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Widening the landscape of transcriptional
regulation of green algal photoprotection

Marius Arend 1,2,3,6, Yizhong Yuan 4,6, M. Águila Ruiz-Sola 4,5,
Nooshin Omranian 1,2,3, Zoran Nikoloski 1,2,3 & Dimitris Petroutsos 4

Availability of light and CO2, substrates of microalgae photosynthesis, is fre-
quently far from optimal. Microalgae activate photoprotection under strong
light, to prevent oxidative damage, and the CO2 Concentrating Mechanism
(CCM) under low CO2, to raise intracellular CO2 levels. The two processes are
interconnected; yet, the underlying transcriptional regulators remain largely
unknown. Employing a large transcriptomic data compendium of Chlamydo-
monas reinhardtii’s responses to different light and carbon supply, we recon-
struct a consensus genome-scale gene regulatory network from
complementary inference approaches and use it to elucidate transcriptional
regulators of photoprotection. We show that the CCM regulator LCR1 also
controls photoprotection, and that QER7, a Squamosa Binding Protein, sup-
presses photoprotection- and CCM-gene expression under the control of the
blue light photoreceptor Phototropin. By demonstrating the existence of
regulatory hubs that channel light- and CO2-mediated signals into a common
response, our study provides an accessible resource to dissect gene expres-
sion regulation in this microalga.

Photosynthetic microalgae convert light into chemical energy in the
form of ATP and NADPH to fuel the CO2 fixation in the Calvin–Benson
cycle1. They have evolved to cope with rapid fluctuations in light2 and
inorganic carbon (Ci)3 availability in their native habitats. When
absorbed light exceeds the CO2 assimilation capacity, the formation of
harmful reactive oxygen species can lead to severe cell damage; this is
prevented by the activation of photoprotective mechanisms, collec-
tively called non-photochemical quenching (NPQ). NPQ encompasses
several processes that are distinguished in terms of their timescales2,
among which the rapidly reversible energy-quenching (qE) is, under
most circumstances, the predominant NPQ component2,4. The major
molecular effector of qE in the green model microalga Chlamydomo-
nas reinhardtii (hereafter Chlamydomonas) is the LIGHT HARVESTING
COMPLEX STRESS RELATED protein LHCSR3, encoded by the
LHCSR3.1 and LHCSR3.2 genes5 that slightly differ only in their

promoters; LHCSR1 can also contribute significantly to qE under
conditions where LHCSR3 is not expressed6,7. PSBS, the key qE effector
protein in higher plants8 is encoded in two highly similar paralogues
PSBS1 and PSBS2 in Chlamydomonas9. They are only transiently
expressed in Chlamydomonas under high light (HL)9,10 and their gene
products accumulate under UV-B irradiation11; while their precise
contribution in Chlamydomonas photoprotective responses is still a
matter of ongoing research, current understanding is that PSBS pro-
teins contribute to photoprotection during HL acclimation of Chla-
mydomonas through both NPQ-independent and NPQ-dependent
mechanisms12.

Intracellular levels of CO2 are modulated by the availability of its
gaseous and hydrated forms3 in the culture media and the supply of
acetate, which is partly metabolized into CO2

7,13. Under low CO2,
Chlamydomonas activates the CO2-concentrating mechanism (CCM)
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to avoid substrate-limitation of photosynthesis by raising the CO2

concentration at the site of RuBisCO, where CO2 is assimilated3. The
CCM mainly comprises of carbonic anhydrases (CAHs) and of inor-
ganic carbon transporters. Almost all CCM-related genes are under the
control of the nucleus-localized zinc-finger type nuclear factor CIA5
(aka CCM1)14–16, including the Myb Transcription Factor LOW-CO2

-STRESS RESPONSE 1 (LCR1) that controls the expression of genes
coding for the periplasmic CAH1, the plasma membrane-localized
bicarbonate transporter LOW CO2-INDUCED 1 (LCI1), and the low-CO2

responsive LCI6, whose role remains to be elucidated17. CIA5 is also a
major qE regulator activating transcription of genes encoding LHCSR3
and PSBS, while repressing accumulation of LHCSR1 protein7.

LHCSR3 expression relies on blue light perception by the photo-
receptor phototropin (PHOT)18, on calcium signaling, mediated by the
calcium sensor CAS19 and on active photosynthetic electron flow18–20,
likely via indirectly impacting CO2 availability

7. The critical importance
of CO2 in LHCSR3 expression is demonstrated by the fact that changes
in CO2 concentration can trigger LHCSR3 expression21–23 even in the
absence of light7. Accumulation of LHCSR1 and PSBS mRNA is under
control of the UV-B photoreceptor UVR811 and PHOT24,25 and is
photosynthesis-independent20,25. While LHCSR1 is CO2/CIA5 indepen-
dent at the transcript level7,25, PSBS is responsive to CO2 abundance
and is under partial control of CIA57. A Cullin (CUL4) dependent E3-
ligase24,26,27 has been demonstrated to post-translationally regulate the
transcription factor (TF) complex of CONSTANS (CrCO)26 and NF-Y
isomers27, which bind to DNA to regulate the transcription of LHCSR1,
LHCSR3, and PSBS. The putative TF and diurnal timekeeper RHYTHM
OF CHLOROPLAST 75 (ROC75) was shown to repress LHCSR3 under
illumination with red light28.

Here, we employed a large compendium of RNAseq data from
Chlamydomonas to build a gene regulatory network (GRN) underlying
light and carbon responses, and thus reveal the transcriptional reg-
ulation of qE at the interface of these responses. The successful usage
of RNAseq data to infer GRNs has been demonstrated in many
studies29–31, although the data pose some challenges that require
careful consideration. All of the developed approaches to infer a GRN
quantify the interdependence between the transcript levels of TF-
coding genes and their putative targets; the resulting predictionmodel
serves as a proxy for the regulatory strength that theproductof the TF-
coding gene exerts on its target(s). It is usually the case that the
number of observations (samples) used in building the model is con-
siderably smaller than the number of TFs used aspredictors, leading to
collinearity of the transcript levels and associated computational
instabilities; furthermore, as an artifact of the computational techni-
ques, someof the inferred regulationsmay be spurious32–34. To address
these issues, here we took advantage of combining the outcome of
multiple regularization techniques andpost-processing to increase the
robustness of identified interactions33–35. In contrast to our approach,
the existing predicted GRNs of Chlamydomonas either focused on
nitrogen starvation36 or used a broad RNAseq data compendium, not
tailored to inferring regulatory interactions underlying responses to
particular cues37. Moreover, these GRNs were not obtained by com-
bining the outcomes from multiple inference approaches, shown to
increase accuracy of predictions30, and their quality was not gauged
against existing knowledge of gene regulatory interactions.

We used an RNAseq data compendium of 158 samples (Supple-
mentary Data 1) from Chlamydomonas cultures exposed to different
light and carbon supply as input to seven benchmarked GRN inference
approaches that employ complementary inference strategies29,30 to
identify activating and inhibiting regulatory interactions. We assessed
the performance of each approach based on a set of curated TF-target
gene interactions with experimental evidence from Chlamydomonas.
Based on this assessment, we integrated the outcome of the five best-
performing approaches into a unique resource, a consensus network
of Chlamydomonas light- and carbon-dependent transcriptional

regulation. We used the consensus network to reveal regulators of qE
genes and demonstrated the quality of predictions by experimentally
validating two of the six tested candidates. We show here that LCR1
regulates not only CCM, as previously reported17, but also qE by acti-
vating the expression of LHCSR3, and demonstrate that qE-
REGULATOR 7 (QER7), belonging to the SQUAMOSA-PROMOTER
BINDINGPROTEIN-LIKE gene family, is a repressorof qE andCCMgene
expression. Our work consolidates the extensive co-regulation of CCM
and photoprotection7 based on the untargeted assessment of the
obtained genome-scale GRN.

Results
Computationally inferred GRN recovered known regulatory
interactions underlying qE and CCM in Chlamydomonas
We first aimed to employ published and in-house generated RNAseq
data sets capturing the transcriptional responses of Chlamydomonas
to light and acetate availability to infer the underlying GRN. To this
end, we obtained data from two publicly available transcriptomics
studies of synchronized chemostat wild-type (WT) cultures grown in a
12 h/12 h light-dark scheme and sampled in 30min to 2 h intervals38,39.
We combined these with our RNAseq data generated from mixo-
trophically or autotrophically grownbatch cultures of theWTandphot
mutant acclimated to low light (LL) or exposed to HL (Methods, Sup-
plementary Data 1). These data sets capture the expected expression
patterns of the key genes involved in CCM and qE (Fig. 1a, Supple-
mentary Fig. 1) in response to changes in acetate availability and light
intensity. Specifically, we found strong upregulation of these genes in
the light7,25, and a marked inhibition of LHCSR3.1/2 and CCM genes by
acetate as previously described7,40.

We employed these data together with a list of 407 transcription
factors from protein homology studies41,42 (Methods, Supplementary
Data 2), as input to seven GRN inference approaches to robustly pre-
dict TF-target interactions, as shown in benchmark studies30. The
employed methods infer both activating and inhibiting TF-target
interactions. Benchmarking of GRNs usually relies on ground truth
data obtained fromChIPseq or transcriptomic profiling of TFmutants.
Since to date, no such comprehensive data set exists for Chlamydo-
monas we manually curated a list of known, experimentally validated
regulatory interactions underlying CCM and qE in
Chlamydomonas22,26–28, to assess the quality of GRNs inferred by the
different approaches. As negative control, we included the reported
lack of effect of the SINGLETOXYGENRESISTANT 1 (SOR1) TFonPSBS1
transcript levels in diurnal culture43 as well as a set of four TFs, desig-
nated TF1-4, whose knock-out or overexpression did not affect
LHCSR3.1 transcript levels (Supplementary Note 1, Supplementary
Fig. 2 and Fig. 1b). Whenwe assessed the predicted ranks, as ameasure
of confidence assigned to the positive and negative ground truth data,
we found that two approaches were clear outliers, showing sensitivity
of 0%. More specifically, ARACNE44 and global silencing45 are unable to
recover any positive literature interactions when using a network
density threshold of 10% of all possible TF-TF and TF-target interac-
tions (most prominently observable in the case of LCR1 interactions).
Possible reasons for this finding are over-trimming or issues with the
validity of the underlying assumptions, as seen in other case studies46.
Since the presence of most gene regulatory interactions is dependent
on environmental stimuli, it is considerably easier to experimentally
validate the presence of TF-target interactions than to show that they
do not take place47. Thus, in inferring a consensus GRNwe considered
the five approaches that were able to recover positive interactions,
namely: Graphical Gaussian Models (GGM), Context Likelihood of
Relatedness (CLR), Elastic Net regression, Gene Network Inference
with Ensemble of Trees (GENIE3), and Network Deconvolution
(Methods).

To obtain insights into the performance of these approaches, we
next quantified the variability of ranks for the known TF-target gene

Article https://doi.org/10.1038/s41467-023-38183-4

Nature Communications |         (2023) 14:2687 2



interactions. We found that the average standard deviation of the
ranks of the TF-target gene interactions within an approach is larger
than the average standard deviation for the rank of a TF-target gene
interaction across the five approaches (Supplementary Fig. 3, Fig. 1b).
This observation suggested that the properties of a given TF-target
gene interactionhave a stronger influenceon its assigned rank than the
inference approach used. More specifically, we noted that the

regulation of LHCSR genes by the two NF-Y paralogues and the
induction of LCR1 by CIA5 are not recovered by any of the used
approaches; this is in line with reports showing that CIA5 is con-
stitutively expressed and regulated post-translationally16—not reflec-
ted in the transcriptomics data. Further, NF-Y factors that rely on
complex formation with CrCO to regulate their targets27, may also act
via unresolved post-translational mechanisms. As mentioned in the
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introduction, some of the employed approaches use regularization
techniques, mitigating effects of collinearity and low sample number,
this comes at the cost of increasing the number of false negatives,
another reason for the high number of unrecovered interactions pre-
viously reported in the literature. Importantly, the regulatory interac-
tions of the CCM effector genes LCI1 and CAH1 by LCR1 are assigned
very high ranks (top 1%) by the approaches considered in the con-
sensus GRN (except for GGM); moreover, only for the interaction of
TF1 and LHCSR3.1 we observe false positives, originating from spur-
ious interactions. The interactions of the other four TFs (Supplemen-
tary Note 1, Supplementary Fig. 2) are correctly discarded by all
approaches, indicating the robustness of the employed approaches
(Fig. 1b). In addition, we observed that CLR and GENIE3 demonstrated
thebestperformancewith respect to the set of known interactions. For
instance, they identified the regulation of LHCSR3.1 by CrCO26,27 and of
PSBS1 by NF-YB27 (Fig. 1b). Generalization of this ranking beyond the
known interactions underlying qE and CCM processes is challenging,
due to the lack of genome-scale gold standard, and we, therefore,
opted to combine the results of the five approaches, that showed
comparable performance, in the consensus GRN (Methods, Supple-
mentary Data 3) to increase robustness of the predictions. Our ana-
lyses of the overlap between the consensus and individual GRNs and
the enrichment of TF-TF interactions demonstrated the robustness of
the inferred interactions (Supplementary Note 2, Supplemen-
tary Fig. 4).

Consensus GRN pinpoints LCR1 as a regulator of qE-
related genes
Using the consensus GRN, we inferred direct regulators of LHCSR and
PSBS genes and ranked them according to the score resulting from the
Borda method (Methods)30,48. Mutants were available for four of the
top ten of TFs with the strongest cumulative regulatory effect on qE-
related genes (Fig. 2a, Supplementary Data 4): Two knock-out mutants
of previously uncharacterized genes were ordered from the CliP
library49, which we termed qE-regulators 4 and 6 (qer4, qer6; see Sup-
plementary Fig. 5 for the genotyping of these mutants). Additionally,
we obtained an overexpressor line of the N-acetyltransferase LCI821

and the knock-out strain of the known CCM regulator LCR117. We tes-
ted for a regulatory effect by switching LL-acclimated mutant strains
and their respective WT background to HL for 1 h and quantified
transcript levels of qE-related genes. Since both the paralogs of PSBS as
well as of LHCSR3 show correlation >0.96 over all RNAseq samples
used in this study and they additionally have very similar expression
profiles quantified by RT-qPCR50, we only probed the transcripts of
LHCSR3.1 and PSBS1 via qPCR in the validation assays. For qer4, qer6,
and lci8-oe we did not observe an effect on the transcript levels of
investigated genes after HL exposure (Supplementary Fig. 6). Thus,
qer4 and qer6 are considered false positive predictions of the GRN,
despite the fact that qer4 accumulated 1.5 times more LHCSR3.1 under
LL than theWT. A review of the closest orthologs of LCI8 together with
the experimental data indicate that it is likely involved in arginine
synthesis51 and wrongly included as histone acetylase in the list of TFs.

Interestingly, LCR1, the highest ranking among the tested regulators
showed significantly decreased expression of LHCSR3 at both the gene
(three times lower, Fig. 2b) and protein level (four times lower, Fig. 2c,
d) compared to theWT; as a result, lcr1developed very lowNPQandqE
(Fig. 2e). Interestingly, the lcr1 mutant over-accumulated LHCSR1 and
PSBS both at the transcript and at the protein level (Fig. 2b–d); Com-
plementation of lcr1with the knocked-out gene (strain lcr1-C) restored
LHCSR3 gene and protein expression as well as the qE phenotype
(Fig. 2b–e). Because pre-acclimation conditions impact qE gene
expression25 we conducted independent experiments in which cells
were acclimated to darkness before exposure to HL and we obtained
very similar results. Our data demonstrated that lcr1 showed sig-
nificantly lower expression of LHCSR3 and higher expression of
LHCSR1/PSBS at both the gene (Supplementary Fig. 7a) and protein
level (Supplementary Fig. 7b, c), and had lower NPQ and qE (Supple-
mentary Fig. 7d) than theWT, although the higher expression levels of
the LHCSR1 gene were not rescued by the complementation with the
missing LCR1 gene (Supplementary Fig. 7a). Altogether, our data show
that LCR1 is a regulator of qE by activating LHCSR3.1 transcription and
repressing LHCSR1 and PSBS accumulation.

Furthermore, we revisited the role of LCR1 in regulating CCM
genes17 by analyzing the expression of selected CCM genes in WT, lcr1
and lcr1-C cells shifted from LL or darkness to HL, conditions favoring
CCMgene expression7.We first confirmed that under our experimental
conditions lcr1 could not fully induce LCI1 (Supplementary Fig. 8a, b) in
accordance with the report of the discovery of LCR117. Our analyses
further showed a statistically significant impairment of lcr1 in inducing
genes encoding the Ci transporters LOW-CO2-INDUCIBLE PROTEIN A
(LCIA), HIGH-LIGHT ACTIVATED 3 (HLA3), and BESTROPHINE-LIKE
PROTEIN 1 (BST1) as well as the carbonic anhydrase CAH4, when
shifted from LL or dark to HL (Supplementary Fig. 8a, b), indicating
that the role of LCR1 in low-CO2 gene expression extends beyond the
regulation of gene expression of CAH1, LCI1, and LCI617.

PHOT-specific GRN reveals a novel repressor of qE
The light-dependent induction of LHCSR3 is predominantly mediated
by the blue light photoreceptor PHOT18. To analyze the PHOT-
dependent transcriptional regulators, we first inferred a GRN based
solely on the RNAseq from samples of phot and WT acclimated to LL
and after 1 h exposure to HL (data set PH, Supplementary Data 1) using
only the GENIE3 approach, reported to show good performance30,46

and which is among the best-performing approaches in our consensus
network. Since the PH experiment contains a low number of samples
(12 samples, 4 conditions) the inferred GRN will inevitably suffer from
the effects of low statistical power and high collinearity. To mitigate
these effects, we decided to only include interactions that are also
present in the benchmarked consensus network. By determining the
intersection of the two networks, we obtained a GRN that resolves
regulatory interactions underlying the transcriptomic changes
observed in the phot mutant, while borrowing the statistical power of
the whole RNAseq compendium. We refer to the resulting network as
PHOT-specific GRN (Methods, Supplementary Data 5).

Fig. 1 | Characterization of the consensus GRN inferred by employing a com-
pendium of RNAseq data from diverse light and culture conditions.
a Expression levels of representative carbon concentrating mechanism (CCM) and
qE genes are plotted over all samples used for network inference (z-scaled log
values are depicted, high values red, low values blue). The column annotation gives
information on the culture conditions and data set (purple—Sueoka’s high salt
medium (HSM), green—HSM+ 20mM acetate, light gray—high light (HL), dark gray
—low light (LL), black—no light) see also Supplementary Data 1); no clustering was
applied. All experimental conditions have been sampled in biological duplicates or
triplicates that are plotted adjacent. Supplementary Fig. 1 shows an enlarged ver-
sion of this figure with sample names included and biological replicates indicated.
b The heatmap rows correspond to experimentally validated or invalidated (neg)

gene regulatory interactions involved in qE and CCM, curated from the literature.
The heatmap indicates ranking of these interactions by different approaches and
the consensus network. Edges are considered highly ranked (depicted in blue) if
they are above the 10% network density threshold. Edges ranked below this
threshold are depicted in red. Edges thatwerenot included in the given network are
marked in gray. At the bottom of the heatmap, the relative number of edges
inferred by each approach is provided. ARACNE and Silencing columns were only
plotted for comparison and were not used in building the consensus GRN (see
Methods). TF1 MYB-like DNA-binding protein, Cre01.g034350; TF2 RWP8, RWP-RK
transcription factor, Cre04.g218050; TF3 RWP5, RWP-RK transcription factor,
Cre06.g285600; TF4 bHLH domain-containing protein, Cre07.g349152). Source
data are provided in the Source Data file.
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When investigating the top 10 regulatorsofqEgenes in this PHOT-
specificGRN the interactionswhereweightedbasedon the importance
score from GENIE3 (Supplementary Data 6, Fig. 3a). Among the inter-
actions in this list of PHOT-dependent regulators, we recovered two
known regulators of qE, namely, ROC7528 and CrCO26,27 (Fig. 3a). These
observations are in line with an existing hypothesis24 suggesting that a
CUL4-dependent E3-ligase targeting CrCO26 acts downstream of
PHOT. ROC75 has been previously reported to act independently of
the PHOT signal based on qPCR studies of the mutant grown syn-
chronously under different light spectra28. In our RNAseq data, gath-
ered under continuous white light, we observed a significant
difference in expression levels of ROC75 between WT and phot (log2
fold-change = 1.03, adj. p-value = 1.80*10−7).

The fact that several regulators showed larger regulatory strength
than CrCO in the PHOT-specific GRN indicates the existence of yet
unreported regulators of qE effector genes in the PHOT signaling
pathway. This is in line with existing results26, showing that the knock-
out of CrCO is insufficient to fully abolish light-dependent activation of
LHCSR3. Following this reasoning we obtained qer1 and qer7, the
available regulator candidates mutants, from the CLiP library49 (for
genotyping see Supplementary Fig. 5). Our results show higher mRNA
levels of PSBS1 in theqer1mutant (Supplementary Fig. 9); however, this
could not be rescued by ectopic expression of the QER1 gene in the
qer1mutant background (Supplementary Fig. 9). We found significant
upregulation of LHCSR3.1 gene expression in the qer7 mutant (1.7

times, Supplementary Fig. 10a) also reflected in higher NPQ (Supple-
mentary Fig. 10b) and qE levels (Supplementary Fig. 10c) which we
followed up in more detail. To this end, we ectopically expressed the
WT QER7 gene in the qer7 mutant and generated the complemented
strain qer7-C that expressed QER7 to levels similar to those WT (Sup-
plementary Fig. 5c). As a result, the qer7-C strain showed reduced
LHCSR3gene expression, NPQ, andqE levels as comparedwith the qer7
mutant (Supplementary Fig. 10a–c). LHCSR1 and PSBS seemed to be
unaffected in the qer7 in these LL to HL transition experiments (Sup-
plementary Fig. 10a). As with LCR1, we also performed dark to HL
experiments to further characterize the photoprotective responses of
qer7; under these conditions, qer7 accumulated significantly more
LHCSR1 (1.7 times) and PSBS1 (2.2 times) while LHCSR3 remained
unaffected (Supplementary Fig. 10d). As in the LL to HL experiments
(Supplementary Fig. 10b, c) qer7 showed more NPQ and qE (Supple-
mentary Fig. 10e, f). Complementation of qer7 with the missing QER7
gene restored all phenotypes (LHCSR1, PSBS, NPQ, qE; Supplementary
Fig. 10d–f). These data validated the prediction of QER7 as regulator of
qE gene expression (Fig. 3a) and indicated that QER7 regulates dif-
ferent subsets of qE genes depending on the pre-acclimation condi-
tions; LHCSR3 when preacclimated under LL, LHCSR1, and PSBS when
pre-acclimation occurs in darkness.

Motivated by these findings and given the fact that most of the
Chlamydomonas transcriptome undergoes diurnal changes39 we
decided to address the role ofQER7 in regulating qE genes under light/

Fig. 2 | Consensus GRN for light and acetate responses pinpoints LCR1 as reg-
ulator of qE-relatedgenes. aDot plot of the relative regulatory strength of the top
10 regulators of qE-related genes in the consensus GRN (see Methods). TFs are
marked in green if qE transcript levels were affected in the respective knock-out
strain and this effect was reversed by complementation with the missing gene. TFs
for which no effect was observed are marked in red. TFs for which no mutant lines
were available are plotted in gray. b WT, lcr1, and lcr1-C cells were acclimated for
16 h in LL (15 µmol photons m−2 s−1). After sampling for the LL conditions, light
intensity was increased to 300 µmol photonsm−2 s−1 (HL); samples were taken 1 h
(RNA) or 4 h (protein and photosynthetic measurements) after exposure to HL.
Shown are relative expression levels of qE-related genes at the indicated conditions

normalized to WT LL (n = 3 biological samples, mean ± sd). c Immunoblot analyses
of LHCSR1, LHCSR3, PSBS, andATPB (loading control) of oneof the three biological
replicates, under the indicated conditions. dQuantification of immunoblot data of
all replicates in c after normalization to ATPB. Shown are the HL-treated samples;
WT protein levels were set as 1. e NPQ and calculated qE (as an inset) 4 h after
exposure toHL (n = 3biological samples,mean± s.d).b,d, e. The two-sidedp values
for the comparisons are based on ANOVADunnett’s multiple comparisons test and
as indicated in the graphs (*P <0.005, **P <0.01, ***P <0.001, ****P <0.0001). Sta-
tistical analyses for b and d were applied on log10- transformed values. The exact
p-values are shown in the Source Data file.
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dark cycles. We synchronizedWT, qer7, and qer7-C cells in 12 h L/12 h D
cycle and exposed them to HL right after the end of the dark phase.
Our results revealed that under these conditions QER7 functions as a
repressor of all qE-related genes; the qer7 mutant expresses sig-
nificantly higher LHCSR3, LHCSR1, and PSBS not only at the gene
(Fig. 3b) but also at the protein (Fig. 3c, d) level, and exhibits higher
NPQ and qE (Fig. 3e), with all phenotypes rescued in the qer7-C com-
plemented line. Previous protein homology studies identified QER7 as
Squamosa Binding Protein52 or bZIP TF53, and here, we provide the first
functional annotation of QER7 as a novel qE regulator.

QER7 co-regulates qE-related and CCM genes
Our findings that the regulatory role of CIA57 and LCR1 (Fig. 2 and
Supplementary Fig. 7) extends beyond CCM to also control qE-related
gene expression, prompted us to also inspect the expression levels of
CCMgenes in synchronized qer7 cells (Fig. 4a). Indeed, for five of these
transcripts (HLA3, CAH4, BST1, LCI1, LCIA) we observed a significant
upregulation in qer7 after HL exposure that was reversed by com-
plementation with the QER7 gene, indicating that QER7 suppresses
expression of CCMgenes; the suppression role of QER7 on CCMgenes
was only observable under HL, conditions that favor CCM gene
expression7 and not in the dark (Fig. 4a). We subsequently checked if
this regulation is also captured in the GRNs. To this end, we used the
CCMgenes included in Fig. 4a as target genes and predicted the top 10
regulators of these genes using the same method as for the qE reg-
ulators (Methods). Interestingly, we found LCR1 (Supplementary
Fig. 11a, c) among the top regulators of both, CCM and qE genes, in the
consensus network and QER7 in the PHOT-specific network (Supple-
mentary Fig. 11b, d).

Led by this observation, we investigated the signaling pathway
upstream of QER7. To this end, we quantified QER7 gene expression in
synchronized phot cultures and observed that QER7 is overexpressed
in the photmutant, suggesting that PHOT suppresses QER7 expression
(Fig. 4b). In contrast to QER7, LCR1 expression levels were WT-like in
the phot mutant (Fig. 4b), and the same was true for the qer7 mutant
that also expressed LCR1 to WT levels (Fig. 4a). Further validation that
LCR1 and QER7 act on different pathways comes from the fact that
although LCR1 is controlled by CIA517, QER7 is not (Fig. 4c). Thus, while
sharing part of their target genes, the two TFs, LCR1, and QER7, med-
iate different signals. We captured this distinction in our PHOT-specific
network, further underlining the power of the inferred networks.

Our findings that QER7 represses CCM gene expression (Fig. 4a)
naturally raised the question of whether the qer7 mutant has altered
CCM function, i.e. altered capacity of the cells to accumulate inorganic
carbon (Ci). To address this question, we compared WT and qer7 cells
for their affinity for Ci, under conditions where CCM is not fully
induced (LL) and after inducingCCMbyacclimation toHL, which leads
to mRNA accumulation of CCM-related genes (see for example Fig. 4a
but also our previous study7). Under these conditions no difference
could be observed between WT and qer7 (Supplementary Fig. 12,
Supplementary Data 7). Our data suggest that PHOT, by repressing
QER7 (Fig. 4b), is also involved in the regulation of CCM-related gene
expression. We investigated this further by quantifying CCM gene
expression in WT, phot mutant and the complemented line phot-C, in
the samples collected from the experiment presented in Fig. 4b, i.e.
synchronized photoautotrophic cultures shifted to HL right after the
end of the dark phase. We first analyzed expression of qE genes that
was found as expected18,24,25 to be under control of PHOT

Fig. 3 | A PHOT-specific GRN pinpoints QER7 as a suppressor of the expression
of qE-related genes. a Dot plot of the relative regulatory strength of the top 10
regulators of qE-related genes in the PHOT-specific GRN (see Methods). TFs are
marked in green if qE transcript levels were affected in the respective knock-out
strain and this effect was reversedby complementationwith the knocked-out gene,
in yellow, if the effect was not reversed by complementation and in red, if no
mutant effect was observed in the mutant. TFs for which no mutant lines were
available are plotted in gray. bWT, qer7, and qer7-C cells were synchronized under
12 h light (15 µmolm−2 s−1)/12 h dark cycles. After sampling for the dark conditions
(end of the dark phase), cells were exposed to 300 µmol photonsm−2 s−1 (HL);
samples were taken 1 h (RNA) or 4 h (protein and photosynthetic measurements)

after exposure toHL. Shownare relative expression levels of qE-related genes at the
indicated conditions normalized to WT LL (n = 3 biological samples, mean ± sd).
c Immunoblot analyses of LHCSR1, LHCSR3, and ATPB (loading control) of one of
the three biological replicate set of samples, under the indicated conditions.
d Quantification of immunoblot data of all replicates in c after normalization to
ATPB. WT protein levels at HL were set as 1. e NPQ and qE, measured 4 h after
exposure to HL (n = 3 biological samples, mean ± sd). b, d, e The two-sided p values
for the comparisons are based on ANOVADunnett’s multiple comparisons test and
are indicated in the graphs (*P <0.005, **P <0.01, ***P <0.001, ****P <0.0001).
Statistical analyses forb anddwereappliedon log10-transformedvalues. The exact
p values are shown in the Source Data file.
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(Supplementary Fig. 13a).We then analyzed expressionof thefiveCCM
genes found to be repressed by QER7 (Fig. 4a); out of those, CAH4 and
HLA3were down-regulated in the photmutant exposed to HL after the
end of the dark phase in synchronized cultures (Supplementary
Fig. 13b) and this phenotype was fully rescued in the phot-C com-
plemented line, suggesting a potential involvement of PHOT in reg-
ulating expression of CCM-related genes. Nevertheless, the affinity of
phot for Ci was not different than this of WT (Supplementary Fig. 14,
SupplementaryData 7), in linewith previouswork reportingCCM tobe
induced to very similar extent under blue or red illumination54. Thus,
under our experimental conditions, the role of PHOT and QER7 in
regulating CCM is restricted to the transcriptional level. Since the
PHOT-QER7 pathway acts independently of the LCR1 pathway, both
regulating the same subset of CCM genes we tested, it may be not so
surprising that neither PHOT nor QER7 impact the affinity for Ci; in
both qer7 and phot mutants LCR1 levels are unaffected and therefore
the control of LCR1 on CCMmay mask any potential effect that PHOT
or QER7 might have. Since many known CCM regulatory mechanisms
act post-transcriptionally55, it is conceivable, that the transcriptional
regulation of PHOT and QER7 on their own are not sufficient and rely
on integration with other simultaneous signals to clear all roadblocks
for full CCM induction under HL.

Genome-scale GRN indicates that photoprotection and CCM are
co-regulated
The twoqE regulators thatwe validated in this study also regulateCCM
genes. Therefore, we next investigated towhat extent the observed co-
regulation pattern applies to the global, known transcriptional reg-
ulation of low CO2 and light stress-responsive genes. To this end, we

took advantage of the size of the presented genome-scale GRNs and
compiled a list of genes putatively involved in photoprotection (Sup-
plementary Data 8) or the CCM (Supplementary Data 9); we then
extracted the 10 TFs exhibiting the strongest regulatory strength on
the genes in the compiled lists. We found six (empirical p value <
0.001, Methods) and four (empirical p value <0.01) of the top 10
regulators to be shared between these two responses in the consensus
(Fig. 5a, b, Supplementary Data 10) and the PHOT-specific GRN,
respectively (Fig. 5c, d, Supplementary Data 11). The significant, large
number of shared regulators is a strong indication that co-regulation
of photoprotective and carbon assimilatory processes is a principal
feature of Chlamydomonas’ transcriptional regulatory program.

Discussion
The molecular actors and structure of the transcriptional regulatory
mechanisms that shape Chlamydomonas’ response to differential light
and carbon availability are largely unknown, although they are para-
mount to survival of Chlamydomonas and offer valuable targets for
biological engineering. Here we set out to elucidate the GRN under-
lying the response to light and carbon availability by combining the
results from five complementary inference approaches and data from
158 RNAseq samples of cultures responding to these cues. In the net-
work inference process for this study, we carefully choose approaches
and integration procedures developed to address the inherent diffi-
culties of RNAseq data sets (e.g., collinearity and high number of
variables compared to samples). Together with the many post-
transcriptional layers of regulation in eukaryotic cells, the task of
recovering the true GRN, nevertheless, remains a major challenge of
the field of systems biology and this study is no exception.

Fig. 4 | QER7 suppresses transcription of CCM genes and depends on PHOT.
qer7, phot, and cia5 cells alongside with their complemented lines (qer7-C, phot-C,
and cia5-C respectively) and WT backgrounds, were synchronized under 12 h light
(15 µmolm−2 s−1)/12 h dark cycles, in photoautotrophic conditions (Sueoka’s high
salt medium; HSM), at 23 °C in Erlenmeyer flasks shaken at 125 rpm. After sampling
at the end of the dark phase, cells were exposed to 300 µmol photonsm−2 s−1 (HL)
and samples were taken 1 h after HL exposure. a Relative expression levels of CCM

genes at the indicated conditions. b Relative expression levels of QER7 and LCR1 in
WT, phot and phot-C. c Relative expression levels ofQER7 in WT, cia5 and cia5-C. In
all cases (a–c) expression levelswerenormalized toWTLL (n = 3biological samples,
mean ± sd). The two-sided p values for the comparisons are based on ANOVA
employing Dunnett’s multiple comparisons test on log10-transformed values and
are indicated in the graphs (*P <0.005, **P <0.01, ***P <0.001, ****P <0.0001). The
exact p values are shown in the Source Data file.
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We were able to experimentally validate two of the six novel qE
regulators that the GRN predicted and for which KO mutants were
available: QER7, suppressing LHCSR3, LHCSR1, and PSBS expression
(Fig. 3, Supplementary Fig. 10), and LCR1, activating LHCSR3 and
suppressing LHCSR1 and PSBS expression (Fig. 2, Supplementary
Fig. 7). Both TFs also regulate expression of CCM genes, LCR1 as pre-
viously reported17, QER7 as demonstrated in this study (Fig. 4), sug-
gesting that the processes of qE and CCM are co-regulated.

From the physiological point of view, the interconnection of qE
and CCM comes as no surprise; exposure to HL boosts CO2 fixation
rates and results in depletion of intracellular Ci, reflected, for instance,
in the expression levels of the CO2-responsive marker RH17; therefore,
HL-exposed cells need to activate not only qE, to protect against
photooxidative stress, but also CCM to sustain photosynthetic CO2

fixation. On the other hand, photooxidative damage is exacerbated by
CO2-limitation; when CO2 fixation decreases, photosynthetically gen-
erated electrons accumulate in the electron transport chainpotentially

leading to reactive oxygen species generation56. Therefore, acclima-
tion to low-CO2 availability needs to include not only activation ofCCM
to elevate CO2 levels at the site of fixation, but also of protection
against photooxidative damage. It was recently shown that over-
expression of the bZIP transcription factor BLZ8, resulting in enhanced
CCM via overexpression of HLA3, CAH7, and CAH8, conferred
enhanced oxidative tolerance triggered by alkaline stress57. Although
the qE capacity of the BLZ8 overexpressing lines was not assessed, this
work suggests that CCM and protection from oxidative stress are
physiologically interconnected.

We complemented the findings of the involvement of LCR1 and
QER7 in the regulation of qE and CCM-related genes with an unbiased
analysis of the genome-scale co-regulation of CCM and photo-
protective genes. In this way we observed a significant number of
regulators targeting both processes in the inferred consensus GRN as
well as the PHOT-specific GRN (Fig. 5). This finding is in line with sev-
eral experimental studies: LHCSR3 mRNA has been reported to

CCM-
Genes

PhPr-
Genes

a

4 66

CCM-
Genes

PhPr-
Genes

PhPr-TF CCM-TF

6 44

b

c

d

Consensus PHOT GRN
PhPr-TF CCM-TF

Fig. 5 | Consensus and PHOT-specific GRNs indicate extensive co-regulation of
CCM and photoprotective genes. Top: Venn diagram depicting the overlap of the
top 10 predicted TFs of the curated CCM and photoprotective (PhPr) genes based
on a the consensus or c PHOT-specificGRN. Bottom:Network representation of the
top ten TF sets of b the consensus network or d the PHOT-specific GRN (center
nodes, same color code as in a) and the target genes used for prediction (left and

right columns of nodes, photoprotection genes are shown in green, qE-related
genes in blue, and CCM genes in red. b The plotted regulatory strength corre-
sponds to logð 1

rconsen
Þ, ind, it corresponds theGENIE3 edgeweights denoting random

forest importance measure. The edge width is proportional to the strength of the
specific regulatory interaction. The size of the TF nodes corresponds to the sum of
all plotted target gene edge weights.
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accumulate under low CO2
21,22 while exposure to HL has been reported

to trigger CCM protein58 and mRNA7 accumulation. The Chloroplast
Calcium Sensor protein CAS initially found to be a qE regulator19

turned out to also regulate CCM59, and similarly, CIA5, the master
regulator of CCM gene expression14–16 is also controlling qE gene and
protein expression7. Our results indicate a set of TFs (Fig. 5, Supple-
mentary Data 10, 11) that likely act downstream of these different
signals and integrate them into a common transcriptional response.
Their further characterization is a promising avenue for future
research.

We found QER7 in the list of PHOT-specific regulators and vali-
dated its role experimentally: Expression of QER7 was repressed by
PHOT (Fig. 4b) andwasCIA5-independent (Fig. 4c),while expressionof
LCR1 is regulated by CIA517 and was found to be PHOT-independent
(Fig. 4b). Thus, we showed that filtering the consensus network by
differential expression data of mutants indeed successfully captures
this context-specific regulatory interaction. As far as qE is concerned,
qE genes are overexpressed in the qer7 mutant (Fig. 3b), lacking the
repressor QER7, and down-regulated in phot mutant (Supplementary
Fig. 13a), overexpressing the QER7 repressor; as for CCM, QER7
represses expression of all five CCM genes we investigated (Fig. 4a),
with two of them, CAH4 and HLA3, being down-regulated in the phot
mutant under HL (Supplementary Fig. 13b). Further work is needed to
obtain a global understanding of the role of phototropin on the tran-
scriptional regulation of ChlamydomonasCCM, including its observed
role in controlling some of the CCM genes in the dark (Supplementary
Fig. 13b); nevertheless, this suggested link forms an interesting parallel
with the convergence of phototropin- and CO2-mediated signals
recently shown to control stomata opening, responsible for CO2/O2

exchanges, in the model plant Arabidopsis60.
In summary, we presented three valuable sets of PHOT-specific

and general regulators: (i) a set of regulators of qE for which we vali-
dated available mutants (Figs. 2a and 3a, Supplementary Data 4, 6), (ii)
a set of regulators of the coreCCMgenes analyzed via qPCR in Fig. 4, in
which we recovered QER7 and LCR1 as coregulators of expression for
qE and CCM genes (Supplementary Fig. 11), and (iii) a set of regulators
(Fig. 5, Supplementary Data 10, 11) of genes putatively involved in
photoprotection or CCM (Supplementary Data 8, 9), which depicted
significant co-regulation at a global scale.

Ledby these predictionswe experimentally showed thatQER7 acts
as a repressor of qE and CCMgene expression, LCR1 is a regulator of qE
with a more expanded role on regulating CCM as previously thought
and finally introduced a photoreceptor-mediated layer of regulation of
CCM gene expression. These results clearly demonstrated that the
generated GRN represents a powerful resource for future dissection of
the transcriptional regulation of responses of Chlamydomonas to light
and carbon availability. To allow easy access to this resource, we pub-
lished an R-shiny webtool (https://github.com/arendma/GRN_web) to
query the networks for arbitrary regulators and target genes. We
expect that the webtool will prompt more concerted, community-wide
efforts in resolving the interactions between other pathways that
integrate different environmental cues in Chlamydomonas.

Methods
Transcriptome analysis
We assembled a compendium of RNAseq data (Supplementary Data 1)
that capture regulation of light-dependent processes by combining in-
house produced RNAseq measurements with publicly available data
from two studies of densely sampled diurnal cultures of
Chlamydomonas38,39. For the samples in the acetate time-resolved
experiment, adapter sequences were specifically trimmed from raw
reads using BBduk61 (ktrim= r k = 30mink = 12minlen = 50). Raw reads
of the diurnal transcriptome study from Strenkert et al.39 were
obtained fromNCBI GEOdatabase (GSE112394). Reads were aligned to
the Chlamydomonas reference transcriptome62 available from JGI

Phytozome (Assembly version 5) using RNA STAR aligner. The BAM
files obtained from these measurements were analyzed using HTSeq-
count63 (stranded=reverse) to create raw read count files. The raw read
counts from Zones et al.38 were obtained as.tsv from NCBI GEO
(GSE71469). The final data set consists of 158 samples from 62
experimental conditions or time points (SupplementaryData 1). Genes
with less than 1 count per million in at least 9 measurements where
discarded and the remainder were voom62 transformed and normal-
ized using library normalization factors based on the TMM64 approach
as implemented in the R Bioconductor package edgeR65.

Transcription factor set from comparative genomics
To reduce the set of parameters in our network model, we compiled
transcription factor (TF) annotations for the Chlamydomonas genome
based on proteome homology studies. We obtained the proteomes
and protein IDs of predicted Chlamydomonas TFs from Pérez-
Rodríguez et al.41 Since these predictions were built based on the
older Chlamydomonas assembly, we first used the conversion table
provided by Phytozome to convert JGI4 toCrev5.6 IDs. For the TFs that
could not be recovered by this approach we used the Phytozome
BLAST tool to align these sequences against the Crev5.6 proteome
(BLASTP, E threshold:−1, comparisonmatrix: BLOSUM62,word length:
11, number of reported alignments: 5). The reported hits were filtered
for sequence identity >97% and gaps≤1 . If sequencesmappedmultiple
times to the sameCrev5.6 gene ID, only the hit alignment closest to the
N-terminus of the query sequence was kept. The hit was only accepted
if the alignment started at least six residues from theN-terminus of the
hit sequence. For Crev5.6 loci that had multiple JGI4 TF queries
assigned to them the best hit was selected manually. This set was then
extended by the TFs found in the study of Jin et al.42 and the regulators
in the manually curated set of CCM and qE regulatory interactions
(Supplementary Data 8, 9). Using this procedure, we compiled a list of
407 Chlamydomonas TFs (Supplementary Data 2) to be considered as
regulators in the inferred networks.

Gene regulatory network inference
The CLR and ARACNE approach were based on all replicate measure-
ments; for all other inferencemethods themedian from each condition
was used as input. All input matrices where standardized gene-wise. If
not explicitly stated in the respective paragraph the implementations of
all GRN inference approaches were applied with their default settings.

Graphical Gaussian models. The network inferred from a Graphical
Gaussian model of gene regulation was obtained using the imple-
mentation of the partial correlation estimate from Schäfer et al.34 as
implemented in the R GeneNet package. All interactions between TFs
and another gene/TF with non-zero partial correlations were included
as network edges.

GENIE3. The random forest-based network from GENIE3 was gener-
ated using the R Bioconductor implementation provided by the
authors66. We used only expression levels of TFs as predictors.

Elastic net regression. A linear regression-based network was
obtained using the elastic net algorithm35. A model was fit for each
gene using the expression levels of all TFs as predictors. The two
hyperparameters λ2 (quadratic penalty) and s (fraction of L1 norm
coefficients) were tuned for each gene model using 6-fold cross-vali-
dation. The 2Dparameter space scannedwas λ2 = {0, 0.001, 0.01, 0.05,
0.1, 0.5, 1, 1.5, 2, 10, 100} and s = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}.
The R2 value for each model was calculated as

R2 = 1�
P

y� ŷ
� �
var yð Þ , ð1Þ
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with y denoting the vector of observed expression values and ŷ the
model predictions. Models with a negative coefficient of determina-
tion (R2) value were discarded as regularization artifacts. The results of
the remaining models were assembled into a network in which inter-
actions were ranked by regression coefficients β normalized by the
maximum absolute coefficient:

eβ=
1

max
i

f∣βi∣g
β: ð2Þ

CLR and ARACNE. The implementation of mutual information (MI)-
based network inference approaches from the R package minet67 was
used. PairwiseMI was estimated based on the Spearman correlation as
proposed by Olsen et al.68. Two networks were constructed based on
these MI estimates. Using the CLR approach69 non-significant interac-
tions were removed based on the z-scores calculated from the mar-
ginal distributions of MI values for each gene pair. Alternatively, the
ARACNE algorithm44 was used to prune the network based on the data
processing inequality. For both networks only interactions originating
from a TF were taken into consideration and edges were ranked
according to the assigned MI value.

Deconvolution and silencing. For the two networks based on
decomposition of the interaction matrix G the Pearson correlation
matrix obtained from gene expression values were used as input.

The deconvolution approach introduced by Feizi and co-
workers70 was implemented as previously described46. The eigenva-
lue scaling factor β was initialized as β=0.9 and iteratively reduced in
increments of 0.05 until the largest eigenvector of the direct interac-
tionmatrix generated bydeconvolutionwas smaller than 1. Edgeswere
ranked according to the deconvoluted interaction matrix.

The Silencing approach as described by Barzel et al.45 was imple-
mented in R. The proposed approximation of the direct interaction
matrix S in which spurious interactions are silenced relies on the
inverse of the observed correlation matrix G. In our implementation,
we used the Moore-Penrose pseudoinverse in case G was close to
singular. In the resulting network, edges were ranked according to the
approximated silenced interaction matrix.

Consensus network construction. To improve network quality30, we
built a consensus network integrating the GRNmodels inferred by the
different approaches introduced above. To this end,weused theBorda
count election method48 whereby the rank r of an interaction I in the
consensus network built on the predictions from k approaches is given
by the arithmetic mean of the ranks in the individual networks

rconsens Ið Þ=

Pk
i = 1

riðIÞ

k
:

ð3Þ

Following the reasoning of Feizi et al.70 in this integration only the
top 10% all possible edges in the GRN (625815) were considered from
each individual ranking. For an edge that was not assigned a rank by
some approaches, the missing ranks were set to 10% of all possible
edges plus one.

Using this integration method, we assembled a consensus net-
work based on all approaches to compare predictions from all GRN
inference approaches (Supplementary Fig. 4b).Due to this comparison
and their sensitivity of 0% (Fig. 1b) the rankings derived from ARACNE
and Silencing were only considered in Supplementary Fig. 4b and
excluded from the final consensus network used for all other analyses.
As with the individual networks returned by the different approaches
the consensus network (Supplemental Data 3) was trimmed to the top
10% of all possible edges according to the integrated ranks. For

predictions of regulators the weight of edges in the final network was
set as r�1

consens, denoting the reciprocal of the interaction rank.

PHOT-specific network
To investigate the PHOT-specific regulatory interactions genes that are
differentially expressed between phot mutant and wt under low and
high light were inferred. To this end, transcript counts of genes with
more than one count per million in at least four replicates from these
conditions (Supplementary Data 1) were tested for differential
expression using the R packages limma71, DeSeq272, and edgeR65. Only
genes deemed significant by all three tools after Benjamini-Hochberg
correction for a false discovery rate of 0.05 were considered differ-
entially expressed with respect to PHOT mutation.

In the next step, we focused on the normalized and scaled
expression levels from these differentially expressed genes and the
previously mentioned conditions, to infer a PHOT-specific GRN using
GENIE3. To improve robustness of this network, which was obtained
fromacomparably sparsedata set, weonly considered the edges in the
intersection with the final consensus network. Again, for both net-
works only the top 10% of possible edges were taken into account.
Therefore, the obtained PHOT-network represents a subnetwork of
the final consensus in which edges are weighted by the PHOT-specific
GENIE3 importance measure (Supplementary Data 5).

Identification of major regulators
We compiled amanually curated list of possible target genes known to
be involved in the processes of qE (LHCSR1, LHCSR3.1/2, PSBS1/2),
photoprotection (Supplementary Data 8), and CCM (Supplementary
Data 9). Based on the assumption that major regulators act on several
genes important for a biological process, the regulatory strength of a
candidate regulator (for the givenprocess)wasdeterminedby the sum
of edge weights wij between this regulator and the k genes in the
respective target gene set

C TFð Þ=
Xk
j = 1

wTFj : ð4Þ

Empirical p-value calculation using Monte-Carlo simulation
The one-sided p-value for the overlap between the regulators of CCM
and photoprotective genes was approximated by sampling the over-
laps of random gene sets. To this end, we compiled two gene sets with
the same cardinality as the curated CCM and photoprotective genes.
The genes in these sets where randomly sampledwithout replacement
fromall targets in the respective networks. The 10 strongest regulators
of these two gene sets where then obtained as previously described
and theoverlapwas calculated asour sample statistic. This processwas
repeated 10,000 times and an empirical p-value was calculated from
the number of iterations, r, where the overlap was higher or equal to
the observed value, and the total number of iterations, n73:

p=
r + 1
n + 1

: ð5Þ

Strains and conditions
C. reinhardtii strains were grownunder 15 µmol photonsm−2 s−1) in Tris-
acetate-phosphate (TAP) media74 at 23 °C in Erlenmeyer flasks shaken
at 125 rpm. For all experiments cells were transferred to Sueoka’s high
salt medium (HSM)75 at 1 million cells mL−1 and exposed to light
intensities as described in the text and figure legends. For the inves-
tigation of the impact of acetate on the genome-wide transcriptome,
HSM was supplemented with 20mM sodium acetate. C. reinhardtii
strain CC-125 mt+ was used as WT. The phot mutant (depleted from
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PHOT1; gene ID: Cre03.g199000), was previously generated76 and
recently characterized together with its complemented line phot-C25.
The cia5mutant (defective inCIA5, akaCCM1; geneID: Cre02.g096300;
Chlamydomonas Resource Center strain CC-2702), was previously
generated14 and was used along with its complemented cia5-C (ref. 7).
For synchronized cultures, the cells were grown in HSM for at least
5 days under a 12 h light/12 h dark cycle (light intensity was set at
15μmol photonsm−2 s−1; temperature was 18 °C in the dark and 23 °C
in the light). All CLiP mutant strains used in this study and their
parental strain (CC-4533) were obtained from the CLiP library
(REF); qer1 (LMJ.RY0402.072278), qer4 (LMJ.RY0402.202963), qer6
(LMJ.RY0402.162350), qer7 (LMJ.RY0402.118995). The lcr1 (strain
C44), lcr1-C (strain C44-B7) and its parental strain Q30P3 as described
in17 were a kind gift from Hideya Fukuzawa. Before performing phe-
notyping experiments, we first confirmed that lcr1 shows no expres-
sion of LCR1 and that this is rescued in the lcr1-C strain (Supplementary
Fig. 15a). The lci8 overexpressing line was purchased from the Chla-
mydomonas Resource center; strain CSI_FC1G01, expressing pLM005-
Cre02.g144800-Venus-3xFLAG in the CC-4533 background. Over-
expression of LCI8-FLAGwas verified by immunoblotting against FLAG
(Supplementary Fig. 15b).

To complement qer1, a 1152 bp genomic DNA fragment from
Chlamydomonas CC-4533 was amplified by PCR using KOD hot start
DNA polymerase (Merck) and primers P11 and P12 (Supplementary
Data 12). To complement qer7, a 5755 bp fragment DNA fragment from
Chlamydomonas CC-4533 was amplified by PCR with Platinum superfii
DNA Polymerase (Thermo Fisher Scientific) and primers P13 and P14
(Supplementary Data 12). The PCR products were gel purified and
cloned into pRAM11877 by Gibson assembly78 for expression under
control of the PSADpromoter. Junctions and insertionwere sequenced
and constructs were linearized by EcoRV before transformation. Ele-
ven ng/kb of linearized plasmid79 mixed with 400μL of 1.0 × 107 cells
mL−1 were electroporated in a volume of 120mL in a 2-mm-gap electro
cuvette using a NEPA21 square-pulse electroporator (NEPAGENE,
Japan). The electroporation parameters were set as follows: Poring
Pulse (300V; 8ms length; 50ms interval; one pulse; 40% decay rate; +
Polarity), Transfer Pluse (20V; 50ms length; 50ms interval;fivepulses;
40% decay rate; +/- Polarity). Transformants were selected onto solid
agar plates containing 20μg/ml hygromycin and screened for fluor-
escence by using a Tecan fluorescence microplate reader (Tecan
Group Ltd., Switzerland). Parameters used were as follows: YFP (exci-
tation 515/12 nm and emission 550/12 nm) and chlorophyll (excitation
440/9 nm and 680/20 nm). Transformants showing high YFP/chlor-
ophyll value were further analyzed by real time qPCR.

Unless otherwise stated, LL conditions corresponded to 15 µmol
photonsm−2 s−1 while HL conditions corresponded to 300 µmol pho-
tonsm−2 s−1 of white light (Neptune L.E.D., France; see ref. 7 for light
spectrum).

DNA Isolation and genotyping of CLiP mutants
Total genomic DNA from CLiP mutants and corresponding wild-type
strain CC-4533 was extracted according to the protocol suggested by
CLiPwebsite (https://www.chlamylibrary.org/). Oneμl of the extracted
DNAwasused as a template for the PCRassays, using Phire Plant Direct
PCR polymerase (Thermo Fisher Scientific). To confirm the CIB1
insertion site in theCLiPmutants, gene-specific primerswere used that
anneal upstreamand downstreamof the predicted insertion site of the
cassette (primer pairs P3-P4, P7-P8, P9-P10, and P5-P6 for qer6, qer1,
qer7, and qer4 respectively; Supplementary Data 12). While all these
primers worked in DNA extracted from WT, they did not work in the
DNA extracted from the mutants, with the exception of qer4 (Supple-
mentary Fig. 5), therefore primers specific for the 5′ and 3′ ends of the
CIB1 Cassette were additionally used. All the primers used for geno-
typing were shown in Supplementary Data 12. We further confirmed

the disruption of the genes of interest by quantifying their mRNA
accumulation (Supplementary Fig. 5).

RNAseq analysis
For RNA sampling, CC-125 cells grown in TAP at 5 µmol photonsm−2 s−1

were transferred to HSM at 1 million cells mL−1 and were left to accli-
mate to the new medium for 24 h always at 5 µmol photonsm−2 s−1. At
time point 0, whilemaintaining the light intensity at 5 µmol photonsm
−2 s−1, cells were either supplied with 20mM of sodium acetate or
remained in HSM and were samples at t = 15, 240 and 1440min.
Additionally, at time points 240min and 1440min part of the cultures
(HSM and HSM supplied with acetate) were exposed to 300 µmol
photonsm−2 s−1 and were sampled after 15min and 60min exposure to
high light (AC experiment; Supplementary Data 1). In an independently
designed experiment phot and CC-125 cells acclimated for 24 h in HSM
and 5 µmol photonsm−2 s−1 at a cell density of 1 million cells mL−1, were
sampled right before and after 60min of exposure to 300 µmol pho-
tonsm−2 s−1 (PHOT experiment; Supplementary Data 1). Freshly col-
lected samples were lysed using Tri-reagent (Sigma). After double
chloroform extraction the aqueous phase was transferred to a RNeasy
Mini-Kit column (Quiagen) and processed according to the manu-
facturers guide. Libraries were generated using the TruSeq LT libraries
stranded mRNA protocol and sequenced on a Illumina HiSeq 4000
device.

RT-qPCR analysis
Total RNA was extracted using the RNeasy Mini Kit (Qiagen) and
treated with the RNase-Free DNase Set (Qiagen). 1μg total RNA was
reverse transcribed with oligo dT using Sensifast cDNA Synthesis kit
(Meridian Bioscience, USA). qPCR reactions were performed and
quantified in a Bio-Rad CFX96 system using SsoAdvanced Universal
SYBR Green Supermix (Bio-Rad). The primers (0.3μM) used for qPCR
are listed in Supplementary Data 13. A gene encoding G protein
subunit-like protein (GBLP)80 was used as the endogenous control, and
relative expression values relative to GBLP were calculated from three
biological replicates, each of which contained three technical repli-
cates. All primers using for qPCR (Supplementary Data 13) were con-
firmed as having at least 90% amplification efficiency. In order to
conform mRNA accumulation data to the distributional assumptions
of ANOVA, i.e. the residuals should be normally distributed and var-
iances should be equal among groups, Two-way analysis of variance
were computed with log-transformed data Y = logX where X is mRNA
accumulation81.

Immunoblotting
Protein samples of whole cell extracts (0.5 µg chlorophyll or 10 µg
protein) were loaded on 4–20%SDS-PAGE gels (Mini-PROTEANTGX
Precast Protein Gels, Bio-Rad) and blotted onto nitrocellulose
membranes. Antisera against LHCSR1 (AS14 2819, 1:15000dilution),
LHCSR3 (AS14 2766, 1:15000 dilution), ATPB (AS05 085, 1:15000
dilution) were from Agrisera (Vännäs, Sweden). Antiserum against
PSBS was from ShineGene Molecular Biotech (Shanghai, China)
targeting the peptides described in Ref. 9 (used at a dilution of
1:1000). ATPB was used as a loading control. An anti-rabbit horse-
radish peroxidase-conjugated antiserum was used for detection at
1:10000 dilution. Mouse monoclonal antibody against FLAG was
purchased from Sigma-Aldrich (F3165, St. Louis, MO, USA) and was
used at a dilution of 1:15000. An anti-mouse horseradish
peroxidase-conjugated antiserum (Jackson Immuno Research Eur-
ope LTD) was used as a secondary antibody for 3xFLAG immuno-
blotting (1:10000 dilution). The blots were developed with ECL
detection reagent, and images of the blots were obtained using a
CCD imager (ChemiDoc MP System, Bio-Rad). For the densito-
metric quantification, data were normalized with ATPB.

Article https://doi.org/10.1038/s41467-023-38183-4

Nature Communications |         (2023) 14:2687 11

https://www.chlamylibrary.org/


Fluorescence-based measurements
Fluorescence-based photosynthetic parameters weremeasured with a
pulse-modulated amplitude fluorimeter (MAXI-IMAGING-PAM, Heinz-
Waltz GmbH, Germany). Prior to the onset of the measurements, cells
were acclimated to darkness for 15min. Chlorophyll fluorescence was
recorded during 10min under 570 µmolm−2 s−1 of actinic blue light
followed by finishing with 10min of measurements of fluorescence
relaxation in the dark. A saturating pulse (200 msec) of blue light
(6000 µmol photonsm−2 s−1) was applied for determination of Fm (the
maximal fluorescence yield in dark-adapted state) or Fm’ (maximal
fluorescence in any light-adapted state). NPQ was calculated as (Fm—

Fm′)/Fm′ based on82; qE was estimated as the fraction of NPQ that is
rapidly inducible in the light and reversible in the dark.

CO2-dependent O2 evolution
The measurements were performed in accordance with83 with minor
modifications. Cells in photoautotrophic conditions (Sueoka’s high salt
medium; HSM75), shaken in Erlenmeyer flasks at 125 rpm and 23 °C were
shifted fromLL (overnight at 15 µmolm−2 s−1) to HL (4 h at 300 µmolm−2 s
−1) in order to induce the CCM. Cells were suspended in 4ml 25mM
HEPES-KOH buffer (pH 7.3), at 25 µg chlorophyll permL andwere briefly
sparged with nitrogen gas to remove the dissolved inorganic carbon
(Ci). The cells were then transferred to an oxygen respiration vial (Pyro
Science GmbH, Aachen, Germany) and were illuminated at 300μmol
photonsm−2 s−1 for about 10–20min, until no net oxygen evolution was
seen, an indication that the internal Ci was depleted. Ci concentration in
the cell suspension was then increased by stepwise injecting NaHCO3

with a microsyringe. O2 evolution was measured using a fiber optic
probe (FireStingO2, Pyro ScienceGmbH, Aachen, Germany). Cumulative
concentration of NaHCO3 after each addition were as follows: 25, 50,
100, 250, 500, 1000, 2000μM. K1/2(Ci), the Ci concentration needed for
half maximal rate of oxygen evolution, and Vmax were calculated by
non-linear curve fitting to the Michaelis-Menten equation, using Prism
Graph (GraphPad Software, LLC).

Statistics and reproducibility
Public and in-house generate RNAseq data contained three biological
replicates for each sampled condition except for the study of Zones
et al.38 hat reported two biological replicates per conditions. All other
experimental results presented in this study are based on three bio-
logical replicates as indicated in the respective sections. No statistical
methodwas used to predetermine sample size. No data were excluded
from the analyses. The experiments were not randomized. The Inves-
tigators were not blinded to allocation during experiments and out-
come assessment.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The in-house RNAseq data generated in this study (Supplemental Data
1) have been deposited to the GEO database under accession codes
GSE227473 (phot mutant screen) and GSE227281 (HSM and acetate
light stress time course).Other previously publishedRNAseqdata used
in this study38,39 are available in the GEO database under accession
codes GSE112394 and GSE71469. The consensus and PHOT-specific
GRN generated in this study are provided in edge list format in the
Supplemenary Information (Supplemental Data 3, Supplemental
Data 4). To allow easy access to the information, we developed an
R-shiny webtool that allows to query arbitrary TFs and target genes for
regulatory interactions. The R-shiny webtool can be accessed at
https://github.com/arendma/GRN_web84. The source data underlying
Figs. 1–5 and Supplementary Figs. 1–3, 5c, 6–10, 12–15 are provided as a
Source Data file. The Source Data file also contains uncropped and

unprocessed scans of the western blots of Figs. 2c and 3c, Supple-
mentary Figs. 1b and 15b. Exact p values are also included in this file. All
biological material described in this study is available upon
request. Source data are provided with this paper.

Code availability
The code used to infer the GRNs in this study is available at https://
github.com/arendma/GRN_code85.
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