Ahmed Rahni
email: rahnia@ensma.fr

Karim Traore
email: traore@ensma.fr

Emmanuel Grolleau
email: grolleau@ensma.fr

Michael Richard
email: richardm@ensma.fr

M Richard Lisi

Ensma Téléport

Comparison of two worst-case response

Keywords:

Introduction

The Response-Time Analysis [START_REF] Audsley | Fixed priority pre-emptive scheduling: An historical perspective[END_REF] is an essential analysis technique that can be used to perform schedulability tests. Tindell proposed in [START_REF] Tindell | Adding time-offsets to schedulability analysis[END_REF] a new model of tasks with offset (transactions) extending the model of Liu and Layland [START_REF] Liu | Scheduling algorithms for multiprogramming in real-time environnement[END_REF]. Since the transactions are non-concrete(the transaction release times are not fixed a priori), the main problems is to determine the worst case configuration for a task under analysis (its critical instant). Tindell showed that the critical instant for a task under analysis (τ ua) occurs when one task of higher priority in each transaction is released at the same time as τ ua .

An exact calculation method has been proposed in [START_REF] Tindell | Using offset information to analyse static priority pre-emptively scheduled task sets[END_REF], but has an exponential complexity and is intractable for realistic task systems; Tindell [START_REF] Tindell | Adding time-offsets to schedulability analysis[END_REF] has proposed a pseudo-polynomial approximation method providing an upper bound of the worst-case response-time. Later, this approach has been improved in [START_REF] Gutierrez | Schedulability analysis for tasks with static and dynamic offsets[END_REF][START_REF] Maki-Turja | Faster response time analysis of tasks with offsets[END_REF][START_REF] Maki-Turja | Tighter response time analysis of tasks with offsets[END_REF][START_REF] Maki-Turja | Fast and tight responsetimes for tasks with offsets[END_REF] In the sequel, we present the model of tasks with offsets (a.k.a. transaction), then we present the best known approximation method proposed by Turja and Nolin [START_REF] Maki-Turja | Fast and tight responsetimes for tasks with offsets[END_REF]. Section 4 presents the monotonic transac-tions exact analysis [START_REF] Traore | Characterization and analysis of tasks with offsets: Monotonic transactions[END_REF] and these two methods are used on the same tasks system. In the last section their performance are compared on randomly generated transaction systems. 1) consists of a set of |Γ i | tasks τ ij released at the same period T i , with 0 < j ≤ |Γ|. Without loss of generality, we suppose that the tasks are ordered in the set by increasing offset. A task τ ij is defined by : a worst-case execution time (WCET) C ij , an offset O ij related to the release date of the transaction Γ i , a relative deadline D ij , a maximum jitter J ij (the activation time of task τ ij may occur at any time between t 0 + O ij and t 0 + O ij + J ij , where t 0 is the release date of the transaction Γ i , a maximum blocking factor B ij due to lower priority tasks (e.g. priority ceiling protocol [START_REF] Sha | Priority inheritance protocols : an approach to real-time synchronization[END_REF]), and P ij is its priority (we assume a fixed-priority scheduling policy). The figure 1 presents an example of transaction Γ i composed of three tasks with period T i = 16. Let us note hp i (τ ua) the set of indices of the tasks of Γ i with a priority higher than the priority of a task under analysis τ ua , assuming that the priorities of the tasks are unique.

Model of transactions

A tasks system Γ is composed of a set of |Γ| trans- actions Γ i , with 1 ≤ i ≤ |Γ i | (where |Γ i | is the number of elements in the set Γ i). Γ : Γ 1 , Γ 2 , .., Γ |Γ| Γ i : τ i1 , τ i2 , ..., τ i|Γi| , T i τ ij : < C ij , O ij , D ij , J ij , B ij , P ij > Each transaction Γ i (see figure

Fast and Tight Analysis

This method provides an efficient implementation to calculate an upper-bound of the worst-case response times [START_REF] Maki-Turja | Tighter response time analysis of tasks with offsets[END_REF]. The main idea is to represent the periodic interference function statically, and during the response-time calculation, to use a simple lookup function in order to compute its value. The interference imposed by the transaction Γ i on a task under analysis τ ua during a busy period of length t starting at the release of τ ua and corresponding to the release of τ ic is noted W ic (τ ua , t) (τ ic is then called the critical instant candidate in Γ i). In order to simplify, we suppose no Jitter in the transaction (i.e J ij = 0).

¡¢ £¤ ¥ ¡ ¦ O § © ¡ ¦ © ¡ O § © ¡ τ τ τ τ τ τ τ τ ¡ fr fg τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ Γ ¡¢ £¤ ¥ ¡ ¦ O § © ¡ ¦ © ¡ O § © ¡
W ic (τua, t) = j∈hp i (τua) t * T i + 1 * C ij -x ijc (t) t * = t -Φ ijc Φ ijc = (T i + (O ij -O ic)) % T i x ijc (t) = 0 for t * < 0 max(0, C ij -(t * % T i)) otherwise
Φ ijc is the phase between τ ic and τ ij . x ijc (t) corresponds to the part of the task τ ij that cannot be executed in the time interval of length t (note that this part is the main difference between the methods presented in [START_REF] Gutierrez | Schedulability analysis for tasks with static and dynamic offsets[END_REF] and [START_REF] Maki-Turja | Tighter response time analysis of tasks with offsets[END_REF]).

In order to find the critical instant, one would have to compare every combination of critical instant candidates, making the exact test intractable. The fast and tight analysis method consists of creating a global interference function W i (τ ua , t) for each transaction Γ i , in choosing the maximum value of each interference function.

W i (τ ua , t) = max ∀c∈hpi(τua) W ic (τ ua , t)
The figure 2 shows the graphical representation of the interference of a transaction : each curve represents the interference function for each critical instant candidate. Since the transaction is in normal form, the derivative of each curve is either 0 or 1. W i (τ ua , t) that has to be computed is the maximum of all the curves. The efficient implementation proposed in [START_REF] Maki-Turja | Tighter response time analysis of tasks with offsets[END_REF] stores the set of points P ic , where each point P ic [k] has an x (representing time) and a y (representing interference) coordinate. These points correspond to the convex corners of the curve W ic (τ ua , t). The calculation of the upper bound on the worst-case response time R ua of τ ua is obtained by an iterative fix-point lookup.

!"! #$#% & τ τ τ τ' (!"! #$#% & τ τ τ τ') !"! #$#% & τ τ τ τ' 0 1 2 3 4 5 1 56 W'7(τ τ τ τ8 9,t)
R 0 ua = C ua R (n+1) ua = C ua + Γi∈Γ (W i (τ ua , R n ua)) (1)
where W i (τ ua , t) is deduced from the static representation of the transactions interferences.

Normal form of a transaction

Without loss of generality, we consider that all the tasks of Γ i have a higher priority than the task under analysis τ ua . Since some tasks of a transaction may have to overlap, issuing in an interference function which derivative would be greater than 1, a normal form of the transaction is first obtained using three operations: order, merge, and split [START_REF] Maki-Turja | Tighter response time analysis of tasks with offsets[END_REF]. For each critical instant candidate τ ic , the transaction Γ i is put in normal-form. We start with all the tasks numbered in increasing Φ ijc (phase between τ ij and τ ic). Thus the task τ ic in the original transaction is named τ i1 at the beginning of the normal-form processing. The underlying idea behind the merge operation is that if two tasks τ ij and τ ij+1 overlap, then the longest busy period initiated by τ ij is always including the longest busy period initiated by τ ij+1 . The split operation is used when a part of a task has to be executed during the next period of the transaction : in this case the spilling task is splitted into two tasks. The spilling part is taken into account as a task with an offset equal to 0 in the second period of the transaction. Thus, since the tasks are numbered according to the increasing value of Φ ijc , the tasks can be renumbered (ordering operation) in the second period of the transaction. These operations are used until no task in the transaction is forced to overlap on the next one, and until no task is forced to spill in the second period of the transaction. Note that the first period of a transaction may differ in the number of tasks from the second period due to the spilling tasks. Note that if a jitter has to be taken into account, this operation has to be done for every critical instant candidate.

Example

We apply this method on the transaction Γ i that contains twelve tasks with no jitter (J ij = 0). and the task τ ua with a WCET C ua = 9 and a lower priority than all the tasks of Γ i .

Γi := {< τi1τi2, ..., τi12 >, 60} τi1 :< 3, 1, Di1, 0, 0, 1 > τi7 :< 2, 36, Di7, 0, 0, 7 > τi2 :< 4, 9, Di2, 0, 0, 2 > τi8 :< 5, 43, Di8, 0, 0, 8 > τi3 :< 2, 11, Di3, 0, 0, 3 > τi9 :< 3, 46, Di9, 0, 0, 9 > τi4 :< 3, 20, Di4, 0, 0, 4 > τi10 :< 1, 49, Di10, 0, 0, 10 > τi5 :< 4, 29, Di5, 0, 0, 5 > τi11 :< 4, 56, Di11, 0, 0, 11 > τi6 :< 5, 31, Di6, 0, 0, 6 > τi12 :< 2, 57, Di12, 0, 0, 12 >

Obtaining the normal-form for Γ i for the critical instant candidate τ i1 : the three operations (order, merge and spill), merge τ i3 in τ i2 , τ i6 and τ i7 in τ i5 , τ i9 and τ i10 are merged in τ i8 , and τ i11 is merged in τ i12 . The last task spills in the next period, thus the second period of the transaction (and the following) will have a additional task The resulting transaction in normal-form, for the first period is: τi1 :< 3, 0, Di1, 0, 0, 1 > τi2 :< 6, 8, Di2, 0, 0, 2 > τi3 :< 3, 19, Di3, 0, 0, 3 > τi4 :< 11, 28, Di4, 0, 0, 4 > τi5 :< 9, 42, Di5, 0, 0, 5 > τi6 :< 5, 55, Di6, 0, 0, 6 >

For the second period, the spilling time of the original τ i12 is taken into account in the first task τ i1 of the second period of the transaction, obtaining a WCET of 4.

τi1 :=< 4, 0, Di1, 0, 0, 1 > τi2 :=< 6, 8, Di2, 0, 0, 2 > τi3 :=< 3, 19, Di3, 0, 0, 3 > τi4 :=< 11, 28, Di4, 0, 0, 4 > τi5 :=< 9, 42, Di5, 0, 0, 5 > τi6 :=< 5, 55, Di6, 0, 0, 6 >

The same operation is done for all the task candidates τ ic for c = 2..12. The upper bound of the worst-case response time is then obtained using formula 1:

Monotonic Transactions

In this section we present the different steps of monotonic transaction analysis [START_REF] Traore | Characterization and analysis of tasks with offsets: Monotonic transactions[END_REF][START_REF] Traore | Response-time analysis of tasks with offsets[END_REF][START_REF] Traore | Analyse et Validation des Applications Temps Réel en Présence de Transactions : Application au Pilotage d'un Drone Miniature[END_REF]. Monotonic transaction analysis relies on transactions for which one interference curve (for one candidate) is always greater or equal than the other curves. In this way, it's close to the concept of accumulatively monotonic generalized multiframe task sets [START_REF] Baruah | Generalized multiframe tasks[END_REF]. In this case, if a transaction Γ i is monotonic then the critical instant occurs when the task under analysis is released at the same time as the first task of the pattern of the normal form of Γ i . Therefore, for the case where all the transactions of the task system are monotonic for a task under analysis, the computed worst-case response time is exact.

Since there is only one possible candidate in a monotonic transaction, there is only one normal-form to compute.

Finding the monotonic pattern

Let Γ * i be the normal form of the transaction Γ i where

Γ * i :< τ * i1 , τ * i2 , ..., τ * i|Γ * i | , T i , T i > and Γ i :< τ i1 , τ i2 , ..., τ i|Γi| , T i , T i >.
Let us note:

α ij = O * i(j+1) -(O * ij + C * ij) f or 1 ≤ j < |Γ * i | α i|Γ * i | = (T i + O * i1) -(O * i|Γ * i | + C * i|Γ * i |) where α ij > 1 since Γ *
i is in normal form. Note that since it's not necessary to statically store the interference function, there is no need to make a difference between the first and the second period of the transaction.

Γ i is a monotonic transaction for the task τ ua (we consider that all the tasks of Γ i have a higher priority than the one of τ ua) if the WCET of the tasks of Γ * i have decreasing values while the idle slots α ij have increasing values i.e: C * i(p+1) ≤ C * ip for all 1 ≤ p < |Γ * i | and α ip ≤ α i(p+1) for all 1 ≤ p < |Γ * i |. Γ i is monotonic if we can find a monotonic pattern in Γ * i by rotating the tasks of Γ * i . We know that for a monotonic pattern the first task has the highest WCET. In order to look for a monotonic pattern, we start by inventorying all the tasks with the maximum WCET. Then, we consider alternatively each of these tasks τ * ik as the first task of the transaction Γ * i by rotating the tasks of Γ * i ; and we verify if the conditions of monotony (on C * ij and α ij) are respected; if so, Γ i is monotonic and τ * ik become the first task of Γ * i .

Example

We apply this method on the same example as the one we used for the fast and tight analysis. We find Γ * i the normal form of the transaction Γ i by applying the operations of normalization process:

Γ * i : {< τ * i1 , τ * i2 , ..., τ * i5 >, 60}
τ * i1 :< 6, 9, Di1, 0, 0, 1 > τ * i2 :< 3, 20, Di2, 0, 0, 2 > τ * i3 :< 11, 29, Di3, 0, 0, 3 > τ * i4 :< 9, 43, Di4, 0, 0, 4 > τ * i5 :< 9, 56, Di5, 0, 0, 5 >

We have:

α * i1 = 5, α * i2 = 6, α * i3 = 3, α * i4 = 4, α * i5 = 4
There is a monotonic pattern starting from task τ * i3 where:

C * i3 ≥ C * i4 ≥ C * i5 ≥ C * i1 ≥ C * i2 α * i3 ≤ α * i4 ≤ α * i5 ≤ α * i1 ≤ α * i2
Hence the transaction is monotonic, and the critical instant of τ ua corresponds to the release of the task τ * i3 , we apply the iterative fix-point lookup in order to calculate the worst-case response time of τ ua .

In the case of monotonic transactions, the two methods presented provide the same exact worst-case response time with the same number of iterations in the process of calculation, because in every iteration, the task that initiates the critical instant is the same. The only difference between these two methods comes from the stage of static representation in the fast and tight analysis (stage A) and the research of the monotonic pattern for the method of monotonic transaction (stage B). Stage A for n tasks requires at least n normal-form processing, plus computing the static tables. Stage B requires only one normal-form processing operation and a linear complexity test in order to check the conditions related to C * i and α * i .

Performance comparison and future works

We have implemented the two methods in order to compare their respective performance. The figure 3 shows that the time used by the method proposed in [START_REF] Maki-Turja | Fast and tight responsetimes for tasks with offsets[END_REF]increases linearly with the number of transactions, while the method proposed in [START_REF] Traore | Response-time analysis of tasks with offsets[END_REF] is less sensitive to the size of the system when only monotonic transactions are involved. The tests have been led on a Pentium IV processor, for sets of 20 configurations per number of transactions. The transactions are monotonic, and contain 15 tasks, while the workload is fixed around 0.8. The random generation system is based on the UUniFast algorithm presented in [START_REF] Bini | Biasing effects in schedulablity measures[END_REF]. The bound on the worst-case response time is the same for both methods, since at this stage, montonicity is more a characterization allowing an optimization than a method by itself (it has still to be coupled with the method of [START_REF] Maki-Turja | Fast and tight responsetimes for tasks with offsets[END_REF] because in a system of transactions, the transactions don't have to be all monotonic). In future works, we will use the monotonicity property as a basement to introduce a new evaluation method in order to decrease the pessimism of [START_REF] Maki-Turja | Fast and tight responsetimes for tasks with offsets[END_REF] for the upper bound on the worst-case response times.

Figure 1 .

 1 Figure 1. Example of transaction.

Figure 2 .

 2 Figure 2. Interference of transaction.

Iteration 0 : R 0 ua = 9

 9 Iteration 1 : t = 9 : R 1 ua = 9 + 11 = 20 Iteration 2 : t = 20 : R 2 ua = 9 + 20 = 29 Iteration 3 : t = 29 : R 3 ua = 9 + 29 = 38 Iteration 4 : t = 38 : R 4 ua = 9 + 29 = 38

Figure 3 .

 3 Figure 3. Execution time