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We present laboratory experiments on turbulence in a linearly stratified fluid driven
by an ensemble of internal gravity waves which approaches statistical homogeneity and
axisymmetry. In a way similar to several recent experimental works, nonlinearities develop
through the establishment of a set of internal wave modes at discrete frequencies, when
the forcing amplitude is increased. We show that the most energetic of these modes are
resonant eigenmodes of the fluid domain. The discretization of the energy in frequency
and wave number associated to the emergence of these modes prevents the flow from
approaching a regime described by the weak/wave turbulence theory, in which a forward
cascade carried by a statistical ensemble of weakly nonlinear waves in an infinite domain
forms an energy continuum in the frequency and wave-number spaces. We then show that
the introduction of slightly tilted panels at the top and at the bottom of the fluid domain
allows to inhibit the emergence of the discrete wave modes. In this new configuration, the
nonlinear regime results in a continuum of energy over one decade of frequencies which
is mainly carried by internal gravity waves verifying the dispersion relation. We therefore
achieved a turbulent flow approaching a three-dimensional internal wave turbulence regime
with no discretization of the energy in the frequency and wave-number domains. These
results constitute a significant step forward in the search of the laboratory observation of a
fully developed weakly nonlinear internal-gravity-wave turbulence.

DOI: 10.1103/PhysRevFluids.8.054802

I. INTRODUCTION

A stable stratification of the fluid density deeply modifies the features of hydrodynamic turbu-
lence [1,2], which in the first place becomes anisotropic. A major change is the fact that stratification
allows the propagation of waves in the bulk of the fluid [3–5]. These waves are called internal
gravity waves and result from the restoring action of the buoyancy force. They are dispersive and
anisotropic and possess peculiar features: a wavelength independent of the wave frequency, group
and phase velocities normal to each other, and a direction of propagation set by the wave frequency.
In the model case of a linearly stratified fluid, the inviscid dispersion relation writes [3–5]

σ = ±N
k⊥√

k2
⊥ + k2

‖
, (1)

where σ is the wave angular frequency, and k⊥ and k‖ are the norm of the components of the wave
vector k normal and parallel to gravity, respectively. The buoyancy frequency N = √−g/ρ0 dρ/dz
is set by the intensity of the density gradient at rest, dρ/dz < 0, and the acceleration of gravity g
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(with the vertical coordinate z oriented opposite to gravity). Equation (1) is obtained from Navier-
Stokes equations under the Boussinesq approximation which consists in restricting to weak density
variations with respect to the reference density ρ0 [4,5].

Together with Earth’s rotation, the stratification in density of geophysical fluids is a key and
ubiquitous ingredient of the oceanic and atmospheric turbulent dynamics [6–9]. In this context, a
major feature of global oceanic and atmospheric models is the use of parametrizations to account
for the “small” scales [9–12], at which the fluid stratification is in general expected to play a major
role. Progress in the modeling of these “small-scale” dynamics constitutes a long-standing lever to
improve oceanic and atmospheric simulations, which has motivated the search for a fundamental
understanding of “stratified turbulence.”

Turbulence in a stably stratified fluid can develop in several different regimes, which can coexist
over different ranges of scales. This complexity is notably related to the fact that stratified fluids
allow the propagation of internal waves, which can coexist and interact with vortex structures. To
anticipate which regime will be at play, one should consider three independent nondimensional
numbers: the classical Reynolds number Re = u�/ν, the Froude number Fr = u/N� and the nondi-
mensional frequency σ ∗ = σ/N , where u and σ are the characteristic velocity and evolution rate
of the flow structures at scale � and ν is the fluid kinematic viscosity. Moreover, since stratified
turbulence is anisotropic, several variants of these nondimensional numbers can be relevant to
properly account for the different roles of the horizontal u⊥ and vertical u‖ velocity components
and of the horizontal �⊥ and vertical �‖ scales.

From a fundamental point of view, a regime which has received a lot of attention is the so-called
“strongly stratified turbulence” (SST) [1,13]. In this regime, the flow is dominated by horizontally
elongated “pancake” eddies (with �‖ � �⊥ and u‖ � u⊥) which are shearing each other in the
vertical direction. Phenomenological predictions for this regime, expected to produce a direct
cascade of energy from large to small scales, have been put forward for the 1D spatial kinetic energy
spectra [13–16]: A Kolmogorov-like scaling for the spectrum as a function of the horizontal wave
number, E (k⊥) ∼ ε2/3k−5/3

⊥ , where ε is the mean kinetic energy dissipation rate (per unit mass), and
a scaling involving the buoyancy frequency N for the spectrum as a function of the vertical wave
number, E (k‖) ∼ N2k−3

‖ . This vertical spectrum is often referred to as the “saturation spectrum”
[17,18] as a consequence of an early justification for it based on the concept of “saturated” internal
gravity waves at the onset of breaking [14]. Nevertheless, a more global justification of the whole
SST phenomenology on the basis of a self-similarity of the system of dynamical equations has
later been proposed during the 2000’s [13,15,19] and can also be found from the “critical bal-
ance” phenomenology [16]. The SST regime is expected for large “horizontal” Reynolds numbers
Re⊥ = u⊥�⊥/ν � 1 and low “horizontal” Froude numbers Fr⊥ = u⊥/N�⊥ � 1 provided their
combination Reb = Re⊥Fr2

⊥, often called the buoyancy Reynolds number, is large [13]. Besides,
it is expected that the vertical integral scale of the turbulence, i.e., the vertical thickness of the
“pancake eddies,” dynamically adjusts to the so-called buoyancy scale u⊥/N [1,13,19,20], which
process can for instance result from the zigzag instability discovered by Billant and Chomaz [21,22].
This vertical scale selection eventually leads the “vertical” Froude number Fr‖ = u⊥/N�‖ to be of
order 1 at the integral scale, this result being also true on a scale-by-scale basis. The predictions
for the spatial kinetic energy spectra in this strongly stratified regime are consistent with the
results of several direct numerical simulations [13,15,18,23,24]. Besides, the predictions of the
SST phenomenology are also remarkable because they seem to explain observations at small and
mesoscales in the atmosphere [13,14,25–28] as well as at small scales in the oceans (see Ref. [25]
and references therein).

In the SST phenomenology, the rate of evolution σ of the turbulent structures at scale �⊥ is
driven by the nonlinear frequency u⊥/�⊥ [1,19] such that the turbulence is strongly nonlinear, even
if the horizontal Froude number Fr⊥ = u⊥/N�⊥ is very small. In the following, we still consider
flows with large Reynolds numbers and small Froude numbers at the injection scale. However, the
flows will be weakly nonlinear: This implies a separation between the linear timescale 1/σ and the
nonlinear timescale �/u � 1/σ which is a characteristic of “wave turbulence” [29] (we simply use
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here the typical velocity u of the waves of wavelength � noticing that, for a plane internal wave, we
have the relations u⊥/u‖ = k‖/k⊥ = (σ ∗−2 − 1)1/2 with 0 � σ ∗ � 1). This timescale separation is
equivalent to having a Froude number Fr = u/N� much smaller than the nondimensional frequency
σ ∗ = σ/N which is itself bounded by 1 for internal waves. In this situation, another fundamental
regime of stratified turbulence is expected: the “wave turbulence” regime [29]. In this weakly
nonlinear regime, the energy cascade is carried by a statistical ensemble of weakly nonlinear
internal gravity waves. The energy is transferred, on statistical average, from large to small scales
at a rate much lower than the wave frequencies. Because of the quadratic nonlinearity of the
Navier-Stokes equation, this forward energy cascade is expected to result from triadic resonant
interactions between internal waves [29,30].

As a consequence, in parallel to the SST regime, theoretical research has emerged and is still
active on the wave turbulence regime in stratified fluids (also called weak turbulence) [30–35].
An underlying motivation is the understanding of the oceanic dynamics and energy spectra
at small scales, whose most famous empirical description is the Garrett-and-Munk small-scale
high-frequency spectrum E (k‖, σ ) ∼ k−2

‖ σ−2 [36,37]. This spectrum is thought to result from the
nonlinear dynamics of internal gravity waves [37] producing a forward energy cascade (which
might eventually feed the above-mentioned SST cascade of energy observed at even smaller oceanic
scales [25]). The wave turbulence theory (WTT) is appealing because of its analytical nature and
because it has already been successfully applied to some other wave systems, such as capillary
surface waves [38] and inertial waves in rotating fluids [39]. Theoretically, we still expect, in the
wave turbulence regime, a direct and anisotropic energy cascade from large to small scales but
with different scaling laws (than for SST) for the rate of energy transfer and the energy spectra
[29,32]. Following the canonical derivation of the wave turbulence formalism, one predicted in
the limit k⊥ � k‖ a constant flux solution with a 2D spatial kinetic energy spectrum scaling as
E (k⊥, k‖) ∼ √

Nε k−3/2
⊥ k−3/2

‖ [32,33]. Nevertheless, the implementation of the WTT in the case
of stratified fluids later revealed to be more complex and is still the subject of delicate analytical
questions regarding the convergence of the collision integral [35]. In practice, more advanced
theoretical works suggested a family of solutions for the 2D spatial kinetic energy spectrum [30,34]
among which the scaling law E (k⊥, k‖) ∼ k2−a

⊥ k−1
‖ with a 	 3.69 would seem to be the option to

prefer considering convergence conditions for the collision integral [30,35]. Remarkably, this last
prediction (with the exponent a 	 3.69) is relatively close to the Garrett-and-Munk spectrum (which
corresponds to the case a = 4). In this complex theoretical framework, experiments and numerical
simulations promoting the emergence of a turbulent flow in the regime of internal wave turbulence
are of strong interest to guide future theoretical developments and improve our understanding of the
oceanic dynamics.

Stratified turbulence obtained from energy injection in weakly nonlinear internal gravity waves
has nevertheless only recently been achieved experimentally and numerically. This is possibly due
to the fact it implies large facilities in the experimental case (to simultaneously reach large Re
and small Fr) and important computational resources in the numerical case (notably because of
the linear/nonlinear timescale separation). For instance, Le Reun et al. [40] studied via direct
numerical simulations of the Boussinesq equations a turbulent state in which the energy is indirectly
injected in weakly nonlinear internal waves through a parametric instability driven by a periodic
tidal deformation. Le Reun and coworkers report a scenario different from the one observed in
the SST regime in previous simulations [13,15,18,24]: they observe an energy cascade carried
almost only by internal waves, i.e., structures verifying the wave dispersion relation. They report
1D spatial energy spectra with scaling laws in k−3

⊥ and k−3
‖ , and a dominant transfer of energy

toward frequencies smaller than the forcing frequency σ ∗
0 . In addition to these features, a weakly

energetic power-law behavior of the temporal energy spectrum, compatible with an exponent −2, is
observed at frequencies larger than the forcing frequency σ ∗

0 . This power law, which is observed
only when σ ∗

0 is significantly smaller than 1 (the limit frequency for internal waves) could be
the sign of a dynamics similar to that behind the oceanic Garrett-and-Munk celebrated spectrum
[37].
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On the experimental side, Savaro et al. [41] recently conducted experiments in a stratified fluid,
where energy is injected in large-scale internal waves in the frequency range 0.65 � σ ∗

0 � 0.75 at
large Reynolds number, low Froude number and buoyancy Reynolds number ranging from 1 to 30.
At moderate forcing amplitude, the authors report the emergence of a series of internal wave eigen-
modes of the fluid domain at subharmonic frequencies (below σ ∗

0 ). Then, as the forcing amplitude
is increased, a continuum of energy at subharmonic frequencies, compatible with an ensemble of
propagating internal waves, develops and tends to progressively take over the eigenmodes in the
energy budget. As this transition proceeds, eddies and mixing events seem to emerge at small scales
reducing the extension of the energy cascade toward small scales and suggesting that the turbulent
flow is close to transition to a strongly nonlinear regime.

In a subsequent paper, Rodda et al. [42] report experiments in a modified version of the
setup of Savaro et al. [41] where the shape of the water tank has been changed from square to
pentagonal. A second change is that the forcing injects now energy in large-scale internal waves
at a lower nondimensional frequency σ ∗

0 , in the range 0.16 � σ ∗
0 � 0.38. These experiments led,

in the nonlinear regime, to a temporal kinetic energy spectrum dominated by a series of peaks at
harmonic frequencies of the forcing frequency σ ∗

0 . Remarkably, when the forcing Froude number
is further increased, this discrete spectrum superimposes with a continuum of energy at frequencies
larger than the forcing frequency σ ∗

0 which is compatible with a power law σ−2 and therefore
with the Garrett-and-Munk spectrum. This emerging power-law behavior, which also reminds the
observations of Le Reun et al. [40], extends here beyond the limit frequency of internal waves
σ = N whereas Le Reun et al. observed a clear cutoff at σ = N in their spectrum. According to
Rodda et al., this extension of the σ−2 power law above the buoyancy frequency N might indicate
that the flow is evolving toward a strongly nonlinear turbulence.

Another remarkable recent experimental contribution is the internal wave attractor experiment
by Davis et al. [43]. Davis and coworkers use a wave maker to force a large-scale internal gravity
wave at the specific frequency σ ∗

0 = 0.62. The experiments are conducted in a trapezoidal cavity
which is nearly 2D, i.e., thin in the horizontal direction normal to the vertical trapeze. Due to the
unusual reflection laws of internal waves, this shape leads the forced wave to focus on a “wave
attractor” [44–46]. This base flow consists in a mono-frequency self-similar internal wave beam
resulting from an equilibrium between viscous dissipation and wave focusing at reflection on the
tilted surface [46–48]. As the forcing amplitude is increased, nonlinear effects emerge first through
a classical triadic resonance instability of the primary wave beam producing new internal waves
at two subharmonic frequencies [5]. Then, secondary triadic interactions lead to the emergence, in
the temporal energy spectrum, of a series of discrete energy peaks at subharmonic frequencies (see
Ref. [49] for details) in a way similar to Savaro et al. [41]. At large forcing amplitude, Davis et al.
[43] report a behavior compatible with k−3 for the 1D spatial kinetic energy spectrum averaged over
all directions (in the vertical plane), which result is compatible with the observations of Le Reun
et al. [40].

To conclude, although these experimental and numerical works tend to approach an internal
gravity wave turbulence regime, it is still uncertain whether the observed flows are consistent with
the regime described by the WTT framework. This gap might be due to a still too strong influence of
finite size effects, viscous effects and/or strong nonlinearities in the experiments and the numerics.

In this article, we report results obtained with an experimental setup designed to generate a
weakly nonlinear turbulence regime in a linearly stratified fluid. Our forcing device injects energy
in an ensemble of internal gravity waves at frequency σ ∗

0 = 0.94 whose statistics tends to be
homogeneous and axisymmetric (around the vertical), two assumptions made when deriving WTT
[30,32,34,35]. This forcing device has recently allowed an observation in the laboratory of an inertial
wave turbulence regime [39] matching quantitatively the theoretical predictions of WTT for rotating
fluids [50].

In a first series of experiments, we report, similarly to Savaro et al. [41] and Davis et al. [43],
the emergence in the nonlinear regime of a set of subharmonic internal wave modes at discrete
subharmonic frequencies. The most energetic of these modes reveal to be internal wave eigenmodes
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FIG. 1. Experimental setup. Twenty-four horizontal cylinders oscillate vertically, i.e., along the z axis,
inside a glass tank filled up to a height of 62 cm with a linearly stably stratified fluid of buoyancy frequency
N 	 1 rad/s.

of the fluid domain following from the finite size of our system. By discretizing the energy in the
frequency and wave-number domain, this feature prevents any comparison with WTT which is
built under the assumption of an ensemble of random and propagative waves in an infinite domain
which forms an energy continuum in the frequency and wave-number spaces. Nevertheless, we
then present a slight but crucial modification in the shape of our fluid domain which succeed in
preventing the emergence of the fluid domain eigenmodes. In this new configuration, the nonlinear
regime gives birth to a continuum of energy over typically one decade of subharmonic frequencies.
We show that this energy continuum is carried by structures at scales smaller than the forced wave
mode and verifying the internal wave dispersion relation. The flow observed at the largest forcing
Reynolds number reveals horizontal and vertical 1D spatial kinetic energy spectra compatible with
a k−3 behavior.

II. EXPERIMENTAL SETUP

The experimental setup, sketched in Fig. 1, consists of 24 horizontal cylinders oscillating
vertically inside a glass tank of 105×105 cm2 base filled up to a height of 62 cm with a linearly
stratified fluid of buoyancy frequency N close to 1 rad/s. This forcing device is similar to that of the
rotating fluid experiments reported in Refs. [39,51]. The cylinders, which have a diameter d = 4 cm,
are evenly organized on three “parallels” of an 80-cm-diameter virtual sphere centered in the tank.
Each parallel contains eight cylinders which are arranged as follows: 18-cm-long cylinders are
regularly distributed on the virtual sphere equator at a height of 36 cm above the bottom of the tank,
and 15-cm-long cylinders are regularly distributed on the two parallels placed at a vertical distance
of 19 cm above and below the virtual sphere equator. Each cylinder is actuated in a sinusoidal
vertical oscillating translation of amplitude A and angular frequency σ0 = 0.94 × N , with a random
initial phase set independently for each cylinder. In the linear regime, at small forcing amplitude
A, an oscillating cylinder produces self-similar internal gravity wave beams, which propagate in
the four directions normal to the cylinder axis and which make an angle cos−1(σ0/N ) 	 20◦ with
respect to the vertical [52–56]. Taken all together, the geometrical arrangement of our forcing device
aims to produce, in the central region of the experiment, a flow made of an ensemble of internal
gravity waves which approaches statistical homogeneity and axisymmetry around the vertical axis.

We fabricate the linearly stably stratified fluid by means of the classical double-bucket method
[57,58]: The first bucket is filled with a NaCl-water mixture whereas the second bucket is filled
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FIG. 2. Left panel: Vertical profile of the density ρ before (black line) and after (red line) an experiment
conducted with a forcing amplitude A = 2 mm and which lasted 300 periods of the forcing device. The vertical
coordinate is noted z and z = 0 corresponds to the bottom of the experimental tank. The horizontal dashed
lines show the vertical limits of the region imaged by the camera. Right panel: Corresponding vertical profiles
of the buoyancy frequency N = √−g/ρ0 dρ/dz.

with water. Using this method, we obtain an experimental buoyancy frequency N = √−g/ρ0 dρ/dz
close to 1 rad/s, where ρ0 is the average density of the stratified fluid and g the gravitational
acceleration. To measure the vertical density profile of the fluid, we employ a Mettler Toledo
conductivity probe (InLab 731-ISM-2m) mounted on a motorized translation stage. The probe is
translated vertically at a velocity of 20 mm/min from the tank bottom to the fluid free surface.
During this translation, we record the conductivity and temperature that we convert into a measure
of the fluid density using a calibration done with a densimeter (Anton Paar DMA35).

Figure 2 shows the vertical profile of the density ρ (left) and of the corresponding buoyancy
frequency N (right) before and after an experimental run of 300 periods of the forcing T = 2π/σ0

at forcing amplitude A = 2 mm. Figure 2 reveals that both density profiles ρ(z) are close to a linear
behavior except for two layers of typical thickness of 2 to 3 cm at the top and at the bottom of
the tank. In the region where the velocity measurements are taken, which has a vertical extent of
22 cm (identified by the two horizontal dashed lines in Fig. 2), the buoyancy frequency N is nearly
uniform, slowly decreasing from 1.03 to 0.96 rad/s with increasing height z. In Fig. 2, it is clear that
the density and buoyancy frequency profiles before and after the experiment are roughly identical
which reveals that no significant mixing is induced by the flow. As we increase the forcing amplitude
A, we observe that the density and buoyancy frequency profiles after the experiments start to slightly
deviate from their initial profiles. At the largest explored forcing amplitude A = 12 mm, we observe
maximum local variations of the static density profile of about 0.5‰. These variations correspond
to relative changes �N/N = 2

√
〈(Nafter − Nbefore )2〉z/〈Nafter + Nbefore〉z of the buoyancy frequency

ranging from 1% at A = 2 mm to 4% at A = 12 mm (〈 〉z stands for the spatial average over the
vertical extent of the velocity measurement region).

During the experiments, the two components ux and uz of the velocity field are measured in a
vertical plane at the center of the virtual sphere using a particle image velocimetry (PIV) system
(see the PIV field in Fig. 1). The fluid is seeded with 10-μm tracer particles and illuminated by a
140-mJ Nd:YAG pulsed laser. Successive images covering an area of �x × �z = 289 × 218 mm2

are recorded by a 2360 × 1776 pixels camera. PIV cross-correlation between successive images
is applied using 32 × 32 pixels interrogation windows with 50% overlap, providing velocity fields
with a spatial resolution of 1.96 mm. The image acquisition rate is adjusted, depending on the flow
typical velocity, from 24 images per forcing period at A = 2 mm to 84 images at A = 12 mm. The
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TABLE I. Parameters of the experiments reported in Sec. III A. A is the cylinders amplitude of motion.
Re f = Aσ0d/ν and Fr f = Aσ0/Nd are the forcing Reynolds and Froude numbers, Rerms = urmsλ0/ν, Frrms =
urms/Nλ0 and Reb = RermsFr2

rms, the Reynolds, Froude and buoyancy Reynolds numbers based on the flow
root-mean-square (rms) velocity urms and λ0 = 15 cm, the typical wavelength of the flow mode at the forcing
frequency σ0 = 0.94 N . d = 4 cm is the cylinders diameter, ν = 10−6 m2/s the average kinematic viscosity of
the fluid and N = 1 rad/s the average buoyancy frequency.

A (mm) Re f Fr f urms (mm/s) Rerms Frrms Reb

2 75 0.05 0.7 105 0.005 0.002
4 150 0.09 1.6 240 0.011 0.027
8 301 0.19 2.7 405 0.018 0.131
12 451 0.28 4.1 615 0.027 0.459

PIV acquisitions start 30 forcing periods T = 2π/σ0 before the forcing device is triggered, and then
last between 330 T and 830 T depending on the experimental run.

The parameters of the experiments reported in the next section (Sec. III A) are shown in Table I.
We define the forcing Froude number by Fr f = Aσ0/Nd and the forcing Reynolds number by Re f =
Aσ0d/ν, where A is the cylinders amplitude of motion, d the cylinders diameter, N the buoyancy
frequency, σ0 = 0.94 N the forcing angular frequency, and ν = 10−6 m2/s the average kinematic
viscosity of the fluid. In Table I, we also report the flow Reynolds number Rerms = urmsλ0/ν and
Froude number Frrms = urms/Nλ0 based on the flow root-mean-square (rms) velocity urms and on
the typical wavelength λ0 = 15 cm of the flow mode at the forcing frequency σ0 (extracted from
temporal Fourier filtering of the measured velocity field at σ0). The rms velocity is computed as
urms = 〈√〈u2

x + u2
z 〉t 〉x, where 〈 〉t stands for the temporal average and 〈 〉x the spatial average over

the PIV region. As we will see in the following section, the flow mode at the forcing frequency
has a wavelength spectrum typically ranging from 10 to 20 cm. The value λ0 = 15 cm used in
Table I to compute Rerms and Frrms is therefore no more than an order-of-magnitude aiming at
being representative of the forced mode. It is worth to note that the range of lengthscales of the
forced mode observed in our experiments is consistent in order of magnitude with estimates from
the theory of self-similar internal wave beams [53,59] which are commonly produced by oscillating
cylinders [52–56,59].

For the sake of completeness, we also report in Table I the values of the buoyancy Reynolds
number Reb = RermsFr2

rms. As mentioned in the introduction, Reb is a key parameter for the
“strongly stratified turbulence” regime [13,18,24]. For this strongly nonlinear regime, when Reb

is large, a turbulent cascade from large to small scales indeed develops, whereas, when Reb is
small, no cascading process is retrieved, and energy dissipation mainly occurs at the injection scale.
We highlight however that the importance of the buoyancy Reynolds number Reb for the weakly
nonlinear regimes of stratified turbulence, for which nonlinear interactions between internal waves
dominate the flow dynamics, is yet to be established.

III. EXPERIMENTAL RESULTS

A. Nonlinear emergence of standing subharmonic modes

In this section, we report on experiments conducted at four forcing amplitudes A (see Table I)
aiming to explore the emergence of nonlinear effects in the flow. First, in Fig. 3, we show the
temporal power spectral density E (σ ∗) of the velocity field as a function of the normalized
frequency σ ∗ = σ/N . Depending on the experimental run, these spectra are computed over 200
to 400 forcing periods T = 2π/σ0, in the statistically steady state of the flow. At the smallest
forcing amplitude A = 2 mm, we observe a dominant peak at the driving frequency σ ∗

0 = 0.94,
which carries almost all of the flow kinetic energy. We also observe a secondary peak at σ ∗ = 0
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FIG. 3. Temporal power spectral density E (σ ∗) of the measured velocity field as a function of the nor-
malized frequency σ ∗ = σ/N for the experiments of Table I. A vertical shift by a factor of 100 is introduced
between successive spectra for better visualization.

(i.e., σ ∗ � 0.03) which represents only a tiny fraction (of about 0.1%) of the total kinetic energy.
Previous research on stratified fluids has shown [43,56,60–69] that such (quasi)steady flow could
stem from streaming and Stokes drift nonlinear processes, which may develop in the bulk of the
flow or in the vicinity of the wavemakers. The rest of the kinetic energy (of the order of 0.1%)
is associated to harmonics of the forced mode which is also a common feature of internal gravity
wave experiments [42,43,64,65,68,70–72]. The harmonics cannot here propagate as internal waves
because their nondimensional frequency σ/N is larger than 1.

In Fig. 4, we show a typical snapshot of the velocity field at A = 2 mm, which we have Fourier
filtered at the forcing frequency σ ∗

0 = 0.94. This velocity field is accompanied by two panels
showing the temporal evolution of the profiles of the vertical velocity uz along a horizontal line
and a vertical line. As expected, the velocity profiles show that the forced flow is composed of
an ensemble of traveling and coherent wave beams. We also note that the flow exhibits vertically
elongated structures and that the magnitude of the vertical velocity is on average larger than that of
the horizontal velocity. These two features are in qualitative agreement with the dispersion relation
of internal gravity waves at the considered nondimensional frequency σ ∗

0 = 0.94 (see Ref. [41]). To
be more specific, the velocity snapshots of the forced mode, such as the one of Fig. 4, reveal typical
horizontal scales λx = 2π/kx of the order of 15 ± 5 cm and typical vertical scales λz = 2π/kz of the
order of 25 ± 5 cm. This anisotropy in scales is consistent with the internal wave dispersion relation

which predicts that
√

k2
x + k2

y /|kz| = σ ∗
0 /(1 − σ ∗2

0 )1/2 	 2.8 for waves at nondimensional frequency

σ ∗
0 = 0.94. The difference between the typical experimental ratio λz/λx 	 1.7 and the previous

theoretical prediction can be explained by the fact the wave beams emitted by the oscillating
cylinders are propagating in vertical planes that make an angle (either of ϕ = 30◦ or of ϕ = 60◦
depending on the considered cylinder, see Fig. 1) with the velocity measurement vertical plane.
Thus, we expect to observe, in the velocity measurement plane, horizontal wavelengths larger (by a
factor 1/ cos ϕ) than that in the vertical planes in which the waves propagate.

Looking back to Fig. 3 and increasing the forcing amplitude to A = 4 mm, we observe the
emergence of two tiny subharmonic peaks in the temporal kinetic energy spectrum, at two nondi-
mensional frequencies σ ∗

a = 0.116 and σ ∗
b = 0.824 which are in temporal triadic resonance with

the forced mode frequency. These subharmonic modes are very weak, having an energy density
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FIG. 4. Velocity field Fourier filtered at the forcing frequency σ ∗
0 = 0.94 for the experiment at amplitude

A = 2 mm. The main figure shows a typical snapshot of the velocity field. This field is accompanied by two
panels showing the temporal evolution of the profiles of the vertical velocity uz along a horizontal line (bottom
panel) and along a vertical line (right panel) which are highlighted in the velocity field by dashed lines. In this
figure and the following, the origin of the vertical coordinate z has been redefined to match the bottom of the
PIV measurement region.

four orders of magnitude smaller than that of the forced mode at σ ∗
0 = 0.94. This prevents us from

conducting a proper study of the spatial structure of the velocity fields Fourier-filtered at σ ∗
a and σ ∗

b ,
which turns out to be polluted by measurement noise. Nevertheless, it is likely that the mechanism
explaining the emergence of these two subharmonic energy peaks is the triadic resonance instability
(TRI) of the forced waves at σ0, a process that has been extensively studied theoretically, exper-
imentally, and numerically [61,66,67,73–78]: The TRI drains the energy of the primary wave at
frequency σ0 and wave vector k0 toward couples of subharmonic waves at frequencies σi and σ j and
wave vectors ki and kj in temporal, σi + σ j = σ0, and spatial, ±ki ± kj = k0, resonances with the
primary wave. The detailed features of the secondary waves produced by the TRI have been shown
to depend on the topology of the primary wave and of the fluid domain (plane wave, finite width
wave beam, standing mode, wave attractor). Previous research has also reported that the instability
depends on the primary wave Reynolds number Re and, in particular, that it is triggered only beyond
a threshold in Re in the general case. Here, in the experiment at forcing amplitude A = 4 mm, the
flow is most likely close to the onset of the triadic resonance instability.

We proceed by considering the experiment at forcing amplitude A = 8 mm. Before discussing its
temporal spectrum in the statistically steady state reported in Fig. 3, it is worth to study its evolution
during the transient regime. To this end, we plot in the left panel of Fig. 5 the chart of the temporal
energy spectrum E (σ, t ) of the velocity field as a function of time t and of the normalized frequency
σ ∗ = σ/N . This time-frequency spectrum is computed using a sliding time window of �T = 60 T
where T = 2π/σ0 is the forcing period. In the right panel of Fig. 5, we show three cuts of this chart,
corresponding to the temporal spectra at t = 120 T, 480 T , and 720 T after the start of the forcing.

054802-9



LANCHON, MORA, MONSALVE, AND CORTET

FIG. 5. Time-frequency kinetic energy spectrum for the experiment at A = 8 mm (see Table I). (left)
Logarithm of the temporal energy spectra E (σ, t ) normalized by its maximum as a function of time t and
of the normalized frequency σ ∗ = σ/N . t = 0 corresponds to the start of the forcing. The spectrum is
computed using a sliding time window of 60 T . (right) Corresponding temporal energy spectra at different
times, t = 120 T, 480 T , and 720 T , highlighted by vertical dashed lines in the left panel.

It is worth to note that the temporal spectra have here a significantly lower frequency resolution than
those of Fig. 3 because they are computed over short time windows of 60 T .

In Fig. 5, we first observe the growth of the energy peak associated to the forced mode at σ ∗
0 =

0.94 which reaches a quasi-stationary state less than thirty forcing periods T after the start of the
forcing (at t = 0). Second, shortly after the start of the forcing, we can see the growth of two wide
subharmonic bumps temporally resonant with the forcing frequency and with their maxima found at
subharmonic frequencies σ ∗

c 	 0.31 and σ ∗
d 	 0.63 (see the temporal spectrum at t = 120 T in the

right panel of Fig. 5). These bumps seem to reach a somewhat quasi-stationary maximum at time
t 	 80 T before they start to decrease around t = 250 T .

The emergence of these two wide subharmonic energy bumps is reminiscent of the scenario of
the triadic resonance instability observed for inertial waves in rotating fluids [39,48,79,80]. In the
case of rotating fluid experiments, this “two-wide-subharmonic-bumps” state corresponds to the
steady state of the flow when the forcing Reynolds number is moderately larger than the threshold
of the TRI. Moreover, it has been shown that, when the Reynolds number is further increased, this
state can progressively transform into a continuum of energy in the inertial wave frequency domain
whose features are in quantitative agreement with the weak turbulence theory for inertial waves in
rotating fluids [39].

Here, contrary to the case of rotating fluids, the two wide subharmonic bumps have disappeared
in the spectrum in the steady state. In Fig. 5, we indeed see that 300 T after the start of the forcing,
the wide subharmonic bumps progressively vanish while an ensemble of sharp subharmonic peaks
progressively establishes over typically the following 200 T . This regime characterized by several
sharp peaks in the temporal energy spectrum seems to be the steady state of the flow and corresponds
to the spectrum reported in Fig. 3. The physical process behind this transition of the nonlinear state
of the flow is an open question. However, as discussed in the following, it reveals the attraction
of the subharmonic energy to discrete resonance frequencies associated to eigenmodes of the fluid
domain.

Returning to the analysis of the statistically steady state of the flow (see Fig. 3), the experiment at
A = 8 mm still exhibits a dominant peak at the forcing frequency σ ∗

0 = 0.94 in its temporal kinetic

054802-10



INTERNAL WAVE TURBULENCE IN A STRATIFIED …

TABLE II. Normalized frequencies σ ∗
i associated to the dominant peaks found in the temporal energy

spectrum of the experiment at A = 8 mm in Fig. 3.

σ ∗
1 σ ∗

2 σ ∗
3 σ ∗

4 σ ∗
5 σ ∗

6 σ ∗
7 σ ∗

8 σ ∗
0

0.094 0.846 0.179 0.761 0.276 0.665 0.361 0.580 0.940

energy spectrum. However, as already said, several other peaks emerged at specific subharmonic
frequencies (σ ∗ < σ ∗

0 ), which are labeled as σ ∗
i with i = 1, 2, 3 . . . (see Fig. 3). Besides these sharp

peaks, the spectrum at A = 8 mm also reveals the presence, over the whole subharmonic frequency
range, of a weak but continuous energy background, whose energy content slowly increases as the
frequency σ ∗ increases. Finally, for frequencies beyond the peak at σ ∗

0 = 0.94, the energy spectrum
background rapidly decays in amplitude, with the noticeable presence of weakly energetic peaks.

A closer inspection of the temporal energy spectrum in the subharmonic range (σ ∗ < σ ∗
0 ) shows

that each sharp peak with a frequency below σ ∗
0 /2 has a twin peak at the symmetric frequency

with respect to σ ∗
0 /2 (see Table II). This result advances that these couples of peaks are in temporal

triadic resonance with the forced mode. For instance, it can easily be verified in Fig. 3 (and also
in Table II) that σ1 + σ2 = σ0, σ3 + σ4 = σ0, σ5 + σ6 = σ0, σ7 + σ8 = σ0. The temporal spectrum,
however, reveals an even richer dynamics, as we observe that these subharmonic peaks fulfill ad-
ditional temporal triadic resonance conditions within themselves, e.g., σ1 + σ3 = σ5, σ1 + σ6 = σ4,
σ3 + σ6 = σ2, σ3 + σ3 = σ7, σ3 + σ8 = σ4. On the one hand, it is likely that the primary mechanism
at the origin of (at least some of) the subharmonic peaks is the triadic resonance instability of
the waves at the forcing frequency σ0 [61,66,67,73–77], in a regime where it couples to the flow
boundaries to select specific discrete resonance frequencies. On the other hand, and as already
reported in previous experimental works [41,42,49,61,63], the observed richness in temporal triadic
resonances necessarily implies that additional triadic interactions are at play. This could be the TRI
of secondary waves, the nonlinear interactions of two modes yielding a third mode [78,81] or the
growth of harmonics of a mode (e.g., the mode at σ7 = 2σ3) [42,78,82]. Finally, it is also worth to
mention that recent experiments [42,49] have shown that triadic interactions between two discrete
wave modes may also lead, under certain conditions, to the forcing of oscillating modes which do
not follow the dispersion relation. In Ref. [42], these modes are called bound waves by analogy with
processes observed for surface waves [83].

The steady state observed in our experiments with a temporal spectrum dominated by subhar-
monic discrete energy peaks is reminiscent of previous experiments in which internal waves are
forced at a specific frequency and at large scale [41,43,49,61,63]. Interestingly, in two of these
works [41,61], the authors report that some of the spectral energy peaks correspond to standing
wave modes of the fluid domain. For a parallelepipedic fluid domain with a square base, which is
the geometry relevant to our experiments, standing eigenmodes of internal gravity waves have a
simple spatiotemporal structure [41,84]

ux ∝ sin(kxx) cos(kyy) cos(kzz) cos(σ t ), (2)

uy ∝ cos(kxx) sin(kyy) cos(kzz) cos(σ t ), (3)

uz ∝ cos(kxx) cos(kyy) sin(kzz) cos(σ t ), (4)

with the wave-vector components taking discrete values kx = πnx/L, ky = πny/L and kz = πnz/H .
Here, L is the side length of the square base and H the height of the fluid domain, and, nx, ny and
nz take integer values accounting for the number of half-wavelengths in each cartesian direction.
The standing modes are found for discrete frequencies verifying the internal wave dispersion
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FIG. 6. (left) Typical snapshot of the horizontal velocity ux Fourier filtered at frequency σ ∗
1 = 0.094 for the

experiment at amplitude A = 8 mm. The field is accompanied by two panels showing the temporal evolution
of the profile of the horizontal velocity ux along a horizontal line (bottom panel) and along a vertical line
(right panel) which are highlighted in the main figure by dashed lines. (right) Same panels for the velocity field
Fourier filtered at σ ∗

2 = 0.846.

relation [41,84]

σ ∗2 =
(
n2

x + n2
y

)
/L2(

n2
x + n2

y

)
/L2 + n2

z /H2
. (5)

To assess the presence of standing modes in our experiments, we report in Fig. 6 typical snapshots
of the horizontal velocity field at A = 8 mm filtered at the peak frequencies σ ∗

1 = 0.094 (left) and
σ ∗

2 = 0.846 (right), which are in temporal triadic resonance with the forced waves. As in Fig. 4,
we plot for each frequency, in addition to the velocity field, the temporal evolution of the velocity
profiles along a specific horizontal line and a specific vertical line. From the left panels, we observe
that the velocity field at σ ∗

1 = 0.094 exhibits a large scale horizontally elongated structure with a
typical vertical wavelength of the order of 20 cm. At first sight, the presence of nodes and antinodes
in the velocity profiles of Fig. 6 (left) suggests that the peak at σ ∗

1 is dominated by a standing wave,
which correlates well with the structure of a fluid domain eigenmode of indices nx = 1 and nz = 6.
Assuming ny = 0 and injecting these index values into the theoretical frequency expression (5) we
recover σ ∗ 	 0.098, which is in good agreement with the experimental peak frequency σ ∗

1 = 0.094.
Although the index value ny = 0 cannot be directly confirmed from our PIV measurements, which
do not give us access to the flow structure in the y direction, picking other values for ny leads
to frequencies in clear discrepancy with the experimental peak frequency σ ∗

1 : for instance, ny = 1
leads to σ ∗ 	 0.138 and ny = 2 to σ ∗ 	 0.215. Thus, it seems reasonable to consider that the peak
at σ ∗

1 = 0.094 is dominated by the fluid domain eigenmode (n(1)
x = 1, n(1)

y = 0, n(1)
z = 6). It is worth

to note that this agreement between our data and the eigenmode theory for a parallelepiped is rather
satisfactory considering that the presence of the oscillating cylinders and the bars holding them
renders our fluid domain more complex than a parallelepiped.

Likewise, we find evidence suggesting that the peak at σ ∗
2 = 0.846 is associated to an eigenmode

of the fluid domain. The right panels of Fig. 6 indeed reveal a checkerboard pattern with regular
nodes and antinodes. This mode has a spatial structure compatible with indices n(2)

x = 10 and n(2)
z =

4, but contrary to the mode at σ ∗
1 , it is unclear which index to pick for ny: for instance, injecting
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FIG. 7. (Left) Typical snapshot of the horizontal velocity ux Fourier filtered at frequency σ ∗
3 = 0.179 for the

experiment at amplitude A = 8 mm. The field is accompanied by two panels showing the temporal evolution
of the profile of the horizontal velocity ux along a horizontal line (bottom panel) and along a vertical line (right
panel) which are highlighted in the main figure by dashed lines. (Right) Same panels for the velocity field
Fourier filtered at σ ∗

4 = 0.761.

n(2)
y = 3, 4 or 5 (along with n(2)

x = 10 and n(2)
z = 4) into Eq. (5) yields σ ∗ 	 0.839, 0.846, or 0.855,

respectively, values which are all close to the experimental peak frequency σ ∗
2 .

The analysis we presented for the couple of subharmonic peaks at (σ ∗
1 , σ ∗

2 ) can be conducted for
the other couples of peaks highlighted in Fig. 3, which are in temporal resonance with the forced
waves. For the couple of peaks at frequencies σ ∗

3 = 0.179 and σ ∗
4 = 0.761, the velocity fields and

profiles shown in Fig. 7 reveal structures roughly compatible with eigenmodes of the fluid domain.
In fact, as we consider less energetic peaks in the series of σ ∗

i (with i from 3 to 8), we observe that the
node-antinode structure of the velocity fields becomes less regular, a feature that can already be seen
for the couple (σ ∗

3 , σ ∗
4 ). This observation might reveal perturbations of the standing eigenmodes by

waves associated to the continuous energy background, and whose influence grows relatively as
we consider less energetic peaks. Nevertheless, as stated above, it is also possible that some of
the subharmonic energy peaks in the spectrum at A = 8 mm might not directly be associated to
eigenmodes but result from the nonlinear interaction between two discrete modes.

Next, we consider the experiment at forcing amplitude A = 12 mm. Although not shown here,
the transient regime of the flow is quite similar to that of the experiment at A = 8 mm (illustrated
in Fig. 5): First, two wide subharmonic spectral bumps emerge before vanishing around t = 300 T
after the start of the forcing, while several sharp energy peaks grow until saturation to build the
steady state of the flow. In the temporal spectrum in the steady regime (Fig. 3), we first observe
that the dominant peak couples at the frequencies σ ∗

i with i = 1, 2, 3, 4 seen at A = 8 mm are still
present at A = 12 mm. On the contrary, the peaks associated to frequency couples (σ ∗

5 , σ ∗
6 ) and

(σ ∗
7 , σ ∗

8 ) are no longer observable at A = 12 mm, whereas new energetically subdominant peaks
are found in the frequency range between σ ∗

3 and σ ∗
4 . In parallel, the continuous background energy

density observed in the frequency range σ ∗ � σ ∗
0 becomes more energetic at A = 12 mm than at

A = 8 mm relatively to the discrete sharp peaks. These observations are comparable with those of
Savaro et al. [41] who propose that the background continuum of energy in frequency results from
a random ensemble of traveling internal waves.
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B. Discussion

In summary, the results of the previous section mainly show that the nonlinear statistically steady
flow produced by our setup is composed, in addition to the internal waves at the forcing frequency
σ0, of multiple wave modes found at discrete subharmonic frequencies (i.e., lower than σ0). These
modes are involved in several triadic resonances with the forced mode and between themselves. Our
analysis suggests that they are wave eigenmodes of the fluid domain, at least for the most energetic
of them. This scenario is consistent with several previous experimental studies aiming to produce
an internal wave turbulence by forcing waves at a specific frequency [41,43,49,61,63].

Besides, we find that the transient regime between the start of the forcing and the establishment of
the flow steady state is more complex than a simple progressive growth of the discrete subharmonic
energy peaks in the temporal spectrum. Indeed, during a first transient stage, which typically lasts
several hundreds of forcing periods, the time-frequency spectrum reveals the growth of two wide
subharmonic bumps in temporal resonance with the forced waves. These bumps later vanish while
the eigenmodes associated to the steady state energy peaks slowly establish. A similar scenario
has been reported during the transient of nonlinear internal gravity wave attractor experiments in
Refs. [43,49,61,63]. In Ref. [61], the initial transient subharmonic modes are moreover shown to be
spatially localized internal waves produced by the TRI of the forced waves.

Nevertheless, our observation at early times of two relatively wide subharmonic bumps is
somewhat different from previous experimental studies, which have overall reported, at early times,
couples of transient subharmonic modes associated to sharp energy peaks [43,49,61,63,64,66,67].
This difference with our observations might be related to the fact our forced mode is nearly
homogeneous and statistically axisymmetric whereas the cited works involve quasi-2D (except in
Ref. [64]) and localized forced waves.

In a way similar to Savaro et al. [41], the standing eigenmodes coexist in our experiments with
a weakly energetic background which is continuous in frequency and found in the subharmonic
range. According to Savaro et al. [41], this energy background is associated to a random ensemble
of traveling internal gravity waves. In our experiments as well as in Ref. [41], the level of this
continuum of energy in frequency grows more rapidly than that of the eigenmodes when the
forcing amplitude is increased. This suggests that, as we increase the Reynolds number, the flow
is starting to transition toward a wave turbulence-like regime, characterized by a continuum of
energy in the internal wave frequency domain and by weak finite-size effects. It is worth to note
that the competition between traveling modes and standing modes of internal gravity waves has
been proposed to be relevant in astrophysical systems such as in the radiative zone of stars [85] and
in stratified planetary cores [86].

As stated in the Introduction, our original purpose is to achieve a weakly nonlinear internal wave
turbulence regime approaching the assumptions under which the WTT applied to stratified fluids has
been derived [29,30,32,34,35]. A key assumption is the infinite domain limit, which implies that the
scales of the waves involved in the energy cascade are small compared to the system size, and that
no domain eigenmodes leading to a discretization of the energy in the frequency and wave-number
spaces emerge.

Given that in our experiments, as the forcing Reynolds number is increased, we observe that the
spectral peaks associated to the eigenmodes are progressively engulfed by an increasing energy con-
tinuum in frequency, a natural way forward is to explore even larger forcing amplitudes. However,
as discussed in Sec. II, further increasing the forcing amplitude results in the onset of significant
irreversible mixing of the fluid stratification hinting the emergence of strong nonlinearities. Since
we want to restrict our study to weakly nonlinear regimes in a fluid with a steady linear and stable
stratification, we abstain from further increasing the forcing amplitude and leave the study of the
mixing processes to future works.

An alternative strategy to approach a wave turbulence regime would be to inhibit the emergence
of the fluid domain eigenmodes so that the transient initial nonlinear regime that we evidenced,
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TABLE III. Parameters of the experiments “with tilted planes” reported in Sec. III C. A is the cylinders
amplitude of motion. Re f = Aσ0d/ν and Fr f = Aσ0/Nd are the forcing Reynolds and Froude numbers,
Rerms = urmsλ0/ν, Frrms = urms/Nλ0, and Reb = RermsFr2

rms, the Reynolds, Froude, and buoyancy Reynolds
numbers based on the flow rms velocity urms and λ0 = 15 cm, the typical wavelength of the flow mode at
the forcing frequency σ0 = 0.94 N . d = 4 cm is the cylinders diameter, ν = 10−6 m2/s the average kinematic
viscosity of the fluid and N = 1 rad/s the average buoyancy frequency.

A (mm) Re f Fr f urms (mm/s) Rerms Frrms Reb

2 75 0.05 0.9 135 0.006 0.005
4 150 0.09 1.7 255 0.011 0.033
6 226 0.14 2.5 375 0.017 0.104
8 301 0.19 3.1 465 0.021 0.199
12 451 0.28 3.9 585 0.026 0.395
16 602 0.38 4.5 675 0.030 0.608

hopefully composed of random propagative waves, becomes the steady state of the flow. An attempt
to achieve this goal is presented in the next section.

C. One step closer to the internal wave turbulence regime

In the following, we report experiments (see Table III) conducted using the same configuration
as for the experiments presented in Sec. III A. We however introduced one important modification:
at the top and at the bottom of the fluid domain, we added rectangular panels inclined at an angle
α = 4◦ with respect to the horizontal. This new experimental configuration is sketched in Fig. 8.
The two panels are horizontally centered in the fluid domain and the directions in the horizontal
plane of their respective tilt are normal to each other. The top panel surface is of 40 × 40 cm2 and
the one of the bottom panel of 60 × 60 cm2.

Internal gravity waves follow anomalous reflection laws on inclined solid boundaries and their
wavelength is modified during reflection (except for vertical and horizontal walls) [87,88]. This is a

FIG. 8. Sketch of the modification of the experimental setup. We introduced two square panels inclined at
an angle α = 4◦ with respect to the horizontal. The two panels are horizontally centered in the fluid domain,
one at the top and one at the bottom. The top panel, of 40 × 40 cm2, and the bottom panel, of 60 × 60 cm2,
are both placed in the region where the fluid is stratified, i.e., outside of the 2 to 3 cm mixed layers at the very
top and bottom of the fluid domain. The tilt directions of the two panels in the horizontal plane are normal to
each other: the bottom panel is tilted in the x direction whereas the top panel is tilted in the y direction. The
oscillating cylinders are not shown here for sake of clarity. Their spatial arrangement has not been modified
and is identical to that of Fig. 1.
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FIG. 9. Temporal power spectral density of the velocity field E (σ ∗) as a function of the normalized
frequency σ ∗ = σ/N for the experiments with the tilted planes at several forcing amplitudes A (see Table III).
A vertical shift by a factor of 100 is introduced between successive spectra. We also report from Fig. 3 the
spectra of the experiments “without tilted plane.” The spectra for the new experimental configuration “with
tilted planes” are plotted as black thick lines whereas those of the previous series are reported as red thin lines.

consequence of their peculiar dispersion relation σ ∗ = sin θ , which relates the wave nondimensional
frequency σ ∗ to the angle θ between the wave group velocity, along which the energy propagates,
and the horizontal. For a reflection on a sloping wall, the ratio of the wavelengths of an incident
wave and its reflected wave is equal either to γ or 1/γ (depending on the fact the wave is going
down or up the slope) with

γ =
∣∣∣∣ sin(θ − α)

sin(θ + α)

∣∣∣∣, (6)

where α is the angle of the sloping wall with the horizontal.
By introducing two tilted planes with crossed orientations, we aim to distinguish the geometry of

our fluid domain enough from a box with only vertical and horizontal walls to prevent the emergence
of standing eigenmodes [45,84]. Nevertheless, at the same time, we select a relatively weak tilt
angle, α = 4◦, to limit the contribution of the tilted planes to the energy transfers between spatial
scales during reflections (driven in this case by a linear process). From Eq. (6), we can see that the
wavelength modification factor γ during a reflection on a tilted plane depends on the frequency
of the wave. At the largest nondimensional frequency in the wave domain σ ∗ = 1, there is no
wavelength modification and γ = 1, whereas at σ ∗ = sin α (i.e., θ = α) the wavelength change
during a reflection is dramatic with γ = 0. For our experimental configuration where α = 4◦, this
critical reflection condition is observed for σ ∗ = sin α 	 0.07. We note, however, that with our
choice for a weak angle α, the change of wavelength during a reflection remains moderate over
most of the wave frequency range.

It is worth to note that fluid domains provided with a (single) tilted plane have also been
considered in previous works, to trigger the emergence of attractors of internal or inertial waves
[43,45,46,48,61,67,89]. At variance with our configuration, the tilt angle α of the plane in these
studies is large, except in Ref. [89] where it is smaller than the forced wave angle θ , but still not
very small (23◦).

In Fig. 9, we show the temporal power spectral density E (σ ∗) of the velocity field as a function
of the normalized frequency σ ∗ = σ/N for the experiments with the tilted planes (Table III). For
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FIG. 10. Logarithm of the time-frequency kinetic energy spectrum E (σ ∗, t ) for the experiments at A =
8 mm, without tilted plane (left panel, same figure as Fig. 5) and with tilted planes (right panel). The time-
frequency spectra are normalized by their maximum as a function of time t and of the normalized frequency
σ ∗ = σ/N . t = 0 corresponds to the start of the forcing. The spectra are computed using a sliding time window
of 60 T .

comparison, we also report the spectra (of Fig. 3) for the experiments in the original configuration
without tilted plane. The comparison between both datasets reveals that the spectra of the tilted
plane experiments exhibit a dominant peak at the driving frequency σ ∗

0 = 0.94 with a comparable
amplitude to that of the experiments without tilted plane. Also, the energy peak associated to the
quasi-steady flow at σ ∗ � 0.05 (and its evolution with the forcing amplitude) is alike for both series,
with and without tilted planes. On the contrary, the energy spectra of the nonlinear experiments with
tilted planes at A � 6 mm show a remarkably different behavior over the subharmonic frequency
range σ ∗ < σ ∗

0 : The discrete sharp peaks associated to eigenmodes of the fluid domain and their
interactions have almost completely disappeared. They have actually been replaced by a couple
of wide subharmonic bumps in temporal triadic resonance with the forced mode at σ ∗

0 . These
subharmonic bumps are very similar to those observed during the early transient of the experiments
without tilted plane. Their spectral width in nondimensional frequency broadens from about 0.15 to
0.30 as the forcing amplitude increases from A = 6 mm to 12 mm. By further increasing the forcing
amplitude to A = 16 mm, the subharmonic bumps almost completely transform into a continuum of
energy in frequency, spread over the whole subharmonic range σ ∗ < σ ∗

0 .
For the sake of completeness, let us briefly discuss the behavior of our temporal energy spectrum

at frequencies (slightly) larger than the forcing frequency σ0 = 0.94 N . We already mentioned that
the recent works of Le Reun et al. [40] and Rodda et al. [42] revealed temporal spectra decaying as
a power-law of exponent −2 at frequencies larger than the forcing frequency (a behavior extending
up to N in Ref. [40] and to typically 2N in Ref. [42]). On the contrary, the decay of the temporal
kinetic energy spectrum observed at σ > σ0 in our experiments does not resemble a power-law and,
if we nevertheless try to fit one over the range σ0 < σ < 2N , is best fitted by a power-law decay
exponent around −4 (estimates for A = 12 and 16 mm, with or without tilted planes).

In Fig. 10, we show the time-frequency spectra of the measured velocity field for the two
experiments at A = 8 mm without tilted plane (on the left) and with tilted planes (on the right).
These spectra are computed using a sliding time window of 60 T , where T = 2π/σ0 is the forcing
period (the left panel is identical to Fig. 5). During the first 150 T after the start of the forcing (at
t = 0), the transient regime is very similar for the two experiments, with the progressive growth of
two wide bumps of energy around subharmonic frequencies, σ ∗

c ∼ 0.3 and σ ∗
d ∼ 0.65, in resonance
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FIG. 11. Snapshots of the horizontal component ux of the velocity field Fourier filtered at frequencies
σ ∗ = 0.29, 0.39, 0.55, and 0.65, for the experiment with tilted planes at amplitude A = 16 mm. In each panel,
the dashed lines are tilted of the angles θ = sin−1(σ ∗) with respect to the horizontal. These lines indicate the
directions along which internal waves at frequency σ ∗, and with their wave vector in the measurement plane,
propagate.

with the forcing frequency σ ∗
0 = 0.94. As already noticed in the discussion of Fig. 5, the wide

subharmonic bumps progressively disappear beyond t = 200 T for the experiment without tilted
plane (left panel), while sharp peaks associated to eigenmodes slowly grow until saturation. On the
contrary, for the experiment with the tilted planes (right panel), the couple of subharmonic bumps
saturates in amplitude around t = 150 T and then seems to correspond to the statistically steady
state of the flow.

In conclusion, Figs. 9 and 10 show that the introduction of two slightly tilted planes at the top
and at the bottom of our fluid domain successfully prevents the establishment of energetic standing
eigenmodes found at discrete subharmonic frequencies. As a consequence, the nonlinear flow state
involving two wide subharmonic bumps, which is only transient in the experiments without tilted
plane, becomes the statistically stationary state in the experiments with tilted planes. This efficiency
of the tilted planes to prevent the emergence of fluid domain eigenmodes is observed for all the
nonlinear experiments of the series with tilted planes.

We now focus on the experiment with tilted planes at the largest forcing amplitude A = 16 mm,
whose features suggest that the flow could be in a wave turbulence regime. For this experiment,
we indeed observe a continuum of energy over almost the whole subharmonic frequency range
σ ∗ < σ ∗

0 = 0.94 in conjunction with the absence of discrete sharp energy peaks (Fig. 9). In the
sequel, we try to assess the validity of this conjecture by characterizing the nature of the flow modes
observed in the subharmonic continuum of energy of the experiment at A = 16 mm. In Fig. 11, we
report snapshots of the velocity field Fourier filtered at four frequencies in the subharmonic range,
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σ ∗ = 0.29, 0.39, 0.55, and 0.65. In each of these velocity fields, a preferential tilt angle, which is
increasing with the considered nondimensional frequency, seems to dominate the flow structure.
The dispersion relation of internal gravity waves, σ ∗2 = (k2

x + k2
y )/(k2

x + k2
y + k2

z ), actually predicts
that waves at frequency σ ∗ will be invariant in a direction tilted by the angle θ = ± sin−1(σ ∗) with
respect to the horizontal (which direction is not necessarily in the velocity field measurement plane).
As a guide for the eye, we therefore added two dashed lines inclined by this theoretical angle θ in
each snapshot of Fig. 11. These lines indicate the direction along which waves at frequency σ ∗ and
propagating in the measurement plane are expected to be invariant. A good agreement is found in
Fig. 11 between the tilt shown by the theoretical dashed lines and the one of the experimental planes
of constant phase.

In aggregate, the velocity fields of Fig. 11 are compatible with an ensemble of internal waves
with a nearly spatially homogeneous statistics. Besides, we do not identify here any spatially
regular structure reminiscent of standing wave modes. The wavelengths of the subharmonic modes
shown in Fig. 11 typically range from 3 to 10 cm. These lengthscales are significantly smaller than
the wavelengths of the forced mode and of the eigenmodes of the fluid domain observed in the
experiments without tilted planes (reported in Sec. III A), which are both found in the range from
10 to 30 cm.

Complementary to the velocity snapshots of Fig. 11, we report in Fig. 12 the spatiotemporal
kinetic energy spectrum E ′(kx, kz, σ

∗) for the same experiment and for the same four frequencies
σ ∗ = 0.29, 0.39, 0.55, and 0.65 [see Appendix A for details on the calculation of E ′(kx, kz, σ

∗)].
In each panel of Fig. 12, the dashed lines represent the dispersion relation |kz| = |kx|(1/σ ∗2 − 1)1/2

of internal gravity waves that are invariant in the y direction, i.e., with ky = 0. In the general case,
plane internal waves verify the dispersion relation |kz| = (k2

x + k2
y )1/2(1/σ ∗2 − 1)1/2 and will be

associated in Fig. 12 to energy in the two angular sectors defined by |kz| � |kx|(1/σ ∗2 − 1)1/2.
Nevertheless, we show in Appendix B that, even in the case of an ensemble of internal gravity
waves with an axisymmetric distribution of wave vectors, we expect the spectrum E ′(kx, kz, σ

∗) to
be dominated by energetic spots close to the 2D dispersion relation |kz| = |kx|(1/σ ∗2 − 1)1/2, in a
way similar to a flow composed only of waves propagating in the (x, z) measurement plane (ky = 0).

In each panel of Fig. 12, we see that most of the energetic regions are found close to the 2D
dispersion relation (ky = 0), which observation is fully compatible with subharmonic flow modes
composed of internal gravity waves. The energetic regions typically span a wave number range
(in k/2π units) from 0.05 to 0.25 cm−1 which corresponds to lengthscales in the range from 4 to
20 cm. We also observe a slight tendency for the energetic regions to spread toward lower scales for
decreasing frequencies in agreement with the observation of the velocity snapshots of Fig. 11.

In conclusion, we have shown in this section that introducing slightly tilted planes at the top
and at the bottom of our water tank prevents the emergence of eigenmodes of the fluid domain in
the nonlinear regime. Instead, when increasing the forcing amplitude we observe the progressive
emergence of a continuum of energy over the whole subharmonic frequency range which is
compatible with a statistically homogeneous ensemble of propagating internal gravity waves. For
the experiment at the largest considered forcing amplitude A = 16 mm, the mode at the forcing
frequency corresponds to 70% of the total flow kinetic energy and the subharmonic continuum of
energy, over the range 0.05 � σ ∗ � 0.84, to about 17%. The rest of the energy is mainly associated
to the energy peak at zero frequency (8% of the kinetic energy in the range σ ∗ � 0.05). This means
that about 87% of the total flow kinetic energy is carried by an ensemble of internal gravity waves
continuously distributed in frequency over typically one decade.

D. Low-frequency mode

As we just noticed in the previous section, despite our flow is largely dominated by internal
waves, the slow mode associated to the energy peak at zero frequency in the temporal energy
spectra is starting to carry a significant part of the energy at the largest forcing amplitude. We
therefore briefly characterize this mode in this section. In the left panel of Fig. 13, we plot the
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FIG. 12. Normalized spatiotemporal kinetic energy spectrum E ′(kx, kz, σ
∗) for the experiment with tilted

planes at A = 16 mm for four values of the nondimensional frequency, σ ∗ = 0.29, 0.39, 0.55, and 0.65,
corresponding to the velocity fields in Fig. 11. These frequency values are highlighted in Fig. 9 with blue dots.
In each panel, the dashed lines represent the dispersion relation |kz| = |kx|(1/σ ∗2 − 1)1/2 of internal waves at
frequency σ ∗ and with ky = 0, i.e., propagating in the vertical measurement plane.

measured velocity field time-averaged over 200 forcing periods in the statistically steady regime of
the experiment at A = 16 mm. This field shows nearly horizontally invariant layers of horizontal
velocity which are shearing each other in the vertical direction. Such a structure perfectly agrees
with the expectations from the linearized Boussinesq equations at zero frequency σ ∗

0 = 0 [and the
internal wave dispersion relation (1)] which predict horizontally invariant structures of horizontal
velocity. The vertical thicknesses of the horizontal layers observed in Fig. 13 (left) are in the range
from 5 to 10 cm.

The emergence of a slow flow mode that we observe here in an experiment where energy is
injected in internal waves, with horizontally invariant layers of horizontal velocity, is reminiscent of
the experiments of Rodda et al. [42] (presented in the introduction). Remarkably, Rodda et al. also
report the velocity field of their slow mode in two horizontal planes, which allow them to show that
each horizontal layer observed in the vertical plane actually corresponds to a large eddy of vertical
axis and with a size of the order of the size of the water tank. We cannot definitely confirm that
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FIG. 13. (Left) Velocity field U = 〈u〉t time-averaged over 200 forcing periods in the statistically steady
regime of the experiment at A = 16 mm with the tilted planes. The color map shows the horizontal velocity
component Ux . (Right) Amplitude U of the time-averaged velocity field as a function of the square of the
forcing amplitude A2 for the series of experiments with the tilted planes (in log scale). The straight line
illustrates the scaling exponent +1. The amplitude U is computed as U =

√
〈U2〉x where 〈 〉x stands for the

spatial average over the PIV region.

the scenario is identical in our case. Nevertheless, it is very likely. Indeed, direct observations of
the surface of our flow clearly confirm the presence of a large horizontal vortical circulation of the
surface layer of the fluid at the size of the water tank.

As highlighted by Rodda et al. [42], the slow mode we observe in our experiments forced by
internal waves is reminiscent of the vertically sheared horizontal flow (VSHF) which emerges in
direct numerical simulations of strongly stratified turbulence [17,23,90–93]. In these homogeneous
turbulence simulations, the VSHF, which results from inverse energy transfers from the injection
scale, is allowed to be strictly horizontally invariant thanks to the periodic boundary conditions.
Obviously, this is not the case in experiments in a water tank where the most horizontally invariant
mode that can emerge is the large-scale vortical mode we observe.

The mode at zero frequency of our experiments can also result from nonlinear processes directly
affecting the periodic flow at the forcing frequency. Such processes have indeed often been reported
in periodically forced stratified fluid experiments or numerical simulations where they may take
place either in the bulk of the flow [60,62,69] or in the vicinity of the wavemakers [56,64,65]. In
some of these works, the nonlinear process has moreover been identified to be of streaming type
[60,64,69] or of Stokes drift type [62]. Steady-streaming and Stokes drift take place in periodic flow
with a spatially inhomogeneous amplitude and result in the production of a steady flow proportional
to the square of the base flow velocity [60,62,94].

To test this scaling, we plot in the right panel of Fig. 13, the spatial rms velocity of the
time-averaged velocity field as a function of the square A2 of the amplitude of the cylinders
oscillations in our experiments with tilted planes. Fig. 13 (right) reveals a behavior compatible
with a linear scaling law and therefore with a quadratic nonlinear process, such as steady streaming
or Stokes drift, affecting the base flow produced by the oscillating cylinders. Nevertheless, a more
thorough experimental and theoretical study is necessary to draw clear conclusions on the nonlinear
mechanism at the origin of the mean flow in our experiments, which study is out of the scope of this
article.
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FIG. 14. One-dimensional spatial kinetic energy spectra as a function of the horizontal wave number kx

(left) and the vertical wave number kz (right) for the experiments with the tilted planes at different forcing
amplitudes, A = 2, 4, 6, 8, 12 and 16 mm from bottom to top curves. To quantify the flow anisotropy, we also
report in the left panel, as a thin blue dashed-dotted curve, the kz-spectrum for the experiment at A = 16 mm
(i.e., the same spectrum as the one in red thick line in the right panel).

E. Kinetic energy spatial spectra

Having retrieved hints of the premises of a wave-turbulence like regime in our series of ex-
periments with the tilted planes, it is interesting to look in Fig. 14 at the spatial power spectral
densities of the measured velocity field for these experiments (Table III). All these spectra are
one-dimensional (1D), either as a function of the horizontal wave number kx or of the vertical
wave number kz. This means one recovers the average kinetic energy of the (measured) velocity
field when these 1D spectra are integrated over kx or kz, respectively. We estimate these spectra
by computing the 1D spatial Fourier transform of the instantaneous two-point velocity correlation,
along x or z, using the Wiener-Khinchin theorem before taking the temporal and spatial average
(over the remaining spatial direction).

In the left panel of Fig. 14, we show the 1D spatial kinetic energy spectra as a function of
the horizontal wave number kx for the different values of the forcing amplitude. For the linear
experiment at the lowest amplitude, A = 2 mm, the energy of the flow is gathered in horizontal
wave numbers kx/2π below 0.13 cm−1 and the spectrum rapidly decays at larger wave numbers.
These energetic wave number values correspond to horizontal wavelengths of 8 cm and larger, in
good agreement with the observation of the forced mode suggesting horizontal wavelengths in the
range 15 ± 5 cm. As the forcing amplitude is increased, we observe the progressive increase of the
energy content at horizontal wave number kx/2π larger than 0.13 cm−1, i.e., at smaller horizontal
scales. At the largest forcing amplitude A = 16 mm, one could argue that a power-law behavior,
compatible with a decay exponent −3, has emerged over the wave number range 0.09 cm−1 �
kx/2π � 0.45 cm−1.

The corresponding spatial energy spectra as a function of the vertical wave number kz are reported
in the right panel of Fig. 14. At the lowest forcing amplitude A = 2 mm, i.e., in the linear regime,
we observe energy below the cutoff wave number kz/2π 	 0.07 cm, which corresponds to vertical
wavelengths larger than 14 cm. The direct observations of the velocity snapshots of the mode at
the forcing frequency σ ∗

0 = 0.94 (as seen in Fig. 4) evidence vertical wavelengths in the range
25 ± 5 cm which is roughly consistent with the energy spectrum observed here for A = 2 mm. We
should however highlight that the vertical size of our velocity measurement field, of 22 cm, is of
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the same order as the vertical scales of the forced mode (and even generally smaller). It is therefore
clear that the spatial spectrum as a function of kz cannot accurately account for the largest energetic
vertical scales of the flow associated the forced mode. Nevertheless, as for the horizontal energy
spectra, when increasing the forcing amplitude, we observe the progressive emergence of an energy
continuum at larger (properly resolved) wave numbers kz, i.e., at smaller vertical scales. For the
experiment at the largest forcing amplitude A = 16 mm, we observe over the wave number range
0.20 cm−1 � kx/2π � 0.90 cm−1 (again of about half-a-decade) a behavior roughly compatible
with a power law of exponent −3.

IV. CONCLUSION

In this article, we present laboratory experiments conducted in a linearly stratified fluid forced by
a set of 24 wavemakers. Our forcing device injects energy in an ensemble of internal gravity wave
beams at frequency σ0 = 0.94 N (where N is the buoyancy frequency) which approaches statistical
homogeneity and axisymmetry. When the forcing amplitude is increased, the flow nonlinearities
emerge through the establishment of a set of several internal wave modes at discrete subharmonic
frequencies (i.e., lower than σ0). These modes, the most energetic of which are shown to be resonant
eigenmodes of the fluid domain, are in temporal triadic resonances with the forced waves and
between themselves. This scenario is reminiscent of the one observed in several recent experiments
where a turbulent flow is also forced through internal waves in a stratified fluid [41,43,61]. The
discretization of the energy in frequency and in wave number that we observe prevents the turbulent
flow from approaching the “wave turbulence” regime described in the weak/wave turbulence
theories [30–32,34,35]. In these theoretical descriptions, the turbulent cascade is indeed carried
by a statistical ensemble of weakly nonlinear and propagating waves in an infinite domain which
forms an energy continuum in the frequency and wave-number spaces.

Nevertheless, we identify a slight but crucial modification of our experimental setup which allows
to efficiently inhibit the emergence of the wave eigenmodes. It consists in introducing two slightly
tilted panels in the fluid domain, one at the top and one at the bottom. The change in wavelength
induced by these inclined planes when the waves are reflecting on them is small to moderate for most
frequencies in the internal wave range (σ � N) but sufficient to prevent the formation of standing
modes in the experimental cavity. This modified setup finally allows, in the nonlinear regime, the
development of a continuum of energy over one decade in the wave frequency range together with
a disappearance of the energy peaks associated to eigenmodes of the fluid domain. Moreover, we
show that this energy continuum is mainly carried by internal gravity waves verifying the wave
dispersion relation.

Eventually, we achieve with our modified setup a turbulent flow approaching a three-dimensional
internal wave turbulence regime in which no discretization of the energy in frequency and wave
number is observed. In this configuration, our 1D spatial energy spectra, as a function of the
horizontal and vertical wave numbers, both tend to draw a power law with an exponent −3 at the
largest explored Reynolds number, which result is compatible with the recent observations of Le
Reun et al. [40] and Davis et al. [43]. However, these power-law behaviors still remain questionable
since they are observed over no more than half-a-decade of wave numbers, which was also the case
in Refs. [40,43]. Besides, it is possible that the regime we observe at the largest forcing Reynolds
number in our experiments, when power-law energy spectra seem to emerge, might reveal a system
of internal waves at the onset of strong nonlinearities.

Weak Wave Turbulence theory applied to internal waves in stratified fluids has long been pro-
posed as a possible candidate to explain the oceanic energy spectrum at small scales [30–32,34,35].
Nevertheless, the development of this analytical formalism is still a matter of debate and providing
data of experiments in which a wave turbulence regime with “fully developed” energy cascade is
observed seems important to move forward. In this context, it is clear that experiments at larger
Reynolds numbers shall be conducted in order for the energy cascade to develop over a larger range
of spatial scales than what we achieved in this work. This increase in Reynolds number cannot
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be achieved by increasing the typical velocity of the forcing since it would be accompanied by an
increase in the forcing Froude number and lead to a strongly nonlinear turbulence and to a strong
mixing of the stratification in density. The most promising (and probably the only) experimental
track to achieve a genuine weakly nonlinear internal wave turbulence regime in the laboratory, with
spatial energy spectra with “well-developed” power laws, is to significantly upscale the size of the
experiment and in particular of the injection wavelength, while still inhibiting finite size effects and
the emergence of fluid domain eigenmodes.
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APPENDIX A: COMPUTATION OF THE SPATIOTEMPORAL SPECTRA

The normalized spatiotemporal spectra E ′(kx, kz, σ ) presented in the article are computed from
the two-dimensional two-component measured velocity field u(x, t ) = (ux(x, t ), uz(x, t )) in the
following way [x = (x, z) is the position vector in the vertical measurement plane in cartesian
coordinates].

We first compute the sum R(r, σ ) of the two-point correlations in the measurement plane of the
temporal Fourier transform ũi(x, σ ) of the two components of the measured velocity field ui(x, t )
defined by

R(r, σ ) = 〈ũi(x, σ )ũ�
i (x + r, σ ) + ũ�

i (x, σ )ũi(x + r, σ )〉x. (A1)

In this expression, the star denotes the complex conjugate, the brackets 〈 〉x stand for the spatial
average over the measurement area and i refers to a sum over i = x and z.

The two-point correlation R(r, σ ) is defined for separation vectors r = (rx, rz ) in the range
−Lx � rx � Lx and −Lz � rz � Lz, where Lx and Lz are the sizes of the measured velocity field
in the horizontal and vertical directions, respectively. The two-point correlation R(r, σ ) is then
multiplied by a Hann function in the vertical and horizontal directions (of respective width 2 Lx

and 2 Lz) before it is finally extended by zero values to the range −1.5 Lx � rx � 1.5 Lx and
−1.5 Lz � rz � 1.5 Lz (zero padding method).

We finally compute the two-dimensional spatial Fourier transform of the obtained function of
r = (rx, rz ) (and frequency σ ) and normalize it by its integral over the wave-vector space (kx, kz )
for each frequency σ to get the normalized spatiotemporal spectra E ′(kx, kz, σ ).

APPENDIX B: SPATIOTEMPORAL KINETIC ENERGY SPECTRUM FOR A STATISTICALLY
AXISYMMETRIC DISTRIBUTION OF INTERNAL GRAVITY WAVES

In Fig. 12, we report the spatiotemporal energy spectrum E (kx, ky, σ ) of the measured velocity
field for the experiment with the tilted planes at A = 16 mm for four values of the frequency σ . Since
we measure experimentally only the two components ux and uz of the velocity field in the vertical
plane (x, y = y0, z), the interpretation of this spatiotemporal spectrum is not straightforward. To help
with this interpretation, we compute in this Appendix the analytical expression of E (kx, ky, σ ) for a
flow made of an ensemble of independent plane internal waves with an axisymmetric wave-vector
statistics.

First, we introduce the three-dimensional (3D) spatiotemporal Fourier transform

ai(kx, y, kz, σ ) = 1

(2π )3/2

∫∫∫
ui(x, y, z, t )e−i(kxx+kzz−σ t ) dx dz dt (B1)
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and the four-dimensional (4D) spatiotemporal Fourier transform

bi(kx, ky, kz, σ ) = 1

(2π )1/2

∫
ai(kx, y, kz, σ )e−ikyy dy (B2)

of the component ui of the velocity field u(x, t ), where x = (x, y, z) is the position in Cartesian
coordinates, k = (kx, ky, kx ) the corresponding wave vector, and i = x, y, or z. Ignoring the compo-
nent of the velocity along the direction y as done in the data analysis, the 3D spatiotemporal power
spectral density of the velocity field is defined by

S3D(kx, y, kz, σ ) = ax a�
x + az a�

z

τLxLz
, (B3)

and the 4D one by

S4D(kx, ky, kz, σ ) = bx b�
x + bz b�

z

τLxLyLz
, (B4)

where the stars denote the complex conjugate, τ the duration, and Lx, Ly, and Lz the distances
(in directions x, y, and z, respectively) over which the Fourier transforms have been computed.
In Fig. 12, we report the 3D spatiotemporal energy spectrum E (kx, ky, σ ) = S3D(kx, y = y0, kz, σ )
evaluated in the specific plane y = y0.

Let us now consider a plane internal gravity wave of nondimensional frequency σ ∗ = σ/N and
wave vector k = (kx, ky, kz ). According to the internal gravity wave dispersion relation (1), the hor-

izontal k⊥ =
√

k2
x + k2

y and vertical k‖ = |kz| wave numbers of the plane wave verify k⊥ = kσ ∗ and

k‖ = k
√

1 − σ ∗2, where k = |k| is the norm of the wave vector. Then, because of incompressibility
(u · k = 0), the velocity field of this plane wave can be written

ux = u0

√
1 − σ ∗2

kx

k⊥
cos (k · x − σ t + ϕ), (B5)

uy = u0

√
1 − σ ∗2

ky

k⊥
cos (k · x − σ t + ϕ), (B6)

uz = −u0σ
∗ cos (k · x − σ t + ϕ). (B7)

Let us then consider an ensemble of independent plane internal gravity waves, all with the same
amplitude u0, the same nondimensional frequency σ ∗

0 and the same wave number k0 = |k|, but with
axisymmetric wave-vector statistics, meaning that the azimuthal angle tan−1(ky/kx ) is uniformly
distributed between 0 and 2π . According to Eqs. (B5)–(B7) and considering only the ux and uz

components of the velocity field, the 4D spatiotemporal power spectral density [defined in Eq. (B4)]
for such an ensemble of plane waves writes

S4D(kx, ky, kz, σ ) ∝ u2
0

[(
1 − σ ∗2

0

) k2
x

k2
⊥,0

+ σ ∗2
0

]
δ(σ ± σ0)δ

(
k2

x + k2
y − k2

⊥,0

)
δ(kz ± k‖,0), (B8)

where δ(x ± a) = δ(x − a) + δ(x + a) and k⊥,0 = k0σ
∗
0 and k‖,0 = k0

√
1 − σ ∗2

0 are the horizontal
and vertical wave numbers of all the waves involved in the statistics, respectively.

Using the statistical homogeneity of the considered velocity field, the spectrum E (kx, kz, σ ) is
related to the 4D spectrum through the Parseval theorem:

E (kx, kz, σ ) = 1

Ly

∫
S3D(kx, y, kz, σ ) dy =

∫
S4D(kx, ky, kz, σ ) dky. (B9)
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The integration of the delta function δ(k2
x + k2

y − k2
⊥,0) in Eq. (B8) finally yields

E (kx, kz, σ ) ∝ u2
0

[(
1 − σ ∗2

0

) k2
x

k2
⊥,0

+ σ ∗2
0

]
1√

k2
⊥,0 − k2

x

δ(σ ± σ0)δ(kz ± k‖,0), (B10)

when |kx| � k⊥,0 and E (kx, kz, σ ) = 0 otherwise.

In the expression (B10) of the spectrum E (kx, kz, σ ), we see that the term 1/
√

k2
⊥,0 − k2

x ,

stemming from the “projection” of the 4D spectrum on the (kx, kz) plane, diverges when |kx| tends
toward k⊥,0 (from low values, i.e., for |kx| � k⊥,0). Since k⊥,0 is simply the value taken by |kx| for
waves at frequency σ0 and propagating in the measurement plane, the divergence of E (kx, kz, σ )
suggests that an axisymmetric distribution of internal gravity waves will have, with E (kx, kz, σ ), a
spectral signature resembling the one of waves propagating in the measurement plane. Besides, the
term [(1 − σ ∗2

0 )k2
x /k2

⊥,0 + σ ∗2
0 ], stemming from the fact we do not consider the uy component of the

velocity, strengthens this diverging behavior, yielding an additional increase of the energy density
as |kx| increases from zero toward the limit |kx| = k⊥,0. One can note that this additional effect is
stronger as the wave nondimensional frequency decreases from 1 to 0.
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