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Introduction

The Response-Time Analysis (RTA) [START_REF] Audsley | Fixed priority pre-emptive scheduling : An historical perspective[END_REF] is an essential analysis technique that can be used to perform schedulability tests (i.e. testing if tasks in a system will meet their deadlines). Usually, the task model is an extension of the model of Liu and Layland [START_REF] Liu | Scheduling algorithms for multiprogramming in real-time environnement[END_REF]. The schedulability conditions obtained with the model of [START_REF] Liu | Scheduling algorithms for multiprogramming in real-time environnement[END_REF] are however too pessimistic for certain kinds of pattern of tasks as tasks with offset [START_REF] Tindell | Using offset information to analyse static priority pre-emptively scheduled task sets[END_REF][START_REF] Tindell | Adding time-offsets to schedulability analysis[END_REF], serial transactions (Traore et al., 2006a), reverse transactions [START_REF] Traore | Simpler of serial transactions using reverse transaction[END_REF], multiframe tasks [START_REF] Mok | A multiframe model for real-time tasks[END_REF] generalized multiframe tasks [START_REF] Han | A better polynomial-time scedulability test for real-time fixedpriority scheduling algorithms[END_REF] [START_REF] Baruah | Generalized multiframe tasks[END_REF].

Tindell proposed in [START_REF] Tindell | Adding time-offsets to schedulability analysis[END_REF] a new model of tasks with offset (transactions) extending the model of [START_REF] Liu | Scheduling algorithms for multiprogramming in real-time environnement[END_REF]. Transactions are non-concrete(the transaction release times are not fixed a priori), thus the main problems is to determine the worst case configuration for a task under analysis (its critical instant). Offset-Based response time analysis of tasks scheduled under dynamic priorities EDF has been proposed in [START_REF] Gutierrez | Offset-based response time analysis of distributed systems scheduled under edf[END_REF]. In [START_REF] Tindell | Adding time-offsets to schedulability analysis[END_REF][START_REF] Tindell | Using offset information to analyse static priority pre-emptively scheduled task sets[END_REF] Tindell proposed an exact RTA technique for transactions scheduled by a fixed priorities scheduler, this exact method has an exponential complexity and is intractable for realistic task systems ; In [START_REF] Tindell | Adding time-offsets to schedulability analysis[END_REF] Tindell has proposed a pseudo-polynomial approximation method providing an upper bound of the worst-case response-time. Later, this approach has been formalized and improved in [START_REF] Gutierrez | Schedulability analysis for tasks with static and dynamic offsets[END_REF] (Maki-Turja et Nolin, 2004a) [START_REF] Maki-Turja | Tighter response time analysis of tasks with offsets[END_REF] [START_REF] Maki-Turja | Fast and tight response-times for tasks with offsets[END_REF].

In this paper we combine the principle of exact calculation and the best known approximation calculation, in order to obtain a new analysis technique for tasks with offset scheduled under fixed priorities, which is less pessimistic than the existing techniques. This paper is organized as follow, In Section 2 we present the model of tasks with offsets (a.k.a. transaction), then we review the earlier RTA analysis techniques, the exact analysis method [START_REF] Tindell | Using offset information to analyse static priority pre-emptively scheduled task sets[END_REF] and the best known approximate analysis method of Nolin [START_REF] Maki-Turja | Tighter response time analysis of tasks with offsets[END_REF][START_REF] Maki-Turja | Fast and tight response-times for tasks with offsets[END_REF]. Then in section 4 we develop the new mixed analysis technique. A performance comparison is presented in section 5.

Computational Model

A tasks system Γ is composed of a set of |Γ| transactions Γ i , with 1 ≤ i ≤ |Γ| (where |Γ| is the number of elements in the set Γ). Γ : Γ 1 , Γ 2 , .., Γ |Γ| Γ i : τ i1 , τ i2 , ..., τ i|Γi| , T i τ ij : < C ij , O ij , D ij , J ij , B ij , P ij >
Each transaction Γ i (see figure 1) consists of a set of |Γ i | tasks τ ij released at the same period T i , with 0 < j ≤ |Γ i |. Without loss of generality, we suppose that the tasks are ordered in the set by increasing offset. A task τ ij is defined by : a worst-case execution time (WCET) C ij , an offset O ij related to the release date of the transaction Γ i , a relative deadline D ij , a maximum jitter J ij (the activation time of task τ ij may occur at any time between t 0 + O ij and t 0 + O ij + J ij , where t 0 is the release date of the transaction Γ i ), a maximum blocking factor B ij due to lower priority tasks (e.g. priority ceiling protocol [START_REF] Sha | Priority inheritance protocols : an approach to real-time synchronization[END_REF])), and P ij is its priority (we assume a fixed-priority scheduling policy). The figure 1 presents an example of transaction Γ i composed of three tasks with period T i = 16. Note that each transaction is non-concrete (in fact it's sporadically periodique). Let us note hp i (τ ua ) the set of indices of the tasks of Γ i with a priority higher than the priority of a task under analysis τ ua , assuming that the priorities of the tasks are unique.

Response Time Analysis

In this section, we present the related work on RTA for tasks with offsets scheduled under fixed priorities. A critical instant corresponds, for a task under analysis τ ua , to the worst case scenario for this task. In the case of classic tasks, the critical instant correspond to the simultaneous activation of all the higher priority tasks with τ ua , Then we consider, starting from this worst-case scenario, a time interval when the processor never goes idle. This interval is
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called a busy period, and gives the WCRT of the task under analysis. For transactions, Tindell showed that the critical instant of a task under analysis, noted τ ua , is a particular instant when it is released at the same time as one task of higher priority in each transaction.

In order to simplify and clarify the computation formulas for the analysis methods, we will consider in the sequel of this paper that the task under analysis τ ua is the only task of the transaction Γ u and that it has only one instance activated in any busy period of length t. This assumption can be removed later by using classic RTA method.

Thus a critical instant coincides with the simultaneous activations of a candidate task τ ici (task of higher priority than task under analysis) of each transaction Γ i . The response time R ua of the task under analysis τ ua can be calculated by iterative fix-point lookup. We note W ici (t) is the interference of a transaction Γ i in the busy period of length t, when a candidate task τ ici initiate the critical instant. Φ ijc is the phasing between a task τ ic , and a critical instant candidate initiated by the candidate task τ ic ; i.e the first instance of a task τ ic (activated after the critical instant) will be released at Φ ijc time units after the critical instant, and subsequent releases will occur periodically every T i .

R ua = C ua R ua = C ua + ∀i =u W ici (τ ua , R ua ) (1) 
W here : W ic (τ ua , t) = ∀j∈hpi(τua)

Jij +Φijc Ti + t-Φijc Ti C ij (2) 
Φ ijc = (O ij -(O ic + J ic ) mod T i (3) 
The main problem of RTA technique of tasks with offsets is that we don't know which task τ ici of each transaction Γ i must be considered to create the worst-case busy period. In fact, the choice of this task candidate in each transaction depends on the length of the busy period. An exact calculation method [START_REF] Tindell | Adding time-offsets to schedulability analysis[END_REF] would require to evaluate the response time obtained by carrying out all the possible combinations of the tasks of priority higher in each transaction and to choose the task in each transaction that leads to the worst-case response time.

R ua = max ∀i =u and ∀ci∈hpi(τua) R ua (4) 
This exhaustive method has an exponential complexity and is intractable for realistic task systems. In order to avoid this problem, several approximation methods giving an upper bound of the worst-case response time have been proposed. The best known approximation method is the one based on the "imposed interference" [START_REF] Maki-Turja | Tighter response time analysis of tasks with offsets[END_REF][START_REF] Maki-Turja | Fast and tight response-times for tasks with offsets[END_REF].

Upper-Bound Approximation For WCRT

Tindell proposed in [START_REF] Tindell | Adding time-offsets to schedulability analysis[END_REF] an approximate analysis technique used to obtain an upper bounds for the worst-case response times in a system of transactions scheduled under fixed priorities. This technique calculates an upper bound of the interference of the tasks of a transaction Γ i in a busy period of duration t, as the maximum of all possible interferences that could have been caused by considering each of the tasks of Γ i as the one originating the busy period.

R ua = C ua R ua = C ua + i =u (W i (τ ua , R ua )) (5) W here : W i (τ u , t) = max ∀c∈hpi(τua) W ic (τ u , t) (6) 
This method is not exact, but has a pseudo-polynomial complexity, which makes it applicable even for relatively large systems. A sufficient test of schedulability is given by this method, if the response times obtained are smaller than the respective deadlines, the system is schedulable, if not, no definitive answer can be given.

Nolin [START_REF] Maki-Turja | Tighter response time analysis of tasks with offsets[END_REF] improved the approximative method by introducing the imposed interference concept. This method consists in calculating the interference effectively imposed by a task τ ij on a lower priority task τ ua during a time interval of length t ; the underlying idea is that the interference of a higher priority task can't exceed t in a time interval of length t. In order to calculate the "'imposed interference"' [START_REF] Maki-Turja | Tighter response time analysis of tasks with offsets[END_REF] remove the unnecessary overestimation (parameter x ijc in the formula) taken into account in the classic computation of the interference imposed by a task τ ij on a lower priority task τ ua . This overestimation does not have any impact in the case of tasks without offset but has a considerable effect in the approximation of the worst-case response time when we are in the presence of tasks with offsets.

Let us note W ijc (t) (resp,W ic (t)) the interference that τ ij (resp,Γ i ) imposes effectively on the response time of τ ua during a time interval of length t when τ ic is released at the critical instant.

W ic (τ ua , t) = ∀j∈hpi(τua) W ijc (t) (7) 
Where :
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x ijc corresponds to the part of the task τ ij that cannot be executed in the time interval of length t ; since this interference is not effectively imposed in this interval, it is not taken into account (note that this part is the main difference between the methods presented in [START_REF] Gutierrez | Schedulability analysis for tasks with static and dynamic offsets[END_REF] and [START_REF] Maki-Turja | Tighter response time analysis of tasks with offsets[END_REF]. The evolution of the imposed interference function in the time can be presented by a curve with slanted stairs, as it is showed in the figure 3 for the interference function of transaction Γ 1 of the system (figure 2).

An efficient implementation of this approximation method has been proposed in (Maki-Turja et Nolin, 2005) ; it is using a static representation of the periodic interference function, and during the response-time calculation, it is uses a simple lookup function in order to compute its value. We apply this technique to obtain an upper bound for the response time of a task τ ua presented on the figure 2.

Example

Note in

R (i) ua , (i) denotes the step in the fix-point lookup of R (n) ua = R (n+1) ua R (0) ua = Cua = 1 R (1) ua = Cua + W1(1) + W2(1) = 1 + 3 + 2 = 6 R (2) ua = Cua + W1(6) + W2(6) = 1 + 4 + 2 = 7 R (3) ua = Cua + W1(7) + W2(7) = 1 + 4 + 3 = 8 R (4) ua = Cua + W1(8) + W2(8) = 1 + 6 + 3 = 10 R (5) ua = Cua + W1(10) + W2(10) = 1 + 6 + 3 = 10
In order to introduce less pessimism in the value of the upper bound obtained by this method, we try to locate the source of the pessimism in the case of the earlier example, this diagnostic will be the base of our method developed in section 4.

Pessimism of approximative approach

In the approximative analysis, the pessimism on response times is produced by the interference function of approximation W i (τ u , t) which takes the interference of the tasks of a transaction Γ i in a busy period of duration t, as the maximum of all possible interferences that could have been caused by considering each of the tasks of Γ i as the one initiating the critical instant. The drawback of this function is the change of the task initiating the critical instant during the iterative calculation of the WCRT. For a given analyzed task τ ua , the pessimism can be produced by the application of the approximative interference function W i (τ ua , t) on one or more transactions.

In the previous example, the exact value of the WCRT of τ ua equals 8. At this instant, there is a change of the candidate task of transaction Γ 1 , before the instant 8 the maximum interference of Γ 1 corresponds to its interference when a task τ 11 initiates the critical instant, but after this date it is the task τ 12 which initiates the critical instant. Thus the pessimism is produced when at the instant corresponding to the exact WCRT there is a change of a candidate task which initiates the critical instant for any transaction of the system.

Therefore, using an exact interference function on transaction Γ 1 and an approximative interference function on the transaction Γ 1 in the calculation of the worst-case response time, we can reduce the pessimism of the upper bound obtained by the approximative approach.

candidate task τ 11 :

R (0) ua,11 = Cua = 1 R (1) ua,11 = Cua + W11(1) + W2(1) = 1 + 1 + 2 = 4 R (2) ua,11 = Cua + W11(4) + W2(4) = 1 + 4 + 2 = 7 R (3) ua,11 = Cua + W11(7) + W2(7) = 1 + 4 + 3 = 8 R (4) ua,11 = Cua + W11(8) + W2(8) = 1 + 4 + 3 = 8
For candidate task τ 12 : R ua,12 = 6 and for candidate task τ 13 : R ua,13 = 6

The maximum of the values obtained is R ua = 8 that represent an upper bound for the WCRT of τ ua . This upper bound for WCRT is less pessimistic than the one obtained by the approximative analysis (R ua = 10). Thus the number of cases that need to be checked corresponds to the number of candidate tasks of Γ 1 . We use this idea as a basis of our mixed response times analysis technique that is developed in the next section.

Mixed Response Time Analysis Technique

This new technique will let us obtain an upper bound for the worst-case response times for transactions systems with fixed priorities. It has a pseudo-polynomial complexity which makes it applicable for relatively large systems, and it's tunable. The more steps allowed, the better the quality of the test is.

R ua,ic = C ua R ua,ic = C ua + W ic (R ua ) + Γ k ∈Γ,Γ k =Γi (W k (R ua )) W k (t) = max c∈hp k (τua) W kc (t) (8)
For a given transaction Γ i , we apply an exact function of interference, while an approximation function of interference is applied for all others transactions of the system. In this case we have to evaluate the response time obtained by applying an exact interference Γ i when each candidate task τ ic initiates the critical instant, to choose the maximum as the upper bound for the response time of the task under analysis τ ua . Let us note R ua,ic the response time of τ ua obtained when we take into account the exact interference of Γ i when the candidate task τ ic initiates the critical instant.

The interference of the transaction Γ k (W kc (t)) when τ kc initiate the critical instant is calculated by using the imposed interference function presented in the precedent section. R ua,i the upper bound for WCRT of τ ua is obtained as the maximum of response times R ua,ic .

R ua,i = max c∈hpi(τua) R ua,ic (9) 
Theorem 1 (For proof see [START_REF] Rahni | Nouvelle approche approximative d'analyse de temps de réponse[END_REF]) the value of response time R ua,i obtained by this mixed method (corresponding to a transaction Γ i for which an exact interference function is applied) is always between the exact value of WCRT and the upper bound calculated by the approximate method of Tindell-Nolin.

This method is applied for one transaction Γ i of a system, and the upper bounds for WCRT provided is sure (is never lower than the exact value of WCRT). In order to obtain the best upper bound (the smallest upper bound), we need to calculate the upper bounds (R ua,i ) corresponding to all the transactions of the system, thus to choose the minimum (best) as an upper bound for the response time of the task under analysis τ ua . In this case the number of scenarrii that need to be checked equals the number of transactions in the system.

R ua = min i∈1..|Γ|,i =u R ua,i (10) 
Note that this method provide an upper bound for WCRT which less pessimistic than provided by the approximated method (presented in section 2). The total number of cases to check corresponds to the number of higher priority tasks in the system.

Example

We apply the mixed method on an example presented in figure 4. The exact value of WCRT of a task under analysis τ ua equals 20 times unites. The upper bound for WCRT of τ ua is 28 units of times. The table of figure 5 resume the different steps of calculation of the WCRT by the mixed method. The upper bound for WCRT of τ ua obtained by the mixed method is 20 unites of times, it equals the exact value of WCRT. In this case note that with Nolin's method the obtained value is 28.

For candidate task τ 11 :

R (0) ua,11 = Cua = 1 R (1) ua,11 = Cua + W11(1) + W2(1) + W3(1) = 1 + 3 + 2 + 2 = 8 R (2) ua,11 = Cua + W11(8) + W2(8) + W3(8) = 1 + 12 + 4 + 3 = 20 R (3) ua,11 = Cua + W11(20) + W2(20) + W3(20) = 1 + 12 + 4 + 3 = 20
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FIG. 5 -Response time with mixed analysis

Note that in the case of systems composed of two transactions the Values of WCRT provided are exact, because in this situation the mixed method is equivalent to the exact method.

Tunable Mixed Method

Because the pessimism on the response times is produced by the application of approximative interference function on one or several transactions in the system. Using the principle of the mixed analysis technique, in order to reduce the pessimism of an upper bound for WCRT, we will vary the number of transactions E for which we apply an exact interference function. For example the number of transactions for which an exact calculation is applied equals 1 (E = 1) for the precedent method. For a number of exact transactions equal to E, the response times obtained for the systems composed of a number of transactions lower than E + 1 is exact ; i.e with no pessimism.

Since the mixed method of WCRT analysis is based on the efficient implementation algorithm presented in [START_REF] Maki-Turja | Fast and tight response-times for tasks with offsets[END_REF], then the time complexity of the mixed method is the same as Nolin's with a difference in the number of the critical instants considered. Note that the complexity of the original method [START_REF] Gutierrez | Schedulability analysis for tasks with static and dynamic offsets[END_REF][START_REF] Maki-Turja | Tighter response time analysis of tasks with offsets[END_REF] 

is O(x |Γ i | 3
), where x is the number of steps used in the fix-point calculation. [START_REF] Maki-Turja | Fast and tight response-times for tasks with offsets[END_REF] showed that the complexity of their method was

O(|Γ i | 3 + x log |Γ i | 2 ).
In the mixed method we test K critical instants candidate, the com-

plexity is O(|Γ i | 3 + K x log |Γ i | 2 ).
We note E the number of transactions for which we apply an exact interference function.

K = |Γ i |! E! (|Γ i | -E)! |Γ i | E |Γi|! E! (|Γi|-E)!
corresponds to the choice of E transactions for which we want an exact RTA, and |Γ i | E corresponds to the number of scenarii to explore for each choice of E transactions.

For example, for E = 1 the complexity of the method is O(

|Γ i | 3 + x |Γ i | 2 log |Γ i | 2 ), and for E = 2 it is O(|Γ i | 3 + x |Γ i | 4 log |Γ i | 2 )
Thus the pessimism of the mixed method decreases while increasing the number of transaction for which we apply an exact interference function. In the simulation we have implemented the mixed method for a number of exact transaction varying for E = 1 to E = 3. Since the complexity of the mixed method increases with the number of transactions (E) on which an exact calculation is applied. and according to the simulation results (pessimism and treatment times), we can adopt the mixed method with E = 1 or E = 2.

Performance Evaluation

In order to evaluate and quantify the improvement made on worst-case response time by of our mixed method compared to existing methods We have implemented the following algorithms :

-NM1 : the mixed method with the number of transaction for which we apply an exact interference function equal to E = 1 -NM2 : the mixed method with E = 2 -NM3 : the mixed method with E = 3 -Nolin : the approximative method of Nolin (Maki-Turja et Nolin, 2005) -Exact : the exact analysis [START_REF] Tindell | Adding time-offsets to schedulability analysis[END_REF][START_REF] Gutierrez | Schedulability analysis for tasks with static and dynamic offsets[END_REF] In the implementation all the methods, we have used an efficient implementation proposed by Nolin [START_REF] Maki-Turja | Fast and tight response-times for tasks with offsets[END_REF]. The tests carried out correspond to the calculation of the response time of all the tasks of the transactions by using the complete set of responsetimes (for all instances of τ ua released in the busy period). Each point in each graph has been obtained by taking the mean value of 100 randomly generated transactions systems.

-Random generator characteristics : The random generator of transactions systems takes the following parameters as input : Total system load, Number of transaction per system and Number of tasks per transaction. Using these parameters the others properties of task systems are generated :

-Using the UUniFast algorithm presented in [START_REF] Bini | Biasing effects in schedulablity measures[END_REF]), the total system load is proportionally distributed over all transactions. -Periods of transactions (Ti) are randomly distributed in the range 100 to 1.000.000 time units (uniform distribution). -Each offset (O ij ) is randomly distributed within the transaction period (uniform distribution). -Using the UUniFast algorithm presented in [START_REF] Bini | Biasing effects in schedulablity measures[END_REF], the transaction load is proportionally distributed over all tasks. The execution times (C ij ) are calculated using the periods of transaction and a task load. -The blocking factors B ij and Jitters J ij are nulls.

-The priorities are assigned in deadline monotonic order.

-Criteria of comparison :

-Pessimism : The pessimism of a method

M is R M ua -R Exact ua /R Exact ua
, which is giving how pessimistic the obtained WCRT is pessimistic. Of course the lower the better. -Execution time : the time required by the method M for computing the WCRT.

Figures 6,7,8,9 correspond to a base configuration where the system load is 80%, and there are 6 tasks per transaction. From this basic configuration we change the number of transactions. These figures show that the difference between the fraction of pessimism of the mixed methods and approximative method increases as the number of tasks per transaction grows. But the pessimism increases slower for the mixed methods than for Nolin's method. For example we can see in these graphs that for more than 10 transactions of 5 tasks, the maximum pessimism for Nolin's method is around 8%, while for mixed methods (NM1 and NM2) the pessimism does not exceed 2%.

In the figures 8,12 we compare the fraction of tasks concerned by the pessimism. This fraction measures the number of tasks in a transactions system for which a response times provided by the analysis techniques is pessimistic (greater than the exact value of WCRT). The fraction of tasks with pessimism increases with the number of transactions in the system, and with the number of tasks per transaction. For a system of 6 transactions the fraction of tasks with pessimism obtained by Nolin's method is over 20%, while for the mixed methods , this number does not exceed 4%.

The figure 9 shows that the time required by NM1 is almost the same as Nolin's method (while NM1 gives better results) and that the time required by NM2 is growing a little faster. As a conclusion, for systems of 6-10 transactions (which looks like an averagesis system), the best quality/time seems to be NM1 or NM2 since the cost in time is not high compared to Nolin's method, while the pessimism is significantly reduced. NM3 needs a significantly higher computing time for a low improvement compared to NM2.

Conclusion and Perspectives

For response time analysis of tasks with offset scheduled under fixed priority, only intractable techniques (exponential complexity) provide an exact evaluation of WCRT. Approximate techniques provide a pessimistic upper bounds for WCRT with a pseudo-polynomial complexity. In this article we have presented new WCRT analysis method that is a result of combination of the exact calculation and approximative calculation principles. This new method provides an upper bounds for WCRT with less pessimism, and it has a tunable pseudo polynomial complexity.

In our future works, we will use the monotonicity property of transaction and the tasks dominance property as a basement to introduce a new evaluation method in order to decrease the number of critical instants candidates taken into account. 

-FIG. 7 ---

 7 FIG. 6 -Influence of the number of transactions on the pessimism.5 tasks/transaction, U=80%

-

  FIG. 10 -Influence of the number of tasks on the pessimism.6 tansactions, U=80%