − i
− 1|τ |>1 (τ)

1

τ

∣∣∣∣ dτ . ‖f‖C1
b (R,Z) (εR + 1/R),

where the implicit constant does not depend on ε or R. Setting R = ε−1/2 we obtain (40) and
hence (39).

Now consider some function f ∈ C1
b (R, Z) and for each t ∈ R, define ft : R → Z by ft(x) :=

f(x+ t) for all x ∈ R. We can see that ft ∈ C1
b (R, Z) and

‖ft‖C1
b (R,Z) = ‖f‖C1

b (R,Z) ,

for any t ∈ R. By a simple change of variables we can also observe that∥∥∥∥ 1

2πi

∫
R

ft(s)

s− iε
ds− ft(0)

2
− i

2π

∫
|s|>ε

ft(s)

−s
ds

∥∥∥∥
Z
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equals ∥∥∥∥ 1

2πi

∫
R

f(s)

s− (t+ iε)
ds− f(t)

2
− i

2π

∫
|t−s|>ε

f(s)

t− s
ds

∥∥∥∥
Z

.

Hence, by applying (39) to ft and letting ε→ 0 we obtain the conclusion. �

Let us introduce the some operators that quantify the boundary behaviour of analytic functions
on the strip. For each j = 0, 1 let

Hj : L2
(
exp

(
t2
)
, Z
)
∩ C3

b (R, Z)→ Cb (R, Z) ,

be defined by

Hjf(t) :=
−if(t)− (−1)jHf(t)

2
,

and Rj : L2 (exp (t2) , Z) ∩ C3
b (R, Z)→ Cb (R, Z), be defined by

Rjf(t) := ρj ∗ f(t),

where ρj : R→ C are the bounded functions

ρj(t) :=
1

2πi

1

1− (−1)jit
,

for all t ∈ R. It is easy to see that, for f ∈ L2 (exp (t2) , Z), the quantityRjf is indeed well-defined
and Rjf ∈ Cb (R, Z).

An easy consequence of (38) and Lemma 25 is the following fact:

Lemma 26. Suppose (B0, B1) is a compatible couple of Banach spaces. Consider some functions
uj ∈ C3

b (R, Bj) ∩ L2 (exp (t2) , Bj), j = 0, 1, and define u : S → B0 +B1 by

u(z) := − 1

2πi

∫
R

u0 (t)

it− z
dt+

1

2πi

∫
R

u1 (t)

1 + it− z
dt,

for all z ∈ S0, and
u (j + it) := Hjuj(t) +Rju1−j(t),

for all t ∈ R. Then, u ∈ Cb (S,B0 +B1).

Proof. Clearly, by (38) (for Z = B0 + B1) we have Hjuj ∈ Cb (R, B0 +B1). Also, by Lemma 25
(for Z = B0 +B1) we have

(−1)j+1

2πi

∫
R

uj (t)

j + it− (j + iτ + (−1)jε)
dt→ Hjuj(τ),

in B0+B1 uniformly in τ ∈ R, when ε↘ 0. On the other hand, we haveRju1−j ∈ Cb (R, B0 +B1)
and, as one can easily see,

(−1)j+1

2πi

∫
R

u1−j (t)

j + it− (1− j + iτ + (−1)jε)
dt→ Rju1−j(τ),

in B0 +B1 uniformly in τ ∈ R, when ε↘ 0.

Hence, u is approaching its boundary values uniformly. Since u is analytic on S0 we obtain
the conclusion. �
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3.3.2 Interpolation of equations

Let us illustrate by some examples the fact that, in general, the surjectivity of operators is not
preserved by interpolation:

Example 1. Consider the operator Ts : L2(T)×L2(T)→ L2(T), defined by the formula Ts(f, g) :=
f + g, for any (f, g) ∈ L2(T). One can easily see that Ts : L2(T) × L4(T) → L2(T) and Ts :
L4(T)× L2(T)→ L2(T) are surjective operators however, the operator

Ts : (L2(T)× L4(T), L4(T)× L2(T))1/2 → (L2(T), L2(T))1/2, (42)

is not surjective. Indeed, if Ts in (42) is surjective, then

Ts : L3(T)× L3(T)→ L2(T)

is surjective, and we get the false embedding L2(T) ↪→ L3(T).

Example 2. Let us consider now another example which is more closely related to the equations
we treat in this paper. For any p ≥ 1 let W−1,p

] (T2) be the spaces of those distributions f that

are divergences of Lp-vector fields on T2 and with f̂(0) = 0 (in general, if Z is a function space on

T2, we denote by Z] the space of those f ∈ Z with f̂(0) = 0). The norm on W−1,p
] (T2) is given

by

‖f‖W−1,p
] (T2) = inf

{
‖f1‖Lp(T2) + ‖f2‖Lp(T2) | f = ∂1f1 + ∂2f2

}
.

We have that div : L1(T2) → W−1,1
] (T2) and div : L3(T2) → W−1,3

] (T2) are surjective opera-
tors. However, the operator

div : L2(T2)→ (W−1,1
] (T2),W−1,3

] (T2))1/2, (43)

cannot be surjective. Indeed, since

div : L2(T2)→ W−1,2
] (T2),

the surjectivity of the operator in (43) would imply that

(W−1,1
] (T2),W−1,3

] (T2))1/2 ↪→ W−1,2
] (T2),

which, by duality is equivalent to

W 1,2
] (T2) ↪→ (W 1,∞

] (T2),W
1,3/2
] (T2))1/2. (44)

Note that (44) is false (see cite [11, Section 4]).

In what follows we will work in a slightly different setting. Given two pairs of Banach spaces
Aj ↪→ Bj, j = 0, 1 and an operator T defined on B0 +B1 such thatT : Aj → T ((Bj) is surjective,
we study the surjectivity of T : (A0, A1)θ → T ((B0, B1)θ). Lemma 28 below gives some sufficient
additional conditions under which surjectivity is preserved by the complex interpolation. To state
and prove Lemma 28 we need the technical Lemma 27.

We introduce first some notation needed in the statement of Lemma 27. Let ϕ ∈ C∞c ([−1, 1] ,R)
be a function of integral 1 and ε > 0. Define the function ϕε by ϕε(t) := ε−1ϕ(ε−1t), for any
t ∈ R. For any ε > 0, and any (other) function g : R→ Z taking values in some Banach space Z,
we define the function gε := g ∗ ϕε. With this notation we state the following:
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Lemma 27. Let A, X0, X1, B0, B1, E, F be Banach spaces such that A,B0, B1 ↪→ E and
consider a bounded linear operator T : E → F . Denote A0 := A∩X0 and A1 := A∩X1. Suppose
moreover that the following conditions are satisfied:

(i) B1 ↪→ X1 ↪→ X0 and B0 ↪→ A0;

(ii) A and X1 have a separable preduals;

(iii) T : Aj → F and T : Bj → F are bounded for each j = 0, 1 and T (B1) ↪→ T (A1).

Then, for each j = 0, 1 we have the following:

For any vj ∈ L2(exp(t2), Bj) and any ε > 0 there exists a function uεj ∈ L2(exp(t2), Aj) ∩
C3
b (R,Aj), such that

Tuεj(t) = Tvj,ε(t), (45)

for any in t ∈ R, and satisfying the estimates:

∥∥uεj∥∥L2(Aj)
. ‖vj‖L2(Bj)

, (46)

and ∥∥R1−ju
ε
j

∥∥
L2(exp(−t2),A1−j)

. ‖vj‖L2(exp(t2),Bj)
+ δj0 ‖R1−jvj‖L2(exp(−t2),B1−j)

. (47)

where all the implicit constants do not depend on vj and ε.

(Here, vj,ε(t) = vj ∗ ϕε(t) and δj0 is the Kronecker symbol, i.e., we have δj0 = 1 if j = 0 and
δj0 = 0 if j 6= 0.)

Roughly speaking the conditions (45)–(47) are describing the fact that the equation Tu = Tv
can be solved efficiently on the boundary of the strip S. The role of Lemma 27 is to transform
the easy to state conditions (i)–(iii) into the more technical conditions (45)–(47).

In order to prove Lemma 27 we need some simple facts that are easy consequences of classical
inequalities.

Fact 1. Suppose Z is a Banach space and consider some function g ∈ L2
loc (R, Z). Then, we

have:

(i) ‖gε‖L2(exp(−t2),Z) . ‖g‖L2(exp(−t2),Z), uniformly in ε > 0;

(ii) ‖gε‖L2(exp(t2),Z) . ‖g‖L2(exp(t2),Z), uniformly in ε > 0.

Proof of Fact 1. We prove only item (i), item (ii) being similar. By Minkowski’s inequality we
have

‖gε‖L2(exp(−t2),Z) =

(∫
R
e−t

2

∥∥∥∥∫
B(0,1)

g(t− εs)ϕ(s)ds

∥∥∥∥
Z

dt

)1/2

≤
∫
BR(0,1)

(∫
R
e−t

2 ‖g(t− εs)‖2
Z ϕ(s)dt

)1/2

ds

=

∫
BR(0,1)

(∫
R
e−(t+εs)2 ‖g(t)‖2

Z dt

)1/2

ϕ(s)ds

.

(∫
R
e−(t+εs)2 ‖g(t)‖2

Z dt

)1/2

. ‖gε‖L2(exp(−t2),Z) ,

where we have used the fact that e−(t+εs)2 ∼ e−t
2
, when s ∈ BR(0, 1). �
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Fact 2. Suppose Z is a Banach space and consider some function g ∈ L2 (exp(−t2), Z). Then,
we have ‖Rjg‖L2(exp(−t2),Z) . ‖g‖L2(exp(t2),Z), for any j = 0, 1.

Proof of Fact 2. Fix j ∈ {0, 1}. Note first that if g ∈ L2 (exp(−t2), Z), then g ∈ L1 (R, Z).
Using the boundedness of the function ρj on R, one writes

‖Rjg‖L2(exp(−t2),Z) =

(∫
R
e−t

2

∥∥∥∥∫
R
ρj(t− s)g(s)ds

∥∥∥∥2

Z

dt

)1/2

.

(∫
R
e−t

2

(∫
R
‖g(s)‖Z ds

)2

dt

)1/2

.
∫
R
‖g(s)‖Z ds.

By the Cauchy-Schwarz inequality we get∫
R
‖g(s)‖Z ds ≤ ‖g‖L2(exp(t2),Z) ,

and Fact 2 is proved. �

Let us introduce some more notation. Let Z be a Banach space and fix some N ∈ N∗. For
any function g ∈ L1

loc(R, Z) we denote by ENg the conditional expectation of g with the respect
to the σ-algebra generated by the intervals IkN := [k/N, (k + 1) /N), were k ∈ Z. In other words,
if (g)I is the mean of g on one of these intervals I, i.e.,

(g)I :=
1

|I|

∫
I

g(t)dt,

we define the corresponding conditional expectation of g by

ENg :=
∑
k∈Z

(g)IkN
1IkN .

See [12, Chapter 5] for some fundamental properties of the conditional expectation operator
EN .

Now we can pass to the proof of Lemma 27.

Proof of Lemma 27. For each j = 0, 1 consider some functions vj ∈ L2 (exp (t2) , Bj). In the
case where j = 0 one can simply set uε0 := v0,ε. Clearly, uε0 ∈ L2(exp(t2), A0) ∩ C3

b (R,A0). It is
also clear that the conditions (45), (46) are satisfied thanks to the fact that B0 ↪→ A0. Let us
verify (47). We have

‖R1u
ε
0‖L2(exp(−t2),A1) ∼ ‖R1v0,ε‖L2(exp(−t2),A) + ‖R1v0,ε‖L2(exp(−t2),X1) , (48)

and it remains to bound each term in the right hand side of (48). Since B0 ↪→ A ∩X0, we have
in particular that B0 ↪→ A and hence,

‖R1v0,ε‖L2(exp(−t2),A) . ‖R1v0,ε‖L2(exp(−t2),B0) . ‖v0,ε‖L2(exp(t2),B0) . ‖v0‖L2(exp(t2),B0) , (49)

where for the second “.” we have used Fact 2 and for the third “.” we have used Fact 1 (ii).
Since B1 ↪→ X1,
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‖R1v0,ε‖L2(exp(−t2),X1) . ‖R1v0,ε‖L2(exp(−t2),B1) = ‖(R1v0)ε‖L2(exp(−t2),B1)

. ‖R1v0‖L2(exp(−t2),B1) , (50)

where for “=” we have used the relation ρ ∗ϕε = ϕε ∗ ρ and for the last “.” we have used Fact 1
(i). From (48), (49) and (50) we obtain (47) in the case j = 0.

Now, we deal with the case j = 1. By using the open mapping theorem one gets that, if
b ∈ B1, then there exists a ∈ A1 such that Ta = Tb and ‖a‖A1

≤ C ‖b‖B1
for some constant

C > 0. As a consequence, for each k ∈ Z we can find some elements akN ∈ A1 with

TakN = T (v1)IkN

and such that ∥∥akN∥∥A1
≤ C

∥∥∥(v1)IkN

∥∥∥
B1

.

Hence, defining uN : R→ A1 by

u1,N :=
∑
k∈Z

akN1IkN ,

we have

Tu1,N(t) = TENv1(t), (51)

for any t ∈ R, and
‖u1,N(t)‖A1

. ‖ENv1(t)‖B1
, (52)

uniformly in t ∈ R.

Define now the function uε1,N := u1,N ∗ ϕε = (u1,N)ε, the convolution being in the t variable.
Thanks to (51) we have

Tuε1,N(t) = T (ENv1,)ε(t), (53)

for any t ∈ R.

Let us observe that, when N →∞,

‖(ENv1)ε(t)− v1,ε(t)‖B1
→ 0, (54)

uniformly in t ∈ R.

Indeed, by Jensen’s inequality and [12, Corollary 2, p. 126] we have

‖(ENv1)ε(t)− v1,ε(t)‖B1
≤

∫
BR(t,1/ε)

‖(ENv1)ε(s)− v1,ε(s)‖B1
ϕε(t− s)ds

≤
(∫

BR(t,1/ε)

‖(ENv1)ε(s)− v1,ε(s)‖2
B1
ϕε(t− s)ds

)1/2

. ε ‖ENv1 − v1‖L2(R,B1) → 0.

Also one easily observe that the sequence of functions (uε1,N)N≥1 is equi-continuous and uni-
formly bounded. Indeed, using the Cauchy-Schwaz inequality,∥∥uε1,N(t1)− uε1,N(t2)

∥∥
A1
≤

∫
R
‖u1,N(s)‖A1

|ϕε(t1 − s)− ϕε(t2 − s)| ds

≤ ‖u1,N‖L2(R,A1)

(∫
R
|ϕε(t1 − s)− ϕε(t2 − s)|2 ds

)2

, (55)

27



for any t1, t2 ∈ R and it remains to notice that, by (52), we have

‖u1,N‖L2(R,A1) ≤ ‖ENv1‖L2(R,B1) . ‖v1‖L2(R,B1) <∞.

Since (uε1,N)N≥1 is equi-continuous and uniformly bounded sequence, and A, X1 have a sepa-
rable preduals, there exists some uε1 ∈ L2(R, A1) such that uε1,N(t)→ uε1(t) in the w∗-topology on
A and in the w∗-topology on X1, up to a subsequence, for all t ∈ R. By an argument similar to
the one used in (55), it is easy to see that one can choose uε1 ∈ C3

b (R, A1). Thanks to (53) and
(54) one can write

Tuε1(t) = Tv1,ε(t),

for all t ∈ R, which proves (45). In order to verify (46) one uses the Young inequality and (52):

‖uε1‖L2(R,A1) ≤ lim inf
N→∞

∥∥uε1,N∥∥L2(R,A1)
≤ lim inf

N→∞
‖u1,N‖L2(R,A1)

. lim inf
N→∞

‖ENv1‖L2(R,B1) . ‖v1‖L2(R,B1) . (56)

Observe now that, as in (56), we get

‖uε1‖L2(exp(t2),A1) . ‖v1,ε‖L2(exp(t2),B1) . ‖v1‖L2(exp(t2),B1) , (57)

where for the second “.” we have used Fact 1 (ii). In particular, we have that uε1 ∈ L2(exp(t2), A1)∩
C3
b (R,A1).

Let us verify now that uε1 also satisfies (47). We can write

‖R0u
ε
1‖L2(exp(−t2),A0) . ‖u

ε
1‖L2(exp(t2),A0) . ‖u

ε
1‖L2(exp(t2),A1) , (58)

where for the first “.” we have used Fact 2 and for the second “.” we have used the embedding
X1 ↪→ X0 (that implies A1 ↪→ A0). Combining (57) with (58) we get

‖R0u
ε
1‖L2(exp(−t2),A0) . ‖v1‖L2(exp(t2),B1) ,

and (47) is proved in the case j = 1. Lemma 27 is proved. �

We are now able to state and prove the main result of subsection 3.3:

Lemma 28. Fix some number θ ∈ (0, 1). Let the Banch spaces A, X0, X1, A0, A1, B0, B1, E,
F and the operator T be as in Lemma 27. Moreover, we assume that X0, X1 and B1 are UMD
spaces and that (X0, X1)θ has a separable predual. Then, for any b ∈ (B0, B1)θ there exists some
a ∈ A ∩ (X0, X1)θ such that

Ta = Tb,

and
‖a‖A∩(X0,X1)θ

. ‖b‖(B0,B1)θ
. (59)

Proof. Fix some b ∈ Cθ (B0|B1). Consider v ∈ F2 (B0|B1) such that v (θ) = b and

‖v‖F2(B0|B1) ≤ 2 ‖b‖(B0|B1)θ
. (60)

Since we can replace (if necessary) v by exp(z2−θ2)v, we can assume without loss of generality
that vj ∈ L2(exp (t2) , Bj), where vj(t) := v(j + it), for all t ∈ R. Define, for each ε ∈ (0, 1), the
function vε on S by vε := v ∗ ϕε, as in the statement of Lemma 27.
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Note that, thanks to Lemma 26,

vj,ε(t) := Hjvj,ε(t) +Rjv1−j,ε(t),

for all t ∈ R. From this identity, since B1 is an UMD space, we can write

‖R1v0,ε‖L2(R,B1) ≤ ‖v1,ε‖L2(R,B1) + ‖Hv1,ε‖L2(R,B1)

. ‖v1,ε‖L2(R,B1) . ‖v1‖L2(R,B1)

. ‖b‖(B0|B1)θ
,

where for the second “.” we have used Young’s inequality and for the last “.” we have used
(60). In particular, we get

‖R1v0,ε‖L2(exp(−t2),B1) . ‖b‖(B0|B1)θ
. (61)

By Lemma 27 there exist some functions uεj ∈ L2(exp(t2), Aj)∩C2
b (R, Aj) satisfying (45), (46),

(47). Define ũε : S → A0 + A1 by

ũε(z) := − 1

2πi

∫
R

uε0 (t)

it− z
dt+

1

2πi

∫
R

uε1 (t)

1 + it− z
dt, (62)

for all z ∈ S0, and
ũεj(t) = ũε (j + it) := Hju

ε
j(t) +Rju

ε
1−j(t), (63)

for all t ∈ R. Notice that, since uεj ∈ L2(exp(t2), Aj) ∩ C3
b (R, Aj), thanks to Lemma 26, ũε is

well-defined and ũε ∈ Cb (S,A0 + A1). Let us verify that exp(z2 − θ2)ũε ∈ F2 (A0, X0 | A1, X1).
We show that, for any j = 0, 1, we have the estimate:(∫

R
e−t

2 ‖Λjũ
ε (j + it)‖2

Xj
dt

)1/2

. ‖b‖(B0|B1)θ
, (64)

for any bounded linear operator Λj : Aj → Xj with ‖Λj‖ ≤ 1, the implicit constant not depending
on Λj.

Using (63) we write:

(∫
R
e−t

2 ‖Λjũ
ε (j + it)‖2

Xj
dt

)1/2

≤
(∫

R
e−t

2 ∥∥HjΛju
ε
j(t)
∥∥2

Xj
dt

)1/2

+

(∫
R
e−t

2 ∥∥ΛjRju
ε
1−j(t)

∥∥2

Xj
dt

)1/2

. (65)

Since the spaces Xj have the UMD property, we get(∫
R
e−t

2 ∥∥HjΛju
ε
j(t)
∥∥2

Xj
dt

)1/2

≤
∥∥HjΛju

ε
j

∥∥
L2(R,Xj)

.
∥∥Λju

ε
j

∥∥
L2(R,Xj)

≤
∥∥uεj∥∥L2(R,Aj)

≤ ‖vj‖L2(R,Bj)

. ‖b‖(B0|B1)θ
, (66)

where for the third “≤” we have used (46) and for the last “.” we have used (60). It remains to
estimate the second term in the right hand side of (65):
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(∫
R
e−t

2 ∥∥ΛjRju
ε
1−j(t)

∥∥2

Xj
dt

)1/2

≤
∥∥Rju

ε
1−j
∥∥
L2(exp(−t2)Aj)

. ‖v1−j‖L2(exp(t2),B1−j)
+ δj1 ‖Rjv1−j‖L2(exp(−t2),Bj)

. ‖v1−j‖L2(R,B1−j)
+ δj1 ‖Rjv1−j‖L2(exp(−t2),Bj)

. ‖b‖(B0|B1)θ
, (67)

where for the first “.” we have used (47) and for the last “.” we have used (60) and (61). By
(65), (66), (67) we have proved (64). Hence, we have obtained∥∥exp(z2 − θ2)ũε

∥∥
F2(A0,X0 | A1,X1)

. ‖b‖(B0|B1)θ
.

This implies that for aε := ũε(θ) we have

‖aε‖(A0,X0 | A1,X1)θ
. ‖b‖(B0|B1)θ

. (68)

Note that, by Proposition 22, (B0|B1)θ = (B0, B1)θ, and by Corollary 24, (A0, X0 | A1, X1)θ ↪→
A ∩ (X0, X1)θ. From this and (68) we get

‖aε‖A∩(X0,X1)θ
. ‖b‖(B0,B1)θ

. (69)

We observe that for bε := vε(θ) we have

Taε = Tbε. (70)

Indeed, by applying Lemma 20, (62), the continuity of T : E → F and (45), one gets

T ũε(θ)− Lvε(θ) = − 1

2πi

∫
R

Tuε0 (t)− Tv0,ε (t)

it− θ
dt+

1

2πi

∫
R

Tuε1 (t)− Tv1,ε (t)

1 + it− θ
dt = 0.

We let ε → 0. Since vj,ε → vj in L2 (R, Bj), for each j = 0, 1 we get that bε → b in
(B0|B1)θ = (B0, B1)θ. Also, thanks to (69), since A and(X0, X1)θ have separable preduals, by
the sequential Banach-Aloglu theorem, there exists some a ∈ A ∩ (X0, X1)θ such that a1/n → a
(n ∈ N∗) in the w∗-topology on A and in the w∗-topology on (X0, X1)θ, up to a subsequence.
Also, by (69) we get

‖a‖A∩(X0,X1)θ
. ‖b‖(B0,B1)θ

.

It follows that Tb1/n → Tb and Ta1/n → Ta in the w∗-topology of F , up to a subsequence.
Consequently, by (70) we have

Ta = Tb.

Since Cθ(B0|B1) is dense in (B0|B1)θ = (B0, B1)θ we can use the above compactness argument
in order to obtain a solution for any b ∈ (B0|B1)θ. Lemma 28 is proved. �

Remark 29. One can easily adapt Lemma 27 and Lemma 28 to the more general case of the
equations Tu = Lv, where T, L : E → F are possibly different operators. For this we have to
change the conditions (i) and (iii) in Lemma 27 by

(i’) B1 ↪→ X1 ↪→ X0 and there exists an operator LT : E → F such that LT : Bj → Aj is
bounded for each j = 0, 1 and T◦ LT = L on B0;

(iii’) T : Aj → F and L : Bj → F are bounded for each j = 0, 1 and L(B1) ↪→ T (A1).

The modifications needed for the corresponding proofs are minor. However, for the sake of
simplicity, we preferred to present the proofs only in the case T = L.
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4 Spectral analysis

In this section we study the solutions of divergence-like equations via L2-based Fourier analysis
methods. This is done by a slight modification of the ideas of Bourgain and Brézis used in the
proof of [5, Lemma 2]. While in this case the techniques we use are essentially those of Bourgain
and Brézis, we give more general existence results that take into account the shape of the Fourier
spectrum of solutions. The final results of this section will represent the “1-endpoint” when we
apply the W-method (see Lemma 35 and Lemma 36 below).

4.1 Symbols with bounded Fourier transform

Let 1 ≤ ` ≤ d be some integers and let m : Rd → C be a function. We say that m is an `-BB
symbol5 if the following conditions are satisfied:

(i) there exists a constant C > 0 such that, in the case ` < d,∫
Rd−`
|∂α1

1 ...∂αl` m(ξ′, ξ′′)| dξ′′ ≤ C

|ξ′|`+|α|
, (71)

for all α = (α1, ..., α`) ∈ {0, 1}` and all ξ′ ∈ (0,∞)`, and, in the case ` = d,

|∂α1
1 ...∂αdd m(ξ)| ≤ C

|ξ|`+|α|
, (72)

for all α = (α1, ..., αd) ∈ {0, 1}d and all ξ ∈ (0,∞)d;

(ii) m is an odd function in each of the components ξ1, ξ2,....,ξ`, i.e.,

m (ξ1, ..., ξj−1,−ξj, ξj+1...., ξd) = −m (ξ1, ..., ξj−1, ξj, ξj+1...., ξd) , (73)

for all 1 ≤ j ≤ `, and all ξ1, ξ2, ...., ξd ∈ R.

For any integer ν we denote by Iν the interval [2ν−1, 2ν ]. For every k′ = (k1, ..., k`) ∈ Z` we
consider the positive dyadic box Ik′ := Ik1 × ...× Ik` and we associate to it the `-symmetric set:

s`(Ik′) :=
⋃

α1,...,α`∈{0,1}

((−1)α1 Ik1)× ...× ((−1)α` Ik`) ⊂ R`.

The next technical Lemma is the basis for all of our results in this section. Its proof consists
in slightly adapting some arguments of Bourgain and Br´ezis (see [5, Lemma 3, p. 404]):

Lemma 30. Let d ≥ 1 be an integer and let m : Rd → C be an `-BB symbol for some 1 ≤ ` ≤ d
and some constant C.

Then, ∑
k′∈Z`

∣∣∣∣∣
∫
s`(Ik′ )×M

m(ξ)ei〈ξ,x〉dξ

∣∣∣∣∣ . C,

for any measurable subset M ⊆ Rd−` of finite measure, uniformly in x ∈ Rd and in M . (By
convention, if ` = d, then s`(Ik′)×M is replaced by sd(Ik′).)

5Here, BB stands for “Bourgain-Brézis”.
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Proof. We first prove Lemma 30 in the case where m is a d-BB symbol. In this case we have to
prove that ∑

k∈Zd

∣∣∣∣∫
sd(Ik)

m(ξ)ei〈ξ,x〉dξ

∣∣∣∣ . C, (74)

uniformly in x = (x1, ..., xd) ∈ Rd.

Since m is odd in the variables ξ1, ..., ξd, for any k ∈ Zd one can write,∫
sd(Ik)

m(ξ)ei〈ξ,x〉dξ =

∫
sd(Ik)

m(ξ)
d∏
j=1

eiξjxjdξ = (2i)d
∫
Ik

m(ξ)
d∏
j=1

sin (ξjxj) dξ. (75)

Now, let us notice that whenever a : Rd → C, b1, ..., bd : R → C are sufficiently smooth
functions and Jj = [qj, rj], (qj < rj), j = 1, ..., d are d intervals, we have∫

J1×...×Jd
a (ξ)

d∏
j=1

bj (ξj) dξ =
∑

α∈{0,1}d

∫
J1×...×Jd

(−∇)α a (ξ)
d∏
j=1

[bj (ξj)]
αj
Jj
dξ, (76)

where, for each 1 ≤ j ≤ d, the quantity [bj (ξj)]
αj
Jj

is defined6 as follows

[bj (ξj)]
0
Jj

:=

(∫ rj

qj

bj (t) dt

)
δrj (ξj) and [bj (ξj)]

1
Jj

:=

∫ ξj

qj

bj (t) dt,

where δrj is the Dirac measure on R concentrated in rj. The formula (76) easily follows by
induction on d and integration by parts.

Fix some integers k1, ..., kd and consider the intervals Ikj =
[
2kj−1, 2kj

]
, j = 1, ..., d. By

applying (76) to the functions a = m and bj (ξj) = sin (ξjxj), we obtain∫
Ik1×...×Ikd

m(ξ)
d∏
j=1

sin (ξjxj) dξ =
∑

α∈{0,1}d

∫
Ik1×...×Ikd

(−∇)αm (ξ)
d∏
j=1

[sin (ξjxj)]
αj
Ikj
dξ. (77)

By a direct computation,∣∣∣∣∫
J

sin (t · xj) dt
∣∣∣∣ . min

(
4kj |xj| ,

1

|xj|

)
,

for any subinterval J ⊂ Ikj , and consequently,∣∣∣[sin (ξjxj)]
αj
Ikj

∣∣∣ . min

(
4kj |xj| ,

1

|xj|

)
, (78)

for any j = 1, ..., d, any αj ∈ {0, 1} and any ξj ∈ Ikj .
Let us fix some integer 0 ≤ l ≤ d and consider the case of α = (1, ..., 1, 0, ..., 0) ∈ {0, 1}d (l

values equal to 1). By (78) we get that the quantity∣∣∣∣∣
∫
Ik1×...×Ikd

(−∇)αm (ξ)
d∏
j=1

[sin (ξjxj)]
αj
Ikj
dξ

∣∣∣∣∣
6Strictly speaking we should write [bj (·)]αj

Jj
(ξj) instead of [bj (ξj)]

αj

Jj
. However, for simplicity we prefer here to

use the last notation.
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is bounded by(∫
Ik1×...×Ikl

∣∣∂1...∂lm
(
ξ1, ..., ξl, 2

kl+1 , ..., 2kd
)∣∣ dξ1...dξl

)
d∏
j=1

min

(
4kj |xj| ,

1

|xj|

)
. (79)

Fix some index µ ∈ {1, ..., d}. Using the fact that m is a d-BB symbol one can write (see
(72)) ∫

Ik1×...×Ikl

∣∣∂1...∂lm
(
ξ1, ..., ξl, 2

kl+1 , ..., 2kd
)∣∣ dξ1...dξl ≤ C

∫
Ik1×...×Ikl

1

2kµ(d+l)
dξ1...dξl

∼ C
2k1+...+kl

2kµ(d+l)
.

Combining this with (79) we get that∣∣∣∣∣
∫
Ik1×...×Ikd

(−∇)αm (ξ)
d∏
j=1

[sin (ξjxj)]
αj
Ikj
dξ

∣∣∣∣∣ . C
2k1+...+kl

2kµ(d+l)

d∏
j=1

min

(
4kj |xj| ,

1

|xj|

)
,

and hence, for Γµ :=
{
k = (k1, ..., kd) ∈ Zd | kµ = max1≤j≤d kj

}
,

∑
k∈Γµ

∣∣∣∣∣
∫
Ik1×...×Ikd

(−∇)αm (ξ)
d∏
j=1

[sin (ξjxj)]
αj
Ikj
dξ

∣∣∣∣∣
is bounded by

C
∑
k∈Γµ

2k1+...+kl

2kµ(d+l)

d∏
j=1

min

(
4kj |xj| ,

1

|xj|

)
= C

∑
k∈Γµ

2k1+...+kl

2kµ(d+l)
2k1+...+kd

d∏
j=1

min

(
2kj |xj| ,

1

2kj |xj|

)
.

(80)

For any k ∈ Γµ we have kµ = max1≤j≤d kj. Hence, we can write

2k1+...+kl

2kµ(d+l)
2k1+...+kd =

l∏
j=1

2kj−kµ
d∏
j=1

2kj−kµ ≤ 1,

and therefore, the right hand side of (80) is at most

C
∑
k∈Γµ

d∏
j=1

min

(
2kj |xj| ,

1

2kj |xj|

)
≤ C

∑
k1,k2,...,kd∈Z

d∏
j=1

min

(
2kj |xj| ,

1

2kj |xj|

)

= C

d∏
j=1

∑
kj∈Z

min

(
2kj |xj| ,

1

2kj |xj|

)
. C.

In other words, we have seen that for any µ ∈ {1, ..., d} and any multiindex α ∈ {0, 1}d of the
form α = (1, ...1, 0, ..., 0),

∑
k∈Γµ

∣∣∣∣∣
∫
Ik1×...×Ikd

(−∇)αm (ξ)
d∏
j=1

[sin (ξjxj)]
αj
Ikj
dξ

∣∣∣∣∣ . C. (81)
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Clearly, (81) remains true for any α ∈ {0, 1}d. Now, observing that Zd is covered by the union
of the sets Γ1, ...Γd, one can write

∑
k∈Zd

∣∣∣∣∣
∫
Ik1×...×Ikd

(−∇)αm (ξ)
d∏
j=1

[sin (ξjxj)]
αj
Ikj
dξ

∣∣∣∣∣ ≤
d∑

µ=1

∑
k∈Γµ

... . C.

This, together with (75) and (77) proves Lemma 30 in the case ` = d (i.e., (74)). The case
where 1 ≤ ` < d, can be obtained from the case ` = d as follows.

Suppose that 1 ≤ ` < d and m is an `-BB symbol. Let M be a measurable subset of Rd−` of
finite measure. For each x′′ ∈ Rd−` define the function m̃x′′ : R` → C by

m̃x′′ (ξ
′) :=

∫
M

m(ξ′, ξ′′)ei〈ξ
′′,x′′〉dξ′′,

for all ξ′ ∈ R`. Thanks to the fact that m satisfies the condition (71), m̃x′′ is well-defined and it
satisfies uniformly in θ′′ the condition (72) as a symbol on R`. Indeed,

|∂α1
1 ...∂α`` m̃x′′ (ξ

′)| =

∣∣∣∣∫
M

∂α1
1 ...∂α`` m(ξ′, ξ′′)ei〈ξ

′′,x′′〉dξ′′
∣∣∣∣

≤
∫
M

|∂α1
1 ...∂α`` m(ξ′, ξ′′)| dξ′′

≤
∫
Rd−`
|∂α1

1 ...∂α`` m(ξ′, ξ′′)| dξ′′

≤ C

|ξ′|`+|α|
, (82)

for all α = (α1, ..., α`) ∈ {0, 1}` and all ξ′ ∈ (0,∞)`. (Note that the final estimate in (82) does
not depend on the set M .)

Also, m̃θ′′ is odd in each variable and hence, we have (73). Now, using (72) for m̃θ′′ , we have

∑
k′∈Z`

∣∣∣∣∣
∫
s`(Ik′ )×M

m(ξ)ei〈ξ,x〉dξ

∣∣∣∣∣ =
∑
k′∈N`

∣∣∣∣∣
∫
s`(Ik′ )

(∫
M

m(ξ′, ξ′′)ei〈ξ
′′,x′′〉dξ′′

)
ei〈ξ

′,x′〉dξ′

∣∣∣∣∣
=

∑
k′∈N`

∣∣∣∣∣
∫
s`(Ik′ )

m̃x′′ (ξ
′) ei〈ξ

′,x′〉dξ′

∣∣∣∣∣ . C,

uniformly in x ∈ Rd, which proves Lemma 30. �

By applying Lemma 30 we can deduce the following useful fact:

Lemma 31. Let d ≥ 1 and 1 ≤ ` ≤ d be some integers, and let m : Rd → C be an `-BB symbol
satisfying condition (71) or (71) (when ` = d) for some constant C. Then, there exists some

kernel K ∈ L∞
(
Rd
)

such that K̂(ξ) = m(ξ) on Rd and ‖K‖L∞ . C, the implicit constant not
depending on C.

Remark 32. The meaning of Lemma 31 is that there exists a unique function K ∈ L∞, such
that ‖K‖L∞ . C and

〈K,ψ〉 =
〈
m, ψ̂

〉
,

for any function ψ ∈ S].
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Proof. For each n ∈ N, we consider the functions Kn defined by

K̂n(ξ) = m(ξ)1Jdn(ξ)

for all ξ ∈ Rd, where Jn := [−2n,−2−n] ∪ [2−n, 2n] and Jdn = Jn × ... × Jn (d times). It is easy
to see that Kn are well defined continuous functions. One can also see that Kn are uniformly
bounded. Indeed, applying Lemma 30 for M = Jd−`n (we suppose that ` < d; the case ` = d is
similar) we can write (using the triangle inequality),

|Kn(x)| ∼
∣∣∣∣∫
J`n×J

d−`
n

m(ξ)ei〈ξ,x〉dξ

∣∣∣∣
=

∣∣∣∣∣∣∣∣
∑
k′∈Z`

s`(Ik′ )⊆J`n

∫
s`(Ik′ )×J

d−`
n

m(ξ)ei〈ξ,x〉dξ

∣∣∣∣∣∣∣∣
≤

∑
k′∈Z`

∣∣∣∣∣
∫
s`(Ik′ )×J

d−`
n

m(ξ)ei〈ξ,x〉dξ

∣∣∣∣∣ . C,

uniformly in x ∈ Rd, and in n ∈ N. (Here, for “=”, we have used the fact that the sets s`(Ik′)
with s`(Ik′) ⊆ J `n are pairwise almost disjoint and they cover J `n.) Hence, ‖Kn‖L∞ . C uniformly
in n ∈ N. Using the sequential Banach-Alaoglu theorem, we can find some K ∈ L∞, with
‖K‖L∞ . C and such that Kn → K in the w∗-topology on L∞, up to a subsequence.

Consider now some ψ ∈ S]. Clearly, for any n,

〈Kn, ψ〉 =
〈
m1Jdn , ψ̂

〉
. (83)

Since ψ ∈ L1 we have 〈Kn, ψ〉 → 〈K,ψ〉 up to a subsequence when n→∞. Also, we have〈
m1Jdn , ψ̂

〉
→
〈
m, ψ̂

〉
,

and by (83) we get

〈K,ψ〉 =
〈
m, ψ̂

〉
. (84)

The uniqueness of K immediately follows from (84). Lemma 31 is proved. �

4.2 Divergence-like equations in Ẇ d/2,2

We can now prove our existence result for divergence-like equations in a particular type of critical
spectral spaces. We start by an analogue of [5, Lemma 2]. The proof we give below rests on some
elaborations of the main ideas used by Bourgain and Brézis in the proof of [5, Lemma 2]. Lemma
31 from the previous subsection will play here an important role.

In what follows let us denote by∇σ
2u the first two components of the “σ-gradient” of u, namely,

∇σ
2u := (∂σ1 u, ∂

σ
2 u),

where ∂σj is the Fourier multiplier ∂σj := σj(∇).
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Lemma 33. Let d ≥ 3 be an integer. Consider the set U := Rd−1 × (0,∞). If σ : Rd → R
satisfies (P1),(P2) then,∥∥|∇|−1 |∇σ

2 |2u
∥∥
Y ∗/U

. ‖∇σ
2u‖(L1+Y ∗)/U

+ ‖∇σ
2u‖

1/2
Y ∗/U ‖∇

σ
2u‖

1/2

(L1+Y ∗)/U , (85)

for any u ∈ S], where Y := Ẇ d/2,2.

(For the meaning of the notation Y ∗/U and (L1 + Y ∗)/U see subsection 2.3.)

Proof. Clearly, Y ∗ = Ẇ−d/2,2. First we show that∫
Rd

σ2
1(ξ)σ2

2(ξ)

|ξ|d+2
1U(ξ) |û(ξ)|2 dξ . ‖∇σ

2u‖
2
(L1+Y ∗)/U + ‖∇σ

2u‖Y ∗/U ‖∇
σ
2u‖(L1+Y ∗)/U , (86)

for any function u ∈ S].
Consider some functions F1, F2, h1, h2 , F−1 , F

−
2 ∈ S] with spec(F−1 ), spec(F−2 ) ⊆ U c such that

∇σ
2u = (F1, F2) + (h1, h2) + (F−1 , F

−
2 ), (87)

and
‖F1‖L1 + ‖F2‖L1 + ‖h1‖Y ∗ + ‖h2‖Y ∗ ≤ 2 ‖∇σ

2u‖(L1+Y ∗)/U . (88)

We have ∫
Rd

σ2
1(ξ)σ2

2(ξ)

|ξ|d+2
1U(ξ) |û(ξ)|2 dξ = c

∫
Rd

σ1(ξ)σ2(ξ)

|ξ|d+2
1U(ξ)∂̂σ1 u(ξ)∂̂σ2 u(ξ)dξ,

Using this, (87) and the fact that spec(F−j ) ⊆ U c (and hence 1U(ξ)F̂−j (ξ) = 0, for j = 1, 2 and

for all ξ ∈ Rd), we can write∫
Rd

σ2
1(ξ)σ2

2(ξ)

|ξ|d+2
1U(ξ) |û(ξ)|2 dξ = I + II,

where

I := c

∫
Rd

σ1(ξ)σ2(ξ)

|ξ|d+2
1U(ξ)F̂1(ξ)F̂2(ξ)dξ,

and II is the sum of a finite number of terms of the form

c

∫
Rd

σ1(ξ)σ2(ξ)

|ξ|d+2
1U(ξ)g1(ξ)g2(ξ)dξ, (89)

where each gk : Rd → C is one of the functions

ĥ1, ĥ2, ĥ1, ĥ2, F̂1, F̂2, F̂ 1, F̂ 2

and at least one gk is ĥj or ĥj for some j ∈ {1, 2}.
One can verify immediately that the symbol m defined by

m(ξ) :=
σ1(ξ)σ2(ξ)

|ξ|d+2
1U(ξ), ξ ∈ Rd\ {0} ,
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satisfies the conditions in Lemma 31. Hence, by a applying Lemma 31 and (88),

|I| ∼ |〈K ∗ F1, F2〉| ≤ ‖K ∗ F1‖L∞ ‖F2‖L1

≤ ‖K‖L∞ ‖F1‖L1 ‖F2‖L1 . ‖∇σ
2u‖

2
(L1+Y ∗)/U . (90)

(Here, we have used the notation from Lemma 31: K̂ = m.)

In order to estimate II we estimate each of its terms of the form (89). By the Cauchy-Schwarz
inequality, we get∣∣∣∣∣

∫
Rd

σ1(ξ)σ2(ξ)

|ξ|d+2
1U(ξ)g1(ξ)g2(ξ)dξ

∣∣∣∣∣ ≤
2∏

k=1

(∫
Rd

1U(ξ)
|gk(ξ)|2

|ξ|d
dξ

)1/2

, (91)

where we have used the inequality ∣∣∣∣σ1(ξ)σ2(ξ)

|ξ|2

∣∣∣∣ . 1,

which follows directly from (P1).

Note that, if |gk| = |ĥj|, for some j ∈ {1, 2}, then, by (88)(∫
Rd

1U(ξ)
|gk(ξ)|2

|ξ|d
dξ

)1/2

≤ ‖hj‖Y ∗ ≤ 2 ‖∇σ
2u‖(L1+Y ∗)/U . (92)

If |gk| = |F̂j|, for some j ∈ {1, 2}, then, since F̂j1U = (∂̂σj u − ĥj)1U , the triangle inequality
together with (88) gives(∫

Rd
1U(ξ)

|gk(ξ)|2

|ξ|d
dξ

)1/2

=

(∫
Rd

1U(ξ) |ξ|−d
∣∣∣∂̂σj u(ξ)− ĥj(ξ)

∣∣∣2 dξ)1/2

≤
∥∥∂σj u∥∥Y ∗/U + ‖hj‖Y ∗

≤ ‖∇σ
2u‖Y ∗/U + 2 ‖∇σ

2u‖(L1+Y ∗)/U

≤ 3 ‖∇σ
2u‖Y ∗/U . (93)

Since |gk| = |ĥj| (for some j) for at least one k, we get from (91), (92) and (93) that∣∣∣∣∣
∫
Rd

σ1(ξ)σ2(ξ)

|ξ|d+2
1U(ξ)g1(ξ)g2(ξ)dξ

∣∣∣∣∣ . ‖∇σ
2u‖Y ∗/U ‖∇

σ
2u‖(L1+Y ∗)/U .

Hence,
|II| . ‖∇σ

2u‖Y ∗/U ‖∇
σ
2u‖(L1+Y ∗)/U . (94)

By (93) and (94) we get (86).

Consider the rotation
R (ξ) = (ξ1 − ξ2, ξ1 + ξ2, ξ3, ..., ξd),

for any ξ ∈ Rd. Consider now the functions

σ′1 := σ1 ◦R− σ2 ◦R, and σ′2 := σ1 ◦R + σ2 ◦R.

One can immediately check that the function

σ′1σ
′
2 := (σ1 ◦R)2 − (σ2 ◦R)2

37



is odd in each of the variables ξ1, ξ2. Using this, we easily observe that the symbol m′ defined by

m′(ξ) :=
σ′1(ξ)σ′2(ξ)

|ξ|d+2
1U(ξ), ξ ∈ Rd\ {0} ,

satisfies the conditions in Lemma 31. Hence, as in (86), we obtain that∫
Rd

σ′1(ξ)2σ′2(ξ)2

|ξ|d+2
1U(ξ) |v̂(ξ)|2 dξ .

∥∥∥∇σ′

2 v
∥∥∥2

(L1+Y ∗)/U
+
∥∥∥∇σ′

2 v
∥∥∥
Y ∗/U

∥∥∥∇σ′

2 v
∥∥∥

(L1+Y ∗)/U
, (95)

for any function v ∈ S], where
∇σ′

2 v := (∂σ
′

1 v, ∂
σ′

2 v),

and ∂σ
′

1 is the Fourier multiplier of symbol σ′j, for any j = 0, 1.

Since the spaces Y ∗/U and (L1 + Y ∗)/U are invariant under the rotation R, by applying (95)
to the function v = u ◦Rt we obtain (by changing the variables) that∫

Rd

(σ1(ξ)− σ2(ξ))2 (σ1(ξ) + σ2(ξ))2

|ξ|d+2
1U(ξ) |û(ξ)|2 dξ

is bounded by
‖∇σ

2u‖
2
(L1+Y ∗)/U + ‖∇σ

2u‖Y ∗/U ‖∇
σ
2u‖(L1+Y ∗)/U , (96)

for any function u ∈ S]. By adding up, we get from (86) and (96) that∫
Rd

σ̃(ξ)

|ξ|d+2
1U(ξ) |û(ξ)|2 dξ . ‖∇σ

2u‖
2
(L1+Y ∗)/U + ‖∇σ

2u‖Y ∗/U ‖∇
σ
2u‖(L1+Y ∗)/U , (97)

where
σ̃(ξ) := σ2

1(ξ)σ2
2(ξ) + (σ1(ξ)− σ2(ξ))2 (σ1(ξ) + σ2(ξ))2 ,

for any ξ ∈ Rd. Since for any real numbers a, b we have

a2b2 + (a− b)2 (a+ b)2 ∼ a4 + b4,

we obtain
σ̃(ξ) ∼ σ4

1(ξ) + σ4
2(ξ),

for all ξ ∈ Rd, and now (97) gives us∫
Rd

σ4
1(ξ) + σ4

2(ξ)

|ξ|d+2
1U(ξ) |û(ξ)|2 dξ . ‖∇σ

2u‖
2
(L1+Y ∗)/U + ‖∇σ

2u‖Y ∗/U ‖∇
σ
2u‖(L1+Y ∗)/U . (98)

Note that by (20) (with D = U), we have

∥∥|∇|−1 |∇σ
2 |2u

∥∥N
Y ∗/U

∼
∫
Rd

σ4
1(ξ) + σ4

2(ξ)

|ξ|d+2
1U(ξ) |û(ξ)|2 dξ,

and together with (98) this concludes the proof of Lemma 33. �

By composition with rotations and by adding up inequalities of the form (85), Lemma 33
easily implies the following:
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Lemma 34. Let d ≥ 3 be an integer. Suppose that the family of functions G1, ..., Gd : Rd → Rd−1

is adapted to the family of half-spaces D1, ..., Dd ⊂ Rd. For any j ∈ {1, ..., d} we have∥∥|∇|−1 |Gj(∇)|2u
∥∥
Y ∗/U

. ‖Gj(∇)u‖(L1+Y ∗)/Dj

+ ‖Gj(∇)u‖1/2
Y ∗/Dj

‖Gj(∇)u‖1/2

(L1+Y ∗)/Dj
,

for any u ∈ S], where Y := Ẇ d/2,2.

(For the properties of the functions G1, ..., Gd and their relation with the half-spaces D1, ..., Dd

see the subsection 1.3 in the introduction of this paper.)

We can now state and prove the existence results of this subsection:

Lemma 35. Let d ≥ 3 be an integer. Suppose that the family of functions G1, ..., Gd : Rd → Rd−1

is adapted to the family of half-spaces D1, ..., Dd ⊂ Rd. Then, for any system of (d − 1)-vector
fields (vj)j=1,..,d with vj ∈ Ẇ d/2,2(Rd) and spec(vj) ⊆ Dj, there exists a system of (d − 1)-vector
fields (uj)j=1,..,d, with uj ∈ L∞(Rd) ∩ Ẇ d/2,2(Rd) and spec(uj) ⊆ Dj, such that

d∑
j=1

Gj (∇) · uj =
d∑
j=1

Gj (∇) · vj,

and
d∑
j=1

‖uj‖L∞∩Ẇ d/2,2 .
d∑
j=1

‖vj‖Ẇ d/2,2 .

Proof. As before, let Y be the space Ẇ d/2,2. According to Lemma 34, for any ϕ ∈ S], we have∥∥|∇|−1 |Gj (∇) |Gj (∇)ϕ
∥∥
Y ∗/Dj

. ‖Gj (∇)ϕ‖(L1+Y ∗)/Dj

+ ‖Gj (∇)ϕ‖1/2
Y ∗/Dj

‖Gj (∇)ϕ‖1/2

(L1+Y ∗)/Dj

= ‖Gj (∇)ϕ‖(L1+Y ∗)/Dj

+(ε1/2 ‖Gj (∇)ϕ‖1/2
Y ∗/Dj

)(ε−1/2 ‖Gj (∇)ϕ‖1/2

(L1+Y ∗)/Dj
)

≤ ‖Gj (∇)ϕ‖(L1+Y ∗)/Dj

+ε ‖Gj (∇)ϕ‖Y ∗/Dj + ε−1 ‖Gj (∇)ϕ‖(L1+Y ∗)/Dj
,

for any ε ∈ (0, 1) and any j ∈ {1, ..., d}. By adding up these inequalities we get

d∑
j=1

∥∥|∇|−1 |Gj (∇) |Gj (∇)ϕ
∥∥
Y ∗/Dj

. ε

d∑
j=1

‖Gj (∇)ϕ‖Y ∗/Dj

+ε1−N
d∑
j=1

‖Gj (∇)ϕ‖(L1+Y ∗)/Dj
. (99)

Since the family G1,...,Gd is adapted to D1,...,Dd, (see (10)) we easily get

d∑
j=1

|Gj(ξ)|β 1Dj(ξ) ∼β |ξ|
β 1D(ξ), (100)
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on Rd, for any β > 0. Using now (100), with β = 2, we can write

d∑
j=1

∥∥|∇|−1 |Gj (∇) |Gj (∇)ϕ
∥∥
Y ∗/Dj

∼
d∑
j=1

∥∥∥|ξ|−1 |Gj (ξ) |21Dj (ξ) |ϕ̂ (ξ) | |ξ|−d/2
∥∥∥
L2
ξ

∼

∥∥∥∥∥|ξ|−1

(
d∑
j=1

|Gj (ξ) |21Dj (ξ)

)
|ϕ̂ (ξ) | |ξ|−d/2

∥∥∥∥∥
L2
ξ

∼
∥∥∥|ξ|−1 |ξ|21D (ξ) |ϕ̂ (ξ) | |ξ|−d/2

∥∥∥
L2
ξ

=
∥∥∥|ξ|1D (ξ) |ϕ̂ (ξ) | |ξ|−d/2

∥∥∥
L2
ξ

. (101)

In a similar way (by (10)) we can write

d∑
j=1

‖Gj (∇)ϕ‖Y ∗/Dj ∼
d∑
j=1

∥∥∥|Gj (ξ) |1Dj (ξ) ϕ̂ (ξ) | |ξ|−d/2
∥∥∥
L2
ξ

∼

∥∥∥∥∥
(

d∑
j=1

|Gj (ξ) |1Dj (ξ)

)
ϕ̂ (ξ) | |ξ|−d/2

∥∥∥∥∥
L2
ξ

∼
∥∥∥|ξ|1D (ξ) |ϕ̂ (ξ) | |ξ|−d/2

∥∥∥
L2
ξ

. (102)

Note that (101) and (102) gives us

d∑
j=1

∥∥|∇|−1 |Gj (∇) |Gj (∇)ϕ
∥∥
Y ∗/Dj

∼
d∑
j=1

‖Gj (∇)ϕ‖Y ∗/Dj ,

and together with (99) yields

d∑
j=1

‖Gj (∇)ϕ‖Y ∗/Dj . ε
d∑
j=1

‖Gj (∇)ϕ‖Y ∗/Dj + ε−1

d∑
j=1

‖Gj (∇)ϕ‖(L1+Y ∗)/Dj
.

Choosing ε sufficiently small one can write

d∑
j=1

‖Gj (∇)ϕ‖Y ∗/Dj .
d∑
j=1

‖Gj (∇)ϕ‖(L1+Y ∗)/Dj
.

By duality (using the closed range theorem) we get Lemma 35. �

With the same methods one can prove an analogue of Theorem 8 when d = 2 and the source
space is Ẇ 1,2(R2):

Lemma 36. Consider the numbers δ ∈ (0, π/8) and ε ∈ (0, 2]. Then, for any vector field v ∈
Ẇ 1,2(R2), with spec(v) ⊆ Cδ, there exist a vector field u ∈ L∞(R2) ∩ Ẇ 1,2(R2), with spec(uj) ⊆
C(1+ε)δ, such that

div u = div v,

and
‖u‖L∞∩Ẇ 1,2 . ‖v‖Ẇ 1,2 .
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(For the meaning of Cδ see subsection 1.3.)

Sketch of the proof. First we establish the result for ε = 2. Let us denote by D(Cδ) the set
defined by

D(Cδ) :=
⋃
I⊂Cδ

Iν ,

the union being taken after all the dyadic boxes Iν = [2ν1−1, 2ν1 ]× [2ν2−1, 2ν2 ] (where ν = (ν1, ν2) ∈
Z2) that are included in Cδ and are maximal (with respect to the inclusion relation) with this
property. One can find a finite number of rotations R1, ..., Rn : R2 → R2 such that

Cδ\BR2(0, r) ⊂ C̃δ :=
n⋃
j=1

Rj(D(Cδ)) ⊂ C2δ, (103)

for some sufficiently large r > 0. As in the proof of (86) we get∫
Rd

(ξ1ξ2)2

|ξ|d+2
1D(Cδ)(ξ) |û(ξ)|2 dξ . ‖∇u‖2

(L1+Y ∗)/D(Cδ)
+ ‖∇u‖Y ∗/D(Cδ)

‖∇u‖(L1+Y ∗)/D(Cδ)
, (104)

for any u ∈ S], where Y = Ẇ d/2,2. As in the proof of Lemma 31, by Lemma 30 (applied in the
case ` = d = 2) one can see that there exists K ∈ L∞ such that

K̂(ξ) =
ξ1ξ2

|ξ|d+2
1D(Cδ)(ξ),

with the same meaning as in Lemma 31. We use then the same method as in (90). The rest of
the argument remains essentially the same as the one used in the proof of (86).

Note that, by (104) we get (by composition with rotations) that∫
Rd

(R1
j (ξ)R

2
j (ξ))

2

|ξ|d+2
1Rj(D(Cδ))(ξ) |û(ξ)|2 dξ . ‖∇u‖2

(L1+Y ∗)/Rj(D(Cδ))

+ ‖∇u‖Y ∗/Rj(D(Cδ))
‖∇u‖(L1+Y ∗)/Rj(D(Cδ))

,

for all j ∈ {1, ..., n}, where Rl
j(ξ) is the l-th coordinate of the vector Rj(ξ). Using the (103) we

get
‖∇u‖Y ∗/Rj(D(Cδ))

≤ ‖∇u‖Y ∗/C̃δ and ‖∇u‖(L1+Y ∗)/Rj(D(Cδ))
≤ ‖∇u‖(L1+Y ∗)/C̃δ

,

for all j ∈ {1, ..., n}, and one can write∫
Rd

(R1
j (ξ)R

2
j (ξ))

2

|ξ|d+2
1Rj(D(Cδ))(ξ) |û(ξ)|2 dξ . ‖∇u‖2

(L1+Y ∗)/C̃δ

+ ‖∇u‖Y ∗/C̃δ ‖∇u‖(L1+Y ∗)/C̃δ
, (105)

for all j ∈ {1, ..., n}. One can easily check that

n∑
j=1

(R1
j (ξ)R

2
j (ξ))

21Rj(D(Cδ))(ξ) ∼ |ξ|
4 1C̃δ(ξ),

for all ξ ∈ R2. Hence, by adding up the inequalities (105) we get∫
Rd

|ξ|2

|ξ|d
1C̃δ(ξ) |û(ξ)|2 dξ . ‖∇u‖2

(L1+Y ∗)/C̃δ
+ ‖∇u‖Y ∗/C̃δ ‖∇u‖(L1+Y ∗)/C̃δ

,
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which can be rewritten as

‖∇u‖Y ∗/C̃δ . ‖∇u‖(L1+Y ∗)/C̃δ
+ ‖∇u‖1/2

Y ∗/C̃δ
‖∇u‖1/2

(L1+Y ∗)/C̃δ
. (106)

By duality (as in the proof of Lemma 35) we obtain that for any vector field v ∈ Ẇ 1,2(R2),

with spec(v) ⊆ C̃δ, there exist a vector field u ∈ L∞(Rd) ∩ Ẇ 1,2(R2), with spec(uj) ⊆ C̃δ, such
that

div u = div v,

and
‖u‖L∞∩Ẇ 1,2 . ‖v‖Ẇ 1,2 .

Thanks to (103) this immediately implies Lemma 36 in the case ε = 2. To obtain the result
for any ε ∈ (0, 1) simply cover the symmetric cone Cδ with a small union of rotated copies
of the symmetric cones Cδ/n for some large integer n > 0. It suffices now to apply the result
corresponding to the case ε = 2 to each rotated copy of Cδ/n and then add the obtained solutions.
�

5 Solutions in interpolation spaces

5.1 Proof of the main results

We now discuss some immediate applications of the W-method to the divergence-like equation.
First we formulate a general result:

Theorem 37. Let X, X̃, Y , Ỹ , F be Banach function spaces on Rd satisfying the embeddings
X ↪→ X̃, Y ↪→ Ỹ ↪→ X̃ and consider a bounded linear operator T : X̃ → F . Suppose moreover
that the following conditions are satisfied:

(i) X̃, Y , Ỹ are UMD separable spaces;

(ii) T is bounded from X to F and from Y to F , and T (Y ) ↪→ T (L∞ ∩ Ỹ ).

Fix some θ ∈ (0, 1). Then, for any vector field v ∈ (L∞ ∩X, Y )θ, there exists a vector field
u ∈ L∞ ∩ (X̃, Ỹ )θ such that

Tu = Tv,

and
‖u‖L∞∩(X̃,Ỹ )θ

. ‖v‖(L∞∩X,Y )θ
.

Proof. We apply Lemma 28 for the Banach spaces X0 = X̃, X1 = Ỹ , A = L∞, A0 = L∞ ∩ X̃,
B0 = L∞ ∩ X, A1 = L∞ ∩ Ỹ , B1 = Y and the operator T . One can easily observe that in this
setting the conditions of Lemma 28 (part of them are explicitly stated in Lemma 27) are satisfied.
Indeed, in order to verify the condition (i) in Lemma 27 it suffices to see that X, Y ↪→ X̃ and
hence,

B1 ↪→ X1 = Ỹ ↪→ X0 = X̃,

and B0 ↪→ A0.

The space Ỹ is reflexive (since it has the UMD property) and hence, it has a separable
predual7. Also, A = (L1)∗ has a separable predual. Thus, the condition (ii) in Lemma 27 is
verified. Condition (iii) in Lemma 27 is ensured by condition (ii) in Theorem 37.

7Here we use the fact that if the dual X∗ of a Banach space X is separable, then, X is separable (see for
instance [14, Theorem 4.6-8, 245]).
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Notice that X̃ ∩ Ỹ is a separable space that is dense in (X̃, Ỹ )θ (see [2, Theorem 4.2.2 (a), p.
91]). It follows that (X̃, Ỹ )θ is a reflexive and separable space and consequently it has a separable
predual. We also have by (i) that the spaces X̃, Y , Ỹ have the UMD property. We can apply
now Lemma 28 and we get Theorem 37. �

Let us see now that Theorem 37 above implies Theorem 10, Theorem 11, Theorem 9 and
Theorem 8. In what follows we will ignore the space F since it is easy for the operators T we
use to find a space F sufficiently large such that T : X̃ → F (one can simply set F of the form
F = B−a,b∞ for some a, b ∈ (1,∞), with a sufficiently large).

Proof of Theorem 10. Let us consider some parameter r ∈ [2,∞) such that 1/p = (1− θ)/r+

θ/2. We apply Theorem 37 for the Banach spaces X = Ḃ
d/r,r
1 , X̃ = Ḃ

d/r,r
2 and Y = Ỹ = Ḃ

d/2,2
2 .

Since r ≥ 2, we have Ḃ
d/2,2
2 , B

d/r,r
1 ↪→ Ḃ

d/r,r
2 . Hence, X ↪→ X̃ and Y ↪→ Ỹ ↪→ X̃. Also, by Mazya’s

theorem (Theorem 3 in the case p = q = 2) we have T (Y ) ↪→ T (L∞∩Ỹ ), for the operator T = div.
Now the hypotheses of Theorem 37 are satisfyed.

Observe that, since X = Ḃ
d/r,r
1 ↪→ L∞, we have L∞ ∩X = Ḃ

d/r,r
1 and we can write

(L∞ ∩X, Ḃd/2,2
2 )θ = (B

d/r,r
1 , Ḃ

d/2,2
2 )θ = Bd/p,p

q .

Since we also have
(Ḃ

d/r,r
2 , Ḃ

d/2,2
2 )θ = Ḃ

d/p,p
2 ,

it remains to apply Theorem 37 and Theorem 10 is proved. �

Proof of Theorem 11. As in the proof of Theorem 10 let us consider r ∈ [2,∞) such that
1/p = (1− θ)/r+ θ/2. We apply Theorem 37 for the Banach spaces X = Ẇ d/rLr,1, X̃ = Ẇ d/rLr,2

and Y = Ỹ = Ẇ d/2,2. It remains to verify that the hypotheses of Theorem 37 are satisfyed.
Indeed, by the monotonicity properties of the Lorentz spaces we also have Ẇ d/rLr,1 ↪→ Ẇ d/rLr,2,
i.e., X ↪→ X̃. By Lemma 16 we get Ẇ d/2,2 ↪→ X̃, i.e., Y = Ỹ ↪→ X̃. Also, by Mazya’s theorem
(Theorem 3 in the case p = q = 2) we have T (Y ) ↪→ T (L∞ ∩ Ỹ ) and now the hypotheses of
Theorem 37 are satisfyed.

By Lemma 17 we have Ẇ d/2,2 ↪→ X̃ and X = Ẇ d/rLr,1 ↪→ L∞ and hence L∞ ∩X = Ẇ d/rLr,1.
From this and Lemma 18 we get

(L∞ ∩X, Ẇ d/2,2)θ = (Ẇ d/rLr,1, Ẇ d/2,2)θ = Ẇ d/pLp,q. (107)

Lemma 18 also gives
(Ẇ d/rLr,2, Ẇ d/2,2)θ = Ẇ d/pLp,2, (108)

and now one can easily conclude the proof of Theorem 11 by a direct application of Theorem 37.
�

Proof of Theorem 9. The proof is very similar to the one of Theorem 10. Suppose p, r, θ are
as in the proof of Theorem 10. We put

X =
d∏
j=1

(Ḃ
d/r,r
1 )Dj , X̃ =

d∏
j=1

(Ḃ
d/r,r
2 )Dj and Y = Ỹ =

d∏
j=1

(Ḃ
d/2,2
2 )Dj .

Now, the operator T is the operator formaly defined for the systems of (d− 1)-vector fields by
the formula

T (v1, ..., vd) =
d∑
j=1

Gj (∇) · vj,
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where v1, ..., vd ∈ S ′ are (d − 1)-vector fields. In order to verify the item (ii) in Theorem 37 we
use Lemma 35 instead of Mazya’s theorem. It remains to apply Theorem 37 and to observe that,
by the retraction method,

((Ḃ
d/r,r
1 )Dj , (Ḃ

d/2,2
2 )Dj)θ = (Ḃd/p,p

q )Dj

and
((Ḃ

d/r,r
2 )Dj , (Ḃ

d/2,2
2 )Dj)θ = (Ḃ

d/p,p
2 )Dj ,

for any j ∈ {1, ..., d}. �

Proof of Theorem 8. Again, suppose p, r, θ are as in the proof of Theorem 10. We put
X = (Ḃ

d/r,r
1 )Cδ , X̃ = (Ḃ

d/r,r
2 )C(1+ε)δ

and Y = (Ḃ
d/2,2
2 )Cδ , Ỹ = (Ḃ

d/2,2
2 )C(1+ε)δ

. The operator T is the
usual divergence operator T = div. It remains to apply Theorem 37 and to observe that, by the
retraction method,

((Ḃ
d/r,r
1 )Cδ , (Ḃ

d/2,2
2 )Cδ)θ = (Ḃd/p,p

q )Cδ

and
((Ḃ

d/r,r
2 )C(1+ε)δ

, (Ḃ
d/2,2
2 )C(1+ε)δ

)θ = (Ḃ
d/p,p
2 )C(1+ε)δ

.

Both of these equalities rest on the fact that the Fourier projections PCδ on the sets Cδ are a
sum of two rotated and dilated Riesz projections. Hence, PCδ is bounded on each of the spaces

Ḃ
d/r,r
1 , Ḃ

d/r,r
2 and Ḃ

d/2,2
2 . �

Let us see now that Theorem 9 implies Theorem 7. For this we need only some elementary
geometry. Suppose d ≥ 3 and consider the unit vectors νj := (1, ..., 1, 2, 1, ..., 1)/

√
d+ 1 in Rd

(with value 2 on the j-th position), j ∈ {1, ..., d}. For each j ∈ {1, ..., d} define the half-spaces

Dj :=
{
ξ ∈ Rd | 〈ξ, νj〉 > 0

}
,

and let D be the set D := D1 ∪ ... ∪ Dd. By pDj(ξ) we denote the orthogonal projection of the
point ξ on the support hyperplane Πj of Dj:

Πj :=
{
ξ ∈ Rd | 〈ξ, νj〉 = 0

}
.

Note that ∣∣pDj(ξ)∣∣ =
(
|ξ|2 − |〈ξ, νj〉|2

)1/2
,

for any j ∈ {1, ..., d}.
Consider the function σ : Rd → R defined by σ(ξ) = ξ1. We can immediately see that this

σ satisfies the conditions (P1), (P2). We have now σj(ξ) = ξj, for all j ∈ {1, ..., d}. Consider
G0 := (σ1, ..., σd−1) and let Gj be obtained by composing G0 with a rotation that transforms
Rd−1 × (0,∞) in Dj. One can see that |Gj(ξ)| ∼ |pDj(ξ)|, for all j ∈ {1, ..., d}. In order to see
that the family of functions G1, ..., Gd is adapted to the family D1, ..., Dd of half-spaces it remains
to prove the following equivalence that corresponds to (10):

Lemma 38. With the above notation we have

d∑
j=1

∣∣pDj(ξ)∣∣1Dj(ξ) ∼ |ξ|1D(ξ),

for any ξ ∈ Rd.
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Proof. Observe that |νi − νj| < 1 and |〈νi, νj〉| < 1 for any i, j ∈ {1, ..., d}, i 6= j. It follows from
this that we can find some sufficiently small number α ∈ (0, 1) such that

|νi − νj| <
√

1− α, (109)

for any i, j ∈ {1, ..., d}, and √
α

1− α
+ |〈ν1, ν2〉| < 1. (110)

Let c ∈ (0, 1) such that
√

1− c equals the left hand side of (110). In order to prove Lemma
38 it suffices to see that, for any ξ ∈ Rd,

d∑
j=1

∣∣pDj(ξ)∣∣1Dj(ξ) ≥ c1 |ξ|1D(ξ), (111)

with c1 = min(
√
α,
√
c).

Pick some ξ ∈ D1∩ ...∩Dd. If |〈ξ, ν1〉| ≤
√

1− α |ξ|, then the left hand side of (111) is at least

|pD1(ξ)| =
(
|ξ|2 − |〈ξ, ν1〉|2

)1/2 ≥
√
α |ξ| ,

and we are done. Else, we have |〈ξ, ν1〉| >
√

1− α |ξ| and decomposing ξ as ξ = βν1 +w, for some
β ∈ R and w ∈ Rd with w⊥ν1, we can rewrite this inequality as

|β| >
√

1− α
(
|β|2 + |w|2

)1/2
,

or, equivalently,

|w| < |β|
√

α

1− α
. (112)

Now, note that, using (110)

|〈ξ, ν2〉| ≤ |β| |〈ν1, ν2〉|+ |〈w, ν2〉|
≤ |β| |〈ν1, ν2〉|+ |w|

< |β|
(
|〈ν1, ν2〉|+

√
α

1− α

)
≤ |ξ|

√
1− c.

As above we get |pD2(ξ)| =
(
|ξ|2 − |〈ξ, ν1〉|2

)1/2 ≥
√
c |ξ| and we are done. It remains to treat

the case ξ ∈ D\ (D1 ∩ ... ∩Dd).

Suppose ξ ∈ Dk\ (D1 ∩ ... ∩Dd) for some k ∈ {1, ..., d}. Then, we cannot have 〈ξ, νk〉 >√
1− α |ξ|. Otherwise, using (109),

〈ξ, νj〉 = 〈ξ, νk〉 − 〈ξ, νk − νj〉
>
√

1− α |ξ| − |νi − νj| |ξ| > 0,

for any j ∈ {1, ..., d}, and we obtain that ξ ∈ D1 ∩ ... ∩Dd contradicting the choice of ξ. Hence,
we must have 〈ξ, νk〉 ≤

√
1− α |ξ| and since 〈ξ, νk〉 > 0 (thanks to the fact that ξ ∈ Dk) we get

|〈ξ, νk〉| ≤
√

1− α |ξ|. Now we can conclude as above. �

By applying Theorem 9 we get a version of Theorem 7 in which the Fourier support of the
solutions lie in the set D instead of ∆ = Rd\(−∞, 0)d. One can easily deduce from this the original
version of Theorem 7 by composing the involved functions (the source term and the solution) by
rotations and dilations.
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Remark 39. It would be interesting if one could replace the set ∆ = Rd\(−∞, 0)d in Theorem 7
with the set (−∞, 0)d. This will give a stronger version of Theorem 7. It is not known whether
this stronger version is true or not. The methods used in this paper seem to not apply in the case
of the set (−∞, 0)d.

5.2 Remark concerning the “third” parameter

Let us consider here the problem related to the nonoptimality of the third parameter. For the
sake of simplicity we are concerned here only with the divergence equation. Similar observations
can be made for the case of the divergence-like equations.

Recall that, in Theorem 10 in contrast to Theorem 3, we lose some control of the parameter q
of the Besov spaces involved: we start with a source term in Ḃ

d/p,p
q and we end up with a solution

in Ḃ
d/p,p
2 which, despite the fact that it has the “right” differential regularity (the exponents p and

s = d/p are the right ones), it is a space strictly larger than Ḃ
d/p,p
q . This is due to the fact that in

order to easily compute the source space we have chosen X such that X ↪→ L∞. Consequently,
we have to take X̃ strictly larger than X. Indeed, choosing X̃ = X the hypotheses of Theorem
37 imply that Ẇ d/2,2 ↪→ X ↪→ L∞, however, Ẇ d/2,2 is not embedded in L∞. By the method we
used to prove Theorem 10 it is unlikely to improve the solution space to L∞ ∩ Ḃd/p,p

q . A similar
remark can be made for Theorem 11.

When we use Theorem 37, in order to not lose any regularity, we would like to have that
X̃ = X and

(L∞ ∩X, Ẇ d/2,2)θ = (X, Ẇ d/2,2)θ. (113)

Since Ẇ d/2,2 ↪→ X we cannot impose the condition X ↪→ L∞. Apart from this situation, there
are other natural candidates for the space X that one may expect to satisfy (113). However, this

condition (113) is too restrictive. For instance we cannot pick X = Ḃ
d/r,r
r for some r ∈ (2,∞).

Indeed, in this case, we have the following negative result:

Proposition 40. Let r ∈ (2,∞) and θ ∈ (0, 1) be some fixed parameters. Then,

(L∞(Rd) ∩ Ḃd/r,r
r (Rd), Ẇ d/2,2(Rd))θ 6= (Ḃd/r,r

r (Rd), Ẇ d/2,2(Rd))θ.

(The corresponding norms on the two interpolation spaces are not equivalent.)

Proof. Suppose by contradiction that we have

(L∞ ∩ Ḃd/r,r
r , Ẇ d/2,2)θ = (Ḃd/r,r

r , Ẇ d/2,2)θ.

This implies that

(L∞ ∩ Ḃd/r,r
r , Ẇ d/2,2)θ = (Ḃd/r,r

r , Ḃ
d/2,2
2 )θ

= Ḃd/p,p
p , (114)

where 1/p = (1− θ) /r + θ/2. On the other hand, since p > 2, there exists some η ∈ (0, 1) such
that

(Ḃd/p,p
p , Ḃd,1

1 )θ = Ḃ
d/2,2
2 .

This, together with (114) and T. Wolff’s interpolation theorem (see [25, Theorem 2]) implies
that, there exists some θ1 ∈ (0, 1) such that

(L∞ ∩ Ḃd/r,r
r , Ḃd,1

1 )θ1 = Ḃ
d/2,2
2 . (115)
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Consider some function ψ ∈ C∞c (B(0, 1)) such that ψ ≡ 1 on B(0, 1/2) and define the operator
Tψ by

Tψf = f − f ∗ ψ̂,

for any Schwartz function f . We extend Tψ by continuity to the spaces L∞ ∩ Ḃd/r,r
r , Ḃd,1

1 , Ḃ
d/2,2
2

and we easily observe that we have the embeddings Tψ(L∞ ∩ Ḃd/r,r
r ) ↪→ L∞ and Tψ(Ḃd,1

1 ) ↪→
Bd,1

1 ↪→ L∞.

Thanks to this and (115), Tψ(Ḃ
d/2,2
2 ) must be embedded in L∞. In other words,∥∥∥f − f ∗ ψ̂∥∥∥
L∞
. ‖f‖

Ḃ
d/2,2
2

= ‖f‖Ẇ d/2,2 . ‖f‖W d/2,2 , (116)

for any Schwartz function f . Young’s inequality and the fact that ψ̂ is Schwartz gives us that

||f ∗ ψ̂||L∞ .
∥∥∥ψ̂∥∥∥

L2
‖f‖L2 . ‖f‖W d/2,2 ,

which together with (115) yields

‖f‖L∞ .
∥∥∥f − f ∗ ψ̂∥∥∥

L∞
+
∥∥∥f ∗ ψ̂∥∥∥

L∞
. ‖f‖W d/2,2 .

In other words we have obtained the embedding W d/2,2 ↪→ L∞, which is false. �

Open problem. Suppose D = Rd−1 × (0,∞) and X is a function space on Rd such that

Ẇ d/2,2 ↪→ X ↪→ BMO.

Is it true that
div(L∞ ∩XD, Ẇ

d/2,2
D )θ = div(XD, Ẇ

d/2,2
D )θ

(in the sense that any divergence of a (XD, Ẇ
d/2,2
D )θ vector field is a divergence of a (L∞ ∩

XD, Ẇ
d/2,2
D )θ vector field)?

If the answer to this question is yes, then, by using Theorem 37 we would be able to provide
a version of Theorem 7 with no loss of regularity in the third parameter:

Conjecture. Let d ≥ 3 be an integer and consider the set ∆ := Rd\(−∞, 0)d. Consider some

parameters p ∈ [2,∞) and q ∈ (1,∞). Then, for any vector field v ∈ S ′(Rd) ∩ Ḟ d/p,p
q (Rd), with

spec(v) ⊆ ∆ there exists a vector field u ∈ L∞(Rd) ∩ Ḟ d/p,p
q (Rd), with spec(u) ⊆ ∆ such that

div u = div v,

and
‖u‖

L∞∩Ḟ d/p,pq
. ‖v‖

Ḟ
d/p,p
q

.

(And a similar statement with Ḃ
d/p,p
q in place of Ḟ

d/p,p
q .)

One can formulate similar conjectures corresponding to the statements of Theorem 9 and
Theorem 8.
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[5] Bourgain, J., Brézis, H., On the equation div Y = f and application to control of phases.
J.Amer. Math. Soc., 16(2) :393–426 (electronic), 2003.
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[11] Curcă, E., On the interpolation of the spaces W l,1(Rd) and W r,∞(Rd), preprint, 2023.

[12] Diestel, J., Uhl, J.J.Jr., Vector measures. Math. Surveys 15. Amer. Math. Soc. Providence,
1977.

[13] Grafakos, L., Classical Fourier Analysis, 2nd edition, Graduate Texts in Mathematics,
Springer, New York, 2008.

[14] Kreyszig, E., Introductory Functional Analysis with Applications, John Wiley & Sons, Inc.,
New York, 1978.

[15] Krugliak, N., Maligranda, L., Persson, L. E., The failure of the Hardy inequality and inter-
polation of intersections, Ark. Mat. 37, 323–344, 1999.

[16] Mazya, V., Bourgain-Brezis type inequality with explicit constants, Contemporary Mathe-
matics 445: 247-252, 2007.

[17] Mironescu, P., On some inequalities of Bourgain, Brézis, Maz’ya, and Shaposhnikova related
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