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The 24-h activity cycle (24HAC) is a new paradigm for studying activity 
behaviors in relation to health outcomes. This approach inherently captures 
the interrelatedness of the daily time spent in physical activity (PA), sedentary 
behavior (SB), and sleep. We  describe three popular approaches for modeling 
outcome associations with the 24HAC exposure. We  apply these approaches 
to assess an association with a cognitive outcome in a cohort of older adults, 
discuss statistical challenges, and provide guidance on interpretation and 
selecting an appropriate approach. We  compare the use of the isotemporal 
substitution model (ISM), compositional data analysis (CoDA), and latent profile 
analysis (LPA) to analyze 24HAC. We illustrate each method by exploring cross-
sectional associations with cognition in 1,034 older adults (Mean age = 77; Age 
range = 65–100; 55.8% female; 90% White) who were part of the Adult Changes in 
Thought (ACT) Activity Monitoring (ACT-AM) sub-study. PA and SB were assessed 
with thigh-worn activPAL accelerometers for 7-days. For each method, we  fit 
a multivariable regression model to examine the cross-sectional association 
between the 24HAC and Cognitive Abilities Screening Instrument item response 
theory (CASI-IRT) score, adjusting for baseline characteristics. We  highlight 
differences in assumptions and the scientific questions addressable by each 
approach. ISM is easiest to apply and interpret; however, the typical ISM assumes 
a linear association. CoDA uses an isometric log-ratio transformation to directly 
model the compositional exposure but can be more challenging to apply and 
interpret. LPA can serve as an exploratory analysis tool to classify individuals 
into groups with similar time-use patterns. Inference on associations of latent 
profiles with health outcomes need to account for the uncertainty of the LPA 
classifications, which is often ignored. Analyses using the three methods did not 
suggest that less time spent on SB and more in PA was associated with better 
cognitive function. The three standard analytical approaches for 24HAC each 
have advantages and limitations, and selection of the most appropriate method 
should be guided by the scientific questions of interest and applicability of each 
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model’s assumptions. Further research is needed into the health implications of 
the distinct 24HAC patterns identified in this cohort.

KEYWORDS

cognition, compositional data, physical activity, sleep, sedentary behavior, time use, 
latent profile analysis, isotemporal substitution

1. Introduction

Physical inactivity and insufficient sleep are well-known risk 
factors for Alzheimer’s Disease and related dementias (Erickson et al., 
2019; Livingston et  al., 2020; Xu et  al., 2020; Sabia et  al., 2021). 
Sedentary behaviors, including activities performed at low energy 
expenditures and in a sitting or lying down posture (Tremblay et al., 
2017), are less consistently associated with cognition, though high-
quality studies are lacking (Olanrewaju et al., 2020). Taken together, 
sedentary time, physical activity, and sleep are the three overarching 
classifications of movement behaviors people perform across the 24-h 
activity cycle (24HAC) when measured by devices such as 
accelerometers or inclinometers. Most research has examined the 
contributions of each of these three behaviors independently 
overlooking the fact that a change in one of the behaviors necessitates 
a change (either increase or decrease) in the other behaviors 
(Rosenberger et al., 2019). Given this, there is a great need for research 
methods that allow researchers to study the 24HAC as a whole.

Several analytical methods have been utilized in the search for an 
improved understanding of the 24HAC and its association with health 
outcomes (Rosenberger et  al., 2019; Livingston et  al., 2020). 
Traditional approaches, such as regression, cannot be  applied to 
analyze all components of the 24HAC because of the collinearity of 
the duration of components, i.e., the time in each activity will 
necessarily add up to the full 24-h (Rosenberger et al., 2019). Several 
methods have been used to analyze the association of 24HAC 
exposures with health outcomes, including isotemporal substitution 
models (ISM; Mekary et al., 2009; Grgic et al., 2018), compositional 
data analysis (CoDA; Dumuid et al., 2018b, 2020; Janssen et al., 2020), 
and latent profile analysis (LPA; Hagenaars and AL, 2002; Evenson 
et al., 2017; Ekblom-Bak et al., 2020; von Rosen et al., 2020). Few 
studies to date have applied these methods to assess the association of 
the 24HAC to tests of cognition.

The goal of this paper is to describe and compare three approaches 
for modeling outcome associations with the 24HAC exposure: 
isotemporal substitution models, compositional data analysis, and 
latent profile analysis. For each approach, we will discuss the model 
assumptions, interpretation of the models, and highlight some choices 
that need to be made at the analysis stage. We describe the scientific 
question addressable by each approach, as well as discuss limitations 
and some pitfalls to avoid when applying these methods. To illustrate 
and compare these methods, we will apply each approach to examine 
the association of the 24HAC with a test of global cognition in a 
cohort of older adults who were part of the Adult Changes in Thought 
Activity Monitoring (ACT-AM) sub-study. In the literature, 
comparisons between ISM and CoDA have been made previously in 
particular settings (Biddle et al., 2018; Dumuid et al., 2018a), but a 
comprehensive comparison of these three approaches has not been 

previously considered. We emphasize the practical application and 
interpretation of these three models in relation to the cognitive 
outcome. We also provide sample code in the R software (R Core 
Team, 2021) on GitHub,1 as well as sample syntax for the Latent 
GOLD LPA software, so that the presented analyses can be readily 
adapted to other settings.

This work is organized as follows. We  first describe the ACT 
cohort and study data used to illustrate each method. We  then 
introduce each of the three methods, describing the methodology in 
detail and illustrating the method with an analysis of the ACT cohort. 
We further compare and contrast each of the approaches and provide 
considerations for how to choose the approach that best addresses the 
scientific question of interest. Finally, we  conclude with a 
brief discussion.

2. Study data

2.1. Study population

The ACT study is a longitudinal cohort study of older adults 
whose aim is to better understand aging, brain aging, and dementia 
(Kukull et al., 2002). ACT enrolls dementia-free individuals over age 
65 who were randomly selected from members of the Kaiser 
Permanente Washington integrated health care system (originally 
Group Health). The original cohort (N = 2,581) was enrolled between 
1994 and 1996, with additional enrollment 2000–2003 (expansion 
cohort, N = 811), and beginning in 2004 the ACT Study began ongoing 
enrollment with a goal to maintain at least 2000 at-risk individuals by 
replacing those who discontinued, died, or developed dementia 
(Kukull et al., 2002; Gray et al., 2013). Participants are invited to return 
for evaluation at 2-year intervals for the ultimate purpose of 
identifying incident cases of dementia. The study procedures were 
approved by the institutional review boards of Kaiser Permanente 
Washington (formerly Group Health Cooperative) and the University 
of Washington, and participants provide written informed consent.

In April 2016, the ACT-AM sub-study began inviting ACT 
participants to wear activPAL accelerometers for 7 days following their 
regular biennial assessment visits (Rosenberg et al., 2020). Persons 
who were wheelchair dependent, living in a nursing home, receiving 
hospice or care for another critical illness, or who showed evidence of 
cognitive problems during the biennial visit were not asked to 
participate. Persons who consented were instructed how to wear the 
device and how to complete a daily log that provided information 

1 https://github.com/yinxiangwu/24HAC_illustrations
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about device use and time in bed. They also completed an additional 
take-home survey that included questions about self-reported physical 
activity and sedentary behavior. The device, daily log, and 
questionnaire were returned to the research team by mail after 1 week. 
Between 2016 and 2018, 1,135 participants consented to wear the 
activPAL. For these analyses, 1,034 participants with at least 4 valid 
days of activPAL wear data were included.

2.2. Assessment of the 24-h activity cycle

Details of the activity monitoring device protocols for the 
ACT-AM sub-study were described previously (Rosenberg et  al., 
2020). Briefly, waking activity was measured with a thigh-worn 
activPAL3 micro (PAL Technologies, Glasgow, Scotland, 
United Kingdom) worn on the front central thigh of either leg 24-h/
day for ~1 week. As a thigh-worn accelerometer, the activPAL detects 
both movement and posture (i.e., sitting/lying, with the thigh 
horizontal, vs. standing, with the thigh vertical). Consequently, 
activPAL classifies behaviors at the 1-s level as either sitting, standing, 
or stepping.

Daily time in bed was measured as a surrogate for sleep via 
participant self-report using a paper log to record in-bed and 
out-of-bed times each day of wear. Daily wake and sleep times were 
not constrained to the 24-h  day, and instead were defined by a 
participant’s daily in-bed and out-of-bed schedule, which meant the 
specific length of any given wear day for a participant varied and could 
have been greater or <24-h. We defined each full day as out-of-bed 
time to the next day’s out-of-bed time. Based on best practices for 
free-living activity measurement, a minimum of 4 days with 10 or 
more hours of waking wear time, as defined by the presence of valid 
device data during participant self-reported waking periods, was 
required to be included in analyses (Donaldson et al., 2016; Migueles 
et al., 2017).

We used proprietary PAL Technologies software to extract event-
level files. Events files were then processed by collapsing consecutive 
activities of the same activity type using a batch processing package 
activpalProcessing in the R software (Lyden, 2016). Self-reported time 
in bed, which the device captures as sitting/lying time, was removed 
from calculation of waking activity metrics. For simplicity, we refer to 
time in bed as “sleep.” Maintaining the activity labels from the 
activPAL device, we defined the waking 24-h activity cycle as time 
sedentary (i.e., sitting/lying down), standing (which also includes very 
light movement), and physical active (i.e., stepping). Specifically, 
we calculated daily measures of total sitting time (min/day), total 
standing time (min/day), and total stepping time (min/day) during 
the waking hours of each valid day.

2.3. Cognition measures

ACT participants are evaluated using the Cognitive Abilities 
Screening Instrument (CASI) at study entry and at each biennial 
follow-up visit. The CASI consists of 40 items that evaluate attention/
concentration, orientation, short- and long-term memory, language 
abilities, visual construction, verbal fluency, and executive functioning 
(abstract reasoning and judgment; Teng et al., 1994). Raw CASI scores 
range from 0 to 100, with higher scores indicating better cognitive 

performance. For these analyses, the CASI was scored using item 
response theory (CASI-IRT), which corrects for potential issues 
related to unequal interval scaling (Crane et al., 2008). CASI-IRT 
scores were standardized based on the larger ACT cohort enrollment 
scores of the study sample such that a 1-unit difference in CASI-IRT 
can be interpreted as approximately a 1 standard deviation (SD) unit 
difference in cognitive performance (Crane et al., 2008; Ehlenbach 
et al., 2010).

2.4. Other participant descriptive measures

We examined several other participant characteristics. Objective 
physical function was derived from a composite of three physical 
performance tasks completed at the ACT-AM enrollment visit: gait 
speed (average of two 10-ft timed walks), chair stand time (time 
needed to move from a seated position in a chair to a standing 
position, repeated five times), and grip strength as measured by 
handheld dynamometer (average of three attempts in the dominant 
hand; Rosenberg et al., 2020). Each task was scored from 0 to 4 points 
(higher = better) and then summed to create a physical function score 
ranging from 0 to 12. For these analyses, two score categories (any 
impairment 0 to 10; no impairment 11–12) were included. Ability to 
walk half a mile was based on a single self-reported yes/no item 
“Because of health or physical problems, do you have any difficulty 
walking one-half mile (about 5 or 6 blocks)?” (McCurry et al., 2002) 
For persons endorsing walking problems, level of difficulty was 
further differentiated (no difficulty, some difficulty, a lot of difficulty, 
unable).

In addition to self-reported daily time in bed used in the 24HAC, 
descriptive measures of participants’ typical sleeping patterns were 
collected via self-report. Self-reported sleep quality (very poor, poor, 
fair, good, very good) was based upon a single item from the PROMIS 
8-item sleep disturbance scale (Buysse et al., 2010; Yu et al., 2012). A 
summary of average time in bed (<6 h, 6–9 h, >9 h) was derived from 
the daily log kept by participants during the week that they wore the 
accelerometer devices (described above).

Other participant characteristics were collected from the ACT 
study visit most proximal to the date of device wear, which was 
typically the first day of device wear. These included: age (<74 years, 
75–84 years, 85+ years), sex (male vs. female), race/ethnicity 
(non-Hispanic White vs. other), education (some college/post-
secondary education vs. high school education or less), measured 
body mass index (BMI, kg/m2), depressive symptoms from the 
10-item Center for Epidemiologic Studies Depression Scale (CES-D; 
Andresen et al., 1994, Mohebbi et al., 2018), and self-rated overall 
health (Kohout et al., 1993).

2.5. Descriptive statistics of the cohort

Table  1 provides a summary of the subject characteristics, 
including univariate summaries of the time in each activity considered 
for the 24HAC from 1,034 participants with at least 4 valid days of 
activPAL wear data (90.6% of participants had a full week of 7 valid 
days or more of activPAL wear). The sample had mean age 77 years 
(SD = 7 years, range = [65, 100] years), 55.8% were female, 90% were 
White, 1.4% were Hispanic. 92.1% of the subjects reported good to 
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excellent self-rated health, 74.6% had no difficulty walking half a mile, 
and the mean (SD) of CASI-IRT score was 0.61 (0.69) SD units. The 
mean (SD) time spent on each of the four behaviors, sit, stand, step, 

and sleep, was, 10 (2), 4 (1.6), 1.4 (0.7), and 8.5 (1.1) hours per day. 
The median [inter-quartile range] total time per day is 1,440 [1,436, 
1,445] mins.

TABLE 1 Descriptive statistics for the ACT 24-h Activity Study (N = 1,034).1

Group Overall

Categorical variables, n (%)

Age category, years 65–74 433 (41.9)

75–84 425 (41.1)

85+ 176 (17.0)

Sex Male 457 (44.2)

Female 577 (55.8)

Race2 White 933 (90.2)

Black 18 (1.7)

Asian 30 (2.9)

Native Hawaiian/Pacific Islanders 2 (0.2)

Other race 49 (4.7)

Hispanic ethnicity2 Yes 14 (1.4)

No 1,017 (98.4)

Self-rated health3 Excellent/Very good/Good 952 (92.1)

Fair/Poor 82 (7.9)

Physical function score <= 10 723 (69.9)

>10 243 (23.5)

Missing 68 (6.6)

Ability to walk half a mile2 No difficulty 771 (74.6)

Some difficulty 149 (14.4)

A lot difficulty or Unable 110 (10.6)

Time in bed, h4 <6 17 (1.6)

6–9 669 (64.7)

9+ 348 (33.7)

Sleep quality Fair, poor, or very poor 342 (33.1)

Good or very good 596 (57.6)

Missing 96 (9.3)

Continuous variables, Mean (SD)

Age, years – 77.2 (7.0)

Body mass index2, kg/m2 – 27.1 (4.9)

Years of education – 16.8 (2.8)

Depressive symptoms (CES-D Score)2 – 3.6 (3.9)

Cognition (CASI-IRT score) – 0.61 (0.69)

Sit time5, h/day – 10.0 (2.0)

Stand time5, h/day – 4.0 (1.6)

Step time5, h/day – 1.4 (0.7)

Sleep time5, h/day – 8.5 (1.1)

Total time5, mins/day (median [IQR1]) – 1,440 [1,436, 1,445]

1ACT, Adult Changes in Thought; IQR, interquartile range. Min, minute.
2Missing data: ability to walk ½ mile n = 4; body mass index n = 20; depressive symptoms n = 9, Hispanic ethnicity n = 3; race n = 2. Percents may not add up to 100%.
3Self-rated health ranges from 1 = excellent, 5 = poor.
4Based on sleep log, the arithmetic mean of sleep durations over valid wear days, calculated as difference from current day’s in-bed time to next day’s out-bed time.
5Each behavior is treated here as a univariate variable and time spent on each behavior per day equals the arithmetic mean of the time spent on that behavior over valid wear days.
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3. Statistical methods and analysis of 
the 24HAC

In this section, we  describe three analytical approaches: ISM, 
CoDA, and LPA. For each approach, we describe the method and 
illustrate its application with the analysis of the 24HAC and its cross-
sectional relation to the CASI-IRT score in the ACT cohort. We will 
then summarize key features of each approach and provide guidance 
on selecting the most appropriate approach based on features in the 
data and the scientific question of interest.

3.1. Isotemporal substitution

The 24HAC paradigm imposes a statistical challenge that prevents 
application of linear regression models with the time spent on each 
behavior entered in the model simultaneously as a covariate, due to 
collinearity. By dropping the intercept term, it becomes possible to 
include all behaviors in one model, often called a “partition model,” 
which can be used to estimate the association of each behavior by 
holding time in all other behaviors constant. However, when total time 
per day is fixed, it is not sensible to estimate the effect of a specific 
behavior without considering other behaviors it displaces. To obtain 
more reasonable interpretation, a mathematically equivalent model 
called the ISM was adopted, which estimates the “substitution effect” 
associated with reallocating time from one behavior to another 
(Mekary et al., 2009). ISM has been widely used in physical activity 
epidemiology. For example, the ISM approach was applied to examine 
the association of physical activity intensities with physical health and 
psychosocial well-being in older adults (Buman et al., 2010), and with 
cardiovascular disease risk biomarkers using the cross-sectional 
U.S. National Health and Nutrition Examination Survey data (Buman 
et al., 2014). Mekary et al. (2013) applied the ISM approach with a 
time to event outcome to physical activity data from the Nurses’ 
Health Study.

Consider an example where each minute of the 24-h  day is 
classified into one of four activities: sleeping, sitting, standing, and 
stepping. The ISM is formulated by including the total activity and all 
but one of the activity variables – the activity you  will explore 
displacing – in the model. For example, with a continuous health 
outcome an ISM that leaves out the time stepping can be formulated, 
as below:

 
E Y Sit Stand Sleep Total T( ) = + + + + +β β β β β γ0 1 2 3 4 X

 
(1)

where E Y( )  abbreviates the conditional mean of the health 
outcome given the time allocation variables (Sit, Stand, Sleep, Total 
measured on the same unit, e.g., minutes in a 24-h day), and other 
covariates X. In our ACT data, the total amount of time per day, 
captured by Total, slightly varies across individuals according to their 
sleep schedules and is only ~24 h (see Table 1), and hence a separate 
intercept term can be included in the model without causing perfect 
collinearity. When Total is exactly a constant 24 h/day for every 
subject, only one of the intercept or Total terms can be included in the 
model; however, this is often not necessary if day length varies, say due 
to using out-of-bed to out-of-bed time (or in-bed to in-bed time) to 
define a day. The ISM is a standard regression model (e.g., a linear 

regression model in Equation (1)), so it can be easily fit by statistical 
software. By omitting one behavior, e.g., stepping in model (1), and 
controlling for the total time a day, there is no longer perfect 
collinearity and the coefficients can be interpreted as the estimated 
effect of time reallocation. In particular, β



1  can be interpreted as 
follows: when comparing two populations with the same values on the 
covariates, and the same amount of time spent on standing and 
sleeping, but with one population spending 1 unit of time/day (e.g., 
1 min/day) more in sitting and the same amount of time less in 
stepping than the other population, the estimated difference in the 
mean health outcome is β



1  and similarly for β


2  and β


3 . Such 
comparisons are referred to as the “substitution effect.” The coefficients 
for Total and the intercept in this model are not necessarily 
meaningful. When total time per day is a constant and there is no 
intercept term, β



4  functions as the intercept, with the interpretation 
as the estimated mean outcome for a hypothetical population with 0 
mean times spent on sitting, standing, and sleeping, all activity as 
stepping, all other continuous covariates set at 0 and categorical 
covariates set at their baseline levels. Each of the variables Sit, Stand, 
Sleep, and Step could be centered at a set of values c c c c1 2 3 4, , ,( ) , 
respectively that add to the fixed Total (e.g., 24 h), so that β



4  is the 
expected outcome for the profile c c c c1 2 3 4, , ,( ) . Generally, however, 
ISMs are designed to answer scientific questions about effects of time 
reallocations between activity behaviors, without a particular focus on 
the intercept coefficient. Importantly, the time reallocations implied 
by the values of the beta coefficients should not be  interpreted as 
causal effects when the model is fit to observational data, particularly 
when data are cross-sectional as in our illustration below, despite the 
commonly used language of “time allocation” in the typical application 
of ISM that seems to imply causality or an actual change in behavior.

The linear model assumption in model (1) implies a constant 
substitution effect between any two behaviors regardless of baseline 
value of the displaced behavior and a symmetric result when the 
substitution is reversed. This assumption is sometimes too stringent 
and unrealistic. An easy way to explore a potential nonlinear 
substitution effect is to fit separate ISMs in groups defined by different 
intensity levels of an activity behavior. For example, when analyzing 
the effects of reallocating time from stepping to other behaviors, data 
can be divided into two groups defined by whether mean step time is 
above or below a meaningful cut-off. Differential effect estimates from 
ISMs fit to the two groups can signal potential nonlinearity. 
Alternatively, a more flexible ISM could be fit with each activity term 
modeled by a spline function, while keeping the total activity as a 
linear term, as in Foster et al. (2020). The flexible ISM still enjoys the 
interpretation of substitution effects but avoids making the linear 
assumption. The optimal trade-off between smoothness and goodness 
of fit can be  determined by either performing cross validation or 
minimizing the generalized cross validation criteria. The significance 
of the association for each behavior in the nonlinear ISM model can 
be  tested via a Wald like test (Wood, 2006). The nonlinear ISM 
analysis can be done in R with package “mgcv” Sample R code for this 
analysis is provided on GitHub.2

Lastly, through combinations of the regression coefficients, the 
ISM can also be used to estimate the expected difference in mean 

2 https://github.com/yinxiangwu/24HAC_illustrations
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outcome between two populations that have different 24-HAC 
profiles (i.e., different mean time spent on each behavior), but the 
same values for all other model covariates, which may also be of 
scientific interest.

3.1.1. ISM illustration: Associations between 
activity behaviors and CASI-IRT in the ACT cohort

Four linear ISMs adjusted for age, sex, years of education, 
race/ethnicity, BMI, depressive symptom scores, and self-rated 
health conditions were fit to the ACT data (excluding 34 (3.3%) 
with missing covariates), with each of the four activities omitted 
from the model one at a time. The associations of 30-min time 
reallocations between any two types of activity are summarized in 
Table  2. The ISM model with Step dropped suggested that 
reallocating 30 min/day from sitting, standing, or sleeping to 
stepping was associated with 0.027 [−0.011, 0.064], 0.033 [−0.011, 
0.078], and 0.027 [−0.014, 0.067] SD units higher mean (95% 
confidence interval (CI)) CASI-IRT score, respectively. Symmetric 
results can be  observed for any two activities that would 
be exchanged. For example, the effect of reallocating 30 min from 
stepping to sitting in this model would be the negative of when 
the reallocation is reversed (i.e., in the ISM with Sit dropped). 
This is a direct result of the linear model assumption. In this 
example, none of the estimated effects of reallocating time 
mutually between sitting, standing, and sleeping were 
statistically significant.

Nonlinearity of effects of time reallocation was explored by fitting 
separate ISMs in groups defined by step time per day with 60 min/day 
(approximately 1st sample quartile) as a cut-off. No significant 
associations were found in the subgroups (Table 2). The nonlinear 
ISM dropping step time was also fit to allow for non-linear associations 
using penalized cubic splines with 5 equally spaced knots for each 
activity, maintaining Total time as a linear term, and the model with 
the smallest generalized cross validation value was selected. The effects 

of substituting each activity on CASI-IRT score in this non-linear 
model were still nonsignificant with p-values >0.1.

3.2. Compositional data analysis

CoDA is another widely used analytic approach to handle 
24HAC data and its associations with health outcomes (Chastin 
et al., 2015; Biddle et al., 2018; Dumuid et al., 2018b; McGregor 
et al., 2021). Janssen et al., 2020 conducted a systematic review of 
CoDA studies examining associations of 24HAC with diverse 
health outcomes in adults. For CoDA, the fundamental unit of 
observation is the multivariate vector of the proportions or 
percentages of the 24 h that are spent in each type of activity. In 
the ACT study, we  will consider the 24HAC composed of the 
sleep, sit, stand and step behaviors. One scientific question of 
interest in the 24HAC paradigm is how different profiles of 
24HAC can affect a health outcome. One advantage of CoDA is 
that it provides a natural way to compare health outcomes between 
two compositions, including substitution of one behavior for 
another. For example, given a hypothetical baseline composition, 
e.g., 10 h (41.7%) sitting, 3 h (12.5%) standing, 2 h (8.3%) stepping, 
and 9 h (37.5%) sleeping, reallocating 2.4 h (10%) time per day 
from sitting to standing corresponds to altering the baseline 
composition into another composition, i.e., 7.6 h (31.7%) sitting, 
5.4 h (22.5%) standing, 2 h (8.3%) stepping, and 9 h (37.5%) 
sleeping.

Before illustrating how a regression-based CoDA works, we first 
introduce a fundamental feature of CoDA called “scale invariance” 
(Aitchison, 1994). Scale invariance means that the total, or the 
absolute value in a composition, is irrelevant in the analysis and 
only the relative proportions are of consequence in an outcome 
model. For example, the composition of sedentary behavior, light-
intensity physical activity, and moderate-to-vigorous physical 

TABLE 2 Isotemporal substitution models (ISM) in the overall sample and by mean step time subgroups (> or ≤  60 min/day) (N = 1,000).1

Activity replaced Sit Stand Step Sleep

β [95% C.I.] β [95% C.I.] β [95% C.I.] β [95% C.I.]

Overall (N = 1,000) Sit – −0.006 [−0.020, 0.007] 0.027 [−0.011, 0.064] 0.000 [−0.019, 0.019]

Stand 0.006 [−0.007, 0.020] – 0.033 [−0.011, 0.078] 0.007 [−0.014, 0.028]

Step −0.027 [−0.064, 0.011] −0.033 [−0.078, 0.011] – −0.027 [−0.067, 0.014]

Sleep −0.000 [−0.019, 0.019] −0.007 [−0.028, 0.014] 0.027 [−0.014, 0.067] –

Step time > 60 min/day (N = 270)

Sit – −0.009 [−0.026, 0.008] 0.013 [−0.033, 0.058] −0.001 [−0.024, 0.023]

Stand 0.009 [−0.008, 0.026] – 0.021 [−0.031, 0.073] 0.008 [−0.018, 0.035]

Step −0.013 [−0.058, 0.033] −0.021 [−0.073, 0.031] – −0.013 [−0.063, 0.036]

Sleep 0.001 [−0.023, 0.024] −0.008 [−0.035, 0.018] 0.013 [−0.036, 0.063] –

Step time ≤  60 min/day 

(N = 730)

Sit – −0.002 [−0.028, 0.024] 0.037 [−0.172, 0.247] 0.001 [−0.031, 0.033]

Stand 0.002 [−0.024, 0.028] – 0.039 [−0.181, 0.260] 0.003 [−0.034, 0.041]

Step −0.037 [−0.247, 0.172] −0.039 [−0.260, 0.181] – −0.036 [−0.246, 0.174]

Sleep −0.001 [−0.033, 0.031] −0.003 [−0.041, 0.034] 0.036 [−0.174, 0.246] –

1Change in the CASI-IRT score for a 30-min/day time reallocation from the row label behavior to the behavior indicated by the column label. All models were adjusted age group (65–74, 
75–84, 85+), non-Hispanic White (Yes, No), body mass index, depressive symptom CES-D score, and self-rated health condition. Thirty-four observations were excluded from the entire 
sample due to missing data in the covariates. Confidence intervals crossing zero are not statistically significant.
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activity (MVPA) is often of interest in a physical activity study. The 
following two activity compositions: 5 h (50%) sedentary behavior, 
3 h (30%) light-intensity physical activity, 2 h (20%) MVPA and 
2.5 h (50%) sedentary behavior, 1.5 h (30%) light-intensity physical 
activity, 1 h (10%) MVPA, will be modeled to have the same mean 
outcome by CoDA because the two compositions are equivalent. 
This may not always be a reasonable assumption, particularly when 
the total activity varies across individuals. For example, in some 
studies of physical activity (Chastin et al., 2015; Biddle et al., 2018; 
McGregor et al., 2021), an accelerometry device is worn to capture 
the percentages of time spent on different types of activities, but the 
device may not be worn for the whole day. The total time the device 
is worn will vary by individuals and the sampled composition may 
not be representative due to selection bias, e.g., people are more 
likely to wear the device when they are more active. When 24HAC 
is of interest, the total amount of time per day is the same, or is 
approximately the same, for most subjects (e.g., in the ACT data, 
see Table 1), thus, the scale invariance assumption is considered 

reasonable. In other settings, where the total time may vary, the 
scale invariance assumption may still be  reasonable (i.e., the 
composition is still of direct interest); however, it may also be of 
interest to include the total time a device was worn as an 
additional covariate.

Visualizations and compositional descriptive statistics of 24HAC 
can be helpful, before fitting any models. Figure 1 displays 24HAC 
compositions of sit, stand, step, and sleep for our ACT cohort through 
so-called ternary diagrams, a common tool to visualize composition 
with 3 parts. Since the 24HAC of interest here consists of four activity 
behaviors, we plotted four ternary diagrams (Figures 1A–D), with 
each graph representing a sub-composition of three activity behaviors. 
From Figure 1, we can see how sub-compositions are distributed and 
possibly associated with the outcome. For example, Figure 1A, shows 
the 3-part sub-compositions formed by sit, stand, and step. The data 
points are colored to indicate the CASI-IRT outcome, as an 
exploratory look at the unadjusted association with this outcome. 
Most data points are located around the lower left corner of the 

A

B

C

D

FIGURE 1

Ternary diagrams for each of the possible sub-compositions of 3 activities, with the CASI-IRT score represented with a color gradient scale (negative 
scores in blue, positive scores in orange) (N = 1,034). For each ternary diagram, the vertices represent three behaviors of the composition, and each side 
of the triangle is an axis representing values for each behavior, ranging from 0 to 100%; in (A), sleep is omitted; in (B), step is omitted; in (C), stand is 
omitted; in (D) sit is omitted. Points that lie close to a vertex have high percentages of the behavior represented by that vertex, whereas points lying in 
the center of the triangle have equal percentages of all three behaviors. For example, for the solid black point on the diagram (A), we can read the 
percentage of each behavior for that point by drawing a line to each axis as illustrated by the black dashed lines (sit = 49%, stand = 38%, and step = 13%).
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diagram, indicating that most individuals spend relatively more time 
sitting than standing and stepping, and there is a tendency for higher 
CASI-IRT scores (more orange points) to be  observed from 
individuals with higher percentages of stepping time. Similar patterns 
can be observed from Figures 1C,D where the other sub-compositions 
involving stepping are considered.

Commonly used compositional descriptive statistics are the 
compositional mean (center) and variation matrix. The compositional 
mean can be created by rescaling the vector of geometric means of 
each behavior, so that the sum of the scaled components equal 100% 
and the resulting vector is still a composition (Aitchison, 1994). 
Supplementary Appendix A1.1 shows that the compositional mean 
defined this way has a natural interpretation of the center of a sample 
of compositions. A variation matrix for the log-ratio (Aitchison, 1994) 
is used to describe the interdependence between every pair of 
behaviors (Biddle et al., 2018; Dumuid et al., 2020; McGregor et al., 
2020). An off-diagonal value close to 0 means the two parts are highly 
proportional in the observed data. Supplementary Table S1 shows an 
example of the variation matrix for the sleep, sit, stand, and 
step 24HAC composition in the ACT study.

CoDA relies on the isometric log-ratio (ilr) transformation, which 
transforms each D-part composition to a unique D-1 vector on a new 
coordinate system where each new coordinate is a log-ratio which falls 
along the real line (Egozcue et  al., 2003). An example of the ilr-
transformation is given in equations (2–4), where z1 , z2 , z3  defines 
the new coordinates for the transformed data; the numbers preceding 
the log-ratios are normalizing constants, necessary for the desirable 
mathematical properties of the transformed coordinates (e.g., distance 
preserving orthonormal basis; Egozcue et  al., 2003). See 
Supplementary Figure S1 for a visualization of this transformation and 
Supplementary Appendix A1.2 for a more detailed description of the 
general procedure for this transformation.
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The coordinate z1 , usually called the pivot coordinate, can 
be interpreted as the log-ratio between the numerator behavior and 
the geometric mean of the other (denominator) behaviors. A specific 
set of ilr-coordinates can be chosen to capture a particular comparison 
of geometric means to aid interpretation of that coordinate. 
Compositional data represented using different ilr-coordinates 
contain essentially the same information and analysis results will 
be the same regardless of which set of coordinates is used (Pawlowsky-
Glahn et  al., 2015). Since the ilr-transformation creates a set of 
continuous variables that are no longer collinear, the transformed 
compositional data can then be analyzed with standard techniques, 
e.g., multivariate analysis of variance (James test) or regression analysis.

3.2.1. Interpreting the CoDA regression model
We consider how time reallocations between activity behaviors 

are cross-sectionally associated with CASI-IRT scores in the ACT 
cohort. It is convenient to create four sets of ilr-coordinates with each 
behavior in turn being singled out as the numerator in the pivot 
coordinate z1 . Four linear regression models were fit with CASI-IRT 
scores as the outcome, with the resulting ilr-coordinates ( z1 , z2 , z3
) as predictors. Each regression model is adjusted for the other subject 
characteristics of interest (X): age, sex, race/ethnicity, BMI, education 
level, depressive symptoms, and self-rated health conditions. Once 
fitted linear regression models are obtained, a little more work is 
needed to translate the estimated coefficients for those ilr-coordinates 
in a meaningful way in terms of original compositional data.

Considering the following fitted CoDA model,
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of baseline covariates considered.
A direct but not meaningful interpretation of the z1  coefficient is 

that, holding z2 , z3 , and other covariates constant, one unit increase 
in z1  is associated with β



1 increase in the mean outcome. Observing 
that z1  is the logarithm of the ratio between stepping time and the 
geometric mean of the time spent in other three behaviors, it is 
possible to link a difference in z1  to a difference in the ratio. To make 
more meaningful interpretation in terms of 24HAC composition, 
we consider differences relative to a referent or baseline composition 
in order to inform what magnitude difference in z1  is a meaningful 
difference for the population under study. Suppose the compositional 
mean calculated over the entire sample is chosen as the baseline 
(referent) composition, and we are interested in the effect of increasing 
step by a factor of (1 + r). All other components should simultaneously 
be decreased by another factor (1 − s) to maintain z2 and z3 constant 
and ensure all parts sum up to 100%, which leads to the formula 
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 (Dumuid et al., 
2018b). For example, the compositional mean in our ACT cohort is 
10.23 h (42.6%) sit, 3.68 h (15.3%) stand, 1.24 h (5.2%) step and 8.85 h 
(36.9%) sleep; an increment in stepping time by 10 min (13% relative 
to the stepping time in the baseline composition) will require 
simultaneous decrease in each of the remaining behaviors by 0.7% 
(i.e., about 4.4 min sit, 1.6 min stand, 3.8 min sleep). By this derivation, 
the difference compared to the chosen baseline composition is then 

equivalent to incrementing z1  by 3

4
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log(
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), and keeping z2  and 

z3  constant; thus, the estimated effect on the outcome is quantified 

by 1
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). The associated confidence intervals can 

be obtained by using the variance estimate of 1β̂ . We illustrate this 
below in our analysis of the ACT Study. The interpretations of the 
three other possible pivot coordinates can be  done similarly, by 
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iteratively changing which component is in the numerator of z1  and 
repeating this process. Note, the interpretation of β



2  or β


3  alone is 
not meaningful because it is impossible to increase z2  or z3  while 
holding the other ilr-coordinates constant.

With the fitted CoDA regression model, we  can calculate the 
associated change in the mean outcome between any two given 
compositions; however, to avoid extrapolation, it is recommended to 
only consider compositions within the range of the data (Weisberg, 
1985, pp. 235–237). Considering the example raised at the beginning 
of this section, suppose we want to estimate the difference in the mean 
outcome between two groups of individuals alike on all covariates, but 
differing in 24HAC profiles, with one group spending 10 h (41.7%) 
sitting, 3 h (12.5%) standing, 2 h (8.3%) stepping, and 9 h (37.5%) 
sleeping per day, and the other group spending 7.6 h (31.7%) sitting, 
5.4 h (22.5%) standing, 2 h (8.3%) stepping, and 9 h (37.5%) sleeping 
per day. The estimated difference in the mean outcome between the 
two groups can be  quantified as −0.1 β



1 −0.48 β


2  +0.44 β


3 . 
Interested readers can refer to Supplementary Appendix A1.3 for more 
details about this calculation.

In our data analysis, the following R packages were used to 
conduct CoDA: ggtern (Hamilton and Ferry, 2018) for ternary 
diagrams, robCompositions (Templ et  al., 2011) for ilr-
transformations, Compositional (Van den Boogaart and Tolosana-
Delgado, 2008) for testing differences in compositional means 
between groups, and deltacomp (Stanford, 2022) for visualizing effects 
of time reallocations. R code is also provided.3

3.2.2. CoDA illustration: Analysis of 24HAC in the 
ACT cohort

In this section, we  first present descriptive summaries of the 
24HAC for the ACT cohort. We then provide two different applications 
of the CoDA analysis: one which considers the effect of increasing 
time in a particular activity, while proportionally decreasing the other 
activities; and one which considers a composition that captures a 
pairwise time reallocation. For each of these two examples, the 
compositional mean was chosen as the reference composition, the 
calculation for which was described in Section 3.2.1.

Sitting accounted for the largest proportion (42.6%) of a day, i.e., 
about 10.2 h/day, followed by 36.9% (about 8.9 h/day) taken up by 
sleeping. Only 15.3% (about 3.7 h/day) and 5.2% (about 1.2 h/day) 
were spent on standing and stepping, respectively. The comparison of 
the 24HAC compositional means by different participants 
characteristics is shown in Supplementary Table S2. Female 
participants spent about 40 min less per day in sitting but about 30 min 
more time in standing; older participants, especially those aged more 
than 85 years, spent more time in sitting, but less in both standing and 
stepping, than those aged 65–74 years; participants with physical 
function scores >10, or with no difficulty walking half a mile, spent at 
least 30 min less time in sitting than those with physical function 
scores ≤ 10, or with a lot of difficulty walking half a mile; longer 
sleepers who spent more than 9 h/day sleeping tend to be less active 
in standing and stepping than those who sleep less, whereas few 
differences were observed by sleep quality. There was a tendency for 
subjects spending less time in sitting and more time in stepping to 

3 https://github.com/yinxiangwu/24HAC_illustrations

have higher CASI-IRT scores, which will be further explored in the 
multivariable regression below. Due to the large sample size, relatively 
small differences in the compositions were statistically significant at 
the level of 0.05, using the James multivariate analysis of variance test 
on the ilr-transformed 24HAC.

Table 3 summarized regression coefficient estimates for the four 
CoDA pivot coordinates, each of which quantifies the effect of 
increasing time in one behavior by a factor while simultaneously 
decreasing time in the other behaviors by another factor. None of 
these time reallocations were statistically significantly associated with 
changes in the CASI-IRT scores; however, a higher proportion of time 
in stepping was weakly associated with higher CASI-IRT scores. This 
is more evident in Figure 2 which shows predicted differences in mean 
outcome for reallocating different amounts of time from one behavior 
to the other behaviors relative to baseline composition (set as the 
compositional mean in the entire sample). It should be noted that 
slightly nonlinear and asymmetrical results were observed in the 
effects of reallocating time from and to stepping. For example, 
spending 30 min per day more stepping was associated with 0.026 
(95% CI: [−0.006, 0.058]) units higher mean CASI-IRT scores, 
whereas reversing this time reallocation was associated with 0.038 
(95% CI: [−0.085, 0.009]) lower mean CASI-IRT scores. For each of 
the other behaviors (sitting, standing, and sleeping), reallocating time 
from or to that behavior was associated with very little change in the 
CASI-IRT.

Figure 3 presents the effects of reallocating time between any pair 
of behaviors. Increasing stepping time at the expense of decreased 
time in either sitting, standing, or sleeping were associated with higher 
mean CASI-IRT score (Figure  3, 3rd column of graphs). More 
specifically, reallocating 30 min per day to stepping from sitting, 
standing, and sleeping was, respectively, associated with 0.024 
[−0.007, 0.056], 0.031 [−0.011, 0.073], and 0.026 [−0.007, 0.058] 
higher mean CASI-IRT score, though statistically not significant. No 
significant effects were observed for time allocations between other 
pairs of behaviors not involving stepping, with results similar to those 
from the ISM approach.

3.3. Latent profile analysis

LPA assumes that there is a latent categorical variable that classifies 
individuals into different subpopulations, thereby identifying groups 
of individuals with distinct patterns (profiles) of responses for a given 

TABLE 3 CoDA pivot coordinate (z1) parameter estimates for the 
multivariable regression of CASI-IRT on 24HAC profiles for sleep, sit, 
stand, and step (N = 1,000).1

Estimate (95% C.I.) p-value

Sit vs. Remaining −0.00 [−0.17, 0.16] 0.954

Stand vs. Remaining −0.05 [−0.18, 0.07] 0.384

Step vs. Remaining 0.08 [−0.02, 0.19] 0.114

Sleep vs. Remaining −0.03 [−0.24, 0.19] 0.814

1Estimates in each row derived from fitting a linear regression with CASI-IRT as the 
outcome, and ilr-coordinates (each behavior in turn being the numerator in the pivot 
coordinate) as predictors, adjusted for age groups (65–74, 75–84, 85+), sex, non-Hispanic 
White (Yes, No), body mass index, depressive scores, and self-rated health conditions. 
Thirty-four participants were not included due to missing values on covariates. Confidence 
intervals crossing zero are not statistically significant.

https://doi.org/10.3389/fpsyg.2023.1083344
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://github.com/yinxiangwu/24HAC_illustrations


Wu et al. 10.3389/fpsyg.2023.1083344

Frontiers in Psychology 10 frontiersin.org

set of continuous “indicator” variables. For example, in the 24HAC 
context, if the three indicator variables were percent of time spent in 
sedentary behavior, standing, and stepping during the 24-h  day, 
different profiles may have different mean levels for each of these 
variables. LPA also generally assumes the indicator variables follow a 
finite mixture of multivariate normal distributions with each profile 
having its own specific mean vector and covariance matrix. It is 
generally assumed that mean vectors differ across profiles, but 
additional assumptions can be made with respect to whether or not 
variance matrices of profile indicator variables vary across profiles. 
Further details are provided in Supplementary Appendix A2.1. Once 
the number of latent profiles and variance–covariance structures are 
fixed, the latent profile model parameters can be  estimated using 

standard statistical software, such as the tidyLPA package in R 
(Rosenberg et  al., 2019), Mplus (Muthén and Muthén, 2017) and 
LatentGold (Vermunt and Magidson, 2021a). The fitted model yields 
the probability of each individual belonging to each of the different 
profiles (a posterior probability). It is worth mentioning that the 
parameters are estimated via the expectation–maximization (EM) 
algorithm (Dempster et al., 1977), an iterative estimation procedure. 
The EM algorithm requires initial parameter values and can be sensitive 
to the chosen start values in settings where there may not be a unique 
solution (solution only a locally, not globally, optimal fit). Thus, 
running LPA using multiple starting values is recommended until the 
best solution based on log-likelihood value can be replicated (Berlin 
et al., 2014). Further details will be discussed in our illustration below.

FIGURE 2

Predicted difference in outcome from CoDA when increasing one of sleep, sit, stand step, while proportionally decreasing each of the other 3 
behaviors. N = 1000 (34 observations were not included due to missing values on covariates). Each one of the four subgraphs presents a curve of the 
predicted difference in mean outcome associated with increasing/decreasing time/day on the behavior (indicated in the header of the subgraph) by 
∆ mins, while accounting for that difference by proportionally decreasing/increasing time/day spent on other behaviors by a common factor. The 
curve presented in each graph is estimated based on the fitted model with CASI-IRT score as the outcome, and with ilr-coordinates as predictors in 
which the behavior (indicated in the header of the subgraph) as the numerator behavior in the pivot coordinate, adjusted for age groups (65–74, 75–
84, 85+), sex, non-Hispanic White (Yes, No), body mass index, depressive symptoms score, and self-rated health condition. The shaded area in each 
subgraph corresponds to pointwise 95% confidence intervals, where overlap with the horizontal line at 0 indicates a null association. The baseline 
composition for each of these analyses equals to the compositional mean in the sample, i.e., 10.2 h (42.6%) sit, 3.7 h (15.3%) stand, 1.2 h (5.2%) step and 
8.8 h (36.9%) sleep.
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It is not a straightforward task to decide on the number of latent 
profiles or the variance–covariance structure. One common strategy 
is to assume a flexible (i.e., varying by class) variance–covariance 
structure and fit a series of models with different specifications for the 
number of classes. A final decision for class number is based on the 
following commonly used criteria: (1) model fit statistics, including 
Akaike’s Information Criterion (AIC; Akaike, 1987), Bayesian 
Information Criterion (BIC; Schwarz, 1978), sample-size adjusted BIC 
(Sclove, 1987), and the consistent AIC (Bozdogan, 1987); (2) statistical 
comparison between model fit of k profiles and k-1 profiles with 
p-value < 0.05 favoring the model with k profiles, using bootstrap 
likelihood ratio test (McLachlan and Peel, 2000) or the Lo–Mendell–
Rubin likelihood ratio test (Lo et al., 2001); (3) statistics that weight 

model fit, parsimony, and the performance of the classification, e.g., 
integrated complete likelihood-BIC (Biernacki et al., 2000) (4) profile 
sample size: although distinct rare groups can exist, a small profile 
sample size may indicate potential overfitting; and (5) interpretability 
or clinical utility of resulting profiles. Nylund et al., 2007 performed a 
simulation study and advocated BIC and the bootstrap likelihood ratio 
test for selecting the correct number of classes. The simulation study 
in Tein et al. (2013) showed that AIC and entropy were not reliable 
criteria. Sometimes, subjective judgment based on a mixture of 
criteria is necessary. For instance, a subjective judgment could 
be made when deciding between k and k-1 profiles, whether the larger 
number of profiles generated groups that appeared sufficiently 
distinct, or whether one group appeared too small.

FIGURE 3

Predicted difference in outcome from CoDA when reallocating time from one behavior to another, for all possible pairwise reallocations. N = 1000 (34 
observations were not included due to missing values on covariates). Each one of 16 subgraphs presents a curve of the predicted difference in mean 
outcome for increasing time/day on one behavior (indicated in the column header) by ∆ mins, while decreasing time/day on another behavior 
(indicated in the row header, i.e., gray vertical bar on the right) by the same amount of time. The curve presented in each graph is estimated based on 
the fitted model with CASI-IRT score as the outcome, and with any ilr-coordinates as predictors in which the behavior (indicated in the header of the 
subgraph) as the numerator behavior in the pivot coordinate, adjusted for age group (65–74, 75–84, 85+), sex, non-Hispanic White (Yes, No), body 
mass index, depressive symptoms score, and self-rated health condition. The shaded area in each subgraph corresponds to pointwise 95% confidence 
intervals. The baseline composition equals to the compositional mean in the sample, i.e., 10.2 h (42.6%) sit, 3.7 h (15.3%) stand, 1.2 h (5.2%) step and 8.8 h 
(36.9%) sleep.
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Because of the normality assumption of LPA, it is recommended 
to always inspect the empirical distributions of profile indicator 
variables both before and after applying LPA. Although the 
distribution of a mixture of normal distributions is likely to look 
nonnormal, which makes it difficult to check the normality 
assumption at the data pre-processing stage, a highly skewed or heavy 
tailed distribution often signals a violation of the assumption. In such 
cases, performing appropriate transformations, e.g., natural logarithm 
or square root transformation, and/or an outlier analysis is worth 
considering (Vermunt and Magidson, 2002).

As mentioned before, a key feature of 24HAC data is the 
co-dependence between activity behaviors. This co-dependence 
prevents us from applying LPA to all 24HAC variables because it will 
lead to a degenerate (rank-deficient) covariance matrix. Two possible 
solutions to consider are (1) apply LPA to the same ilr-transformed 
variables used in CoDA (see Section 3.2 more details of ilr-
transformation; see Gupta et al., 2020; von Rosen et al., 2020) or (2) 
drop one activity behavior variable from the LPA (see Jago et  al., 
2018). Although the first approach retains the full composition, one 
potential drawback is that the ilr-transformation, involving log-ratios, 
could generate skewed profile indicators unsuitable for LPA. For 
example, if one behavior often had a relatively small proportion of the 
composition, this could create a large ratio for the ilr-coordinates with 
this behavior in the denominator. For the second approach, 
determining which variable to leave out from the LPA model can 
be made based on scientific considerations, e.g., prior belief of which 
set of activity behaviors are the driving indicators of underlying 
profiles or dropping a behavior due to being highly correlated with 
another behavior.

After obtaining a final model for latent profiles (i.e., the fitted 
parameters for the underlying normal distributions that define the 
profiles) (step 1), it is often of interest to explore associations between 
profile categories and covariates (e.g., age, sex) or outcomes (e.g., 
CASI-IRT score), the latter often called external variables in the latent 
profile literature. Because the fundamental output of LPA is only a 
probability of belonging to each profile for each individual, additional 
steps are required to do this association. The most common next step 
in the literature is to assign each individual to the profile with the 
highest posterior probability (also known as modal assignment) 
(step 2), followed by association analyses between the assigned class 
membership and external variables, such as a health outcome (step 3). 
However, this three-step approach can lead to bias and invalid 
confidence intervals because the second step treats the class 
membership as an observed, perfectly measured grouping variable, 
ignoring the potential uncertainty, i.e., classification error introduced 
in step  2 (Bolck et  al., 2004; Vermunt, 2010). Thus, it is always 
recommended to adopt an analytic approach that accounts for the 
uncertainty in class membership assignments. It should be noted that 
estimating the association of a latent variable with external variables 
is still an area of active research. There are several papers that review 
and compare different approaches proposed over the last two decades 
to deal with external outcomes in LPA (Dziak et al., 2016; Collier and 
Leite, 2017) and latent class analysis (Nylund-Gibson and Choi, 2018; 
Nylund-Gibson et al., 2019; Bakk and Kuha, 2021). Note that LPA and 
latent class analysis are similar, differing only in the nature of their 
indicator variables (latent class analysis applies to categorical indicator 
variables), not in the way the latent variable is related to an external 
variable. Introducing and discussing each method is beyond the scope 

of this article. Current recommended practice is to use either the 
improved three-step maximum likelihood (ML)-based method 
(Vermunt, 2010) or Bolck, Croons, and Hagenaars (BCH) method 
(Bolck et al., 2004; Vermunt, 2010; Asparouhov and Muthén, 2014), 
which adjust for the uncertainty in the latent profile assignment. These 
methods assume conditional independence of covariates and profile 
indicators given the latent variable. For recent advances and discussion 
of more complex models, such as assuming covariates have direct 
effects on observed profile indicators, multilevel or latent transition 
models, or more than one latent class variables, refer to Bakk and 
Kuha (2021), Nylund-Gibson et al. (2019), Bray and Dziak (2018), and 
Vermunt and Magidson (2021b).

In our data analysis, LPA was performed in the Latent GOLD 6.0 
software (Vermunt and Magidson, 2021a). The improved BCH 
method, which has been advocated as a preferred method for 
continuous external outcomes (Bakk and Kuha, 2021), was used to 
relate latent profiles with the outcome CASI-IRT score adjusted for 
age, sex, race/ethnicity, BMI, education level, depressive symptoms, 
and self-rated health. Latent GOLD syntax for this analysis is provided 
in Supplementary Appendix A2.2. We compared these results to those 
of the biased approach of ignoring the uncertainty in the class 
assignment. As a sensitivity analysis, we repeated this analysis with the 
ML-based instead of the BCH adjustment for the uncertainty in the 
latent-profile assignment using the same software. We also performed 
analyses of using each of the covariates as a predictor for latent profiles 
with the ML-based method, which can be  done using the Latent 
GOLD “Step-3” module. p-values for all associations were reported 
based on the Wald-type test using robust standard error estimates 
[using robust standard error estimates is necessary as shown in 
Vermunt (2010) and Bakk et al. (2014) and is the default in Latent 
GOLD 6.0].

3.3.1. LPA illustration
The distributions and correlations between four activity behaviors 

can be  found in Supplementary Figure S2. In our analysis, the 
distributions of ilr-transformed variables were more skewed than 
those on the original scale (see Supplementary Figures S2, S3). Thus, 
we  dropped sleeping from the analysis to avoid the degenerate 
variance matrix and because our interest in the profiles is driven by 
the waking time activities (though sleeping is still implicitly included 
in the resulting profiles as the four proportions sum to one). 
We allowed the variance matrix to vary across profiles and fit a series 
of models with 2–6 latent profiles in Latent Gold (Vermunt and 
Magidson, 2021a) with 160 randomly generated seed values and a 
maximum of 250 iterations for the EM algorithm. No convergence 
issues were observed and the best solution based on log-likelihood 
value can be replicated in more than 10% of runs. LPA can be also 
performed in R with the package tidyLPA (Rosenberg et al., 2019) and 
Mplus (Muthén and Muthén, 2017). A tutorial of using this R package 
and its comparison to Mplus can be  found in Wardenaar (2021). 
Model fit statistics (Supplementary Table S3) were used as initial 
screening methods to select candidate models and then combined 
with each model’s interpretability, minimal profile size, and finally the 
likelihood ratio-based tests to determine the final number of profiles.

Supplementary Table S3 presents model fit statistics for models 
with 2–6 number of latent profiles. AIC, BIC, consistent AIC, sample-
size adjusted BIC, integrated complete likelihood BIC favor the model 
with 6, 3, 3, 4, and 2 latent classes, respectively. The solution with 6 
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latent classes has the lowest AIC; however, Tein et al. (2013) noted that 
the AIC is not a reliable method for selecting the number of classes. 
The 6-class solution also has a minimal class size of only 46 
observations (4.4% of the entire sample), which may indicate 
overfitting. Based on the bootstrap likelihood ratio test comparing the 
three-class and four-class solutions, the p-value of <0.001 indicates the 
four-class model fits the data better. Comparing the distributions of 
four activity behaviors across classes based on a four-class model 
(Figure  4) to that based on a three-class model 
(Supplementary Figure S4), we  can see that the four-class model 
additionally identifies a group with lower than average sleeping time, 
as well as higher activity (standing and stepping) compared to profiles 
3 and 4 with similar or lower sitting time, which could correspond to 
a clinically interesting 24HAC profile in this ACT cohort. Hence, the 
model with four latent profiles was chosen for further inferential 
analysis. The estimated means and variance–covariance matrices, and 
probability of observing each profile are presented in 
Supplementary Table S4. The profiles were labeled 1–4 according to 
their estimated mean sitting time per day (low to high) with each 
profile’s unique characteristics summarized (mean (SD) time spent in 
each activity reported) as below.

Profile 1 (“Most active”) accounted for 15.9% of the sample and 
was the most active group with the least sitting time (mean (SD) = 7.6 
(1.4) h/day), the highest standing time (5.8 (1.8) h/day) and stepping 
time (1.9 (0.8) h/day), and about average sleeping time (8.7 
(1.1) h/day).

Profile 2 (“Moderately active low sleepers”) included 24.4% of the 
population, characterized by the lowest sleeping time (7.9 (1.0) h/day). 

Interestingly, this group also had the second highest standing time (4.7 
(1.1) h/day) and stepping time (1.7 (0.5) h/day), and second lowest 
sitting time (9.6 (1.1) h/day).

Profile 3 (“Average activity”) accounted for 40.3% of the 
population and represented time spent on all activity behaviors 
around the sample average (about 10.3 (1.3) h/day sitting, 3.5 (0.9) h/
day standing, 1.3 (0.4) h/day stepping, and 8.9 (0.6) h/day sleeping).

Profile 4 (“Least active”) included 19.4% of the sample and had the 
least standing and stepping time (about 2.4 (1.0) h/day and 0.7 (0.3) 
h/day, respectively), highest sitting time (about 12.1 (1.7) h/day), and 
average sleeping time (about 8.8 (1.4) h/day).

When each individual is assigned to the profile with highest 
posterior probability, Table 4 shows the descriptive statistics of sample 
characteristics across assigned memberships. Almost all factors listed 
are significantly associated with profile group assignment. Using the 
“Average activity” (profile 3) as the reference, more active groups 
(profile 1 and 2) are more likely to be female (especially for the “Most 
active” group, i.e., profile 1), relatively younger, have a lower BMI and 
better physical function, and experience slightly better sleep quality 
and cognitive function measured by CASI-IRT score. For the 
“Moderately active, low sleepers” (i.e., profile 2), besides the lowest 
median sleeping time, this group has the highest percentage of 
participants aged 65–74 and identifying as non-White. The “Least 
active” group, relative to the “Average activity” group, is older, more 
male, and has worse depressive symptoms, sleep quality, and physical 
and cognitive function. It should be noted that the descriptive means 
and standard errors in this table do not account for the uncertainty in 
the class membership assignments. The entropy statistic of the final 

FIGURE 4

Fitted 24HAC profiles from latent profile analysis (4-class solution), where each individual is assigned the class with maximum probability. The boxplots 
presents sample quartiles (N = 1034). The number (%) of subjects in profile 1–4 is, respectively, 132 (12.8%), 257 (24.9%), 453 (43.8%) and 192 (18.6%).
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solution was 0.55 and Supplementary Table S5 provides estimated 
probabilities of misclassification, both of which indicate a level of 
uncertainty involved in class assignments that should not be ignored 

in inferential analysis. After accounting for the classification errors, 
the last column of Table 4 offers p-values for bivariate associations of 
all considered characteristics with the latent profiles.

TABLE 4 Participant characteristics across latent profiles according to modal assignment, i.e., every individual is assigned to the class with highest 
posterior probability (N = 1,034).

Profiles

Most active Moderately active 
low sleeper

Average activity Least active

N 132 257 453 192

Sit (h/day) (median [IQR]) 7.0 [6.4, 7.8] 9.5 [8.5, 10.7] 10.3 [9.4, 11.1] 12.6 [11.4, 13.3]

Stand (h/day) (median [IQR]) 6.3 [5.4, 7.3] 4.9 [4.2, 5.5] 3.5 [2.9, 4.1] 2.2 [1.5, 2.7]

Step (h/day) (median [IQR]) 2.1 [1.2, 2.7] 1.8 [1.4, 2.1] 1.3 [1.0, 1.6] 0.7 [0.5, 0.8]

Sleep (h/day) (median [IQR]) 8.5 [7.9, 9.4] 7.8 [7.3, 8.4] 8.9 [8.5, 9.3] 8.7 [7.8, 10.0]

Categorical variables, n (%) p-value1

Female 89 (67.4) 140 (54.5) 253 (55.8) 95 (49.5) 0.025

Age <0.001

  65–74 64 (48.5) 132 (51.4) 185 (40.8) 52 (27.1)

  75–84 54 (40.9) 97 (37.7) 196 (43.3) 78 (40.6)

  85+ 14 (10.6) 28 (10.9) 72 (15.9) 62 (32.3)

Hispanic ethnicity or Asian /

Black/other race minority race2
13 (9.8) 35 (13.7) 41 (9.1) 20 (10.5)

0.30

Self-rated health3 = Excellent/

Very good/good
119 (90.2) 245 (95.3) 431 (95.1) 157 (81.8)

<0.001

Physical function4,5 >10 39 (32.0) 73 (30.3) 103 (23.6) 28 (16.9) 0.007

Ability to walk half a mile6 <0.001

  No difficulty 108 (81.8) 223 (86.8) 357 (79.0) 83 (43.9)

  Some difficulty 17 (12.9) 22 (8.6) 61 (13.5) 49 (25.9)

  A lot difficulty or unable 7 (5.3) 12 (4.7) 34 (7.5) 57 (30.2)

Time in bed3 <0.001

  <6 h 4 (3.0) 8 (3.1) 0 (0.0) 5 (2.6)

  6–9 h 88 (66.7) 224 (87.2) 252 (55.6) 105 (54.7)

  9+ h 40 (30.3) 25 (9.7) 201 (44.4) 82 (42.7)

Sleep quality4 = good, very 

good
83 (69.2) 158 (65.8) 265 (64.8) 90 (53.3)

0.02

CASI-IRT category 0.10

  <=0 23 (17.4) 40 (15.6) 84 (18.5) 51 (26.6)

  (0, 1] 68 (51.5) 132 (51.4) 215 (47.5) 91 (47.4)

  >1 41 (31.1) 85 (33.1) 154 (34.0) 50 (26.0)

Continuous variable, mean (SD)

Body mass index4, kg/m2 25.4 (4.21) 26.0 (4.3) 27.1 (4.8) 29.5 (5.5) <0.001

Years of education 16.7 (2.9) 17.3 (2.6) 16.8 (2.7) 16.2 (3.1) 0.002

Depressive symptoms (CES-D 

Score)4
3.6 (4.3) 3.3 (3.4) 3.3 (3.6) 4.7 (4.7)

<0.001

CASI-IRT Score 0.63 (0.67) 0.66 (0.64) 0.63 (0.70) 0.46 (0.72) 0.013

1Wald-type test based on robust standard errors; p-values are for testing the univariate association of each covariate with latent profiles by accounting for potential misclassification in class 
membership assignment (Vermunt, 2010).
2Self-rated health ranges from 1 = excellent, 5 = poor.
3Based on sleep log. For each subject, this variable equals the arithmetic mean of sleep durations over valid wear days. The sleep duration was the difference from current day’s in-bed time to 
next day’s out-bed time.
4Missing data: race/ethnicity N = 5; physical function N = 68; ability to walk half a mile N = 4; sleep quality N = 96; body mass index N = 20; depressive symptoms N = 9.
5Physical fuction measured by an objective score ranging from 0–12, where >10 indicates no impairment (Rosenberg et al., 2020).
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Table 5 provides the estimates for the effects of latent profiles on 
CASI-IRT scores with and without controlling for other covariates 
using the improved BCH method. Without any adjustment, the Wald 
test p-value for the association of latent profile with continuous 
CASI-IRT score is 0.033. With adjustment, the Wald test p-value 
becomes 0.88. The association estimates in Table 5 are also contrasted 
to that from linear regression analyses but with uncertainty in class 
membership assignments ignored. We see attenuated effects of the 
latent profiles on CASI-IRT scores and underestimated standard 
errors from the linear regressions, showing the fundamental problem 
of bias and invalid inference using the no adjustment approach of 
ignoring the uncertainty in the profile membership. For example, in 
the case of no adjustment, the linear regression estimates for the 
expected differences in CASI-IRT score between profile 3 (“average 
activity”) and profile 4 (“least active”) was 0.171 SD units (robust 
standard error (SE) 0.059 and p-value 0.005) with profile 3 having 
higher mean CASI-IRT score. In contrast, after accounting for 
misclassification, the difference became 0.239 SD units (robust SE 
0.101 and p-value 0.017). Although the associations of the profiles 
with CASI-IRT scores from both analyses turned out to 
be  nonsignificant with adjustment of other covariates, attenuated 
effects and underestimated standard errors in the approach that 
ignored the uncertainty in the latent profile assignment can be still 
observed. Results were very similar based on the ML-based analysis 
method to handle the uncertain profile assignment (data not shown).

4. Comparative summary

We summarize the three analytical approaches to analyze 24HAC 
presented in Section 3 and highlight differences in the assumptions, 
research questions addressed, and other attributes of the associated 
regression approaches. An overall summary of ideas discussed is 
provided in Tables 6A,B.

4.1. Research questions and assumptions

The main research question that both ISM and CoDA address 
regarding 24HAC data is the associated effect of time reallocation on the 
study outcome. Typically, ISM is focused on substituting time spent in one 
activity for another, whereas CoDA more naturally considers differences 
between two compositions. Both ISM and CoDA estimate the substitution 
effect in a standard regression framework and the usual assumptions 
would apply, e.g., for our ACT study example, usual linear model 
assumptions apply. ISM is generally conducted on the original time scale 
(e.g., hours of activity); whereas, CoDA models the proportion of time 
spent in each activity. Hence, CoDA is scale invariant, which implicitly 
means that the time information of 24HAC is irrelevant in CoDA, e.g., the 
amount of time spent on each behavior, which is an additional assumption 
that researchers should evaluate. In contrast to ISM and CoDA, LPA is a 
more exploratory method used to identify distinct latent subgroups with 
respect to activity profiles based on observed 24HAC data. Another aim 
of LPA is to explore the correlates of identified profiles and the associations 
of the profiles with outcomes. LPA assumes the observed data are sampled 
from a population composed of distinct subpopulations with 
heterogeneous distributions of activity behaviors of a day and models the 
data using a mixture of multivariate normal distributions. Hence, LPA 
results can be sensitive to the distributions of activity behaviors, while for 
ISM and CoDA, this assumption is not necessary if the outcome model is 
correctly specified. Secondary research questions of interest may relate to 
comparisons of descriptive statistics of the 24HAC by different population 
characteristics. We discuss this as a part of exploratory data analysis in the 
following section.

4.2. Exploratory data analysis

In any regression setting, exploratory data analysis is carried out 
to provide a summary of observed data and justification of the 

TABLE 5 Association of latent profiles with the outcome CASI-IRT score: without adjustment for the potential profile misclassification due to the 
uncertainty in latent profile assignment versus an approach that adjusted for the potential misclassification (improved BCH method).1

No adjustment for misclassification Adjustment for misclassification

Without any 
adjustment (N = 1,034)

β Robust SE3 p-value2 β Robust SE4 p-value2

Profile 3 “average activity group” (ref) (ref) (ref) (ref) (ref) (ref)

Profile 1 “most active group” 0.002 0.067 0.98 −0.048 0.096 0.62

Profile 2 “moderately active lower 

sleeper”
0.032 0.052 0.53 0.018 0.099 0.86

Profile 4 “least active group” −0.171 0.059 0.005 −0.239 0.101 0.017

With adjustment of 
covariates1 (N = 1,000)

β Robust SE3 p-value2 β Robust SE4 p-value2

Profile 3 “average activity group” (ref) (ref) (ref) (ref) (ref) (ref)

Profile 1 “most active group” −0.048 0.063 0.43 −0.069 0.090 0.44

Profile 2 “moderately active, 

lower sleeper”
−0.020 0.050 0.69 −0.028 0.098 0.78

Profile 4 “least active group” −0.011 0.057 0.85 −0.027 0.104 0.80

1Covariates adjusted: age groups (65–74, 75–84, 85+), sex, non-Hispanic White (Yes, No), body mass index, depressive scores, and self-rated health conditions.
2p-values are based on Wald test using robust standard error estimates.
3Robust standard error (SE) is used to allow for potential heteroscedasticity in residual variance. It is usually larger than the usual standard error that assumes constant residual variance. 
However, in our case, the difference between the two is very small and hence only robust standard errors are reported.
4Using robust standard error is necessary for valid statistical inference as shown in Vermunt (2010) and Bakk et al. (2014).
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modeling assumptions needed for further analysis. By considering 
each activity behavior of the 24HAC univariately, we can plot the 
distribution of each behavior, e.g., in Supplementary Figure S2. 
Further bivariate association/stratification analysis can also be done 
to explore possible correlates of each activity behavior. Under CoDA, 
there are unique tools and descriptive statistics available. For example, 
ternary diagrams, e.g., Figure  1, can be  used to visualize the 
distribution of 24HAC component behaviors. A compositional mean 
and variation matrix can be calculated overall and in subgroups as 
descriptive statistics to summarize central tendency and 
co-dependences of activity behaviors. By applying the 

ilr-transformation, statistical comparisons of compositional means 
across subgroups can also be done using standard multivariate analysis 
of variance, which we think is superior to the bivariate association 
analysis that considers each activity behavior univariately and does 
not account for the co-dependence in 24HAC data. For LPA, profile-
specific estimated means and variance matrices for time spent in each 
activity from a final fitted model, as well as a boxplot plot (e.g., 
Figure 4), can describe the distributions of each activity behavior 
across profiles. Bivariate associations of covariates with the profiles 
can be explored by calculating the summary statistics of each covariate 
across the profiles, e.g., Table 4. However, it should be noted that 

TABLE 6 (A) Comparative summary of three methods to analyze 24HAC: Isotemporal substitution (ISM), Compositional Data Analysis (CoDA), and 
Latent Profile Analysis (LPA); (B) Statistical features and challenges of three methods to analyze 24HAC: Isotemporal substitution (ISM), Compositional 
Data Analysis (CoDA), and Latent Profile Analysis (LPA).

ISM CoDA LPA

(A)

Research questions of interest Effect of activity substitution Effect of changes in 24HAC profiles, 

effect of activity substitution or more 

general

Exploratory summary of distinct 

activity subgroups (latent class 

identification)

Assumptions Linear model, with possibility for non-linear 

terms for individual activities

Linear on transformed scale; scale 

invariance (i.e., relative proportion, not 

absolute quantity is relevant scale)

Within each latent class, activity 

behaviors (or their transformation) are 

assumed to be multivariate normal

Exploratory data analysis

  Data visualization Individual activity summaries of descriptive 

statistics; e.g., box plots for each activity

Compositional plots with each 

behavior on a separate axis; e.g., 

Ternary plots

Plots of activity by profile groups; e.g. 

Grouped violin or boxplots by profile

  Bivariate associations/stratification 

analysis

Analyses done separately for each activity Compute mean composition in each 

subgroup; compositional two-sample 

t-test/ANOVA

Compute descriptive statistics of 

baseline factors by latent profiles; 

testing needs to account for 

uncertainties (requires specialized 

software)

Multivariable regression analysis

  Implementation Standard regression, easy to apply Isometric log-ratio transformation of 

24HAC, standard regression

Specialized regression method that 

account for class uncertainty

  Applicable for standard regression 

outcome models

Yes Yes Yes

  Typical comparisons of different 

activity profiles

Substitution of one activity for another Increasing one activity while 

proportionately decreasing the others, 

and substitution

Comparison of the latent profiles only

(B)

Interpretability Easy to interpret; harder when extended to 

nonlinear ISM

Not easy; requires understanding of 

how CoDA works

Not difficult; but be aware of 

uncertainty in class membership 

assignments

Multicollinearity No perfect collinearity, but analysis could still 

suffer from high correlations between some 

activities

No perfect collinearity after isometric 

log-ratio transformation, but analysis 

could still suffer from high correlations 

among transformed data

Need to consider dropping one activity 

or apply isometric log-ratio 

transformation before running LPA

Zero activity values Not an issue when model is correctly specified Lead to numerical issues Lead to skewed profile indicators and 

potential violation of LPA assumptions 

or need for a LPA method that allows 

for non-Gaussian indicators

Non-linear association Generalizations available Already nonlinear, could be more 

flexible

Not applicable
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directly performing bivariate association analysis with the assigned 
class and ignoring the class uncertainty can lead to biased and 
inaccurate results and should be verified using an adjusted regression 
method (Bolck et  al., 2004; Vermunt, 2010). Some adjustment 
methods are recommended. See LPA Section 3.3. This uncertainty in 
the profile assignment makes exploratory data analysis more 
challenging in the context of LPA, since one may rely on the modal 
assignment, which is subject to misclassification.

4.3. Multivariable regression analysis

Both ISM and CoDA estimate the effects of time reallocations 
through standard multivariable regression models; however, they 
handle the collinearity between activity behaviors differently. ISM is 
formulated by including the total activity and all but one of the activity 
variables – the activity you  will explore reallocating. In contrast, 
CoDA considers 24HAC as a composition and applies the isometric 
log-ratio (ilr) transformation to transform the compositional data into 
a set of continuous variables in a lower dimensional space that 
standard statistical approaches can work with. Although the procedure 
and the interpretation of the 24HAC model coefficients are more 
complicated, regarding 24HAC as a composition facilitates the 
comparison of health outcomes between any two compositions. Such 
comparisons need to be made within the main range of data to avoid 
extrapolation. Furthermore, although linear relationships are assumed 
between ilr-coordinates and an outcome, when results are anti-logged, 
the effects of time reallocations are nonlinear with respect to the 
amount of time reallocated, e.g., see Figures 2, 3 for nonlinear and 
asymmetric effects. ISM, in contrast, standardly estimates the linear 
effects of time reallocation; however, both ISM and CoDA have 
potential to be more flexible, e.g., by including higher order, spline 
terms, or extending to more complex semi-parametric or 
non-parametric models. Although not illustrated in detail in Section 
3, standard model checking and diagnostic tools for multivariable 
regressions largely apply to both ISM and CoDA. For LPA, instead of 
estimating the effects of time reallocations, we  can only estimate 
associations between an outcome and the identified profiles by using 
an approach that accounts for potential misclassification due to the 
uncertainty in the profile assignment, e.g., the improved three-step 
approach (Vermunt, 2010) as in Table  5. Lastly, although our 
illustrations were with a continuous outcome variable, all the three 
methods are applicable when other common types of outcomes are 
used, e.g., dichotomous or time-to-event (Mekary et al., 2013; Lythgoe 
et al., 2019; Mcgregor et al., 2020). Again, it should be noted that it is 
more challenging to do model checking for LPA due to the uncertainty 
in the profile assignment. Each model diagnostic statistic would need 
to be adjusted for the potential for misclassification.

4.4. Statistical challenges

If a zero value occurs for an individual for any behavior in the 
composition or it is of interest to predict an outcome based on a fitted 
CoDA regression model for a population with time spent in any 
behavior close to zero, CoDA will have numerical problems because 
of its reliance on log-transformations. Even for ISM and LPA, common 
zero values could lead to skewed distributions and could be influential 

on final results. If zero observations account for a very small 
proportion of the observed data for a given behavior, then one 
approach can be  to consider these values as below the limit of 
detection. In such cases, it is common practice to replace the zero 
values with a small value relative to the observed data, e.g., ½ limit of 
detection, but this may not always be sensible. Alternatively, values 
could be imputed by statistical imputation tools (Martín-Fernández 
et al., 2003; Palarea-Albaladejo et al., 2007; Palarea-Albaladejo and 
Martín-Fernández, 2008). Rasmussen et al. (2020) compare different 
approaches for handling zeros in compositional physical activity data 
and found that the simplistic approach of replacing zeros with a small 
fixed value led to more distortion of the underlying composition than 
other imputation approaches (Martín-Fernández et al., 2003; Palarea-
Albaladejo et al., 2007; Palarea-Albaladejo and Martín-Fernández, 
2008). If the occurrence of zero values is expected for one or more 
behaviors, CoDA may not be an appropriate approach. For example, 
if MVPA was considered as a component of the 24HAC for a given 
cohort with limited physical function, many individuals could have 
zero min/day in MVPA. In this case, CoDA could be applied if the 
24HAC is redefined as a composition of behaviors that all members 
typically engage in, such as by merging two or more activity behaviors 
into a single behavior (e.g., stepping, which would include most 
MVPA, along with lighter-intensity movement) before 
conducting CoDA.

Detecting and capturing non-linear effects of time reallocations 
could be a challenge to both ISM and CoDA. Developing models 
allowing for non-linear effects of the 24HAC exposure but with 
good interpretability is a direction of future research. LPA is a 
compelling method by which to summarize distinct patterns of 
activity behavior in a population, but this approach has a number 
of statistical challenges: including the uncertainty of the latent class 
assignment leading to non-standard procedures for statistical 
inference for the association of latent profiles with an outcome, 
reliance of current methods on multivariate normality, the need to 
drop one of the activity behaviors in the 24HAC due to the 
collinearity, and created profiles being unique to the specific 
cohort understudy.

5. Conclusion

The 24HAC is an important new paradigm by which to summarize 
activity behaviors. This approach naturally captures the multivariate 
nature of physical activity and sleep behaviors. The analytical 
approaches considered in this work each have specific advantages and 
limitations to consider. Which method works well for a given setting 
will depend on the primary scientific question of interest and structure 
in the data. ISM is a simple and easy to interpret model to apply when 
linear associations are of interest and the central question relates to the 
association of substituting one activity for another with changes in 
outcome. CoDA allows for more direct assessment of the associated 
difference in outcome between different compositions of activity 
behaviors in the 24HAC and inherently models a non-linear 
association with changes in any one component of activity. LPA shifts 
the focus to detecting different sub-populations whose patterns of 
24HAC differ the associated differences in outcome between these 
subpopulations. The motivating research question would largely 
determine which of these methods would be  best suited for the 
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analysis. It may also be useful to apply more than one method to 
a setting.

In our ACT Study illustration, we saw little to no cross-sectional 
association between 24HAC and cognition measured by the CASI-IRT 
score. The ACT-AM sub-study cohort represented a somewhat 
healthier subset of the larger ACT Study cohort (Rosenberg et al., 
2020), as well as overall in that it excludes those with an existing 
dementia diagnosis, which may have led to less heterogeneity and 
lower power to detect associations. Analyses were also limited by being 
a complete case analysis of those with four or more valid days of wear, 
which represented a 91% subset of those who wore the ActivPal device 
(Rosenberg et al., 2020). Additionally, the analyses were potentially 
limited by being cross-sectional. Follow-up on ACT participants is 
ongoing, which will inform future research on longitudinal 24HAC 
patterns and associations with cognition and other health outcomes. A 
further limitation is that we used a measure of time in bed as a proxy 
for sleep. Time in bed could include wakeful sedentary time, such as 
reading in bed, which could obscure the specific associations between 
sleep and health outcomes. Future work in the ACT study is also 
underway to objectively measure sleep as part of the 24HAC in order 
to examine whether 24HAC compositions that delineate sleep may lead 
to differences in cognitive outcomes longitudinally.

In our study we required a minimum of 4 valid wear days, and 
91% of our analysis cohort had 7 valid wear days. Several previous 
papers (Ward et al., 2005; Matthews et al., 2012; Donaldson et al., 
2016; Migueles et al., 2017) have explored the minimum number of 
accelerometer wear days required to accurately capture the daily 
variability of physical activity and sedentary behavior patterns. These 
suggest that a minimum of 4 days of wear is adequate to capture 90% 
or more of the variability of physical activity or sedentary behavior 
patterns for adults (Donaldson et al., 2016). Accounting for the many 
variable factors in accelerometry measurement (consecutive vs. 
non-consecutive wear, weekday vs. weekend variability, seasonal 
patterns, etc.), however, it is possible that 4 days, or even 7 days, of data 
are not sufficient for capturing the usual short-term 24HAC activity 
pattern or long-term patterns. In a sensitivity analysis, we reconsidered 
analyses with the subset of individuals with 7 valid wear days and 
results were similar to those reported (data not shown). The relative 
sensitivity of ISM, CoDA and LPA to measurement error in the 
participants composition is an area in need of future research.

Under a close-to-null association, the association in the CoDA 
model is approximately linear and the ISM and CoDA models provided 
very similar results in the activity substitution analyses. These models 
would differ more under stronger associations. The LPA provided a way 
to consider outcome differences between groups with different patterns 
of activity. In the unadjusted analyses, those that were the most active 
were seen to have significantly higher CASI-IRT scores; however, the 
association was no longer significant in the multivariable model. LPA 
regression results were subject to attenuation bias and inappropriately 
narrow confidence intervals when the results were not adjusted for the 
uncertainty in the profile assignment. This lack of adjustment is common 
in the published literature; however, statistical software is available to 
make this adjustment straightforward. LPA regression models are 
attractive because of their interpretability; however, they can also 
be subject to labeling bias. That is, the labels given to the different profiles 
can be misleading in that they could be suggestive of larger differences 
than exist in the data and also may inadequately capture all the ways in 
which the profiles differ, with respect to the distribution of the indicator 
variables. Care should be given that the labels are not oversimplifying or 

misleading relative to the observed between-profile differences across 
the indicator variables.

The regression models that included components of the 24HAC 
directly, namely ISM and CoDA, provide limited flexibility in the 
modeled association between the 24HAC and the outcome. Future 
work is needed to develop more flexible regression models to study 
the 24HAC and its relationship with outcomes of interest. More 
work is also needed to improve current statistical approaches for 
LPA. Vermunt (2010) found that for latent class analysis, in the 
case of small samples and low separation between classes, ignoring 
the uncertainty from the estimation of a latent class model can also 
lead to biased standard errors of associations with external 
variables even if the uncertainty in class assignments has been 
accounted for. Bakk et al. (2014) studied this issue in more depth. 
The finding likely holds in LPA as well. In this paper, we  only 
covered methods dealing with the uncertainty in LPA class 
assignments. How to account for both layers of uncertainty could 
be a direction of future research. Other approaches not considered 
here include functional principal components analysis of activity 
profiles measured by accelerometers (Xu et al., 2019; Xiao et al., 
2022) and latent class models of longitudinal biomarkers (Proust-
Lima et al., 2014, 2022). A recent review of CoDA, also discusses 
other analytical approaches for compositional data, including 
advocating for alternative, simpler transformations to the ilr-
transformation (Greenacre et al., 2022).

The 24HAC is an exciting new paradigm to study how differences 
in activity behavior affect cognitive and other clinical outcomes. The 
ISM, CoDA, and LPA methods provide three useful approaches that 
each, with appropriate application and interpretation, can lead to 
useful insights regarding the association of 24HAC with outcomes. 
Future work in methodology to expand the flexibility in available 
models of 24HAC is necessary in order to enhance the ability to 
understand the potentially complex nature of these associations.
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