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Abstract: 

This paper aims to implement the controllable 
deformation of a structure using Shape Memory 
Alloys (SMA) actuators. A sensorless 
displacement estimation method is proposed. 
This method is tested on a prototype composed 
of a disc, beams and SMA actuators.  
By measuring the variation of electrical 
resistivity in SMA springs, as a feedback signal 
in the closed-loop position control, the surface 
displacement is obtained without any external 
displacement sensor. The proposed method is 
validated by comparing the displacement values 
estimated by the electrical resistivity 
measurement with those measured by a laser 
sensor. The estimated displacement and the 
measured displacement follow the reference 
displacement with steady-state errors, 
respectively of 1.14% and 0.42%.  
 
Keywords: Shape Memory Actuator, Morphing 
Structure, Displacement Control, Self-Sensing, 
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1. Introduction  

The use of morphing structures is growing 
significantly. In aeronautics and wind turbine 
blade applications, morphing structures bring 
significant improvement in aerodynamic 
performance. In aeronautics, this concept is 
adopted to enhance aerodynamic performance by 
continuously varying the wings geometry during 
flight through the control of Shape Memory 
Alloys (SMA) components [1-2]. In addition, to 
improve efficiency, the use of morphing 
actuators based on SMA actuators allows to 
reduce drag, save fuel, and promote the design of 
lightweight structures. 

 
Shape Memory Alloys are smart materials that 
can be used as actuators and integrated into 
structures. The SMA activation allows 
modifying the shape of the structure in which it 
is embedded [3-6]. SMA actuators are 
characterized by very high energy density, silent 
operation and self-sensing capability [7-8]. SMA 
actuators can be divided into two types: one-way 
SMA actuators and two-way SMA actuators. A 
one-way SMA actuator needs an external force to 
be applied during the cooling phase to allow 
cyclic actuation. A two-way SMA actuator can 
produce a cyclic actuation without the need for 
an external force. In this research, a prototype is 
developed in order to implement a morphing 
structure with pre-stressed one-way SMA 
actuators. The required external force is applied 
by the structure to be deformed.   
 
Actuators based on SMAs have excellent 
potential in applications where weight, space, 
and noise are crucial factors, as in aerospace 
applications, robotic manipulations, and micro-
manufacturing [9]. Several applications can be 
cited, for instance, SMA human hand 
development [10] or reconfigurable aircraft 
wings [11]. SMA actuators can produce force to 
deform the structure in which they are inserted 
when heated. This heating can be obtained by 
Joule effect. SMA actuators recover considerable 
strains up to 8% [12].  
There are different methods to control SMA 
actuators using an external displacement sensor 
[13-17]. Direct control with the use of a 
displacement laser sensor is presented in [18], 
control with the use of temperature as a feedback 
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signal in [19], and indirect control displacement 
based on the SMA electrical resistance as a 
feedback signal in the control loop in [20-24].  
 
The use of electrical resistance (E.R.) as a sensor 
is investigated in a few references [25-29]. These 
studies focus on a SMA that undergoes a constant 
stress value. SMA electrical resistivity is affected 
by several factors such as stress, deformation, 
temperature, and phase transformation [30-35]. 
The models representing the relationship 
between the SMA electrical resistance and SMA 
displacement are presented in [36-38]. 
 
In the case studied in the present paper, the 
applied stress and strain are variable at the same 
time.  
 
In this paper, different control techniques for 
SMA actuators are implemented experimentally. 
The first one is based on a position feedback 
control with a PID controller. An accurate 
displacement control is demonstrated through 
step response and sinusoidal tracking. The 
second one is based on the SMA electrical 
resistance feedback to estimate the structure 
displacement. The goal is to eliminate the need 
for a position sensor. 
  
Section 2 describes the experimental setup and 
the structure on which the shape morphing is 
implemented. The implementation of PID 
control displacement of the studied structure 
using laser sensor displacement is presented in 
section 3. Section 4 shows the implementation 
and validation of a sensorless control loop 
displacement based on the SMA electrical 
resistance measurement. 
 

2. Studied Morphing Structure 

The studied structure is composed of a disc with 
four external beams and one central beam. The 
SMA actuators are connected between an 
external beam EB and the central one CB (see 
Figure 2). SMA spring actuators are used in our 
prototype. The constitutive model and position 
control of the shape memory alloy spring are 
presented in [39]. The characteristics of the SMA 
spring actuator are given in Figure 1 and Table 1.  

 
Figure 1: Illustration of the SMA spring parameters and 

corresponding characteristics. 
 

The SMA springs are pre-strained before being 
mounted into the prototype. The amplitude of the 
electric current in the SMA springs is set by the 
control system. The temperatures of the 
martensitic transformation of the SMA actuators 
should be chosen according to the climatic 
conditions of the geographical area where they 
will be used. 
 

Table 1: SMA spring parameters 

 
 T 

 
Figure 2: Experimental setup. 

 
The connection between the structure and the 
SMA actuators is made through cylindrical 
beams. The height of the beams allows to set the 
stiffness of the structure. The illustration of the 
complete experimental setup is shown in Figure 
3.   
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Figure 3: Illustration of the experimental setup 

 
The displacement reference signal is given via a 
graphical interface developed under the 
ControlDesk software. The displacement of the 
disc is obtained from a laser sensor KEYENCE 
LK-G152. The displacement is acquired through 
the Analog Digital Converter (ADC) of the 
dSPACE control card. The electric current and 
voltage of the SMA actuators are measured in 
order to deduce the SMA electrical resistance. 
The SMA spring actuators are connected and 
supplied in parallel. The positive terminal of the 
power supply is connected to one of the external 
beams, and the negative terminal of the power 
supply is connected to the central beam. The 
entire control hardware size can be minimized if 
a microcontroller is used [40].   
 

3. PID position control loop   

This section presents the implementation results 
of a structure displacement closed-loop (see 
Figure 4 and Figure 5). A classical position PID 
control loop is considered.  

 
Figure 4: General principle of the control system for 

structure displacement with SMA actuators 
 

The PID regulator is synthesized in order to 
address the following specifications: no 
overshoot of the reference value, steady-state 
error less than 1.2% and response time of 1 
second to reach 95% of the reference value. 

 

 
Figure 5: Block diagrams for control loop displacement: 

PID regulator  

 
Figure 6: Reference and measured disc displacement with 

PID controller: step (left) and sine (right) reference 
signals 

 
The response time at 5% of the system in order 
to follow a new reference (for example, to move 
from 0.5 mm to 0.6 mm) is equal to 1 second. The 
steady-state displacement error is 0.42%. Figure 
6 shows that the PID controller is able to follow 
a successive step and sine wave displacement 
reference in the absence of disturbance. The PID 
controller has been synthesized to have no 
overshoot, which is verified in Figure 6. The 
implemented PID regulator respects the 
controller specifications.  
 

4. Control loop displacement with electrical 
resistivity measurement  

The purpose of this part is to control the structure 
displacement by measuring the electrical 
resistance of the SMA, avoiding the laser 
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displacement sensor as in the previous part. The 
determination of the relationship between the 
structure displacement and the SMA electrical 
resistance (as is shown later in Figure 9) allows 
predicting the position of the structure without a 
position sensor. A displacement control loop 
using the measurement of the SMA electrical 
resistance as a feedback signal is implemented 
experimentally. The block diagram of this loop is 
shown in Figure 7.  
 

 

 
Figure 7: Displacement control loop using the SMA 

electrical resistance measurement 
 
In order to establish the relationship between 
resistance and displacement, the disc 
displacement is plotted as a function of the SMA 
electrical current and voltage (Figure 8).  

     

 
Figure 8: Disc displacement versus SMA electrical 

current (left) and voltage (right) 

 
At the starting point (point A in Figure 8), before 
heating, the displacement of the disk is zero. By 
increasing the electric current, the SMA 
component heats up, and this leads to the 
deformation of the structure and consequently to 
the displacement of the disk along the Z-axis. At 
the end of the heating (point B in Figure 8), the 
disc displacement is about 1.1 mm. During 
cooling, the disc returns to its initial position with 
zero displacements (point A in Figure 8). Figure 
8 shows the hysteretic behavior of the structure 
displacement as a function of the electric current 
through the SMA actuator (left) and as a function 
of the SMA electric voltage. 
 
Figure 9 shows the variation of the disc 
displacement as a function of the electrical 
resistance of the shape memory alloy, deduced 
from the results of Figure 8. A small hysteresis 
between heating and cooling is observed. This 
curve is used to estimate the displacement 
without using the laser sensor. 

 
Figure 9: Disc displacement versus SMA electrical 

resistance 
 
Using curve fitting tools in Matlab, the curve of 
Figure 9 is fitted. The goal is to find the 
mathematical model that will be implemented in 
the control loop of Figure 7. A polynomial 
function at the order six is chosen (see equation 
(1)). DH is the disc displacement during the 
heating cycle. R represents the SMA electrical 
resistance in the heating phase. The coefficients 
of equation (1) are given in Table 1. 
   
DH = p1.ܴହ+ p2.	ܴସ+ p3.	ܴଷ+ p4.ܴଶ+ p5.R+ p6   (1) 
                                                              



5 
 

 
Table 1: coefficients of the polynomial function for the 

heating phase 
p1 p2 p3 p4 p5 p6 

-1.2	10ିହ  
 m/Ωହ 

4.0 10ିଷ 
m/Ωସ 

-5.7	10ିଵ 
 m/Ωଷ 

4.0 10ଵ 
m/Ωଶ 

-1.4   
m/Ω 

1.9 
m 
 

 
Similarly, the equation for the relationship 
between displacement and electrical resistance 
during the cooling part is given by equation (2). 
DC is the disc displacement in the cooling phase. 
R represents the SMA electrical resistance in the 
cooling phase. The coefficients of equation (2) 
are given in Table 2. 
 
DC = q1.	ܴସ + q2.	ܴଷ + q3.	ܴଶ + q4.R + q5   (2)                                                           
 

Table 2: coefficients of the polynomial function for the 
cooling phase 

q1 q2 q3 q4 q5
-2.0 10ିହ   

m/Ωସ 
5.0 10ିଷ 

m/Ωଷ 
-5.3	10ିଵ 

m/Ωଶ 
2.4 10ଵ   

m/Ω 
- 4.1   

m 

 
Equations (1) and (2) are implemented into the 
displacement control loop. Experimental tests are 
conducted on the prototype to evaluate the 
validity and performance of the SMA 
displacement control using electrical resistance. 
 

 

Figure 10: Reference and estimated disc displacement 
with electrical resistance model 

 
Figure 10 illustrates the real-time estimated 
displacement using the SMA electrical resistance 
measurement for a continuous step reference. It 
is observed that the estimated displacement 
matches with the displacement reference with a 
steady-state error displacement of 1.14%. To 
validate this control loop, the disc displacement 
obtained with the laser sensor and the estimated 
displacement with the same reference are 
compared. Figure 10 shows that the estimated 
displacement and the measured displacement 
follow the reference displacement with steady-
state errors, respectively of 1.14% and 0.42%.  
 

5. Conclusion  

A mechanical structure composed of a disc and 
five cylindrical beams actuated by four SMA 
springs is used to demonstrate the 
implementation of a controlled deformable 
surface. Two control techniques are investigated 
and implemented to control the structure 
displacement. The first one is a classical PID 
position control. The second one is based on the 
use of SMA electrical resistance as the feedback 
signal. To implement this latter control, the 
relationship between the disc displacement and 
the SMA electrical resistance is identified 
experimentally and used as a self-sensing feature. 
This relationship is integrated into the global 
control loop to predict the disc displacement 
without an external sensor. The control loop is 
implemented for the control of displacement 
values in the order of 1 mm. The control loop 
with laser displacement has an excellent time 
response performance and a slightly better 
steady-state error (0.42 %) compared to the 
sensorless approach (1.14%). The real-time 
sensorless control system using the electrical 
resistance of the SMA actuators as the feedback 
signal is implemented and validated. This control 
system is applied to a morphing structure in order 
to control the surface shape of the developed 
prototype.  
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