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Some Bourgain-Brézis type solutions via
complex interpolation

Eduard Curca *

May 30, 2023

Abstract

In 2002 Bourgain and Brézis proved that given a vector field v € S'(R%) N Wh4(R%)
there exists a vector field u € L>®(R%) N W4(R?) such that divu = divv. We prove several
results of a similar nature in which we take into consideration the Fourier support of the
solutions. For instance, in the case d > 3 we prove the following: for any vector field

v e S'(RY) ﬁBg/p’p(Rd) (where p € [2,00) and ¢ € (1,2)), with supp © C RY\(—o0,0)?, there
exists a vector field u € L>®(R%) N Bg/p’p(Rd), with supp © C R\ (—o0,0)?, such that

divu = divw,

and

HuHLoomB‘zi/PaP S HUHBg/pm .

Our arguments rely on a version of the complex interpolation method combined
with some ideas of Bourgain and Brézis.
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1 Introduction

1.1 Overview

Suppose d > 2 is an integer and consider some compactly supported function f € L¢ (Rd).
Standard Calderén-Zygmund theory shows that there exists a vector field u € S'(R%) N i (]Rd)
such that

divu = f, (1)

in the distributions sense on R?. Indeed, it sufices to set
u:=VI|V[?f, (2)

and to use the fact that the components of Vu are of the form R;R;ju where Ry, ..., R; are the

Riesz transforms on R? (]%Tp(ﬁ) = &/ 1€])@(€), for any Schwartz ¢). Since each R; is a Calderdn-
Zygmund operator, we easily get that each component of Vu belongs to LI(IRY).

Note that the space W does not embed in L™ and hence, the solution in W provided by
the expression (2) may fall outside L> (see for instance the example given by L. Nirenberg in
[5, Remark 7, p. 400]). However, as it was shown' by Bourgain and Brézis (2002), the fact that

(1) admits a (possibly another) solution u € L*°(R%) is a direct consequence of the Gagliardo
embedding (W' (R?) < L¥(R%), where d’ := d/(d — 1)) (see [5, Proposition 1]).

Even more, Bourgain and Brézis have proved in [5, Theorem 1] the following striking fact:
there exists a solution u to (1) that is simultaneously bounded and in the “right” Sobolev space
Wh4(R?). In other words, there exists a vector field u € L®°(R%) N W4(R%) which is a solution to
(1). In the general case where d > 2, this result was proved by an involved approximation argu-
ment using the Littlewood-Paley square function. We mention that the complicated construction
used in [5] can also be used in more general situations. By similar constructive methods, Bour-
gain and Brézis proved an analogue existence result for more general underdeterminated Hodge

Keywords: Bourgain-Brézis solutions, Fourier multipliers, Divergence equation.
MSC 2020 classification: 42B15, 42B35, 46B70
IThe results of Bourgain and Brézis were stated in the case of the torus T%, however, it is easy to transfer these
results on R?.



systems. Following the ideas in [5] and [6], Bousquet, Mironescu and Russ ([7], 2014) and later
Bousquet, Russ, Wang and Yung ([8], 2017) provided generalizations of the Bourgain-Brézis re-
sults in the scale of Triebel-Lizorkin spaces. For instance, adapted to the case of the divergence
equation, Theorem 2 in [8] gives us:

Theorem 1. Suppose that 1 < p,q < oo and consider some vector field v € S'(R?) N qu/p’p(]Rd).
Then, there exists a vector field u € L®(R%) N FY/PP(RY) such that

divu = div o,

and

[l poorpgrn S N0l s -

Remark 2. Note that by Calderén-Zygmund theory any (compactly supported) f € qu/p_l’p(Rd)

can be written as the divergence of the vector field v = V |V|_2f € Fj/p’p(Rd). Hence, since
F21’d = Wt when p=d and q = 2, from Theorem 1 above we recover the result of Bourgain and
Brézs.

A similar existence result holds for the scale of Besov spaces, the proof being technically the
same as for Theorem 1. Since in this paper we are concerned more with the Besov version, we
explicitely state it below:

Theorem 3. Suppose that 1 < p,q < oo and consider some vector field v € S'(R?) N B;l/p’p(Rd).
Then, there exists a vector field u € L®(R%) N BYPP(RY) that satisfies

divu = div o,

and such that

[l poep i S M0l e

Remark 4. Throughout the paper we will call the given vector v the source and w will be called
solution. A similar convention will also be applied to more general equations.

It is worth noticing that in the special case where d = 2 (and hence, p = 2) Bourgain and
Brézis have found a much simpler proof of their existence result (see [5, Section 4, p. 403]). In
this case the proof is by duality and it is nonconstructive. Also, by similar methods, a proof
was found by Mazya (2007) for the case p = ¢ = 2 of Theorem 1 (or equivalently of Theorem 3)
(see [16]). Again, the proof is by duality and strikingly simple. (See also [17] for some related
discussions.) However, both approaches, namely that of Bourgain and Brézis in the case d = 2
and that of Mazya are based on L2-Fourier analysis arguments that are unlikely to be extended
to the case where p #£ 2.

There is yet another situation of a different nature:
Proposition 5. Let d > 2 be an integer and consider some r € (1,00). Then, for any vector
field v € BY/™(RY) there exists a vector field u € L=(R%) N BY™ (RY) such that
divu = div v,
and

||u||Loor~|B‘1i/7"v7" S ||U||Bf/1",r .

Indeed, since Bf/r’r(]Rd) — L®(RY) N Bf/T’T(Rd), it suffices to set u := v (see subsection 2.1
for the definition of Bf/ ""(R?) we use in this paper). Since Proposition 5 and Theorem 3 have
much easier proofs than the constructive proof used in [5] and in [7], it would be interesting to
find a way to “interpolate” between Proposition 5 and Theorem 3.



1.2 A naive interpolation strategy

One may try to interpolate in the following way. By the closed range theorem and the lifting
property of the Besov spaces we can reformulate Proposition 5 and Theorem 3

gl osrreer ~ Il oot S UVl o 3)
and respectively,

19llvir-arz2 ~ IV gllir-ar22 S NIVl 1 pri-ar22 (4)
for any Schwartz function g with g vanishing in a neighborhood of 0.

For each Banach function space Y on R? denote by G(Y) the space of all vector fields in YV’
that are gradients, i.e.,
GY):={geY | curlg =0}.

With this notation one can view (3) and (4) as the embeddings
G(L + Btirr’) < Bt

and respectively,
g(Ll + Wfd/2,2) N Wfd/2+1,2.

By complex interpolation (we may consider the real interpolation as well), we conclude that,
for any 6 € (0,1),

(Q(L1 + B;od/r’rl>,g([11 + W—d/2,2))0 SN (Bo—od/r—ﬁ—lx” W—d/2+1,2)9' (5)

The right hand side of (5) can be easily computed explicitly (see for instance [2, Chapter 6]):

S—d/r+1,0" yir—d/2+1,2\ _ pH—d/p+1p
(Boo/r T,W / )Q—Bq/ ,

where 1/p=(1—-0)/r+6/2and 1/g=(1—6)/1+60/2. Now we would like to have
g(Ll + B[;d/P7P> SN (g(Ll + Bgod/”’/),g(Ll + Wfd/2,2))07 (6)

and combining this with (5), we would get via the closed range theorem the fact that for any

vector field v € BYPP(R?) there exists another vector field u € L®(R%) N BY/PP(RY) of the same
divergence as v. However, computing explicitly the left hand side of (5) or proving (6) only by
interpolation theory is a quite difficult task. Naively we may have the following strategy for

proving (6). We can observe that, since we have the embeddings L', B s LV BXY™ and
LY W=422 5 L1 4+ W~=%22 we can conclude by interpolation that

Ll, B—d/p,p’ N (Ll + B;od/r,r”Ll + W’d/m)g

q/

or equivalently
L'+ Bq—ld/p,p < (Ll 4 B;d/r,r’7L1 + W’d/m)g.

Consequently,
g(Ll + Bq_,d/pm) SN g(Ll + Bo—od/r,r’7L1 + We—d/QvQ)‘

Hence, in order to obtain (6) it would be sufficient to have

g((Ll + B;od/r,r/7L1 + Wfd/2,2)0) SN (g(Ll + Bgod/T’T/),g(Ll + Wfd/2,2))0’



or, equivalently, since the other embedding is trivial,

g((Ll + Bo—od/r,r”Ll + W—d/2,2)9) _ (g(Ll + B;d/r’r/),Q(Ll + W_d/272))6' (7)

We can further reformulate this fact as
NN (Yo, Y1), = N NYo, NNYi)y, (8)

where Yy = L' + BXY™ v, = L' + W~422 and A is the spaces of the fields in Y + Y; that
are gradients, i.e, N := G(Yy + Y7). The difficulty of proving (7) consists in the fact that, for the
general situation when Yy, Y3, N are Banach spaces the question whether or not (8) holds does
not have yet a satisfactory answer. If we replace the complex interpolation method in (8) with
the real K-method of interpolation, then, (8) may be false for some particular choice of the spaces
Yo, Y1, NV (see for instance [15]). In the case of the complex interpolation method it seems that
even less is known when (8) is valid.

This naive interpolation strategy seems inappropriate to prove (6) or even a weaker statement
like
g(Ll + Bl—d/np') SN (g(Ll + B;Od/r,r’)7g(L1 + W—d/2,2))9’

which corresponds to the following existence result:

Proposition 6. Let d > 2 be an integer and consider some parameters p € (2,00) and q € (1,2).

Then, for any vector fieldv € S'(RY)NBY/PP(RY) there exists a vector fieldu € L=(RY)NBLP? (R)
such that
divu = div o,

and

HuHLmﬂBgo/p’p S HU”Bg/p,p .

1.3 The main results

In this paper we take into consideration the spectrum of solutions. In what follows, the spectrum
of a tempered distribution v is its Fourier support, i.e., spec(v) := supp Av (see Remark 14 for a
more general definition). Adapted to the case of the divergence equation, our main result reads:

Theorem 7. Let d > 3 be an integer and consider the set A := R¥\(—o00,0)¢. Consider some
parameters p € [2,00) and q € (1,2). Then, for any vector field v € S'(RY) N BYPP(RY), with
spec(v) C A there exists a vector field u € L°(R%) N BS/””’(Rd), with spec(u) C A such that

divu = divo, 9)

and

Hu”L‘x’ﬂB;/p’p S H'U”Bg/p,p .

In the case where d = 2 our method does not provide solutions with the spectrum in A.
Nevertheless, one can obtain solutions with the spectrum in a different type of sets. For each
d € (0,7/4) let Cs be the symmetric cone

Cs = {(61,&) €R* | [&] < (tand) [}

With this notation we have:



Theorem 8. Consider the numbers 6 € (0,7/8), € € (0,1] and some parameters p € [2,00) and
q € (1,2). Then, for any vector field v € S'(R*) N Bg/p’p(R%, with spec(v) C Cy, there exists a
vector field u € L=(R?) N Bg/”’p(RQ), with spec(u) C Cyeys, such that

divu = div o,

and

”UHLoomBg/w S ”U”Bg/?’*’ .

When compared with Theorem 3 one can observe that Theorem 7 (or Theorem 8) has two
major drawbacks. First, we are not alowed to take p < 2 or ¢ > 2 as parameters for the space
Bg PP on the source side. Secondly, for the space in which we obtain the solution we lose some

control of the “third parameter”. In other words, we would prefer to obtain L> N B;l/ PP for the
solution space instead of L N B;l/ PP which is a slighlty larger space. (See however, Lemma 35
for a “perfect” version of our results in the case p = ¢ = 2.) On the other hand it is unlikely that
one can deduce Theorem 7 directly from Theorem 3. Indeed, given a vector field v € B;’l/ PP with
spec(v) C A, by Theorem 3 one can find some vector field u € LN B;l/p’p such that divu = divw,
however, not necessarly with spec(u) C A. It is not obvious that one can obtain a solution u with
spec(u) € A by direct methods: suppose P is the Fourier projection on A, i.e., P» =1 — P,,
where P, is the Riesz projection and [ is the identity operator. We have Panv = v and we can
write
div Pau = divwv.

However, since Pp is not bounded on L*>°, we may not have Pau € L, i.e., Pau is not
in general a candidate for a solution. The same observation applies to or Theorem 8. To our
knowledge, except for the method we give in this paper, there is no other method in the literature
able to prove results like Theorem 7 or Theorem 8.

In fact, when d > 3, we will prove a more general result than Theorem 7. Our methods alow
us to work with more general Fourier multipliers than the usual derivatives. In order to formulate
our result we first need some preparations.

Let 0 € C?(R% R) be a function. We consider the following properties (that may or not be
satisfied by o):

(P1) The function o satisfies the estimate

Vo (e)| < lef

on RY, for any multiindex o € N¢ with |a] < 2;

(P2) The function o is odd in the variable & and even in any other variable, i.e.,

0-(61517 62527 ) Edfd) = 610-(51, g?a sy gd)a

on R4, for any signs €, ...,eq € {—1,1}.

Introduce the new functions oy, ..., 04 defined by

Uj(£17 627 seey éd) = a(fja §27 -'-fjfla gla €j+1---7 fd)7



on R4, for any index j € {1,2,...,d}.

Consider some half-spaces D1, ..., Dy C R% and a family of functions G, ..., G4 : R — R4,
We say that the function G; is adapted to the half-space D; if there exists a rotation R on R?
(depending on j) and a function o : R? — R (depending on j) satisfying (P1), (P2) such that
D; = R(U), where U :=R%! x (0,00), and

Gj = (0'1 o) R, ..oy 0g—1© R)

We say that the family of functions G4, ..., Gq : R — R is adapted to the family of half-
spaces Dy, ..., Dy C RY, if for each j € {1,...,d} the function G; is adapted to D; and

Z G5 1p, (&) ~ [€]1p(E), (10)

on R where D := U?ZID]-.

Let us recall now some standard notation concerning the Fourier multipliers. To a scalar
valued function m € L} _(R\{0},R) we associate the Fourier multiplier m (V) defined by the
relation

m(V) (&) = m(&)F(€),

on R?, for any Schwartz function f whose Fourier transform fis compactly supported and vanish-
ing in a neighborhood of 0. In most of the cases one can extend the meaning of m(V) as follows.

Let us denote by S, 4 the space of all Schwartz function f whose Fourier transform f is compactly
supported and vanishing in a neighborhood of 0. Suppose E and F' are some Banach function
spaces on R? such that S, is dense in F and

Im(V) fllr S 11f1le;

for any f € S.y. Then, by linearity and density m(V) can be uniquely extended to a bounded
operator m(V) : E — F (see also Remark 13). We will often say that m is the symbol of the
Fourier multiplier m(V).

To a vector valued function G : R — R~ with G = (G, ..., G 1), where G, ..., G : R? —
R are scalar functions of polynomial growth, we associate the vector-valued Fourier multiplier

G(V) = (GY(V),...,G"HV)).
In other words, if f € S.4, by G(V)f we mean
G(V)f = (GHV)f, .. GTHV) ).
Suppose u',...,u! € 8.4 and let u be the (d — 1)-vector field? u := (u',...,u?"'). By G(V)-u
we mean
G(V) -u:=G"V)u' + ... + G (V)u'.

Now we can formulate our generalisation of Theorem 7.

2In this paper the distributions with d — 1 components will be called (d — 1)-vector fields.



Theorem 9. Let d > 3 be an integer and consider some parameters p € [2,00) and q € (1,2).
Suppose that the family of functions G, ..., Gq : R — R¥1 s adapted to the family of half-spaces
Dy, ....D; C R

Then, for any system of (d — 1)-vector fields (vj)j=1..a with v; € S'(R?) N BYPP(RY) and
spec(v;) C D;, there exists a system of (d — 1)-vector fields (u;)j=1, 4, with u; € L>®(R?) N
BYPP(RY) and spec(u;) C D;, such that

ZGj (V) -u; = ZGJ (V) - vy, (11)

and

d d
S sl epres S 3 gl o
i=1 j=1

In this paper equations such as (9) or (11) will be called divergence-like equations.

In subsection 5.1 we will see that Theorem 9 easily implies Theorem 7.

1.4 About the proofs

Our proofs of Theorem 9, Theorem 7 and Theorem 8 are based on two ingredients:

1. The W-method of interpolation. This is the key method that we are using throughout
the paper. Let (Ag, A1) and (By, B1) be Banach couples and T': Ay + A; — By + B be a linear
operator such that T(B;) — T(A;), for any j = 0,1. Suppose we want to see under which
conditions on the spaces involved and the operator 7" we have

T (Fy (Bo. B1)) — T (Fg (Ao, A1) , (12)

for some f-interpolation functors Fy, F7. One can say that, in some sense, we “interpolate”
linear equations or that we preserve some form of surjectivity of the operator 7. In order to
give reasonable sufficient conditions for (12) to hold for some convenient interpolation functors
we introduce a variant of the complex interpolation method which will be called the W-method?.
In our case F, will be given by the usual complex method of interpolation and Fj will be given
by our W-method. Roughly speaking this method consists in the following. Suppose (Ag, A1) is
a compatible couple of Banach spaces. In order to define the interpolation space of the couple
(Ag, Ap) via the W-method we use the three lines lemma on the strip as in the standard complex
method of interpolation. However, instead of quantifying the endpoint regularity of the analytic
functions involved via the norms L>(R, A4;) (j = 0, 1) we use slightly more complicated quantities
that depend on some prescribed pair of Banach spaces (X, X1). In this way, for each 6 € (0, 1),
we obtain an interpolation space that will be denoted by (A, Xo | A1, X1),. The efficiency of the
W-method relies (between other facts) on properly choosing the spaces Xy, Xj.

When the spaces X; have the UM D property, under some additional embedding assumptions
concerning the Banach spaces involved, the W-method of interpolation preserves the “surjectivity”
of operators (i.e., (12) holds). The main requirements for applying the W-method are twofold:

(i) On one hand one needs to verify some embedding conditions for the domains and the
co-domains of the operator. We give some simple necessary conditions that are easy to
formulate, however not sharp. We also mention that, in the absence of any such conditions,
it is not possible to preserve surjectivity (see the examples in the second part of subsection

3.3).

3Here, “W” stands for “weak”.




(ii) On the other hand explicitly computing the space (Ag, Xo | A1, X1), seems to be difficult in
practice. However, there are particular situations in which we can embed (Ag, Xo | A1, X1),
in some convenient space. More precisely, when A; are of the form A; = AN X}, for some
Banach space A, we have

(Ao,XO ‘ A17X1)0 = (AﬂXo,XO ‘ AleaXl)g — AN (XD>X1)9-

For instance, when we have X, = B;‘/’””, X, = 33/2’2 and A = L, the above embedding
becomes

(Loo N Bg/T,TJBg/P,P | LN 33/2,2735/2,2)9 s I (Bg/r’r,Bg/2’2)9,

By using only the result of Mazya (Theorem 3 in the case p = ¢ = 2) and the W-method
together with the embedding BY /P (R?) — L*°(R?) we easily obtain the following:

Theorem 10. Let d > 2 be an integer and consider some parameters p € [2,00) and q € (1,2).
Then, for any vector field v € S'(RY)NBYPP(RY) there exists a vector fieldu € L=(R)NBYPP(RY)
such that

divu = div o,
and

[l poe i S M0l

One can even obtain an analogue of Theorem 10 for a class of Lorentz-Sobolev spaces (for
definitions see subsection 2.2). Namely, by using only the result of Mazya and the WW-method,
together with some standard facts in the theory of Lorentz spaces, we easily obtain the following:

Theorem 11. Let d > 2 be an integer and consider some parameters p € [2,00) and q € (1,2).
Then, for any vector field v € S'(RY) N WHPLP3/2(R?) there exists a vector field u € L®(R?) N
WP [p2(R?) such that

divu = div o,
and

HUHLOOde/pr,2 S HUHWd/pr,q-

The conditions p > 2 and ¢ < 2 in Theorem 10, Theorem 11, as well as in Theorem 7 and
Theorem 9, are induced by some technical limitations of the YWW-method (see subsection 5.2).

2. The Bourgain-Brézis technique. In [5, Section 4, p. 403] Bourgain and Brézis proved
the torus analogue of Theorem 3 in the case where p = ¢ = d = 2. They conluded the existence
of solutions for the divergence equation by duality. Namely, they proved that (see [5, Lemma 2,
p. 403))

HUHLQ(W) S ”VUHLI(WHW—L?(T?)v (13)

for any u € L'(T?), with 2(0) = 0. In order to obtain this, they used the following key estimate
(see [5, (4.20), p. 405]):

ning . .
E —— sinn, 6y sinngby| < C,
nez2\{0} ]

uniformly in #,,0y € T, for some numerical constant C' > 0. By convexity this allows us to write

ning—, . —
Z 1—42F1(n)F2(n) <C ||F1||L1(’]I‘2) HF2||L1(’]I‘2) )
nezivgoy 1M



for any Fy, Fy, € L'(T?). Thanks to this bilinear estimate, after decomposing Vu in the space
LY(T?) + W—12(T?), we can deal with the space L'(T?) in (13).

We use the technique introduced by Bourgain and Brézis in [5, Section 4, p. 403] and we prove
a version of Theorem 9 (and Theorem 8) in the case where the source space is W#22. As we
will see, thanks to this technique we are able to work with more general Fourier multipliers than
derivatives. Also, it is this technique that allows us to gain some control on the Fourier spectrum
of solutions. The results obtained by this method are “perfect” in the sense that that the source
space is W22 and the solution space is L N W%22; there is no loss of regularity in the third
parameter. The drawback of this technique is the fact that it does not apply to the case where

p# 2

As in the case of Theorem 10, we can easily obtain Theorem 9 using the YW-method. This time
however, insted of using Mazya’s result we use the more general results that we obtain via the
Bourgain-Brézis technique. Using the properties of Lorentz spaces we can give a Lorentz-Sobolev
version of Theorem 9. In fact, our methods will provide more general results. On one hand the
function spaces we work with can be more general than those in the statements of our final results
(see for instance Theorem 37). One the other hand, the conditions imposed on Fourier multipliers
and the Fourier spectrum of the solutions can be more general. Also, by using the technique
of Mazya, one can easily obtain a version of Theorem 3 in the case p = ¢ = 2 that concerns
general Hodge systems. Combining this result with the YW-method one can obtain an analogue
of Theorem 10 for Hodge systems. We will not consider however, such issues here. In this paper,
we limit ourselves to some model situations that are easier to describe.

Notation. Throughout the paper we use mainly standard notation. For instance, we often
use the symbols < and ~. For two nonnegative variable quantities a and b we write a < b if
there exists a constant C' > 0 such that a < Cb. If a < b and b < a, then we write a ~ b. For
simplicity we denote by spec(f) the Fourier spectrum of a tempered distribution f; in other words,
spec(f) = supp f Everywhere in this paper S’'(R?) is the space of tempered distributions. When
X is a function space on R? and u = (uy, ..., u,) is a vector filed on R? where each u; belongs to
X, we write u € X instead of u € X?. A similar convention will be made for the (d — 1)-vector
fields. Other notation will be introduced when needed.

2 Function spaces

In this section we quickly recall the definition and some properties of some standard function
spaces.

2.1 Sobolev and Besov spaces

Let S be the space of all Schwartz functions f on R? such that j?vanishes in a neighborhood of
0. When 1 < p < co and a € R the homogeneous space W?(R?) is obtained by completion of
S; under the norm

1A e = NIV Fll o

We can see that we can also define the above homogeneous spaces WP by completion of the
the normed function spaces WP (R%). Here, WP (‘Rd) is the space of all the compactly supported
functions whose W*P-norm is finite. The spaces WP as defined here are complete.

We continue by briefly recalling the definition of the Besov spaces (we do not define here the
Triebel-Lizorkin spaces; see [24] for details). Consider a radial function ® € C>°(R?) such that
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supp ® C B(0,2) and ® = 1 on B(0,1). For k € Z we define the operators Py, acting on the
space of tempered distributions on R¢, by the relation

Are=(2(5)-2(35))F© (19

for any Schwartz function f on R%. The operators P, will be called Littlewood-Paley “projections”
adapted to R?. For any Schwartz function f we have that

f:ZPkfa

kEZ

in the sense of tempered distributions. The homogeneous Besov space Bg"p (R?) (with1 < p,q < o0
and « a real number) is obtained by completion of S; under the norm

1/q
1l gor == (Z g0k HHJHE) :

j€z
We have By?(R?) = W*2?(R?) with equivalent norms.

The main advantage of our definition of the homogeneous Besov spaces is the fact that, when-
ever o — d/py = a1 — d/p; and ay > ag we have the embedding

Saq, d Sa0, d
By (R?) — By Po(RY), (15)
for any go, q1 € [1,00) with go < g1

Note that we have the following dilation properties:
1F O gz ~ A2 ] g (16)

for any f € qu"p(]Rd) respectively and any A > 0. In particular, when o = d/p the spaces Bg"p

have the same scaling property as L*°. In what follows the spaces of the form Bg/ PP will be called
critical. It is worth recalling here, that, by a direct application of the Bernstein inequalities we
get the embedding BYP?(R?) — L>*(R%). When ¢ > 1 the critical spaces BZ/"" do not embed in
L.

Remark 12. Note that the spaces B:j/p’p (with ¢ > 1) as defined here contain elements that are
not tempered distributions. However, when o < d/p the elements of the space BY'P are all tempered
distributions (see for instance [1, Remark 2.26, p. 68] or [3]).

Remark 13. Since the operator div : S;NBY"" — BYP™'7 is linear and bounded (here, S;NBe/P”

1s endowed with the norm induced by B;l/”’), by density of Sy mB;l/p”’ mn B;l/p’p it extends uniquely
to an operator div : BYPP — BIPY - Similar facts hold for other spaces and other operators.
In this way we can remove from the hypotheses of Theorem 7, Theorem 8 and Theorem 9 the fact
that the source v belongs to 8. For instance (9) will be understood as an equality of two elements

mn B;i/”‘l’p. This formulation is the one that we prefer throughout the paper.

Remark 14. One can define the spectrum of an element v € B;””’p i the following way. Note
that the operator A : SuﬂBf,l/p’p — BYP7*P s linear and bounded. Hence, by density of SﬁmB;l/p’p
mn B;l/”’ it extends uniquely to an operator A : ij/p’p — B‘J”"Q’p. According to Remark 12
all the elements of B;}“"Q’p are tempered distributions. Now, if v € B;l/p”’, then Av € B;l/p_Q’p
is a tempered distribution and we can define the spectrum of v as spec(v) := supp Av. This

observation will be applied for other function spaces as well.

It is easy to see that any space of the form Bg"p with p, ¢ € (1,00) is embedded in [¢(L?) and
hence it has the UM D property (see for instance [20]).

11



2.2 Lorentz-Sobolev spaces

COIlSideI"4 some parameters p € (1,00), ¢ € [1,00] and o > 0. The homogeneous Lorentz-Sobolev
spaces WLP4(R?) is the completion of the normed space of Schwartz functions f on R¢ under
the norm

HfHWaLM = H’v‘af“Lm )

where LP? is the usual Lorentz space of parameters p and q.

Remark 15. One can easily adapt the Remarks 12, 13 and 14 to the case of the Lorentz-Sobolev
spaces.

Many of the embedding properties of the Besov and Triebel-Lizorkin spaces hold for the Lorentz-
Sobolev spaces (see for instance [23] for detailes). We mention below some properties of Lorentz-
Sobolev spaces that will be needed in the proof of Theorem 11. All of them are direct consequences
of well-known facts from the theory of Lorentz spaces.

Lemma 16. For any r € [2,00), we have that

Wd/2’2<Rd) N Wd/TLT’2<Rd).

Proof. It is a consequence of the improved Sobolev embedding (see for instance [26, Theorem
2.10.2, p. 98]) that

HfHLT,Q ’S H|V‘d(1/2_1/r) f’

2’

for any Schwartz function f on R?. This can be rewritten as

d/r d/2
Wl = 1917 5] 1912 1]

2 - ||f||v'vd/2,2 )
obtaining that W22 — Wd/r 2, O
Lemma 17. For any r € (1,00), we have that
W LrH(RY) < L2(RY).
Proof. For any Schwartz function f on R% we have that
[ Lapr * fl| e S Ml (17)

where Iy, (z) = 2| YP = |2| 7" for any z € RY. Indeed, using [13, Theorem 1.4.17 (v), p. 52],

we have )
Yy
/R oS [ Layell gay-

|z —y

Pl = | L]

L oo ||f||LT,1 )

and we can easily see that

e

!0

, 1/r
:supAHxERd| |a;|<(1/A)r/d}( ~1.
A>0

Hence, (17) holds. We can reformulate (17) as

d
1l S|V 1] = 1 i

This shows that W/ L1 < [ O

4The results of this subsection will be used only in the proof of Theorem 11.
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Lemma 18. Suppose po,p1,qo,q1 € [1,00) and ag, a1 > 0. Then, for any 6 € (0,1) we have
(WaoLpo,qo (Rd), W [pra (Rd))e — WaLp’q(Rd), (18)
where o = (1 — 0)ag + Oy, 1/p=(1—0)/po+0/p1 and 1/qg=(1—06)/q0+6/q1.

Proof. This can be proved by Stein’s method of interpolation (see for instance [13, Theorem
1.3.7, p. 37]) as follows. Note that the function & — |£|"" defined on R?\ {0} satisfies

V| < o0y I

a.e. in & € R\ {0}, for any ¢t € R and any nonnegative integer k¥ < d + 2, where C is a positive
constant depending only on d. It follows that (see [18, Theorem 8.2 , p. 197]) for any a € (1, 00),
the norm of the operator |V|* : L* — L* satisfies

Sa C(1+[t)™.
Le—La

This implies, via the real method of interpolation (see for instance [2, Theorem 5.2.1 (2), p.
109 |), that for any a € (1,00) and any b € [1, o0, we have

1w Sas C(L+ )2, (19)

Lab_s[ab
Let us consider the analytic family of operators (7%), s with

Tz — ’v|(1—z)o¢0+zo¢1

9

for all z € S. Thanks to (19), the analytic family (7%), . satisfies the hypothesis of [13, Theorem
1.3.7, p. 37]. Hence, we get

Tg(WaoLp07q0, Wal Lpl,ql)e N (Lp(),tlo’ Lpl#ll)e — LP#Z)
and, in a similar way (applying Stein’s method for the family (7°.), ¢ ),
T,g(Lp’q) — Tie(meqo, Lphm)e SN (WQOLPO,CIO’ WmLpl,ql)e_

Hence,
Tg(WaOLpO’qO, Wa1 Lp17q1>0 = LP9,

and (18) is proven. O

The spaces WLP4 have scaling properties that are similar to those of the Besov spaces (see
(16)). In particular, the spaces /P[4 have the same scaling as L. As we have seen in Lemma
17 we have WPl < [°° However, when ¢ > 1 the critical spaces W%?LP4 do not embed in
L.

Let us see that the spaces WeLP4 have the UMD property when p,q € (1,00). For this
is sufficient to see that LP? has the UM D property. Consider some pg,p; € (1,00) such that
po < p < p1. Since, LP* and LP* are UM D spaces, by Burkholder’s theorem (see [9]) the Hilbert
transform is bounded on L? (T,LP°) and L? (T,LP*) respectively. Hence, the Hilbert transform is
bounded on the space

o0
o

(L2(T7Lp0>>L2(T>Lpl))n,q = L2<T> (LpoaLpl)n,q)
= L(T.LP9),

where € (0,1) is such that 1/p = (1 —n) /po+mn/p1 (see for instance [2, Theorem 5.6.2, p. 123]).
By Bourgain’s theorem ([4]), we get that LP? has the UM D property.
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2.3 Some quotient spaces

Let Y be a Banach function space on R? and let D C R? be a measurable set. Relative to the set
D we define the closed subspace Yp of Y by

Yp:={f €Y |spec(f) C D},

the norm being the one induced by Y. For simplicity we will denote the quotient space Y/Ype by
Y/D. In the case where f € Y is a Schwartz function, we define its Y/ D-seminorm by

1/llyp = nf (lf+ 7]y

In this paper we will work with quotient spaces of the form W®?2/D and (L' + W?)/D. One
can easily see that for Y = W2 or Y = L' + W*? we have the following norming property

sup  (f,9) = llglly+,
Iflly,p<t

for any g € Y5, where the supremum is taken over all Schwartz functions f with || f”y/ p <L

In the case where Y is the Sobolev space W2 it is easy to compute the seminorm induced by
Y/D. Namely, let us see that for any u € S; and any measurable set D C R? we have

1/2
lolleso = ([ I 10 © €7 de) (20
Indeed, we have

lulfosyp = inf !flza [a(€) +0()[ dé

vEWa’Z

- /|§|2“ e+ it [ e ) + a()” de
= [ 1P o) de
D

We recall that, by Pp we denote the Fourier projection on the set D, i.e., we have

Pof(€) = 1p(€)F(6),

for any ¢ € R? and any Schwartz function f. Note that, in the case where D = (0,00)¢ the
operator P «)a is the Riesz projection. In this case we will write P, in the place of P o)a.

3 The W-method of complex interpolation

In this section we introduce a variant of the complex interpolation and we prove several of its
properties. We call this new method of interpolation the WW-method and, as stated in the intro-
duction (see subsection 1.4), this will be used in the proof of Theorem 9, Theorem 7, Theorem
8, Theorem 11. We mainly study here only the properties of the VW-method that are used in the
proof of our main results. In subsection 3.1 we show that the VV-method is indeed an interpolation
method. However, we ignore some issues specific to the interpolation methods in general such as
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computing dual interpolation spaces or reiteration theorems. These problems do not concern us
here.

An important aspect is the relation of the YW-method with the classical complex method. We
do not know in general how to compute efficiently the interpolation spaces obtained via the W-
method. However, as we will see in subsection 3.2 the space obtained via the W-method is, in
many “convenient” cases, the same as the space obtained via the classical complex method.

The main feature of the W-method is that one can use it to “interpolate” linear equations. It
is one of the main ingredients that enter in the proof of our main results and it is the final goal
of this section.

3.1 Construction of the interpolation space

We describe here the W-method and prove some basic properties. The proofs we give are straight-
forward adaptations of those that correspond to the classical complex interpolation as found in
[2, Chapter 4]. Following the general presentation in [2, Chapter 4] let us introduce now the
W-method.

For the beginning, fix two Banach spaces Xy and X; and suppose (Ag, A1) is a Banach couple.
Let F2 = F?(Ap, Xo | A1, X1) be the linear space of all bounded continuous functions f with
values in Ag + Ay, defined on the strip

S:={ze€C|0<Rz< 1},

that are analytic in the open strip
So:={z€C|0< Rz <1},

and moreover, such that f(j +it) € A; for any j = 0,1 and any ¢t € R, and

1/2
1 = sp ([ 110G+ a0l ) <o @
R

I=01 A <1

where, for each j = 0,1, A; : A; — X, are linear bounded operators. One can easily verify that
||'||]:2 defines a norm on F?.

Fix 0 < 6 < 1. Consider the linear space Cy (Ao, Xo | A1, X1) defined by
Co (Ao, Xo | A1, X1) := {a € Ao+ Ay | a = f(0), for some f € F? (Ao, Xo | A1, X1)} .
and define, for each a € Cy (Ao, Xo | A1, X1), the quantity

lally == inf {|[fllz= [ a=f(0), f € F* (Ao, Xo | A1, X1)}.

Lemma 19. The mapping a — ||al|, is a norm on Cy(Ag, Xo | A1, X1).

In order to prove Lemma 19 we rely on the following basic fact (and at least implicitely
well-known):

Lemma 20. Fiz some 1 < p < oo and let Z be a Banach space. Suppose F': S — Z is a bounded
continuous function which is analytic in Sy such that the functions t — F(j + it) belong to the
space LP (R,Z).
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Then, for any z € Sy, we have

1 F (it 1 F (141t
F(z) = - [ EU )dt+—,/wdt. (22)
2mt Jp it — 2 2 Jgp 1 +it — 2

In particular, for any 6 € (0,1),
1/p
PO, Sop e ([ 176+ 00 ar) (23

Proof of Lemma 20. Fix some z € Sy. Consider some arbitrary R > 0 and the curve vz given
by the boundary of the rectangle [0, 1] X [—R, R|, oriented anti-clockwise. For R sufficeintly large
we have z € [0,1] x [-R, R]. By Cauchy’s formula we get

2w G — 2

dg,

and we can rewrite this as

1 [(RF( 1 [(FF(1+i
o = L PR, 1,
2mi J_pit — 2 2mi J g l+it —z
1 : 1 o
+—1./ —F(QC.HR)dm——l./ Fla —if) 4. (24)
2mi Jo x+1R— 2 2mi Jo x—1iR —z

Note that, the functions t — F(j +it)/ (j + it — 0) belong to the space L' (R, Z). Indeed, by
Holder’s inequality (since we always have p’ > 1) we can write

1 L/p! 1/p
dt < /—,dt (/ F(j+it pdt)
/ ) (R‘jﬂt_z‘p ) (1P G+l

1/p
< o ( / !\F(jJrit)\lZdt) < oo, (25)
R

F(j + it)
jt+it—z

with the natural modification in the case where p’ = oo.
Also,

Using (24), (26), letting R — oo and using the dominated convergence theorem, we get the
representation formula (22). Using (22) and (25), for z = 0, we obtain (23). O

1 ['F '
_/ (ZE.:E iR) e
2mi Jy x£iR — 2

1
STexiR—7 1E | o (5,2 = 0, (26)

when R — oo.

Proof of Lemma 19. Clearly, |||, is a seminorm on Cy (A, Xo | A1, X7). It remains to see that,
if ||a||, = 0, for some a € Cy (Ag, Xo | A1, X1), then a = 0. We prove this by showing that

all gy a, So llally (27)

for all a € Cy (Ao, Xo | A1, X71). For this purpose fix a € Cy(Ag, Xo | A1, X1) and consider a
functional A € (A + Ay)*, with [|[A|| = 1, such that [[a]| 5, , 4, < 2A(a). Consider also a function
f e F?*(Ap, Xo | A1, X1), such that f(0) = a and || f]| . < 2]lall,.

Let us define, for each j = 0, 1, the linear operators A; : A; — X; by
Ai(aj) = Aa,)e;j, for any a; € Aj,
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where e; € X are some fixed vectors with ||6J||Xj = 1. Clearly, for any j =0, 1,

15 (a)lx, = [Mag)| < Nlajll ggsa, < llajlla,
for any a; € A;, and we get

1A < 1.

Using this observation and introducing the function F': S — C defined by F(z) := A (f (2)),
one can write,

1/2 1/2
max (/R|F(j+z't)|2dt) = max (/le(f(jﬂt))lzdt)

— max (/R 1A; (£ + i), dt)m

§=0,1
< fllz < 2lally < oo (28)

This shows, in particular, that the functions ¢t — F(j + it) belong to the space L* (R, C). We
also see immediately that F' is bounded, continuous on S and analytic in Sy. Hence, by applying
Lemma 20 for Z = C and p = 2 (more precisely (23)), using (28), we get

1/2
lollgsn, < 20 @ =27 @) S [ 170G+ 0P at) - 5 Ll

J

which proves (27). O

Now, thanks to Lemma 19, we can define the interpolation space (Ag, Xo | A1, X1), as being
the completion of the normed space (Cp (Ao, Xo | A1, X1),|]l4)-

One can easily see that (Ay, Xo | A1, X1), is an intermediate space:
AoﬂAl — (A(),XO ‘ AlaXl)g ‘—>A0+A1. (29)
The second embedding in (29), follows directly from the inequality (27). In order to see the

first embedding, pick a € Ay N A; and consider the function f(z) := exp (2% — 6?)a. One can
easily check that f(0) = a, f € F? and

1/2
foly < mx s ([ 10,5+ 0l o)
R

3=0.1 1A 1<1

IN

1/2
i ([ WG+, ) ~a Lol
7=0,1 R 7

This gives us that
AO ﬂAl — Cg (A()?XO | AlaXl) — <A07X0 ’ A17X1)9 .

Let us see now that the W-method provides an exact interpolation functor:

Proposition 21. Consider some Banach spaces Xo, Xi. Let (Ao, A1), (Bo, B1) be two Banach
couples and T' : Ay + Ay — By + By be a linear operator such that T : A; — B, is bounded for
any j = 0,1, of norm || T|,_,;.
Then, the operator
T : (Ao, Xo | A1, X1)o — (Bo, Xo | Bi, X1)e,
is bounded and of norm ||T||,_, satisfying

1-0 0
ITllgmo < 1700 17111 -
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Proof. Without loss of generality we suppose that ||T;_,; > 0, for any j = 0, 1. For the brevity

of notation we denote by |||l ||l 22, ||[l; and |||’z the norms on the spaces (Ao, Xo | A1, X1),,
F? (Ao, Xo | A1, X4), (Bo, Xo | Bi,X1), and F*(By, Xy | B, X1) respectively. Pick some a €
Co (Ap, Xo | A1, X1) and fix some € > 0. Consider a function f € F?(Ag, Xy | A1, X1) such that
f(0) =aand ||f|| = < (1+¢)lall,- The function

F(z) = ||T||0—>0 ||TH1—>1 f(2)

belongs to F? (By, Xo | By, X1). Indeed, F is bounded and continuous on S with values in By+ By,
analytic in Sy and, for any linear operators A’ : B; — X of norm at most 1, we have

URHA;F(H%)H;" dt)m </H ITIF, A5 0 T) £ +it) ;. dt)l/2

1/2
< ow ([IasG ol a) (30

l1A511<1

A

for any j = 0,1, where the supremum is taken over all linear bounded operators A; : A; — X
with ||A;|| < 1. Here, we have used the fact that HTHJ_; AioT : Aj — Xj is a linear operator of
norm at most 1, for any 7 =0, 1.

Now, by (30), we get
1T 162 TS 1T (@)l = @) < 115 < £l < (1+¢) llall,,
and letting ¢ — 0 one obtains,
ITally < 1T o550 113 Nl

for any a € Cy (Ao, Xo | A1, X1). Since, by definition, Cy (Ay, Xo | A1, X1) is dense in (Ay, Xo | A1, X1),,
we get the conclusion. O

3.2 A particular case

In general, computing the interpolation space (Ag, Xo | A1, X1), seems to be a nontrivial task.
However, there are some particular cases where an explicit computation is easy.

Let us restrict to the case, where Ag = Xy and A; = X; and let us denote, for simplicity, the
Space (X(),X() | X17X1)0 by (X0|X1)0. AISO, instead of ]:2 (Xo,XO | Xl,Xl) we write F2 <X0|X1)
and instead of Cy (Xo, Xo | X1, X1) we write Cp (Xo|X71). In this case, formula (21) becomes

1/2
171 = s ([ 156+ i0 at) 1)

Indeed, for any 7 = 0,1, we have

1/2 1/2
s ([ InsGania) < ([IsG+ k@)
IA; 1<t \JR R

1/2 1/2
A2 ; STIANE
N (/RHAjf(]—i—zt)HXj dt) > (/Rszxjf(JJrzt)HXj dt)
1/2
= ([usivion, @)
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where idx, : X; — Xj is the identity mapping on Xj.

It turns out that, the space (Xo|X;), coincides with the space (Xo, X7), obtained via the
classical complex interpolation method. The proof of this fact is easy, however we give it below
for the sake of completeness.

Proposition 22. Suppose (Xo, X1) is a compatible couple of Banach spaces. Then, for any 0 €

(07 1)’
(Xo|X1)s = (Xo, X1)s,

with equivalence of norms.

Remark 23. Implicitly, the embedding (Xo|X1), — (Xo, X1), was already proved and used by
Peetre in a different context (see [22, Lemme 1.1]). Both proofs, the one that we give below and
Peetre’s, are easy consequences of the ideas of Calderén from [10, Section 9.4].

Proof. Consider some a € (X, X1), N Cp(Xo|X1) and let some f € F?(Xy|X;) be such that
f(0) =a and
||f||]—‘2 <2 HG’H(XO|X1)0 ’

By [2, Lemma 4.3.2 (ii), p. 93] (or [10, Section 9.4, (ii)]) we have

0

1-6
oo, < (72 [ 1@l R6nIar) (5 [ 150+l Pe.nar) (@

where P; (j = 0,1) are the real Poisson kernels defined by

—7t(1T—t)

e sin s

Pi(s+at,7):= ,
i ") 75+ (cos s — elm—n(r=1)?

sin?

for s € (0,1), t,7 € R. Note that P;(f,-) € L* (R,R) and by the Cauchy-Schwarz inequality,

L1, R < ( / ||f(iT)||§<Odr)l/2 ( / P(%(e,T)dT)”Z

S fllz S lall xxy), -

In a similar way we get

/ 1£G7) L, Po0, )7 S lall o,
R

and combining with (32) one obtains
HaH(XO,Xl)B S ”aH(X0|X1)9' (33)

By taking the closure we get (Xo|X1), = (Xo, X1),-

Converselly, if a € (Xo, X1),, then there exists g € F (Xo, X1) (see [2, Chapter 4] for the
standard notation F (X, X1)) such that g () = a and

max sup lg( +it)llx, < 2llallx,.x,), - (34)
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Introduce the function g : S — Xy + X, defined by g(z) := exp(2% — 0%)g(z), for 2 € S. We
observe that, for any j = 0,1,

1/2 . 1/2
( [ 16+ i, dt) < ( [ e 1ot + 0l dt)

1/2
942 . .
< (/e 2 dt) sup [|g(j + it)||x,
R teR
~ sup [lg(j + it)]ly, - (35)
teR

Hence, g € F2(Xo|X1), a = g(0) € Co (Xo]|X1) and by (34), (35),
||a||(X0\X1)0 S ||a||(X0,X1)9’ (36)

We have now (X, X7), — (Xo|X1), and Proposition 22 is proven. O

An immediate consequence of Proposition 22 is the following useful embedding result:

Corollary 24. Suppose (Xo, X1) is a compatible couple of Banach spaces. Then, for any Banach
space A, we have the embedding

(A M Xo,XO ’ AN Xl,Xl)g — A N <X07X1)9 .

Proof. Consider the canonical inclusion ¢ : AN Xy + AN X, — Xy + X; as a linear bounded
operator ¢ : AN X; — X, and apply Proposition 21. We get

(AmXo,XO ‘ AﬁXlaXl)g — (XD>X0 ‘ XlaXl)g = (X0|X1)0.

Since by Proposition 22 we have (X|X1), = (Xo, X1),, we now obtain the embedding
(AQX(),X() | Alequ)g — (X()aXl)@- (37)

Also, using the fact that (AN X, Xy | AN Xy, X4), is an intermediate space (see (29)), we
have
(AmXo,XO | AthXl)g ‘-}AﬂXo—i—AﬂXl ‘-}A,

which together with (37) proves Corollary 24. O

3.3 Solutions of linear equations

In this subsection we highlight the main strength of the WW-method. Namely, we show here how
the W-method can be used in order to “interpolate ” underdetermined equations. Here we make
an essential use of the fact that the Hilbert transform is bounded on spaces of the form L* (R, Z),
where Z is an UM D space. The UM D property plays here a key role.

Before stating the results in this subsection let us make some (common) notational conventions.
The space C! (R, Z), where [ € N, is the space of all the functions f : R —Z for which the k-th
derivative f*) is a continuous and bounded Z-valued function on R for all k € N with k& < 1. We
endow C! (R, Z) with the norm

!
||f||C{)(]R,Z) = Z Hf(k)HLOO(R,Z) :
k=0
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Given a measurable function w : R —(0, 00) we denote by L? (w, Z) the space of the strongly
(Bochner-Lebesgue) measurable functions f : R —Z for which the norm

1/2
T ( / |\f<t>uzw<t>dt) |

is finite. When w(t) = exp (#?) or w(t) = exp (—t?) the space L? (w, Z) is denoted by L? (exp (t?) , Z)
or by L? (exp (—t?), Z) respectively. However, when w = 1 we prefer to write L? (R, Z) instead of
L*(1,2).

3.3.1 Boundary values of functions on the strip

Let us recall now some (at least implicitely) well-known facts related to the Hilbert transforms
of vector-valued functions. Let Z be a Banach space and consider a function f € Cf (R, Z) N
L% (exp (t?), Z). The Hilbert transform of f is defined by

HE(t) = > lim ) g = Ly, Jt=s),

T e=0 e<|t—s|<1/e t—s T e=0 e<|s|<1/e S

b

for t € R. As one can immediately check, for such f the above limit exists, for every z € R (the
convergence being in the norm of 7). Also, we get that

Hf € Cy(R, Z). (38)

Indeed, for every t € R,

1 1
=W, < ~ lim/ J6) o L lim/ J) 4

=0 ecppscat =5 |, Tle=0 icqpg<1et =5 |,
1 — f(t 1

= — lim/ Js) = J(1) )ds + = lim/ /(5) ds
T ||e=0 e<|t—s|<1 t—s Z T ||g=0 1<|t—s|<1/e t—s Z
2 1

< ; Hf”Lip(R,Z) + ; Hf“L2(exp(t2),Z)

S ||f||cg(R,Z) + 11 2 expe). 2)

and hence, H f(t) is uniformly bounded in Z. The continuity of Hf can be proved in a similar
way, by estimating the expression H f(t1) — H f(t2), when t1,t, € R are close to each other.

In what follows we need a vector-valued version of the Plemelj formula. The proof we give is
completely similar to the one in the scalar valued case, however, we include it here for completeness
(see for instance [19]).

Lemma 25. Suppose Z is a Banach space and consider a function f € C; (R, Z)NL* (exp (t*), Z).
Then, when € \, 0 we have

1 f(s) £f(t) +iH f(1)
i fos—tr i > !

in the norm of Z, uniformly in t € R.

Proof. We only consider the case of the sign "+”, the other one being similar. We first show

that
|t [ Lo SO [ S,

2mi Jp 8 — i€ 2 2T Jigj>e —$

S HfHCZ}(R,Z) e'?, (39)
z
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for any € € (0, 1), where the implicit constant does not depend on f or . Changing the variables
(s = eT), this is equivalent to

[ 56r) (5 = 1o ()3 dr =g (0

< ||f||cg(R,Z) el (40)
z

Notice that

J

and hence, it remains to show that

1

T—1

11 (7 )T

1 1 1
dr < oo and / ( e 171 (7) —) dr = 7,
R

[uen =0 (-5 - ) ) ar

One can see this by a direct computation. Indeed, the quantity

‘ / (f(ef)—f(o))( L) 1) N
is bounded by

-
[sen) - o1, |-

S Hf”q}(R,Z) glf’.
z

Z

1 1

1
— 1751 (7) -

—d
b

—1

i 5 [ sen) - 0)
T / 1Fem) — FOl, Sdr,  (41)
[~R,R]° T

for any R > 1. Since,

1f(em) = FO)lz < ellfllopez 17

we get
1
_ R <
L ) = O 17 S W ey R
Also, since
1f(e) = FONIz <20 llcpm.z)
we have

1
/[R,R]c 1£ () = SOl dr < 1 flope.z) /B

From (41) we get now,

[ rten = s, |-

where the implicit constant does not depend on ¢ or R. Setting R = ¢~'/2 we obtain (40) and
hence (39).

Now consider some function f € C} (R, Z) and for each t € R, define f, : R — Z by fi(z) :=
f(x+1t) for all z € R. We can see that f; € C} (R, Z) and

1 1
(1) ~|dr S Il eymn (R + 1/R),

Hftchl(R,Z) = Hf”cbl(R,Z) )

for any ¢t € R. By a simple change of variables we can also observe that

‘ L[Sl SO £ils) 4.

2mi Jp 8 — i€ 2 2T Jigj>e —S$

Z
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equals
1 £(s) f@) i f(s)
’ i Lt %/'rd

Hence, by applying (39) to f; and letting € — 0 we obtain the conclusion. U

Z

Let us introduce the some operators that quantify the boundary behaviour of analytic functions
on the strip. For each j = 0,1 let

H;: L (exp (7)., Z)NCP (R, Z) = Gy (R, Z),
be defined by |
HF(E) = —if(t) - (2—1)9Hf(t)7
and R; : L2 (exp (t*), Z) N C3 (R, Z) — Cy (R, Z), be defined by
R;f(t) := pj* [(1),

where p; : R — C are the bounded functions

0 L 1
Pl = 91— (—1)dit

for all ¢ € R. It is easy to see that, for f € L? (exp (t?), Z), the quantity R, f is indeed well-defined
and R;f € G, (R, Z).

An easy consequence of (38) and Lemma 25 is the following fact:

Lemma 26. Suppose (By, By) is a compatible couple of Banach spaces. Consider some functions
u; € C3 (R, Bj) N L? (exp (t*), B;), j = 0,1, and define u: S — By + By by

1 t 1 t
21t Jp it — 2 2 Jgp 1+t — 2

u (j + ’Lt) = ’Hjuj (t) + Rjul,j (t),
for allt € R. Then, u € Cy (S, By + By).

for all z € Sy, and

Proof. Clearly, by (38) (for Z = By + By) we have H;u; € C, (R, By + By). Also, by Lemma 25
(for Z = By + B;) we have

(= u; ()
2mi /Rj +it — (j +iT + (_1)jg)dt = Hjuy(7),

in By+ By uniformly in 7 € R, when € \, 0. On the other hand, we have R;u,_; € Cy, (R, By + By)
and, as one can easily see,

(—1)j+1/ ur—; ()
__dt — Rouy;
omi Juj it — (1= j+ir 1 (—Lye) " i(7),

in By + B; uniformly in 7 € R, when ¢ 0.

Hence, w is approaching its boundary values uniformly. Since u is analytic on Sy we obtain
the conclusion. U
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3.3.2 Interpolation of equations

Let us illustrate by some examples the fact that, in general, the surjectivity of operators is not
preserved by interpolation:

Ezample 1. Consider the operator Ty : L*(T) x L*(T) — L?*(T), defined by the formula Ty(f, g) :=
f +g, for any (f,g) € L*(T). One can easily see that Ty : L*(T) x L*(T) — L?*(T) and T :
LA(T) x L*(T) — L3(T) are surjective operators however, the operator

T, : (L*(T) x L*(T), L*(T) x L*(T))12 = (L*(T), L*(T))12, (42)
is not surjective. Indeed, if Ty in (42) is surjective, then
T, : L3(T) x L*(T) — L*(T)
is surjective, and we get the false embedding L?(T) < L3(T).

Ezxample 2. Let us consider now another example which is more closely related to the equations
we treat in this paper. For any p > 1 let Wﬁfl’p (T?) be the spaces of those distributions f that

~

are divergences of LP-vector fields on T? and with f(0) = 0 (in general, if Z is a function space on
T?, we denote by Z; the space of those f € Z with f(0) = 0). The norm on Wﬁ_l’p(']r?) is given
by

HfHWﬁ_l’p(TZ) = inf {”fIHLP(TQ) + Hf2HLp(1r2) | f=0i+ azfz} .

We have that div : L'(T?) — Wﬁ_l’l(']lﬂ) and div : L3(T?) — Wﬁ_l’S(TQ) are surjective opera-
tors. However, the operator

div : LA(T?) — (W, (T2), W, " (T2)) s, (43)
cannot be surjective. Indeed, since
div : L*(T?) — W, "(T?),
the surjectivity of the operator in (43) would imply that
(W, "1 (T%), W22 (%)) = W (TP),
which, by duality is equivalent to

W (T2) s (W25 (T2), W2 (1) . (44)
Note that (44) is false (see cite [11, Section 4]).

In what follows we will work in a slightly different setting. Given two pairs of Banach spaces
A; — Bj, 5 =0,1 and an operator 1" defined on By + B; such thatT : A; — T'((B;) is surjective,
we study the surjectivity of T : (Ao, A1)g — T((By, B1)g). Lemma 28 below gives some sufficient
additional conditions under which surjectivity is preserved by the complex interpolation. To state
and prove Lemma 28 we need the technical Lemma 27.

We introduce first some notation needed in the statement of Lemma 27. Let ¢ € C° ([-1,1],R)
be a function of integral 1 and € > 0. Define the function . by . (t) := e tp(e~1t), for any
t € R. For any € > 0, and any (other) function g : R — Z taking values in some Banach space Z,
we define the function g. := g * .. With this notation we state the following:
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Lemma 27. Let A, Xy, X1, By, B1, E, F be Banach spaces such that A, By, By — E and
consider a bounded linear operator T : E — F. Denote Ay := AN Xy and A; := AN Xy. Suppose
moreover that the following conditions are satisfied:

(i) By — X1 — Xy and By — Aop;

(i) A and X, have a separable preduals;

(iti)) T : Aj - F and T : B; — F are bounded for each j = 0,1 and T'(B;y) — T(4;).
Then, for each j = 0,1 we have the following:

For any v; € L*(exp(t®), B;) and any € > 0 there exists a function u5 € L*(exp(t®), A;) N
C3(R,A4;), such that
Tuj(t) = Tvj.(1), (45)

for any int € R, and satisfying the estimates:

”u;”L?(Aj) N ||Uj||L2(Bj)a (46)
and
||R17ju§HLQ(GXP(_tZ)aAl—j) S HUjHL2(e)<p(t“’)7Bg') +0j0 ”Rl*jvj‘|L2(exp(—t2)731—j) ) (47)

where all the implicit constants do not depend on v; and ¢.

(Here, v,.(t) = v; * p-(t) and J;o is the Kronecker symbol, i.e., we have d;p = 1 if j = 0 and
Roughly speaking the conditions (45)—(47) are describing the fact that the equation Tu = T'v

can be solved efficiently on the boundary of the strip S. The role of Lemma 27 is to transform
the easy to state conditions (i)—(iii) into the more technical conditions (45)—(47).

In order to prove Lemma 27 we need some simple facts that are easy consequences of classical
inequalities.
Fact 1. Suppose Z is a Banach space and consider some function g € L} (R, Z). Then, we
have:

(i) 19ell 2(exp(—i2),2) S 19l 22(exp(2),2):  uniformly in € > 0;

(1) 1192 2 expe2), 2y S N9l 2(expe2) 2y uniformly in e > 0.

Proof of Fact 1. We prove only item (i), item (ii) being similar. By Minkowski’s inequality we

have
1/2
2
”gaHLQ(exp(ftQ),Z) = (/ e’ / g(t —es)p(s)ds dt)
R B(0,1) z
. 1/2
< [ ([ tate- ez o) as
Bz (0,1) \JR
. 1/2
[ ([ o) e
Bz (0,1) \JR
. 1/2
_ 2
s ([ lawiEa)
R
5 ||ga||L2(exp(—t2),Z) ’
where we have used the fact that e=(+5)” ~ ¢=** when s € Bg(0,1). O
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Fact 2. Suppose Z is a Banach space and consider some function g € L? (exp(—t?),Z). Then,
we have ||Rj9||L2(CXp(_t2),Z) S ||9||L2(exp(t2)7z)7 for any j =0,1.

Proof of Fact 2. Fix j € {0,1}. Note first that if g € L? (exp(—t?),Z), then g € L' (R, 7).
Using the boundedness of the function p; on R, one writes
) 1/2
dt
z

2
HRngL2(exp(—t2)7Z) - (/Ret
1/2

[ st =s)ats)as

A
VR
\
Q)

L
N
—

o

=

N

QL

V)
~_

(3]

<%

~
~__—

By the Cauchy-Schwarz inequality we get

[ 1965115 < 19l
and Fact 2 is proved. Il

Let us introduce some more notation. Let Z be a Banach space and fix some N € N*. For
any function g € L} (R, Z) we denote by Eyg the conditional expectation of g with the respect

loc

to the o-algebra generated by the intervals I% := [k/N, (k + 1) /N), were k € Z. In other words,
if (g); is the mean of g on one of these intervals I, i.e.,

1
@) =7 [ 9t
1] J;
we define the corresponding conditional expectation of g by

Eng = Z (9)1}3 Ly .

keZ
See [12, Chapter 5] for some fundamental properties of the conditional expectation operator
Ey.
Now we can pass to the proof of Lemma 27.

Proof of Lemma 27. For each j = 0,1 consider some functions v; € L? (exp (t?), B;). In the
case where j = 0 one can simply set u§ := vy.. Clearly, u§ € L*(exp(t?), Ag) N CP(R,Ag). Tt is
also clear that the conditions (45), (46) are satisfied thanks to the fact that By < Ay. Let us
verify (47). We have

HRlugHLQ(exp(—tQ),Al) ~ ||R1U0:5||L2(exp(—t2),A) + ||R1U075||L2(exp(—t2),X1) ) (48)

and it remains to bound each term in the right hand side of (48). Since By — A N X, we have
in particular that By — A and hence,

HRlUO,EHB(eXp(_ﬁ),A) S HR:L’UO:EHLQ(exp(—t2)7BO) S HUO,EHL%eXp(ﬂ),BO) S HUOHLZ(exp(t2),BO)a (49)

where for the second “<” we have used Fact 2 and for the third “<” we have used Fact 1 (ii).
Since By — X1,
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IR1v0.ell 2exp(—e2),50) = 1 (Ravo)ell L2(exp(—e2).)
”RIUOHLQ(exp(—ﬁ)vBl) ’ (50)

IR0l 22 (exp( -2y x)
<

w__»

where for we have used the relation p * ¢. = @. * p and for the last “<” we have used Fact 1
(i). From (48), (49) and (50) we obtain (47) in the case j = 0.

Now, we deal with the case j = 1. By using the open mapping theorem one gets that, if
b € By, then there exists a € A; such that Ta = Tb and |[al|,, < C[|b]|, for some constant
C > 0. As a consequence, for each k € Z we can find some elements a%, € A; with

Tay =T (v1)p

and such that

laklla, < €|,

Hence, defining uy : R — A; by

Ui, N = a’Nlllliﬂ

keZ
we have
TULN(t) = TENl}l (t), (51)
for any ¢ € R, and
lur,n (D] 4, S Envi(t)lp, (52)

uniformly in ¢ € R.

Define now the function ug y := u1,n * ¢ = (u1,n5)e, the convolution being in the ¢ variable.
Thanks to (51) we have
Tui n(t) = T(Eyv,)e(1), (53)

for any t € R.

Let us observe that, when N — oo,

[Exvr)e(t) = vie(t)lp, =0, (54)

uniformly in ¢ € R.
Indeed, by Jensen’s inequality and [12, Corollary 2, p. 126] we have

NExv)e(t) — v o)l < / o1 NEx)(5) = 1c(6)l, et = )

IN

(/BR(t,l/g) [(Envi):(s) — UI’E(S)HQBl oot s)ds) 1/2

S e Envr — Ul”L?(R,Bl) — 0.

Also one easily observe that the sequence of functions (u y)ny>1 is equi-continuous and uni-
formly bounded. Indeed, using the Cauchy-Schwaz inequality,

it =ity < [ Ty, loett = ) = pulta = )l ds
2
S Hu17N||L2(R,A1) (/ |S05<t1 - 5) - Sps(t2 - S)’2 dS) 5 (55)
R
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for any ¢1,t; € R and it remains to notice that, by (52), we have
||U1,N||L2(R,A1) < ||ENU1||L2(R,31) S ”vluL?(R,Bl) < 0.

Since (uf y)n>1 is equi-continuous and uniformly bounded sequence, and A, X; have a sepa-
rable preduals, there exists some uj € L*(R, Ay) such that uf 5 (t) = uf(t) in the w*-topology on
A and in the w*-topology on X, up to a subsequence, for all ¢ € R. By an argument similar to
the one used in (55), it is easy to see that one can choose u§ € C3(R, A;). Thanks to (53) and
(54) one can write

Tui(t) = Tv (1),

for all t € R, which proves (45). In order to verify (46) one uses the Young inequality and (52):

leill e ay < lminf {[juf |l 2 ) < Hminf {lun vl 4,
S hNHLiO%f ||]ENU1||L2(]R,31) S ||Ul||L2(R,Bl)' (56)

Observe now that, as in (56), we get

||u§||L2(exp(t2)7A1) 5 ||U175||L2(exp(t2)’Bl) 5 ||U1||L2(exp(t2)7Bl)7 (57)

where for the second “<” we have used Fact 1 (ii). In particular, we have that u§ € L?(exp(t?), A;)N
C3(R,A).

Let us verify now that u§ also satisfies (47). We can write
HROuiHLQ(eXp(ftg),AO) N ”uiHLQ(exp(ﬁ),Ao) N HuiHL2(exp(t2),A1) g (58)
where for the first “<” we have used Fact 2 and for the second “<” we have used the embedding
X7 = Xy (that implies A} — Ap). Combining (57) with (58) we get
HROutiHIﬂ(exp(—tz),Ao) 5 HU1|’L2(exp(t2),B1)7

and (47) is proved in the case j = 1. Lemma 27 is proved. O

We are now able to state and prove the main result of subsection 3.3:

Lemma 28. Fiz some number 6 € (0,1). Let the Banch spaces A, Xy, X1, Ao, A1, By, B1, E,
F and the operator T be as in Lemma 27. Moreover, we assume that Xo, Xy and By are UM D

spaces and that (Xo, X1)e has a separable predual. Then, for any b € (By, B1)g there exists some
a € AN (Xo, X1)g such that
Ta="1Tb,

and

||a||Am(X0,X1)9 S ||b||(BO,B1)g . (59)

Proof. Fix some b € Cy (By|B;). Consider v € F? (By|B;) such that v (6) = b and
”U“]-‘?(Bo\Bl) <2 ||bH(BO|Bl)9 . (60)
Since we can replace (if necessary) v by exp(z? —6?)v, we can assume without loss of generality

that v; € L*(exp (t?), B;), where v;(t) := v(j + it), for all ¢ € R. Define, for each ¢ € (0, 1), the
function v. on S by v, := v * ¢, as in the statement of Lemma 27.
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Note that, thanks to Lemma 26,
vje(t) := H;0je(t) + Rjvi—je(t),
for all t € R. From this identity, since B; is an UM D space, we can write

“RIUO,SHL?(R,BI) HUL‘EHLQ(R,BI) + HHULEHU(R,BI)

HU1,8”L2(R731) S HleLQ(R,Bl)

IANRZANVA

HbH(B()|Bl)9 ’

where for the second “<” we have used Young’s inequality and for the last “<” we have used
(60). In particular, we get

||R1U0,e||L2(exp(7t2)731) S ||b||(BO|B1)9 : (61)

By Lemma 27 there exist some functions u$ € L*(exp(t?), A;) NCy (R, A;) satisfying (45), (46),
(47). Define @° : S — Ay + Ay by

1 o (t 1 T(t

() == ——,/ Mdt + —/ ”1.—()dt, (62)
2mi Jp it — 2 2 Jgp 1+t — 2

for all z € Sy, and

a5 (t) = a° (j +1at) = Hyu5(t) + Ryui_;(t), (63)

j
for all ¢ € R. Notice that, since u§ € L*(exp(t*), A;) N C§(R, A;), thanks to Lemma 26, @° is
well-defined and @° € C (S, Ag + A;). Let us verify that exp(z? — 02)a° € F? (Ao, Xo | A1, X1).
We show that, for any j = 0,1, we have the estimate:

1/2
(/R e AT (G + i), dt) S ol giey, o

for any bounded linear operator A; : A; — X; with ||A;|| < 1, the implicit constant not depending
on AJ

Using (63) we write:

, 1/2 , ) 1/2
</ e || AT (j+it)||§(j dt) < (/ et HHjAjuj(t)HXj dt>
K . ) ) 1/2
+ < /R et HAJ-Rjui,j(t)HXj dt) : (65)

Since the spaces X; have the UM D property, we get

1/2
(/ e H%J‘Ajuj(twi{j dt) < ”HjAjujHLQ(R,Xj) S “Ajujl‘LQ(R,Xj)
R
S HUEHH(R,AJ) < ||Uj||L2(R,Bj)
S 10l o, - (66)

where for the third “<” we have used (46) and for the last “<” we have used (60). It remains to
estimate the second term in the right hand side of (65):
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2 2 12
( /R AR 0] dt)

HRjui—j HL2(exp(—t2)Aj)

1151l p2expen), m ) + 051 IR V14l 2 exp—12),)
||U1—j||L2(R,Bl,j) + 051 ||ijl_j||L2(exp(ft2),Bj)
150, (67)

where for the first “<” we have used (47) and for the last “<” we have used (60) and (61). By
(65), (66), (67) we have proved (64). Hence, we have obtained

AR AR YA VA

2 2\~
Hexp(z —0 )u8||.7:2(A07X0 | A1,X1) S Hb“(Bo‘Bl)e '

This implies that for a® := @°() we have
||GEH(AO,XO | A1,X1)e < ||b||(BO|Bl)9 . (68)

Note that, by Proposition 22, (By|Bi)s = (Bo, B1)s, and by Corollary 24, (Ag, Xo | A1, X1)s —
AN (Xo, X1)g. From this and (68) we get

101 anexo.x00 S 10l (30,51, - (69)
We observe that for b. := v.(f) we have
Taf = Thb.. (70)

Indeed, by applying Lemma 20, (62), the continuity of 7': £ — F' and (45), one gets

. 1 Tug (t) — Tvg . (t) 1 /Tui (t) — T (t)
T () — Lv.(0) = ——— 0 S — ’
W(0) = Lo(0) = =55 | — ¢ o). iyi—o

dt = 0.

We let ¢ — 0. Since v;. — v; in L? (R, B;), for each j = 0,1 we get that b. — b in
(Bo|B1)s = (Bo, B1)s. Also, thanks to (69), since A and(Xp, X;)y have separable preduals, by
the sequential Banach-Aloglu theorem, there exists some a € A N (X, X1)g such that a'/™ — a
(n € N*) in the w*-topology on A and in the w*-topology on (Xy, X;)g, up to a subsequence.
Also, by (69) we get

HaHAﬂ(XO,Xl)g r<v “bH(BO,Bl)G )

It follows that 70y, — T and Ta'/™ — Ta in the w*-topology of F, up to a subsequence.
Consequently, by (70) we have
Ta="T0.

Since Cy(By|By) is dense in (By|B1)g = (Bo, B1)s we can use the above compactness argument
in order to obtain a solution for any b € (By|B1)s. Lemma 28 is proved. g

Remark 29. One can easily adapt Lemma 27 and Lemma 28 to the more general case of the
equations Tu = Lv, where T, L : E — F are possibly different operators. For this we have to
change the conditions (i) and (iii) in Lemma 27 by

(i) By — Xi — Xy and there exists an operator Ly : E — F such that Ly : B; — A; is
bounded for each j = 0,1 and To Ly = L on By;

(1) T :A; — F and L : B — F are bounded for each j = 0,1 and L(By) — T'(A;).

The modifications needed for the corresponding proofs are minor. However, for the sake of
simplicity, we preferred to present the proofs only in the case T = L.
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4 Spectral analysis

In this section we study the solutions of divergence-like equations via L?-based Fourier analysis
methods. This is done by a slight modification of the ideas of Bourgain and Brézis used in the
proof of [5, Lemma 2]. While in this case the techniques we use are essentially those of Bourgain
and Brézis, we give more general existence results that take into account the shape of the Fourier
spectrum of solutions. The final results of this section will represent the “l-endpoint” when we
apply the W-method (see Lemma 35 and Lemma 36 below).

4.1 Symbols with bounded Fourier transform

Let 1 < ¢ < d be some integers and let m : R? — C be a function. We say that m is an (-BB
symbol® if the following conditions are satisfied:

(i) there exists a constant C' > 0 such that, in the case ¢ < d,

o7t...0" LENMdE < ——— 71
[ oopme ¢ ag < o (71)
for all & = (v, ..., ) € {0,1}" and all & € (0,00)", and, in the case ¢ = d,
05O ()] < — (72)
L "d - |§‘€+|a\’
for all v = (ay, ..., aq) € {0,1}% and all £ € (0, 00)";
(ii) m is an odd function in each of the components i, &s,....,&, i.e.,
m <§17 ceey gj—h _5]7 gj-‘rl""v gd) =—-m (517 ceey gj—la gj? §j+1""7 gd) ; (73)

forall 1 <j </, and all &,&,.....,&; € R.

For any integer v we denote by I, the interval [2V~1,2"]. For every k' = (ki,...,k;) € Z° we
consider the positive dyadic box Iy := Iy, x ... X I;, and we associate to it the /-symmetric set:

slv):= | (=D Iy) x . x (=) I,) CR".

The next technical Lemma is the basis for all of our results in this section. Its proof consists
in slightly adapting some arguments of Bourgain and Br“ezis (see [5, Lemma 3, p. 404]):

Lemma 30. Let d > 1 be an integer and let m : R* — C be an (-BB symbol for some 1 < ¢ <d
and some constant C'.

Then,

2

k'ezt

S G

[ mlgetenag
Sg(lk/)XM

for any measurable subset M C RI=¢ of finite measure, uniformly in x € R? and in M. (By
convention, if { = d, then s;(Iy) x M is replaced by sq(I}).)

5Here, BB stands for “Bourgain-Brézis”.
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Proof. We first prove Lemma 30 in the case where m is a d-BB symbol. In this case we have to

prove that

kezd

/ m(@e’wdg' <c (74)
(Ix)

uniformly in z = (1, ..., z4) € R%

Since m is odd in the variables &1, ..., &y, for any k € Z< one can write,

d d
/S - m(€)e' 6™ dg — / " m(©) [[ e de = (20)" /[k m(g)gsin (&z;) de. (75)

Now, let us notice that whenever a : R* — C, by,...,b; : R — C are sufficiently smooth
functions and J; = [g;, 7], (¢; < 1), j = 1,...,d are d intervals, we have

| eolwee- X [ oraollbeye @

acfo1yd I XJd i=1
where, for each 1 < j < d, the quantity [b; (@)]?‘]; is defined® as follows

Tj &
[b; (€)1, = (/ bj (t) dt) oy (&) and  [b; (§)]}, 3_/ bj (t) dt,

9
where 0,, is the Dirac measure on R concentrated in 7;. The formula (76) easily follows by
induction on d and integration by parts.

Fix some integers ki, ..., ks and consider the intervals I, = [2%71 2%], j = 1,...d. By
applying (76) to the functions @ = m and b, (§;) = sin (§;z,), we obtain

/Ik ... x I, Hsm i) dE = Z /

I I
aefo,1}d kX Xkd

m () [ [ lsin ()l dé. (77)

By a direct computation,

1
/sm (t- x])dt‘ < min (4]‘;J |z, z |)
J T

for any subinterval J C I, and consequently,

1
< min (4]~C |z, z ’) (78)
T

for any j =1,...,d, any a; € {0,1} and any &; € I,.

Let us fix some integer 0 < [ < d and consider the case of a = (1,...,1,0,...,0) € {0,1}% (I
values equal to 1). By (78) we get that the quantity

/1 . (=V)*m (&) H [sin (gjxj)];‘gj de

6Strictly speaking we should write [b; ()]?}7 (&;) instead of [b; (§; )] 7. However, for simplicity we prefer here to

[sin (fj%)]ifj

use the last notation.
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is bounded by

d
1
(/ |01...0m (51,...,gl,le+1,...,2’€d)|dgl...d&) | |min (4’% |xj|,—>. (79)
Ile...XIkl j:1

||

Fix some index p € {1,...,d}. Using the fact that m is a d-BB symbol one can write (see

(72))

1
/I ; ‘518lm (51,...,§l72kl+l’,..,2kd)|dgl...dfl § C/] , Wdfldfl
k1><~~~>< k; le...X k;

2k1+---+kl

¢ ok (dtl)

Combining this with (79) we get that

d

/f O m© [ Isin (&)l e

J=1

2k1+.“+kl d ) L 1
5 CWHHHH (4 J ‘l’j|,—> ,
J

" ||

and hence, for T'), := {k = (ki,...,kq) € Z* | k, = maxi<j<qk; },

>

k€T,

d
/I . (=V)*m (&) ] ] [sin (@:gj)]?gj de

J=1

is bounded by

okr+...+k 4 i 1 hitth d i 1
— 1 j o —) = J— A 1 j Y
03 2y Tmin (1o ) = 0 3 S T omin (25 bl e )
k€T, j=1 J k€T, j=1 J

(80)

For any k € I, we have k, = max;<j<4 k;. Hence, we can write

oMt th ki+...+k l ki—k - ki—k
kg ._ ._
TRCET =[] ][ <1,
j=1 j=1

and therefore, the right hand side of (80) is at most

; d
1 1
' T : ki ———
C E | |m1n (2 EZIF 5% \x]|) < C Z | |m1n <2 |5, ok; ]x]\)

kel j=1 k1,k2,....ka€Z j=1

d
1
— i kgl ———
= C’” E m1n(2 |x]\,2kj’xj|)50.

7j=1 ijZ

In other words, we have seen that for any p € {1,...,d} and any multiindex « € {0, 1}d of the
form o = (1,...1,0, ...,0),

<0 (81)

S orm@T kel de

kel 7j=1
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Clearly, (81) remains true for any a € {0, 1}d. Now, observing that Z? is covered by the union
of the sets I'y, ...I'y, one can write

2

kezd

SHI

p=1 kel

d
/ (—V) H sin (&25)]7 df
Ile...XIkd ]:1

This, together with (75) and (77) proves Lemma 30 in the case ¢ = d (i.e., (74)). The case
where 1 < ¢ < d, can be obtained from the case ¢ = d as follows.

Suppose that 1 < ¢ < d and m is an /-BB symbol. Let M be a measurable subset of R of
finite measure. For each 2” € R4 define the function m,» : R — C by

s (€) := /M m(e, €)= e

for all ¢ € RY. Thanks to the fact that m satisfies the condition (71), m,» is well-defined and it
satisfies uniformly in 6” the condition (72) as a symbol on R*. Indeed,

00 O i (€1)] = ’/ OO0t m (e, €M) ) de”
M
< / 0002 m (€, €M) de”
M

< [l )
Rd—

C

g =

for all & = (a, ..., ) € {0,1}" and all & € (0,00)". (Note that the final estimate in (82) does
not depend on the set M.)

Also, mgy» is odd in each variable and hence, we have (73). Now, using (72) for my, we have

S |f, o S| (meewenic)oc
k,ezé Sg(Ik/)XM k,ENZ Ik/
= > / Mg (£) €2 ag'| < O,
k'eN¢ Sé(lk’)
uniformly in z € R%, which proves Lemma 30. U

By applying Lemma 30 we can deduce the following useful fact:

Lemma 31. Letd > 1 and 1 < ¢ < d be some integers, and let m : R* — C be an (-BB symbol
satisfying condition (71) or (71) (when ¢ = d) for some constant C'. Then, there exists some
kernel K € L™ (R?) such that K(€) = m(¢) on R? and | K| S C, the implicit constant not
depending on C.

Remark 32. The meaning of Lemma 31 is that there exists a unique function K € L*, such
that |K||;« S C and

i (K = (m,0),

for any function i € ;.
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Proof. For each n € N, we consider the functions K, defined by

—

K(§) = m(§)14(6)

for all £ € R where J, := [-2",—27"] U [27",2"] and J¢ = J, x ... X J,, (d times). It is easy
to see that K, are well defined continuous functions. One can also see that K™ are uniformly
bounded. Indeed, applying Lemma 30 for M = J¢=* (we suppose that ¢ < d; the case £ = d is
similar) we can write (using the triangle inequality),

Kl ~ | e

= Z / (£)eiem e

K ezt (L)x T3t~ [
se(I11)CJE
<>/ m()e"cde| S C.
k’EZl Sg(Ik/)XJg7Z
uniformly in z € R% and in n € N. (Here, for “=", we have used the fact that the sets s,(/)

with s,(I;) C J£ are pairwise almost disjoint and they cover J¢.) Hence, || K,||;« < C uniformly
in n € N. Using the sequential Banach-Alaoglu theorem, we can find some K € L, with
| K| ;0 S C and such that K,, — K in the w*-topology on L*, up to a subsequence.

Consider now some ¢ € ;. Clearly, for any n,
(Kot} = (Lo, ) (83)

Since ¢ € L' we have (K,,,v) — (K, 1) up to a subsequence when n — oco. Also, we have
<m1Jg7 QZ> — <m7 {p\> )

(K, ) = (m, ). (84)

and by (83) we get

The uniqueness of K immediately follows from (84). Lemma 31 is proved. O

4.2 Divergence-like equations in W%/%2

We can now prove our existence result for divergence-like equations in a particular type of critical
spectral spaces. We start by an analogue of [5, Lemma 2]. The proof we give below rests on some
elaborations of the main ideas used by Bourgain and Brézis in the proof of [5, Lemma 2|. Lemma
31 from the previous subsection will play here an important role.

In what follows let us denote by VJu the first two components of the “o-gradient” of u, namely,
gu = (07u, 05 u),

where 07 is the Fourier multiplier 97 := (V).
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Lemma 33. Let d > 3 be an integer. Consider the set U := R x (0,00). Ifo : R - R
satisfies (P1),(P2) then,

-1 o o
H|V| |v2|2u‘y*/U N ||v2u||(L1+Y*)/U
o nl/2 o ni/2
+HIVSuly 2 IVl y o (85)

for any u € Sy, where Y := W22,

(For the meaning of the notation Y*/U and (L' + Y*)/U see subsection 2.3.)
Proof. Clearly, Y* = W~%22_ First we show that

/ 01(£)a3(£)

e 1(€) [a€)]” d¢ S IV5ullipayyyw + 1V3ully i V5l g1y (86)

for any function v € ;.
Consider some functions Fy, Fy, hy, ho , Fy, Fy € S with spec(F), spec(Fy ) C U° such that
Viu = (F1, F2) 4 (h, ho) + (FT, Fy), (87)

and
IFull g+ 1E2 o+ ([P

y+ 1 [lhs|

yr S 2 vau||(L1+Y*)/U : (88)

We have

[ e ) aepas - e || O e e e

—

Using this, (87) and the fact that spec(F; ) € U¢ (and hence 1y () F; (§) =0, for j = 1,2 and
for all £ € R?), we can write

[ g faer g =1+ 11

|§|d+2

where

— a1(§)oa(§) eI
I / e WOREORO

and 77 is the sum of a finite number of terms of the form

e [, 2 @ (%9

where each g, : R — C is one of the functions
/lef /}227 ﬁl; ﬁz; F\17 ﬁ?; ﬁl} F\Q
and at least one gy is Ej or ﬁj for some j € {1, 2}.

One can verify immediately that the symbol m defined by

() = %ma, £ € R {0},
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satisfies the conditions in Lemma 31. Hence, by a applying Lemma 31 and (88),

(]~ (K By By <K% Byl e ([ B2
o112
< K e 1A 2l S IVSullip iy - (90)

(Here, we have used the notation from Lemma 31: K= m.)

In order to estimate I we estimate each of its terms of the form (89). By the Cauchy-Schwarz
inequality, we get

[ S € s

=1

2 9 1/2
19:(€)] )
kH (/R €|

where we have used the inequality

2809
g 1
which follows directly from (P1).

Note that, if |gx| = |/f;j|, for some j € {1, 2}, then, by (88)

) 1/2
( JRICE df) < Iy

If |gx| = ]ﬁ’]|, for some j € {1,2}, then, since ﬁle = (0u — ﬁj)lU, the triangle inequality
together with (88) gives

) 1/2
() _ .
( JREGE d&) - ([ wer

ye < 20Vsull iy o (92)

o R 9 1/2
Fu(e) — hs(©) ds)

< [l97ully. i + slly-
< V3ullye o + 2IV3ull g1y o
< 3[[Viy| Y*/U - (93)

Since |gi| = \ﬁjl (for some j) for at least one k, we get from (91), (92) and (93) that

/ 01(§)o2(8)

e 1u(§)g1(§)g2(§)dS| < [[V3ul

Y*/U HVguH(LlJ,-Y*)/U'

Hence,
(1] S [IV3ul

Y*/U vau”(LlJrY*)/U : (94)
By (93) and (94) we get (86).

Consider the rotation
R (g) = (51 - 527 gl + £27 637 sy €d)a

for any ¢ € R¢. Consider now the functions

oy:=010R—030R, and o,:=0j0R+0y0R.

One can immediately check that the function

ooy = (610 R)* — (030 R)?

37



is odd in each of the variables &;, &. Using this, we easily observe that the symbol m’ defined by

nl(€) = %ma, ¢ € RN {0},

satisfies the conditions in Lemma 31. Hence, as in (86), we obtain that

! 2 1 2
[ A @ Rk < w1

X
(L1+Y*) /U

(95)

2 !
+ HV; v
(L1+Y*)/U

v
for any function v € Sy, where

V5o = (970,05 ),
and 07" is the Fourier multiplier of symbol o}, for any j =0, 1.

Since the spaces Y*/U and (L' + Y*)/U are invariant under the rotation R, by applying (95)
to the function v = u o R we obtain (by changing the variables) that

B 2 2
/Rd (o1(&) 02(5)’2|d&021(§) + 03(§)) 1o (&) [a(€)[2 de
is bounded by
HVguH?LUrY*)/U + vauHY*/U vauH(L1+Y*)/U ) (96)

for any function u € S;. By adding up, we get from (86) and (96) that

J.

g(g) - (oa (o ag
’§|d+2 1y(€) |U(§)|2 dé S HVZUH?LH—Y*)/U + [|V3u| Y*/U HV2UH(L1+Y*)/U J (97)

where
5(€) = a1 (§)a3(&) + (02(§) — 72(€))* (01(8) + 02(6))”
for any ¢ € R?. Since for any real numbers a, b we have

a?b? + (a — b)* (a4 b)* ~ a* + b,

we obtain
(&) ~ a1(&) + 05(),
for all ¢ € RY, and now (97) gives us

4 4
L %u(o O & S NV5ulli ey + IV

Y*/U ”VguH(Ll-i-Y*)/U' (98)

Note that by (20) (with D = U), we have

4 4
1 9l ~ [ 220 o de,
rt ]

and together with (98) this concludes the proof of Lemma 33. O

By composition with rotations and by adding up inequalities of the form (85), Lemma 33
easily implies the following:
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Lemma 34. Let d > 3 be an integer. Suppose that the family of functions G4, ..., Gg : R? — R%1
is adapted to the family of half-spaces Dy, ..., Dy C R For any j € {1, ...,d} we have
YU S ”Gj(v)uH(Lu.y*)/Dj

1/2 1/2
NG (Dl o, G (DUl ey,

IV 1G5 (V) [Pu]

for any v € &, where Y = W22,

(For the properties of the functions Gy, ..., G4 and their relation with the half-spaces Dy, ..., Dy
see the subsection 1.3 in the introduction of this paper.)

We can now state and prove the existence results of this subsection:
Lemma 35. Let d > 3 be an integer. Suppose that the family of functions G4, ...,Gg : R? — R31
is adapted to the family of half-spaces Dy, ..., Dg C R Then, for any system of (d — 1)-vector

fields (v)j—1,.q with v; € W4?2(R%) and spec(v]) C D;, there exists a system of (d — 1)-vector
fields (uJ)J_L”’d, with u; € L=®(RY) N W422(R?) and spec(u;) € D;, such that

d d

Y GHV)uy=> G (V) v,

Jj=1 J=1

and
d

d
Z lwjll poompiarze S Z [0 llyirase.s -
j=1 j=1

Proof. As before, let Y be the space W%22. According to Lemma 34, for any ¢ € S, we have

11917165 (D) 1G5 (D) ¢lly-p, 1G5 (V) @lligrayeym,

+11G5 (V) @I 0, 1G5 (V) @l (72 3y,
= ||Gj(v)90”(L1+Y*)/Dj
+HE NG (V) @l p ) E NG (V) el oy m,)
|G (V) SO”(L1+Y*)/Dj
+e 1G5 (V) @lly- i, + 7 1G5 (V) @l oy,

IA

for any € € (0,1) and any j € {1,...,d}. By adding up these inequalities we get

var G5 (V)G ( >so\y*/DjNeZHG ) ¢l

Y*/D;
el NZHG ‘PH(Ll_g_y*)/D : (99)

Since the family Gy,...,G4 is adapted to Dy,...,Dy, (see (10)) we easily get

d

D 1GH O 1p,(€) ~p 117 1p(9), (100)

=1
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on R4, for any > 0. Using now (100), with 3 = 2, we can write

D IIVITHG; (V)16 (V) ¢

~ |llElT €L () 1B (€) | €]
= |lel1p @) 1) 1€~

In a similar way (by (10)) we can write

ZIIG ) ¢l

v, ™ ZHiG )i, © 2117,

£

~ H(DG ) [1p, (¢ )a@ua“

~ |ligrn @12 11"

2
L&

Note that (101) and (102) gives us

Z IV G5 (V)G (V) ]

and together with (99) yields

Y*/Dj

v Z 6, (V) ¢l

ZHG )¢l

Choosing ¢ sufficiently small one can write

Y*/D, gezHG )¢l

d

d
G (V) ellyesn, S D NG5 (V) @llprgyeyp, -
j=1 J=1

By duality (using the closed range theorem) we get Lemma 35.

v, ™ ZHm— G, (&) P10, (©)12(&) 17|,

—1
y+/p; T€ ZHG 90||(L1+Y*)/D :

3

~ |§|‘1<Z|G ) 215, ( >) FGI

2
LE

(101)

(102)

g

With the same methods one can prove an analogue of Theorem 8 when d = 2 and the source

space is WH2(R?):

Lemma 36. Consider the numbers § € (0,7/8) and ¢ € (0,2]. Then, for any vector field v €
W12(R?), with spec(v) C Cj, there exist a vector field u € L(R?*) N W'2(R?), with spec(u;) C

Cli4e)s, such that
divu = div o,

and

[l ooz S Nl0llyirn.a -
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(For the meaning of Cs see subsection 1.3.)

Sketch of the proof. First we establish the result for ¢ = 2. Let us denote by D(Cjs) the set
defined by
= U Il/?

1CCys

the union being taken after all the dyadic boxes I, = [2"171, 2"1] x [2v271, 2"2] (where v = (v, 15) €
Z?) that are included in Cs and are maximal (with respect to the inclusion relation) with this
property. One can find a finite number of rotations Ry, ..., R, : R? — R? such that

Cs\Bg2(0,7) C Cs := U R;(D(C5)) C Ca, (103)

for some sufficiently large > 0. As in the proof of (86) we get

(£162)? o2 2
/ 5 o) (&) [u(©) d€ S 1Vullipi iy ey + IVully« ooy VUl iy oy, (104)

Rl |€|d+2

for any u € Sy, where Y = W22 As in the proof of Lemma 31, by Lemma 30 (applied in the
case { = d = 2) one can see that there exists K € L* such that

R(6) = é'lsz Loy (€),

with the same meaning as in Lemma 31. We use then the same method as in (90). The rest of
the argument remains essentially the same as the one used in the proof of (86).

Note that, by (104) we get (by composition with rotations) that

/ (Rj(E)R](E))*

‘SITle(D(Ca))(g) @ d¢ < HVU’H(L1+Y*)/R]~(D(C(5))
+ [|[Vu|

ve/r; o) VUl iy m, (e -

for all j € {1,...,n}, where R}(¢) is the I-th coordinate of the vector R;(§). Using the (103) we
get
1Vl

vy (cs) < NVullyg, and [[Vull iy v o) < VUl prpye;

for all j € {1,...,n}, and one can write

RL(E)R2(€))?
/ﬂ%d(jg#le(D(Ca))(g) @@ de S 1Vullipiyye,

+ [|[Vu|

Y*/55 ||vu||(L1+Y*)/55 R (105)

for all j € {1,...,n}. One can easily check that

n

S (RUE)RA(€)) 1 p(cs) (€) ~ [€]* 15,(6),

j=1

for all £ € R?. Hence, by adding up the inequalities (105) we get

v+ /Cs ||vu||(1;1_;_y*)/5(s )

L E: 16, (6) [A(€) 2 4 S [V ulZ 19y, + 0]
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which can be rewritten as

vl . (106)

IVl y*/G; (L1+Y*)/Cs

v*/Cs ~> < [Vl (L4y+)/G5 T [Vl

By duality (as in the proof of Lemma 35) we obtain that for any vector field v € Wt 2(R?),
with spec(v) C Cj, there exist a vector field u € L°(R%) N W'2(R2), with spec(u;) C Cj, such
that

divu = div o,

and

[l ooy S Ml0llyirna -

Thanks to (103) this immediately implies Lemma 36 in the case ¢ = 2. To obtain the result
for any ¢ € (0,1) simply cover the symmetric cone Cs with a small union of rotated copies
of the symmetric cones Cj;, for some large integer n > 0. It suffices now to apply the result
corresponding to the case ¢ = 2 to each rotated copy of Cs/, and then add the obtained solutions.
O

5 Solutions in interpolation spaces

5.1 Proof of the main results

We now discuss some immediate applications of the W-method to the divergence-like equation.
First we formulate a general result:

Theorem 37. Let X, X Y, Y, F be Banach function spaces on R satisfying the embeddings
X 5 X,Y oY < X and consider a bounded linear operator T : X — F. Suppose moreover
that the followmg conditions are satisfied:

(i) X,Y,Y are UMD separable spaces;
(ii) T is bounded from X to F and fromY to F, and T(Y) < T(L*°NY).
Fiz some 6 € (0,1). Then, for any vector field v € (L N X,Y),, there exists a vector field

we L®N(X,Y)y such that
Tu="Twv,

and

HUHLOOQ(XY/ ”U”(LOOHX Y),

Proof. We apply Lemma 28 for the Banach spaces Xg = X, X; =Y, A= L™, Ay = L*N X,
By=L*NX, A =L*NY, B; =Y and the operator T. One can easﬂy observe that in thls
setting the conditions of Lemma 28 (part of them are explicitly stated in Lemma 27) are satisfied.
Indeed, in order to verify the condition (i) in Lemma 27 it suffices to see that X, Y < X and

hence, 3 .
Bl‘—>X1:Y‘—>X0:X,

and BO — Ao.

The space Y is reflexive (since it has the UMD property) and hence, it has a separable
predual”. Also, A = (L')* has a separable predual. Thus, the condition (ii) in Lemma 27 is
verified. Condition (iii) in Lemma 27 is ensured by condition (ii) in Theorem 37.

"Here we use the fact that if the dual X* of a Banach space X is separable, then, X is separable (see for
instance [14, Theorem 4.6-8, 245]).
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Notice that X NY is a separable space that is dense in (X, Y )y (see [2, Theorem 4.2.2 (a), p.
91]). It follows that (X , }7)9 is a reflexive and separable space and consequently it has a separable
predual. We also have by (i) that the spaces X, Y, Y have the UMD property. We can apply
now Lemma 28 and we get Theorem 37. U

Let us see now that Theorem 37 above implies Theorem 10, Theorem 11, Theorem 9 and
Theorem 8. In what follows we will ignore the space F' since it is easy for the operators T we
use to find a space F' sufficiently large such that 7 : X — F (one can simply set F' of the form
F = B_*" for some a,b € (1,00), with a sufficiently large).

Proof of Theorem 10. Let us consider some parameter r € [2, oo) such that 1/p = (1 —0)/r+
0/2. We apply Theorem 37 for the Banach spaces X = Bd/” X = Bd/” andY =Y = Bd/2 2

Since r > 2, we have Bd/22 Bf/” — Bg/w. Hence, X < X and Y > Y < X. Also, by Mazya’s
theorem (Theorem 3 in the case p = ¢ = 2) we have T(Y') — T'(L>°NY’), for the operator T' = div.
Now the hypotheses of Theorem 37 are satisfyed.

Observe that, since X = Bf/m — L, we have L N X = Bf/m and we can write

(L*NX, 35/2,2)9 _ (Bii/r,r7 B;l/zz)e _ Bff/”’p.

Sd /o 5d /2,2 Sd

it remains to apply Theorem 37 and Theorem 10 is proved. U

Y

Proof of Theorem 11. As in the proof of Theorem 10 let us consider r € [2,00) such that
1/p = (1—0)/r+60/2. We apply Theorem 37 for the Banach spaces X = W [ X = Wa/r[?
and Y =Y = W%22 It remains to verify that the hypotheses of Theorem 37 are satisfyed.
Indeed, by the monotonicity properties of the Lorentz spaces we also have Wdlrprt s Wdirpr2,
i.e., X < X. By Lemma 16 we get W22 < X ie.,Y =Y < X. Also, by Mazya’s theorem
(Theorem 3 in the case p = ¢ = 2) we have T(Y) <—> T(L>* NY) and now the hypotheses of
Theorem 37 are satisfyed.

By Lemma 17 we have W22 < X and X = WL < L[> and hence LN X = WL,
From this and Lemma 18 we get

(L= N X, W22y = (WL Wa22), = Wwa/rLpa, (107)

Lemma 18 also gives ‘ ) .
(WL Vdl22y, — yird/ep?, (108)

and now one can easily conclude the proof of Theorem 11 by a direct application of Theorem 37.
O

Proof of Theorem 9. The proof is very similar to the one of Theorem 10. Suppose p,r, 6 are
as in the proof of Theorem 10. We put
d
X — H d/rr
7j=1

d/r?“ D and Y = Y H d/22D--

J

||:&

Now, the operator T' is the operator formaly defined for the systems of (d — 1)-vector fields by

the formula .

T(vy,...,vq) = ZGJ' (V) -,

J=1
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where vy, ...,uy € §" are (d — 1)-vector fields. In order to verify the item (ii) in Theorem 37 we
use Lemma 35 instead of Mazya’s theorem. It remains to apply Theorem 37 and to observe that,
by the retraction method,

((Bf/T’r)Dﬁ (Bg/z’Q)Dj)a = (Bg/p’p)Dj

and
Sd/r,r - .
(BY"")p,, (BS**)p,)o = (B3,

for any j € {1,...,d}. O

Proof of Theorem 8. Again, suppose p,r,0 are as in the proof of Theorem 10. We put
X = (B, X = (BY™ Ve, and Y = (By*?)e,, Y = (BY**)c,,..;- The operator T is the
usual divergence operator T' = div. It remains to apply Theorem 37 and to observe that, by the

retraction method,
Sd/r,r Sd/2,2 .
(B )y (By*?)0p)o = (BY"™)c

and

Sd/r,r 5d/2,2 S5d/p,
((BQ/ )C(1+a)67 (BZ/ )C(1+5>5)9 = (Bz/pp)C(HE)g'

Both of these equalities rest on the fact that the Fourier projections P, on the sets Cs are a
sum of two rotated and dilated Riesz projections. Hence, F¢; is bounded on each of the spaces

B‘li/r’r, B;l/” and B;’/Q’Q. U

Let us see now that Theorem 9 implies Theorem 7. For this we need only some elementary
geometry. Suppose d > 3 and consider the unit vectors v; := (1,...,1,2,1,...,1)/v/d+ 1 in R?
(with value 2 on the j-th position), j € {1,...,d}. For each j € {1, ..., d} define the half-spaces

D;:={§ € R"| (&v;) > 0},

and let D be the set D := D; U ... U Dg. By pp,(§) we denote the orthogonal projection of the
point § on the support hyperplane II; of D;:

Hj = {fGRd| <£,Vj>:0}.

Note that 1/2
2 2
[po, (&) = (I&I” = 1€, v ")
for any j € {1,...,d}.
Consider the function o : R? — R defined by o(£) = &. We can immediately see that this
o satisfies the conditions (P1), (P2). We have now ¢;(§) = ¢, for all j € {1,...,d}. Consider
Gy = (01,...,04-1) and let G, be obtained by composing G, with a rotation that transforms
R%1 % (0,00) in D;. One can see that |G;(§)| ~ |pp,(§)], for all j € {1,...,d}. In order to see
that the family of functions G, ..., G4 is adapted to the family Dy, ..., Dy of half-spaces it remains
to prove the following equivalence that corresponds to (10):

Lemma 38. With the above notation we have
d
> P, (©)] 1p,() ~ €1 1p(8),
j=1

for any € € RY.
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Proof. Observe that |v; —v;| < 1 and |[(v;,v;)| <1 for any 4,5 € {1,...,d}, i # j. It follows from
this that we can find some sufficiently small number « € (0, 1) such that

’VZ'—V]" < \/1—067 (109)

,/%Jr (1, )| < 1. (110)

Let ¢ € (0,1) such that /1 — ¢ equals the left hand side of (110). In order to prove Lemma
38 it suffices to see that, for any ¢ € R?,

for any 7,5 € {1, ...,d}, and

d
D [po, )] 15,(6) > e1 6] 10(6). (111)

with ¢; = min(y/a, \/¢).
Pick some € € DN ...NDy. If [(§,11)] < V1 — €], then the left hand side of (111) is at least
1/2
P, (O] = (1€ = 1€ m)[*) " = vl

and we are done. Else, we have [(¢,11)] > v/1 — «|[¢| and decomposing £ as £ = vy +w, for some
B € R and w € R? with w_Lv;, we can rewrite this inequality as

18] > vVI—a (18P + w)",

or, equivalently,

jw] < 15| (112)
Now, note that, using (110)
(€ v2)l < 1Bl {1, )] + [{w, v2)]
< (B [{v1, v2)| + [w]

A

8 (r i) +
HNier:

Q
~——

11—«

IN

As above we get |pp,(§)| = (|§|2 — |<§,V1)|2)1/2 > y/c|¢] and we are done. It remains to treat
the case £ € D\ (D1 N ...N Dy).

Suppose £ € Di\ (D1 N...NDy) for some k € {1,...,d}. Then, we cannot have (£, 1) >
V1 —«al€|. Otherwise, using (109),

<£?yj> = <£7Vk>_<§7l/k_yj>
> V1—alg] = v —yllg] >0,

for any j € {1,...,d}, and we obtain that £ € Dy N ... N D, contradicting the choice of £. Hence,
we must have (£, v,) < /1 — «|£] and since (£, ) > 0 (thanks to the fact that £ € Dy) we get
(&, vk)| < V1 —al€]. Now we can conclude as above. O

By applying Theorem 9 we get a version of Theorem 7 in which the Fourier support of the
solutions lie in the set D instead of A = R%\(—o00,0)%. One can easily deduce from this the original
version of Theorem 7 by composing the involved functions (the source term and the solution) by
rotations and dilations.

45



Remark 39. It would be interesting if one could replace the set A = R%\(—o00,0)? in Theorem 7
with the set (—oo,0)%. This will give a stronger version of Theorem 7. It is not known whether

this stronger version is true or not. The methods used in this paper seem to not apply in the case
of the set (—oo,0)%.

5.2 Remark concerning the “third” parameter

Let us consider here the problem related to the nonoptimality of the third parameter. For the
sake of simplicity we are concerned here only with the divergence equation. Similar observations
can be made for the case of the divergence-like equations.

Recall that, in Theorem 10 in contrast to Theorem 3, we lose some control of the parameter ¢
of the Besov spaces involved: we start with a source term in Bg/ PP and we end up with a solution

in B;l/ PP which, despite the fact that it has the “right” differential regularity (the exponents p and
s = d/p are the right ones), it is a space strictly larger than Bf,l/ PP This is due to the fact that in
order to easily compute the source space we have chosen X such that X — L*. Consequently,
we have to take X strictly larger than X. Indeed, choosing X = X the hypotheses of Theorem

37 imply that W22 < X < L however, W%22 is not embedded in L®. By the method we

used to prove Theorem 10 it is unlikely to improve the solution space to L™ N Bg/ PP A similar

remark can be made for Theorem 11.

~ When we use Theorem 37, in order to not lose any regularity, we would like to have that
X =X and . _
(L= N X, W22, = (X, W22, (113)

Since W%22 — X we cannot impose the condition X < L. Apart from this situation, there

are other natural candidates for the space X that one may expect to satisfy (113). However, this

condition (113) is too restrictive. For instance we cannot pick X = BY™ for some r € (2, 00).

Indeed, in this case, we have the following negative result:

Proposition 40. Let r € (2,00) and 6 € (0,1) be some fized parameters. Then,
(LR N B (RY), W22(R))y # (B (RY), W22 (R)),.

(The corresponding norms on the two interpolation spaces are not equivalent.)

Proof. Suppose by contradiction that we have

(Loo N Bg/r,r’ Wd/2,2>9 — (Bg/r,r’ Wd/2,2>9.

This implies that

(Loo N Bf/r,r7Wd/2,2>9 _ (Bf/T’T,BS/“)@
— B;l/p’p’ (114)

where 1/p = (1 —6) /r + 60/2. On the other hand, since p > 2, there exists some n € (0,1) such
that
(B;Umo7 Bf71)0 _ 33/272.

This, together with (114) and T. Wolff’s interpolation theorem (see [25, Theorem 2]) implies
that, there exists some 6, € (0, 1) such that

(L® N BY™ BEY, = BY/*?. (115)
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Consider some function ¢ € C°(B(0,1)) such that ¢» = 1 on B(0, 1/2) and define the operator
Ty by
Tpf=Ff—Ffx,
for any Schwartz function f. We extend T}, by continuity to the spaces L> N B
and we easily observe that we have the embeddings T,,(L® N BY/™) < L and Ty(B*') —
Bt L.

Thanks to this and (115), T¢(B2d/2’2) must be embedded in L. In other words,

d/ryr  Hd, 1l 15Hd/2,2
T ) Bl ) B2

| £ =19, S Ulgge = Ul S 1 e (116)
for any Schwartz function f. Young’s inequality and the fact that 1Z is Schwartz gives us that

1 Bl < || 4]

Mz S 1 larna

which together with (115) yields
Il S || £ = 7B _+]|7 9], S M Ihyarea
In other words we have obtained the embedding W%/?2 < [ which is false. O

Open problem. Suppose D = R4 x (0,00) and X is a function space on R? such that

W22 <y X < BMO.

Is it true that ' '
div(L® N Xp, Wi/ *?)e = div(Xp, Wi *%)

(in the sense that any divergence of a (XD,Wg/Q’Q)g vector field is a divergence of a (L N
Xp, Wg/2’2)9 vector field)?

If the answer to this question is yes, then, by using Theorem 37 we would be able to provide
a version of Theorem 7 with no loss of regularity in the third parameter:

Conjecture. Let d > 3 be an integer and consider the set A := R\ (—o00,0)¢. Consider some
parameters p € [2,00) and q € (1,00). Then, for any vector field v € S'(R%) N qu/p’p(Rd), with
spec(v) C A there exists a vector field u € L>®°(RY) N F:/p’p(Rd), with spec(u) C A such that

divu = div o,

and

[l poeppgrn S N0l s -

Bg/pvp d/p,p')

(And a similar statement with in place of Fy

One can formulate similar conjectures corresponding to the statements of Theorem 9 and
Theorem 8.
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